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Abstract

The purpose of this short article is to build on the work of Ghirardi, Marinatto
and Weber (Ghirardi, Marinatto & Weber 2002; Ghirardi & Marinatto 2003, 2004,
2005), in supporting a redefinition of entanglement for “indistinguishable” systems,
especially fermions. According to the proposal, the non-separability of the joint
state is insufficient for entanglement; rather, the joint state is entangled iff it cannot
be represented as the (anti-) symmetrisation of a product state. The redefinition
is justified by its physical significance, as enshrined in three biconditionals whose
analogues hold of “distinguishable” systems. The proposed definition of entangle-
ment also prompts a reconceptualisation of local operations and the reduced states
of constituent subsystems.
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1 Introduction

In this article I wish to give support for a redefinition of entanglement for “indistinguish-
able” systems; i.e. systems for which permutation invariance is imposed. To the best of
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my knowledge, this redefinition was first proposed by Ghirardi, Marinatto and Weber
(Ghirardi, Marinatto & Weber 2002; Ghirardi & Marinatto 2003, 2004, 2005), and has
more recently been endorsed by Ladyman, Linnebo and Bigaj (2013). My contribution
here will be to prove that the proposed redefinition enjoys a physical significance that
is not shared by the standard concept, according to which a joint state of a quantum
assembly is entangled iff it is non-separable; i.e. inexpressible as a product state. I will
also present a method for extracting subsystems’ states from the joint state, in analogy
with the familiar reduced trace procedure.

The physical significance of the concept, which I will call GMW-entanglement, is
enshrined in three biconditionals, the analogues of which hold for the standard con-
cept of entanglement for “distinguishable” systems; i.e. systems for which permutation
invariance is not imposed. These three biconditionals are:

1. The joint state of any two-system assembly is entangled iff it violates a Bell in-
equality.

2. The joint state of any assembly is not entangled iff the constituent systems’ states
are pure.

3. The joint state of any assembly is not entangled iff the constituent systems’ states
determine the joint state.

Each of the three biconditionals may be construed in two ways: (i) as about the standard
notion of entanglement, i.e. non-separability, as applied to “distinguishable” quantum
systems; and (ii) as about GMW-entanglement, as applied to “indistinguishable” quan-
tum systems. The biconditionals under (i) are well-known (the first is a theorem due
to Gisin 1991); my aim here to show that the biconditionals under (ii) are also true.
Furthermore, if we construe the biconditionals as about the standard notion of entangle-
ment, as applied to “indistinguishable” quantum systems, then they typically fail. But
they should be true under any good concept of entanglement. In consequence, GMW-
entanglement is the right concept to apply when treating “indistinguishable” quantum
systems.

Proving the first biconditional under construal (ii) is the main work of this paper.
It will be crucial to this proof that a couple of other concepts are understood rather
differently in the permutation-invariant setting than in the general setting. In particular,
we need to revise our understanding of what counts as a local operation and how to
extract the states of constituent systems from the joint state. Both of these revisions are
necessary for the following reason: in the “distinguishable” case, these concepts make
essential appeal to the factor Hilbert spaces that make up the assembly’s joint Hilbert
space; and our best understanding of permutation invariance is one in which factor
Hilbert space indices—or, equivalently, the order in which they stand in the tensor
product—have no physical meaning. The second and third biconditionals drop out as
corollaries after this revision.

In Section 2, I briefly review the topic of permutation invariance in quantum mechan-
ics, and argue that its best interpretation is one that treats the invariance as a symptom
of representational redundancy in the standard quantum formalism. It is the fact of this
redundancy which motivates the revisions in the concepts of local operation, constituents’
states and entanglement. In Section 3, Gisin’s Theorem and GMW-entanglement are
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both reviewed, and some potential confusions cleared up. Section 4 contains the pro-
posed redefinitions of local operations, constituents’ states and entanglement, and a
proof of the first biconditional under its new construal. The remaining biconditionals
are addressed in Section 5. Section 6 concludes with some morals regarding the viability
of particle-talk in the permutation-invariant setting: I will argue there that successful
talk about particles has its limits, and that these limits show themselves well before we
enter the arena of quantum field theory.

2 Permutation invariance, symmetric operators and the
wedge product

Permutation-invariant quantum mechanics is standard many-particle quantum mechan-
ics with the additional condition of permutation invariance. We begin with the single-
system Hilbert space H equipped with an algebra of quantities, which we may take as
BpHq, the full algebra of bounded operators defined on H. From this we define the
N -fold tensor product bNH, the prima facie state space for N systems, and the asso-
ciated algebra BpbNHq – bNBpHq (the symbol ‘–’ denotes unitary equivalence). The
“indistinguishability” of the particles is expressed by the fact that any two of the factor
Hilbert spaces, each with their associated algebras, are unitarily equivalent.1

The joint Hilbert space bNH carries a natural unitary representation U : SN Ñ

UpbNHq of the group SN of permutations on N symbols. For example, the permutation
pijq, which swaps systems i and j, is represented by the unitary operator Upijq defined
on basis states, having chosen an orthonormal basis t|φkyu on H, by

Upijq|φk1y b . . .b |φkiy b . . .b |φkjy b . . .b |φkN y

“ |φk1y b . . .b |φkjy b . . .b |φkiy b . . .b |φkN y (1)

and then extended by linearity to the whole of bNH.

Permutation invariance, otherwise known as the Indistinguishability Postulate (Mes-
siah & Greenberg 1964, French & Krause 2006), is a condition placed on quantities
defined for the joint system. Specifically, any operator Q P BpbNHq is permutation-
invariant iff it is symmetric;2 i.e. for all permutations π P SN and all states |ψy P bNH,

xψ|U :pπqQUpπq|ψy “ xψ|Q|ψy . (2)

The representation U is reducible, and decomposes into various irreducible representa-
tions, each kind of irreducible representation corresponding to a different symmetry type.
The symmetry types include boson, fermion and (if N ě 3) a variety of paraparticles (see
e.g. Tung 1985, Ch. 5). If we consider only the information provided by the symmetric
operators, we treat permutation invariance as a superselection rule, and each superselec-
tion sector corresponds to one of these symmetry types. The two symmetry types found

1The rather jarring use of scare-quotes around “indistinguishable” is an attempt to do justice to
two facts at once. The first fact is that systems are often described as “indistinguishable” iff they are
associated with unitarily equivalent algebras, perhaps with the addition that permutation invariance is
then imposed. The second fact, as we shall see, is that the systems are typically distinguishable after
all, in virtue of their state-dependent properties.

2This use of ‘symmetric’ is not to be confused with the condition that xψ|Qφy “ xQψ|φy for all
|ψy, |φy P dompQq.
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in nature are bosons, corresponding to the totally symmetric subspace S`pbNHq, and
fermions, corresponding to the totally antisymmetric subspace S´pbNHq.

What does it mean to impose permutation invariance? Isn’t it rather that permuta-
tion invariance holds of some operators and not others? The key issue here is physical
interpretation: specifically, which mathematically defined operators in the joint algebra
represent genuinely physical quantities. So to impose permutation invariance is to lay
it down as a necessary condition on any operator’s receiving a physical interpretation.
This may be justified by treating the factor Hilbert space labels—i.e. the order in which
single-system operators and states lie in the tensor product—as nothing but an artefact
of the mathematical formalism of quantum mechanics.

I prefer to think of it in reverse. We find, empirically, that the joint states of ele-
mentary particles always come in some symmetry type—in fact, they are always either
bosonic or fermionic. This is evidence that factor Hilbert space labels have no physical
significance. Not conclusive evidence, however: for there is an alternative explanation for
the empirical finding. It could be rather that the joint state of any assembly of elemen-
tary particles remains in the fermionic or bosonic sector under all dynamical evolutions
due only to the fact that the corresponding Hamiltonian happens to be permutation-
invariant. And one would expect a permutation-invariant Hamiltonian to govern systems
which share the same state-independent properties (i.e. mass, spin and charge). Indeed,
this interpretative gloss is either explicitly propounded or implicitly assumed by most
authors in the literature (e.g. French & Redhead 1988; Butterfield 1993; Huggett 1999,
2003; French & Krause 2006; Muller & Saunders 2008; Muller & Seevnick 2009; Caulton
2013).

However, this gloss comes unstuck when we consider where the theory of permutation-
invariant many-particle quantum mechanics might come from. We can get to permutation-
invariant many-particle quantum mechanics along a number of routes:

1. as above, by forming tensor products from single-particle Hilbert spaces and then
imposing permutation invariance;

2. by quantifying some configuration space in a classical many-particle theory, appro-
priately quotiented under a classical analogue of permutation invariance;

3. by restricting to constant total-particle-number subspaces in some Fock space in
some relevant quantum field theory (this is the most plausible route).

However, it is only along the first route that factor Hilbert space labels even come
into the picture. Along the quantum-field-theoretic route, for example, we never see
the “full” tensor product Hilbert space bNH; rather we see only its totally symmetric
or totally antisymmetric subspace S˘pbNHq. This all suggests that the “full” tensor
product Hilbert space and its associated factor Hilbert space labels are nothing but a
convenient fiction—convenient, that is, so long as we are not misled. In truth, there is
nothing that those factor Hilbert space labels name, and non-symmetric states are not
just dynamically impossible, they don’t even represent possibilities for the particles.

Of course, there are plenty of applications where the “full” tensor product Hilbert
space is the appropriate one to work with. For example, the associated subsystems may
be distinguished by their state-independent properties, such as their mass or charge.
Also, the Hilbert space associated with a single system is of course taken as a tensor
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product of Hilbert spaces, each associated with an independent degree of freedom (e.g. a
non-relativistic electron is usually associated with the Hilbert space L2pR3q b C2, in
which the spatial and spin degrees of freedom are represented as factor Hilbert spaces).
My target here is not tensor products in general. My target is only the view that,
when it comes to elementary systems of the same species—the sorts of systems which
in quantum field theory are thought of as excitations in the same field, each of which is
associated with the single-system Hilbert space H and an associated algebra—we should
somehow think of the joint Hilbert space S˘pbNHq as embedded in the larger Hilbert
space bNH, where the latter has some cogent physical interpretation under which each
copy of the single-system Hilbert space H in the tensor product corresponds to one
of the N subsystems. That view, it seems to me, is unsustainable: the “full” tensor
product Hilbert space bNH is nothing but a fiction, and with it the state-independent
individuation of constituent systems by ordering of the factor Hilbert spaces.

In fact, as we shall see, tensor product structure, more generally, is still an important
aspect of system individuation. But when it comes to elementary systems of the same
species, for which permutation-invariance is imposed, the tensor product structure should
not be thought of as being given once and for all, as in the “full” tensor product bNH.
The tensor product structure is rather more elusive and opportunistic. Appropriate
decompositions into factor Hilbert spaces, where possible, are context-dependent, in the
sense that they depend on the details of the particular joint state and do not capture
the whole joint Hilbert space all at once. Moreover, appropriate decompositions are not
always possible—except in the case of bipartite fermionic systems.

Much of my focus in the following will be on fermionic joint systems, particularly
bipartite fermionic systems. So, following Ladyman, Linnebo and Bigaj (2013), I will
make use of a harmless abuse of notation by referring to anti-symmetric states by their
corresponding wedge product. In particular, given an orthonormal basis t|φiyu on H,
the expression

|φi1y ^ |φi2y ^ . . .^ |φiN y (3)

will be used as a shorthand for the following state in the fermionic joint Hilbert space
S´pbNHq:

1
?
N !

ÿ

πPSN

p´1qdeg π|φiπp1qy b |φiπp2qy b . . .b |φiπpNqy . (4)

In the fermionic case, joint states that can be expressed as wedge products in this way
exactly correspond to those which are not GMW-entangled.

3 What is entanglement?

Let me first put an important consideration out of the way. This important consideration
is that many sorts of things can appropriately be called entangled, and it matters which
sort of thing we are talking about. I do not wish to enter into a detailed discussion here,
so I will give three brief examples. First, even a single system can exemplify entanglement
between its different degrees of freedom: for example, consider the single-particle state

1
?

2
p|Ly b |Òy ´ |Ry b |Óyq , (5)

5



where |Ly denotes some spatial state localised on the left of our lab, |Ry denotes some
spatial state localised on the right, orthogonal to |Ly, and | Òy and | Óy are the familiar
spin-up and spin-down eigenstates. In this state, the spatial and spin degrees of freedom
are entangled.

Second, the simple superposition

| Ñy “
1
?

2
p|Òy ` |Óyq , (6)

though clearly not entangled when construed as a state of the particle or any degree
of freedom (there is only one particle here, and only one degree of freedom, spin), it
nevertheless exhibits entanglement between modes associated with the spin-directions Ò
and Ó: this can be seen by expressing the state in terms of occupation numbers associated
with Ò and Ó:

1
?

2
p|1Ò0Óy ` |0Ò1Óyq . (7)

We might add that there is no entanglement between the modes Ð and Ñ, since the
same state may be expressed as |1Ð0Ñy; so even different choices of modes will lead to
different verdicts as to whether or not the state is entangled.

A third, and last, example: consider a system of two distinguishable, spinless particles
on the real line, with coordinates r1 and r2. The joint system’s Hilbert space is H “

L2pRqr1 b L2pRqr2 . But the same joint system may be construed instead in terms of
their centre of mass and relative position coordinates, R :“ 1

2 pr1 ` r2q and r :“ r2 ´ r1,
respectively, suggesting the factorisation H “ L2pRqR b L2pRqr. Joint states which are
separable in terms of R, r may non-separable r1, r2 and vice versa. For example, let the
joint state be such that the wavefunction ΨpR, rq is separable:

ΨpR, rq “ φpRqχprq . (8)

In r1, r2 coordinates, this is of course

Ψ̃pr1, r2q “ φp12pr1 ` r2qqχpr2 ´ r1q , (9)

which is expressible in the form Ψ̃pr1, r2q “ ϕ1pr1qϕ2pr2q only in very special circum-
stances.3

To sum up: while entanglement is a feature that is uncontroversially objective in the
sense of basis-independent, it is nevertheless relative to some specification of ontology.
We can talk of entanglement between particles, between fictional constructs out of par-
ticles (such as the centre of mass, in the third example), between modes associated with
some basis in the one-particle Hilbert space, or just between degrees of freedom of a
single particle. Entanglement in terms of one ontology is not equivalent to entanglement
in terms of another.

So let me make it clear now that my interest in this paper is solely entanglement
between particles. That’s because it’s only this sort of entanglement that becomes obscure
once permutation invariance is imposed, and which therefore prompts a redefinition.
After all, permutation invariance is only ever imposed on the particles—or, rather, how

3E.g., when φp 1
2
xq “ χpxq “ 1

N
expp´αx2q, in which case ϕ1pxq “ ϕ2pxq “

1
N

expp´2αxq. A simple
case where these special circumstances do not hold is where φ and χ are boxcar functions.
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the particles are represented in the formalism—and not on the modes or on the degrees
of freedom.4

Entanglement is standardly defined formally as the non-separability of the assembly’s
state; i.e. a state is entangled iff it cannot be written as a product state (see e.g. Nielsen
& Chuang 2010, 96). The physical significance of this definition is underpinned by a
biconditional, one half of which is Gisin’s Theorem, which applies to assemblies of two
(“distinguishable”) subsystems:

Theorem 3.1 (Gisin 1991) Let |ψy P H1 b H2. If |ψy is entangled (i.e. |ψy is not
a product state), then |ψy violates a Bell inequality. That is, there is some state |χy P
h1 b h2, where h1 ď H1, h2 ď H2 and dim h1 “ dim h2, accessible from |ψy by a local

operation, and a triplet of 2ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q on H1 and a triplet of

2ˆ 2 matrices σp2q “ pσ
p2q
x , σ

p2q
y , σ

p2q
z q, on H2, each satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , (10)

and four 3-vectors a,a1,b,b1 such that

I :“ |Epa,bq ´ Epa,b1q| ` |Epa1,bq ` Epa1,b1q| ą 2 , (11)

where
Epa,bq :“ xχ|a.σp1q b b.σp2q|χy , (12)

etc.

Proof See Gisin (1991). l

So for the joint Hilbert space H1bH2 to contain any entangled states, we must have
dimH1, dimH2 ě 2. The other half of the biconditional is the “easy half”:

Proposition 3.2 Let |ψy P H1bH2. If |ψy is not entangled (i.e. |ψy is expressible as a
product state), then |ψy satisfies any Bell inequality; that is, for any state |χy accessible

from |ψy by a local operation, and any triplet of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q

on H1 and any triplet of 2ˆ 2 matrices σp2q “ pσ
p2q
x , σ

p2q
y , σ

p2q
z q, on H2, each satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , (13)

and any four 3-vectors a,a1,b,b1, then

I :“ |Epa,bq ´ Epa,b1q| ` |Epa1,bq ` Epa1,b1q| ď 2 . (14)

4Imposing permutation invariance on the particles of course does induce a corresponding constraint
on the fictional constructs one may define in terms of them. To take our third example above: impos-
ing permutation invariance on the two particles leads to the result that any pure joint state is either
symmetrised or anti-symmetrised in the particles’ coordinates r1, r2: Ψ̃pr2, r1q “ ˘Ψ̃pr1, r2q. The cor-
responding constraint in the centre-of-mass/relative position coordinates R, r is parity symmetry in r:
i.e. ΨpR,´rq “ ˘ΨpR, rq. While restriction to the symmetric or anti-symmetric sector means giving up
a global tensor product structure in terms of r1, r2, a tensor product structure is preserved in terms of
R and |r|, since e.g. S´

`

L2
pRqr1 b L2

pRqr2
˘

– L2
pRqR b h|r|, where h|r| is the subspace of L2

pR`q|r|
corresponding to wavefunctions which vanish at r “ 0.
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Proof. Since |ψy is non-entangled, then it has the form

|ψy “ |φy b |θy (15)

for some |φy P H1 and |θy P H2. Any state accessible from |ψy by a local operation also
has this form, so we proceed with |χy “ |ψy. Any Epa,bq then takes the form

Epa,bq :“ xψ|a.σp1q b b.σp2q|ψy (16)

“ xφ|a.σp1q|φyxθ|b.σp2q|θy (17)

“: αβ (18)

where α :“ xφ|a.σp1q|φy and β :“ xθ|b.σp2q|θy. If we similarly define α1, β1, then

I “ |αpβ ´ β1q| ` |α1pβ ` β1q| , (19)

and since |α|, |α1|, |β|, |β1| ď 1, there is no set of values for which I exceeds 2. l

Corollary 3.3 Let |ψy P H1 bH2. |ψy is entangled iff it violates a Bell inequality.

This biconditional gives entanglement physical meaning, since the Bell inequalities rep-
resent physically realisable results—at least so long as we assume that every bounded
self-adjoint operator on the Hilbert space H1 bH2 represents a physical quantity.

However, when we turn to permutation-invariant quantum mechanics, the signifi-
cance of this biconditional is called into question. Permutation invariance puts restric-
tions on the available algebra of quantities for the joint system, and some of those pro-
hibited quantities are involved in the definition of the correlation functions Epa,bq. In
a permutation-invariant setting, H1 “ H2 and the only symmetric correlation functions
are of the form

Epa,aq :“ xψ|a.σ b a.σ|ψy . (20)

Yet the Bell inequality requires us to independently vary the quantities on each sys-
tem. Therefore, under permutation invariance the usual Bell inequality cannot even be
constructed!

Two responses are available to us, only one of which is normally taken. The common
response is to refrain from the interpretative strategy endorsed in Section 2, and to
lift the restriction on the joint algebra placed by permutation invariance. Permutation-
invariance is then construed as nothing more than a “dynamical inaccessibility”: the
prohibited quantities still have physical meaning; it is just that dynamical evolution
under them is unavailable to the joint system. This is response is explicit, for example,
in French & Krause (2006, §§4.1.3, 4.2). Any proponent of this response may still want
to say that the biconditional linking entanglement to the violation of a Bell inequality
can be taken seriously, and that therefore non-separability provides the right definition
of entanglement.

However, as I argued in Section 2, we ought to take a stronger reading of permutation
invariance. Under this reading, any element in the mathematical formalism that is not
invariant under arbitrary permutation should not be given a physical interpretation. In
that case, the non-symmetric quantities used in the definition of the correlation functions
simply cannot be given any physical meaning. In that case, we must renounce the idea
that non-separability provides a physically adequate definition of entanglement.
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These doubts have been expressed by Ghirardi, Marinatto and Weber in a se-
ries of papers (Ghirardi, Marinatto & Weber 2002; Ghirardi & Marinatto 2003, 2004,
2005). They propose an alternative definition of entanglement, which have called GMW-
entanglement. Although not their explicit definition, it turns out to be equivalent to
following:

Definition 3.1 A joint state is GMW-entangled iff it is not the anti-symmetrization of
a product state.

So, for example, the spin-singlet state | Òy ^ | Óy “ 1?
2
p| Òy b | Óy ´ | Óy b | Òyq counts as

non-GMW-entangled.

It may come as a surprise, to say the least, that a state which we have all learned to
think of as maximally entangled—indeed, the state most commonly used to illustrate the
violation of a Bell inequality—should come out as non-entangled on what I am urging
as the right definition. But there need be no confusion here. The singlet state is indeed
entangled, so long as we have access to the full algebra of bounded operators. If we do
not, as in the case of permutation invariance, then that attribution needs to be revised.

But aren’t electrons, which are fermions, and therefore subject to permutation invari-
ance, involved in physical violations of the Bell inequality? And don’t those violations
arise in particular when the electrons are prepared in the singlet state? The answer to
both these questions is Yes, but we need to be careful about including all of the electrons’
degrees of freedom. As Ghirardi, Marinatto & Weber (2003, 3) and Ladyman, Linnebo
& Bigaj (2013, 216) point out, the full state in the standard EPRB experiment is

1

2
p|Ly1 b |Ry2 ` |Ry1 b |Ly2q b p|Òy1 b |Óy2 ´ |Óy1 b |Òy2q , (21)

where |Ly and |Ry represent spatial wavefunctions concentrated at the left-hand and
right-hand sides of the lab respectively. Written using the wedge product, this state is

1
?

2
p|L, Òy ^ |R, Óy ´ |L, Óy ^ |R, Òyq , (22)

which is not expressible as the anti-symmetrization of a product state. So it counts as
GMW-entangled.

To sum up: when permutation invariance is imposed, we no longer have recourse
to the full algebra of quantities associated with the “full” tensor product Hilbert space
bNH. This impoverishment of the joint algebra breaks the strong link between non-
separability and the violation of a Bell inequality, as encapsulated in Gisin’s Theo-
rem. Specifically, there are non-separable states—entangled states, on the standard
definition—whose non-separability cannot be made manifest by Bell-inequality-violating
behaviour. These states count as non-entangled on the GMW definition.

That is the chief negative observation of this paper. But there is now positive work
to be done. In particular, we currently lack any way of making sense of Bell inequality
violation in the permutation-invariant case—one that agrees with the indisputable fact
that state (21) violates a Bell inequality. It is the purpose of the next Section to provide
such a way.
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4 Bell inequalities and local operations under permutation
invariance

In order to define a Bell inequality in a permutation-invariant setting, we need some way
of picking out the subsystems that is permutation-invariant—in particular, we may not
appeal to the factor Hilbert space labels. Our solution, inspired by Ghirardi, Marinatto
& Weber (2002) and Dieks & Lubberdink (2011), is to appeal to the states of the
subsystems. This may be seen as the quantum analogue of Russell’s (1905) celebrated
treatment of proper names as disguised definite descriptions. On this view, the named
object is picked out in virtue of a property that it uniquely satisfies.

I illustrate the strategy for the case N “ 2; its generalisation to N ą 2 will be
obvious. The quantum representation of a monadic property is a projector that acts
on the single-system Hilbert space H.5 So to pick out two subsystems we select two
projectors E1, E2 on H such that E1 K E2, i.e. E1E2 “ E2E1 “ 0; I call this condition
orthogonality. The orthogonality of the projectors is crucial, since it is necessary and
sufficient to ensure that, for any joint state, there is zero probability of the two projectors
selecting the same subsystem.

However, there is still the danger that one of the projectors, E1 say, will pick out
both subsystems. Concentrating attention on fermionic subsystems, we can rely on
Pauli exclusion to protect us from this if we impose dimE1 “ dimE2 “ 1. However, this
condition is far too strong, since it will select subsystems only in the corresponding pure
states, and we want to allow the subsystems to occupy mixed states. (In fact GMW-
entangled states are precisely those for which we can ascribe the subsystems mixed
states; see below.)

It is sufficient to demand that the joint state |ψy be an eigenstate of the projector

E1 b E2 ` E2 b E1 (23)

with eigenvalue 1; I call this condition exhaustion. Note that this joint projector is
permutation-invariant. I propose that we interpret it as picking out those joint states in
which one subsystem is in a state in ranpE1q and the other is in a state in ranpE2q. But
it must be emphasized that (23) should not be interpreted as the quantum disjunction,
‘Subsystem 1 is in a state in ranpE1q and subsystem 2 is in a state in ranpE2q QOR
subsystem 1 is in a state in ranpE2q and subsystem 2 is in a state in ranpE1q.’ The
individual disjuncts of this proposition are not permutation-invariant and so have no
physical interpretation. Rather, we must interpret (23) primitively as the proposition
‘Exactly one of the subsystems is in a state in ranpE1q and exactly one of the subsystems
is in a state in ranpE2q.’ Interpreting the projector primitively in this way (i.e. not as
a disjunction) is supported by the following fact: if dimE1 “ dimE2 “ 1, then (23)
projects onto a single ray in the fermionic Hilbert space, and so could not be a non-
trivial disjunction of other propositions.

Therefore our two conditions on what we might call individuating projectors E1

and E2 are that they be: (i) orthogonal; and (ii) exhaustive. A pair of individuating

5It is more customary to associate projectors with propositions rather than properties. But if we
associate projectors on the Hilbert space associated with some system with propositions about that
system, then we can think of projectors on the generic single-system Hilbert space H as systematically
associated with propositions about any system whose states are represented in that Hilbert space. In
this way, projectors on H correspond to properties that consituent systems may possess.
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projectors can always be found for any given 2-fermion state (see below). The same is
not true for bosonic or paraparticle states.

Once we have these individuating projectors, we can define operators associated
with the corresponding subsystems. The proposal is simple: any operator A on H is
associated with the subsystem individuated by Ei iff EiAEi “ A. (Note that if we had
demanded that dimE1 “ dimE2 “ 1, then the algebra of operators associated with each
subsystem would be Abelian.) We can now define permutation-invariant operators on
the joint system which act separately on each subsystem; i.e. they are the permutation-
invariant analogues of Ab 1 and 1bB. They have the general form

E1AE1 b E2BE2 ` E2BE2 b E1AE1 , where A,B P BpHq . (24)

All this leads to the following proposal for what is for a fermionic joint state |ψy to
violate a permutation-invariant Bell inequality:

Definition 4.1 Let |ψy P S´pHbHq. |ψy violates a permutation-invariant Bell in-
equality iff there is some state |χy, accessible from |ψy by a local operation, and two
projectors E1, E2 on H, such that E1 K E2 and

pE1 b E2 ` E2 b E1q |χy “ |χy , (25)

and two triplets of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q, satis-

fying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa , (26)

and four 3-vectors a,a1,b,b1 such that

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (27)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (28)

etc.

It is important to notice that the formal explication of a “local” operation, used in the
definition above, must also change under permutation-invariance. The guiding physical
idea is the same for both: just as, for “distinguishable” systems, a local operation is
one that acts on each subsystem—i.e. each factor Hilbert space—independently, and so
has product form, so too under permutation-invariance a local operation should act on
each subsystem—as individuated by E1 and E2—independently. So under permutation
invariance a local operation is one whose form is given in (24). Note that ‘local’ is
now understood in terms of the state, rather than in terms of the tensor product—in
particular, it could be in terms of the spatial location of the particles.

We are now ready to prove the biconditional linking GMW-entanglement to the
violation of a permutation-invariant Bell inequality. Each direction of the biconditional
will be proved separately.

Proposition 4.1 Let |ψy P S´pH b Hq. If |ψy is not GMW-entangled, (i.e. |ψy is
the anti-symmetrization of a product state) then |ψy satisfies any Bell inequality for
symmetric quantities. That is, for any state |χy accessible from |ψy by a local operation,
and any two projectors E1, E2 on H such that

11



(i) E1 K E2; and

(ii) pE1 b E2 ` E2 b E1q |χy “ |χy ;

there is no pair of triplets of 2ˆ2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q

satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa (29)

for which, for some choice of four 3-vectors a,a1,b,b1,

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (30)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (31)

etc.

Proof. I closely follow Gisin (1991). If dimH ă 4, then no pair of triplets of 2 ˆ
2 matrices satisfying the above conditions can be found. So we assume dimH ě 4.
Any two projectors E1 and E2 satisfying the above conditions must satisfy E1|φ1y “
|φ1y, E2|φ2y “ |φ2y, E1|φ2y “ E2|φ1y “ 0, where |ψy can be written

|ψy “ |φ1y ^ |φ2y . (32)

Any state accessible from |ψy by a local operation (in the permutation-invariant sense)

also has this form, so we proceed with |χy “ |ψy. Since E1 K E2 and Eiσ
piq
a Ei “ σ

piq
a ,

σpiq|φjy “ 0 if i ‰ j (i, j P t1, 2u). Therefore

F pa,bq “ xφ1|a.σ
p1q|φ1yxφ2|b.σ

p2q|φ2y (33)

“ αβ (34)

where α :“ xφ1|a.σ
p1q|φ1y and β :“ xφ2|b.σ

p2q|φ2y. If we similarly define α1, β1, then

IPI “ |αpβ ´ β1q| ` |α1pβ ` β1q| , (35)

and since |α|, |α1|, |β|, |β1| ď 1, there is no set of values for which IPI exceeds 2. l

An important example of a non-GMW-entangled state is

|L, Òy ^ |R, Óy :“
1
?

2
p|L, Òy b |R, Óy ´ |R, Óy b |L, Òyq . (36)

No permutation-invariant Bell inequality is violated for this state.

For the second half of the biconditional, we will need a lemma (also used by Schlie-
mann et al 2001 and Ghirardi & Marinatto 2004), which is the fermionic analogue of
the Schmidt bi-orthogonal decomposition theorem; I merely report it here.

Lemma 4.2 For any antisymmetric d ˆ d complex matrix A (i.e. A P Mpd,Cq and
AT “ ´A), there exists a unitary transformation U such that A “ UZUT , where Z is a
block-diagonal matrix of the form

Z “ diagrZ1, . . . Zr, Z0s, where Zi “

ˆ

0 ci
´ci 0

˙

and ci P C (37)

and Z0 is the pd´ 2rq ˆ pd´ 2rq zero matrix.

12



Proof. This is Theorem 7 in Hua (1944).

Proposition 4.3 Let |ψy P S´pH b Hq. If |ψy is GMW-entangled (i.e. |ψy is not the
anti-symmetrization of a product state), then |ψy violates a Bell inequality for symmetric
quantities. That is, there is some state |χy, accessible from |ψy by a local operation, and
two projectors E1, E2 on H, such that E1 K E2 and

pE1 b E2 ` E2 b E1q |χy “ |χy , (38)

and two triplets of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q, satis-

fying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa , (39)

and four 3-vectors a,a1,b,b1 such that

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (40)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (41)

etc.

Proof. |ψy has the general form

|ψy “
ÿ

ij

aij |θiy b |θjy (42)

where aij “ ´aji. We can represent |ψy as a complex d ˆ d anti-symmetric matrix A.
Any unitary transformation U on H corresponds to the transformation A ÞÑ UAUT . So,
given Lemma 4.2, we can find a basis t|φiyu such that

|ψy “

z d
2

{
ÿ

i“1

ci|φ2i´1y ^ |φ2iy . (43)

If |ψy is GMW-entangled, then we can order the basis vectors so that c1, c2 ‰ 0. Now
define

|χy :“
c1|φ1y ^ |φ2y ` c2|φ3y ^ |φ4y

a

|c1|2 ` |c2|2
. (44)

|χy may be obtained from |ψy by a local, selective operation (where we use our new sense
of ‘local’). The idea now is to treat the state |χy analogously to the entangled state

c1|φ1y b |φ2y ` c2|φ3y b |φ4y , (45)

in the general setting (where permutation invariance is not imposed), which is subject
to Gisin’s Theorem. Now define the following individuation criteria

E1 :“ |φ1yxφ1| ` |φ3yxφ3| , E2 :“ |φ2yxφ2| ` |φ4yxφ4| . (46)

Then it may be checked that pE1 b E2 ` E2 b E1q |χy “ |χy—in fact a selective mea-
surement using the projector on the LHS is precisely the local operation which produces
|χy. The proof now closely follows Gisin (1991). We define Pauli-like matrices for the

13



two 2-dimensional subspaces of H spanned by t|φ1y, |φ3yu and t|φ2y, |φ4yu, respectively.
Let

σp1qx :“ |φ1yxφ3| ` |φ3yxφ1| (47)

σp1qy :“ ´i p|φ1yxφ3| ´ |φ3yxφ1|q (48)

σp1qz :“ |φ1yxφ1| ´ |φ3yxφ3| (49)

and

σp2qx :“ |φ2yxφ4| ` |φ4yxφ2| (50)

σp2qy :“ ´i p|φ2yxφ4| ´ |φ4yxφ2|q (51)

σp2qz :“ |φ2yxφ2| ´ |φ4yxφ4| (52)

It may be checked that these operators satisfy the conditions above. Some calculation
yields

F pa,bq :“ xχ|
´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy

“ azbz `
2<epc1c

˚
2q

|c1|2 ` |c2|2
paxbx ´ aybyq `

2=mpc1c
˚
2q

|c1|2 ` |c2|2
paxby ` aybxq (53)

“ azbz ` ξ cos γpaxbx ´ aybyq ` ξ sin γpaxby ` aybxq (54)

where ξ :“ 2|c1c2|
|c1|2`|c2|2

and γ :“ argpc1c
˚
2q. Note that 0 ă ξ ď 1. We now choose

ax “ sinα, ay “ 0, az “ cosα; bx “ sinβ cos γ, by “ sinβ sin γ, bz “ cosβ to obtain

F pa,bq “ cosα cosβ ` ξ sinα sinβ . (55)

Making similar choices for a1,b1, and selecting α “ 0, α1 “ π
2 , we obtain

ˇ

ˇF pa,bq ´ F pa,b1q
ˇ

ˇ` |F pa1,bq ` F pa1,b1q| “
ˇ

ˇcosβ ´ cosβ1
ˇ

ˇ` ξ
ˇ

ˇsinβ ` sinβ1
ˇ

ˇ (56)

We may choose cosβ “ ´ cosβ1 “: η, sinβ “ sinβ1 “
a

1´ η2, for which

ˇ

ˇF pa,bq ´ F pa,b1q
ˇ

ˇ` |F pa1,bq ` F pa1,b1q| “ 2pη ` ξ
a

1´ η2q. (57)

Given a value for ξ, this quantity is maximal for η “ 1?
1`ξ2

, for which it takes the value

2
a

1` ξ2, which is strictly greater than 2 for all ξ ą 0; i.e. for any non-vanishing c1 and
c2. l

Corollary 4.4 Let |ψy P S´pHbHq. |ψy is GMW-entangled iff it violates a permutation-
invariant Bell inequality.

As mentioned above, an important example of a GMW-entangled state is the EPRB
state of two electrons:

1
?

2
p|L, Òy ^ |R, Óy ´ |L, Óy ^ |R, Òyq . (58)

If we use the individuation criteria E1 “ |LyxL|b1spin and E2 “ |RyxR|b1spin, and the
subsystems do not change their location, then the 4D subspace S of the joint Hilbert
space spanned by

|L, Òy ^ |R, Òy, |L, Òy ^ |R, Óy, |L, Óy ^ |R, Òy, |L, Óy ^ |R, Óy (59)

14



is physically equivalent (because unitarily equivalent) to the 4D tensor product Hilbert
space spanned by

|ÒyL b |ÒyR, |ÒyL b |ÓyR, |ÓyL b |ÒyR, |ÓyL b |ÓyR . (60)

in which the subsystems are indexed by their locations L and R, and permutation
invariance is not imposed.6 In particular, the state (58) is equivalent to

1
?

2
p|ÒyL b |ÓyR ´ |ÓyL b |ÒyRq , (61)

which of course violates the standard Bell inequality.

To sum up this section: I have introduced a means to individuate systems according
to their state-dependent properties. Individuation of two system proceeds by choosing
two projectors E1, E2 on the single-system Hilbert space H which are: (i) orthogonal,
i.e. E1E2 “ E2E1 “ 0; and (ii) exhaustive, i.e. the joint projector E1 b E2 ` E2 b E1

acts as the identity on the joint state. By means of this individuation scheme, we may
associate with the two systems a joint algebra of symmetric (i.e. permutation invariant)
quantities, among which are joint operators with which we can define permutation-
invariant analogues of correlation functions and local operations. With these, I have
shown that a bipartite fermionic joint system is GMW-entangled iff it violates some Bell
inequality formed from these permutation-invariant correlation functions, perhaps after
some local operation. This result essentially follows from Gisin’s (1991) original theorem
and a unitary equivalence result that holds between a subspace of the anti-symmetrised
joint Hilbert space S´pHbHq and some tensor product Hilbert space.

5 Constituent states under permutation invariance

Two further biconditionals characterise entanglement for “distinguishable” systems, both
of which can be extended to GMW-entanglement under permutation invariance. First
we consider the biconditional that any joint state |ψy is not entangled iff the con-
stituent systems occupy pure states. In a permutation-invariant setting, we may say
that constituent systems occupy pure states just in case individuation criteria E1, E2

may be found that satisfy our two conditions above (orthogonality and exhaustion) and
dimE1 “ dimE2 “ 1 (maximal specificity). This conditional is obviously equivalent
to |ψy’s being the anti-symmetrization of a product state, i.e. |ψy’s being non-GMW-
entangled.

This brief consideration prompts a more in-depth look into how we might ascribe
states to constituent systems in the permutation invariant setting. In the general setting,
the usual prescription is to calculate reduced density operators by performing a partial
trace over all factor Hilbert spaces except the one taken to correspond to the constituent
system of interest (see e.g. Nielsen & Chuang 2010, §2.4.3). However, this procedure
presumes exactly what I have here urged us to deny: namely, that the order of the
factor Hilbert spaces carries any physical significance. If the order of the factor Hilbert
spaces represents nothing, then what is the significance of a reduced density operator

6The relevant unitary is the restriction of
?

2|Ly1xL|b1
p1q
spinb|Ry2xR|b1

p2q
spin to S, which sends (58)

to (61). This physical equivalence between permutation-invariant QM and permutation-non-invariant
QM is essentially also pointed out in a more general discussion by Huggett & Imbo 2009.
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obtained by privileging one factor Hilbert space over the others in the tensor product?
(In fact, as we shall see below, it has some significance, as the average state of the
constituent systems. But that is a far cry from what we’re after, which is the actual
state of some particular subsystem.)

What we need is some analogue of the partial trace procedure that lives up to our
permutation-invariant scruples. Such an analogue is at hand. Recall from (24) that,
on individuation criteria E1, E2 for a bipartite joint system, the permutation-invariant
analogue of the operator AbB is E1AE1bE2BE2`E2BE2bE1AE1. Now suppose that
we interested in only one of the subsystems, say the one we wish to individuate using
the projector E. Then let E1 “ E and E2 “ 1´ E “: EK. These individuation criteria
are of course guaranteed to be orthogonal, and have the best possible chance of being
exhaustive. If we wish to act on the system individuated by E with the arbitrarily chosen
quantity Q, and otherwise act trivially on the other subsystem, then the appropriate
operator on the joint Hilbert space is

πEpQq :“ EQE b EK ` EK b EQE , (62)

where we hereby define a map πE from the single-system algebra BpHq into the joint
algebra. Let us now restrict: (i) to those joint states for which E succeeds in picking out
a unique subsystem, i.e. those joint states for which E bEK `EK bE acts as the iden-
tity; and (ii) to those single-system quantities Q which commute with the individuation
criterion E. Then the map πE so defined is a unital ˚-algebra homomorphism.7

The quantity πEpQq will have an expectation value determined by the joint state.
But it is properly associated with the subsystem individuated by the projector E, since
we act trivially on the other subsystem. That is to say, the expectation value assigned
by the joint state to the joint quantity πEpQq is to be construed as the expectation value,
which I will denote xQyE , of the single-system quantity Q assigned by the reduced state
of the E-subsystem. The idea now is to work backwards from the expectation values
xπEpQqy for arbitrary Q to infer the explicit form of this reduced state. The relevant
result is captured in the following Proposition.

Proposition 5.1 Let |ψy P S˘pH b Hq be any symmetric or antisymmetric bipartite
pure state and let the individuation criterion E, a projector on the single-system Hilbert
space H, succeed in picking out a unique subsystem; i.e.

pE b EK ` EK b Eq |ψy ” πEp1q|ψy “ |ψy .

Then there is a unique density operator ρE such that

trpρEQq “ xQyE :“ xψ|πEpQq|ψy “ xψ| pEQE b EK ` EK b EQEq |ψy ,

where ρE is given by a Lüders’ rule projection

ρE :“
EρE

trpρEq
(63)

7πE ’s being a ˚-algebra homomorphism requires that πEpQ
˚
q “ pπEpQqq

˚, πEpαQq “ απEpQq,
πEpQ1 `Q2q “ πEpQ1q ` πEpQ2q and πEpQ1Q2q “ πEpQ1qπEpQ2q. For the last identity it is sufficient
that rQ1, Es “ rQ2, Es “ 0. πE ’s being unital requires in addition that πEp1Hq act as the identity on
the joint algebra, which holds if we restrict to joint states for which E succeeds to pick out a unique
subsystem.
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on the average single-system state ρ :“ tr1p|ψyxψq ” tr2p|ψyxψ|q, obtained by a partial
trace over either factor Hilbert space.

Proof. Let us choose a basis t. . . , |φiy, . . . , |θIy, . . .u for the single-system Hilbert space
H such that

E|φiy “ |φiy ; E|θIy “ 0 . (64)

For the sake of clarity, I will use lowercase indices i, j, k, . . . to range over states in the
range of E and uppercase indices to range over states in the range of EK. Then the most
general form for a bipartite joint state is

|ψy “
ÿ

i,j

aij |φiy b |φjy `
ÿ

I,J

bIJ |θIy b |θJy `
ÿ

i,J

ciJ |φiy b |θJy `
ÿ

I,j

dIj |θIy b |φjy . (65)

The individuation criterion E succeeds iff aij “ bIJ “ 0, for all i, j, I, J . So the joint
states of interest are all of the form

|ψy “
ÿ

i,J

ciJ |φiy b |θJy `
ÿ

I,j

dIj |θIy b |φjy . (66)

This state yields the expectation value, for arbitrary operator Q on H,

xQyE :“ xψ| pEQE b EK ` EK b EQEq |ψy “
ÿ

i,j,K

pc˚iKcjK ` d
˚
KidKjq xφi|Q|φjy . (67)

We now use the fact that |ψy is symmetrised (bosons) or anti-symmetrised (fermions):

dKi “ ˘ciK for all i,K,

to obtain
xQyE “ 2

ÿ

i,j,K

c˚iKcjKxφi|Q|φjy . (68)

At this point, we could appeal to Gleason’s Theorem (Gleason 1957) to establish
the existence of a density operator ρE which produces these expectation values. How-
ever, I will instead proceed by explicitly defining ρE , show that it produces the correct
expectation values, and then show that it is unique.

A partial trace over (e.g.) second factor Hilbert space of the joint state (66), subject
to the (anti-)symmetry condition, yields what I am calling the average single-system
state

ρ “ tr2 p|ψyxψ|q

“
ÿ

i,j,K

ciKc
˚
jK |φiyxφj | `

ÿ

I,J,k

ckIc
˚
kJ |θIyxθJ | . (69)

(The same result is obtained by a partial trace over the first factor Hilbert space.) It
may be checked that ρ has unit trace so long as |ψy is normalised, in which case

ÿ

i,J

|ciJ |
2 “

1

2
. (70)
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We should expect to obtain 1
2 here, since doing so is a necessary condition for the

individuation criterion E succeeding in picking out a unique subsystem: equation (70)
tells us that “half” of the single-systems’ states lie in the range of E.

Given the definition of the |φiy, |θIy, it is clear that

EρE “
ÿ

i,j,K

ciKc
˚
jK |φiyxφj | , (71)

and so

trpρEq “ trpρE2q “ trpEρEq “
ÿ

i,J

|ciJ |
2 “

1

2
, (72)

where in first and second identities we make use of the idempotence of E and cyclicity
of the trace, respectively, and in the last identity we use (70). Combining our results
(71) and (72), we now obtain an explicit form for ρE :

ρE :“
EρE

trpρEq
“ 2

ÿ

i,j,K

ciKc
˚
jK |φiyxφj | . (73)

This density operator yields, for an arbitrary operator Q on H, the expectation value

trpρEQq “ 2
ÿ

i,j,K

c˚iKcjKxφi|Q|φjy “ xQyE , (74)

which agrees with our result (68), as required.

This establishes the existence of ρE with the right properties. To establish unique-
ness, first consider the general form of a density operator on H:

ρ̃ “
ÿ

i,j

wij |φiyxφj | `
ÿ

i,J

puiJ |φiyxθJ | ` u
˚
iJ |θJyxφi|q `

ÿ

I,J

WIJ |θIyxθJ | . (75)

Now consider the expectation values that ρ̃ must yield for the operators AIJ :“ |θJyxθI |
if it is to agree with ρE . Using (74), we must have

trpρ̃AIJq “WIJ “ 0 (76)

for all I, J . Similar consideration of the operators BiJ :“ |θJyxφi| establishes that uiJ “ 0
for all i, J . Finally, consideration of the operators Cij :“ |φjyxφi| establishes that

trpρ̃Cjiq “ wij “ 2
ÿ

K

c˚iKcjK , (77)

all of which serves to fix ρE uniquely. l

The reduced state ρE is obviously sensitive to its associated individuation criterion
E. As one might expect (and so is a sanity check on the proposal), ρE has support only
in the range of E: in other words, the system individuated by E can only be found in
a state compatible with E. It immediately follows that if dimE “ 1 (and trpρEq ą 0),
then ρE “ E, and so the system individuated by E has a pure state. However, in general
E may be non-minimal, and this allows ρE to be statistically mixed (even though the
joint state is pure).

To take our permutation-invariant Bell state (58) again as an example, the following
reduced states associated with single-system projectors may be found:
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• E “ |LyxL| b 1spin. In this case, πEp1q indeed acts on the state as the identity,
and ρE “ |LyxL| b

1
2 p|ÒyxÒ | ` |ÓyxÓ|q.

• E “ |RyxR| b 1spin. In this case, πEp1q indeed acts on the state as the identity,
and ρE “ |RyxR| b

1
2 p|ÒyxÒ | ` |ÓyxÓ|q.

• E “ 1space b | ÒyxÒ |. In this case, πEp1q indeed acts on the joint state as the
identity, and ρE “

1
2 p|LyxL| ` |RyxR|q b |ÒyxÒ |.

• E “ 1space b | ÓyxÓ |. In this case, πEp1q indeed acts on the joint state as the
identity, and ρE “

1
2 p|LyxL| ` |RyxR|q b |ÓyxÓ |.

• E “ |LyxL|b|ÒyxÒ| (a maximally specific projector). In this case, πEp1q fails to act
as the identity on the joint state, and so we have a failure of individuation. Here it
is because no system exists with the appropriate properties on all branches of the
superposition. Nevertheless, using the definition (63), we do get a specification for
ρE , which is ρE “ |LyxL| b |ÒyxÒ | “ E.

• E “ 1space b 1spin (the maximally non-specific projector). In this case, πEp1q
fails to act as the identity on the joint state, and so again we have a failure of
individuation. Here it is because more than once system exists with the appropriate
properties. Nevertheless, using the definition (63), we do get a specification for ρE ,
which is ρE “

1
4 p|LyxL| ` |RyxR|q b p|ÒyxÒ | ` |ÓyxÓ|q “ ρ.

This last case vindicates my description of ρ, obtained by the usual partial trace
procedure, as the ‘average single-system state’. ρ is the reduced state associated with
the maximally non-specific individuation criterion, viz. the identity on H, and it is no
surprise that the maximally non-specific individuation criterion captures all constituent
systems equally, thereby returning the average state of all of them.

These developments lead us directly to our third and final biconditional. Recall
that this says that the joint (pure) state |ψy is not entangled iff the constituents’ states
determine the joint state. (Or in metaphysicians’ jargon: |ψy is not entangled iff the joint
state supervenes on the constituents’ states.) This biconditional is linked to the second
biconditional by the following two facts: (i) the joint state is always pure; and (ii) pure
states are maximally specific (and so a fortiori more specific than mixed states). Since,
by the second biconditional, the constituent states are pure iff the joint state is not
entangled, the constituents’ states carry enough information to collectively determine
the joint state iff the joint state is not entangled. This reasoning carries over for GMW-
entanglement in the permutation-invariant setting, so long as the symmetry type of the
constituents is given. For example, for fermions: any collection of n mutually orthgonal
single-system pure states serves to determine a unique, non-GMW-entangled joint state:
namely, their anti-symmetric combination, or wedge product.

6 When particle-talk fails

Under the current proposals, attributing states—whether pure or mixed—to constituent
systems relies on the two conditions (i) orthogonality, E1 K E2, and (ii) exhaustion, pE1b

E2`E2bE1q|ψy “ |ψy, holding. Otherwise the individuation criteria either (i1) fail to be
mutually exclusive, or (ii1) fail collectively to capture the entire joint state, respectively.

19



Either way, the projectors E1, E2 fail to serve as quantal definite descriptions for the two
systems. Lemma 4.2 ensures that successful individuation criteria may always be found,
no matter the joint state, for an assembly of two fermions. (However, these individuation
criteria may be gruesomely miscellaneous.) But (i) and (ii) are impossible to satisfy in
some bosonic states. In particular, and unsurprisingly, doubly occupied states |φy b |φy
elude this treatment. Consider also the joint state

c1|φ1y b |φ1y ` c2
1
?

2
p|φ2y b |φ3y ` |φ3y b |φ2yq , (78)

where c1, c2 ‰ 0. Intuitively, this joint state should come out as entangled under any
physically salient definition—indeed, the state is GMW-entangled, since it is not the
symmetrisation of any product state. But I have not discovered a satisfactory way to
find individuation criteria or otherwise attribute constituent states to the two subsystems
in joint states like these, where doubly occupied states have a non-vanishing amplitude.8

Consequently, I cannot claim that the three biconditionals hold for bosons and GMW-
entanglement.

This is perhaps to be expected: whenever there is a non-zero amplitude for the two
bosons occupying the same state, one cannot expect to be able to perform measurements
on—or even attribute properties to—one independently of the other. But this, of course,
is a precondition on the possibility of a Bell-like experiment even being performed. So
perhaps it is satisfactory, in the case of bosons, that an appropriate conditional claim hold
instead. The appropriate conditional is: if the two bosons can be individuated, then the
three biconditionals hold (where ‘entanglement’ is understood as GMW-entanglement).
This claim is straightforwardly established. For, the two bosons can be individuated
iff the conditions are met to set up exactly the same sort of unitary equivalence to the
“ditinguishable” case that we made use of in the fermionic case. Under this unitary
equivalence, entanglement becomes GMW-entanglement and our three biconditionals
hold true.

I conclude with one further observation, which put the cogency of particle talk un-
der severe strain. The observation is that one may choose rival sets of individuation
criteria—where both sets satisfy (i) orthogonality and (ii) exhaustion—but there is no
straightforward connection between criteria from the rival sets. A stark example is given
at the end of Section 5 with regard to the familiar anti-symmetrised Bell state (58). The
first and second criteria form an individuating set, as do the third and fourth; yet par-
ticles individuated under the first and second are in mixed states with respect to the
properties associated with the third and fourth, and vice versa. There is therefore no
identification of the systems between the rival sets of criteria: we can talk of ‘the particle
on the left’ and ‘the particle on the right’, or ‘the spin-up particle’ or ‘the spin-down
particle’; but neither of the first pair is to be associated with either of the second pair
(there is, for example, no such thing as ‘the spin-up particle on the left’, as the failure
of the individuation criterion in the fifth example given there shows).

8The analogue of Lemma 4.2, also noted by Schliemann et al (2001), is that any totally symmetric
joint state may be “diagonalised”: i.e., for any state in S`pHbHq, there is some orthonormal basis of H
in which the joint state can be expressed as a superposition of doubly occupied states from that basis.
This is entirely unhelpful for individuating the subsystems, since we require orthogonal individuation
criteria. And if a bosonic joint state has a non-vanishing amplitude for some doubly occupied state in
some basis, then for any basis there will be a non-vanishing amplitude for some doubly occupied state.
That is: double occupation cannot be transformed away. Yet double occupation is fatal for finding
quantal definite descriptions.
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This individuation-criterion-relativity of the constituent particles flies in the face of
our ordinary conception of objects as “having their identities” (whatever that means)
independently of how they are picked out by their properties. What we find is that the
attempt to individuate particles by their state-dependent properties—our only option, if
we are to take the resolute line on permutation-invariance—involves transmitting quan-
tum contextual weirdness from the familiar setting of talk about a system’s properties
to talk about the systems themselves.9

This may lead the reader to doubt my resolute line on permutation invariance.
Wouldn’t it do less violence to our intuitions about constituent particles to instead
adopt the line that permutation invariance is nothing but a initial condition on the joint
state, combined with the (explainable) permutation-symmetry of the governing dynam-
ics? The problem I see with this conservative stance is that, however counter-intuitive
the results that may follow, the weaker line on permutation invariance is simply not
available. The true origins of permutation-invariant many particle quantum mechanics
lie in quantum field theory, where the formal resources do not even exist to individu-
ate constituent particles except by means of their state-dependent properties. (We can
recover the symmetric or anti-symmetric sector S˘pbNHq in the constant-total-particle-
number limit of some corresponding Fock space, but never do we see the “full” tensor
product bNH.)

It seems to me, therefore, that we must find a way to make peace with these counter-
intuitive results. It may well be that the only satisfactory way of doing that is to think
of particle talk as at best approximate, and even then as legitimate only in certain
contexts. (I hope that the work in this paper suggests at least the rough outlines of
those contexts.) If that is right, then we don’t require any further considerations from
quantum field theory, except that particles have no state-independent means of being
individuated, before we may conclude that particles are not fundamental.

7 References

Bell, J. S. (1964), ‘On the Einstein-Podolsky-Rosen paradox’, Physics 1, pp. 195-200.

Bell, J. S. (1976), ‘Einstein-Podolsky-Rosen experiments’, Proceedings of the Symposium
on Frontier Problems in High Energy Physics, Pisa, pp. 33-45.

Butterfield, J. N. (1993), ‘Interpretation and identity in quantum theory’, Studies in the
History and Philosophy of Science 24, pp. 443-76.

Caulton, A. (2013), ‘Discerning “indistinguishable” quantum systems’, Philosophy of Sci-
ence 80, pp. 49-72.

Caulton, A. (2015), ‘Is mereology empirical? Composition for fermions’, in T. Bigaj,
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