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This article recovers an important, century-old debate regarding the methodological and
metaphysical foundations of dimensional analysis. Consideration of Richard Tolman’s
failed attempt to install the principle of similitude—the relativity of size—as the found-
ing principle of dimensional analysis both clarifies the method of dimensional analysis
and articulates two metaphysical positions regarding quantity dimensions. Tolman’s po-
sition is quantity dimension fundamentalism. This is a commitment to dimensional real-
ism and a set of fundamental dimensions that ground all further dimensions. The opposing
position, developed primarily by Percy Bridgman, is quantity dimension conventional-
ism. Conventionalism is an antirealism regarding dimensional structure that holds our
nonrepresentational dimensional systems to have basic quantity dimensions fixed only
by convention. This metaphysical dispute was left somewhat unsettled. It is shown here
that both of these positions face serious problems: fundamentalists are committed to sur-
plus dimensional structure; conventionalists cannot account for empirical constraints on our
dimensional systems or the empirical success of dimensional analysis. I show that an
alternative position saves what is right in both: quantity dimension functionalism.

1. Introduction

In this article, I study a dispute about themethodological foundations of dimen-
sional analysis to clarify its metaphysical foundations. Consideration of the de-
bate started by the failed attempt of Richard Tolman to install the principle of
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similitude—the relativity of size—as the founding principle of dimensional
analysis both clarifies the method (and limits) of dimensional analysis and artic-
ulates two metaphysical positions regarding quantity dimensions. One view,
which I call “fundamentalism,” holds that there is objective dimensional struc-
ture and that there is a set of objectively basic (i.e., fundamental) quantity di-
mensions. Another view, conventionalism, holds that dimensional systems do
not represent any objective dimensional structure and that basic quantity dimen-
sions are determined by convention. Objections to both positions presented in
the historical debate are found to have (limited) validity, and a third, alternative
position, functionalism, is introduced. For the functionalist, the objective aspect
of dimensional structure is modal structure. Quantity dimension functionalism
allows for a synthesis of two methodological conceptions of dimensional analysis
that, prima facie, are in tension: that dimensional analysis is a logical method and
that dimensional analysis provides explanations.

The historical discussion will be restricted to the debate prior to Percy Wil-
liams Bridgman’s landmarkDimensional Analysis (1922) and will focus primarily
on an exchange between Bridgman and Tolman.1 Other significant contributors
to the debate, Edgar Buckingham and Tatiana Ehrenfest-Afanassjewa, cannot be
given their full due here.

In what remains of this introduction, I introduce dimensional analysis as a
method for problem-solving in physics, clarify its role as a logicalmethod, and clar-
ify an all-important and not often made distinction between unit systems and
dimensional systems. This introduction provides all the necessary background
for the rest of the article.

1.1. Dimensional Analysis in Action

Dimensional analysis is well known to even beginning students in physics, al-
though explicit instruction in the method is far from universal. Dimensional
analysis finds use in (often heuristic) arguments in fundamental physics and
in technical engineering applications alike. Let’s consider an example of dimen-
sional analysis in action.

1. In this way, it differs from the brief but more comprehensive account of the debates regarding
dimensional analysis by Walter (1990). Her account is more comprehensive in that it covers the debates
before and after Dimensional Analysis, but it is more myopic in its focus on Bridgman—rightly so, as
Walter’s book is a biography of Bridgman.
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Say we are tasked with deriving the equation for the period of oscillation, t, of
an arbitrary pendulum. We assume that the system can be adequately described
in terms of the following quantities: the mass of the pendulum,m, the length of
the pendulum, l, and the constant acceleration of gravity, g.2 Next, we assume
that these quantities are all reducible to mechanical dimensions:

t½ � 5 T

m½ � 5 M

l½ � 5 L

g½ � 5 LT22:

The square brackets are a function from quantities to their dimensions, here given
in terms of the basic mechanical dimensions, mass, length, and time (unitalicized
capital letters denote dimensions).3

The problem is to find the form the of the function f such that t 5 f (m, l , g),
and so ½t� 5 f (½m�, ½l �, ½g �). This is the principle of dimensional homogeneity:4

PRINCIPLE OF DIMENSIONAL HOMOGENEITY. Every representationally ade-
quate physical equation is dimensionally homogeneous, and an equation
is dimensional homogeneous if the quantity terms on each side have the
same dimension.5

We assume that this function f takes the form of a monomial kmalbgg, with nu-
merical scale factor k.6 From this assumption and the principle of dimensional
homogeneity, it follows that there is a set of linear equations to be solved for

2. This condition of “adequate description” is often called “completeness” (e.g., Buckingham 1914).
That phrasing gives the wrong idea. Dimensional analysis requires only that all of the relevant quantities
are considered; many quantities that are also descriptive of the system (indeed, there is an infinity of
them) are excluded because of irrelevance, redundancy, and so forth.

3. Following Maxwell (2002), there is a slightly different convention in which, for example, [L]
represents the length dimension rather than L, and so forth.

4. This principle was first made explicit by Fourier in his Théorie Analytique de la Chaleur: “It must
now be remarked that every undetermined magnitude or constant has one dimension proper to itself,
and that the terms of one and the same equation could not be compared, if they had not the same ex-
ponent of dimension” (1878, 128). For more on the geometrical roots of dimensional analysis, see De
Clark (2017) and Roche (1998).

5. Each of these terms is a monomial of quantity variables (or constants) and dimensionless scale
factors; addition and subtraction distinguish terms. This captures the intuition that it makes no sense,
for example, to add a length to a mass, to subtract a force from a velocity, and so forth.

6. This is due to Bridgman’s (1931) lemma. For discussion, see Berberan-Santos and Pogliani
(1999) and Jalloh (forthcoming).
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the exponents of the relevant quantities such that the monomial has the dimen-
sions of t. The following equations are to be solved:

M : 1a 1 0b 1 0g 5 0

L : 0a 1 1b 1 1g 5 0

T : 0a 1 0b 2 2g 5 1.

The Greek variables stand for the exponents of the variables in the monomial,
and each coefficient is the exponent of the indicated basic quantity dimension
had by the corresponding quantity m, l, or g. By inspection, a 5 0. With
two equations and two variables (b and g), we find the solution to be b 5
1=2 and g 5 21=2, so t 5 k

ffiffiffiffiffiffiffi
l=g

p
, where k is some undetermined dimen-

sionless constant.7 QED

1.2. Dimensional Analysis as Logic

Dimensional analysis was commonly thought of as a logical method by those
who developed its foundations (see Gibbings 1982). I attempted to make the
logical character of dimensional analysis evident in the previous demonstration
by distinguishing assumptions that draw on our prior physical knowledge and
the workings of dimensional analysis itself. In discussing his foundational paper
on dimensional analysis (Buckingham 1914), Buckingham wrote:

Some three or four years ago, having occasion to occupy myself with prac-
tical hydro- and aerodynamics, I at once found that I needed to know
more about the method in order to use it with confidence for my own
purposes. . . .

I had therefore, as it were, to write an elementary textbook on the sub-
ject for my own education. My object has been to reduce the method to a
mere algebraic routine of general applicability, making it clear that Physics
came in only at the start in deciding what variables should be considered,
and that the rest was a necessary consequence of the physical knowledge
used at the beginning; thus distinguishing sharply between what was as-
sumed, either hypothetically or from observation, and what was mere logic
and therefore certain.8

7. Such derivations can be done more systematically by way of the P-theorem, a fundamental result
of dimensional analysis (see discussion and references in sec. 2.2).

8. Edgar Buckingham to Lord Rayleigh (JohnWilliam Strutt), November 15, 1915, MP 2017-2296,
33, Niels Bohr Library and Archives, American Institute of Physics (College Park, MD; hereafter “AIP”).
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It is clear from this letter that Buckingham understood dimensional analysis
as a logical method insofar as it was certain and so did not depend on any
further empirical claims (i.e., a priori). Modeling dimensional analysis on de-
ductive logic, we can say that it provides a form of valid argument (more ab-
stractly, transformation rules): if such-and-such quantities have such-and-such
dimensions, relative to a dimensional system (see sec. 1.3), then they are related
by so-and-so functions.9 In our extended post–logical empiricism hangover,
such a distinction between logic and experience may seem hopeless and, worse,
old-fashioned—we cannot accept Buckingham’s conception of dimensional
analysis.10

I would like to rehabilitate an idea of dimensional analysis as logic by aban-
doning Buckingham’s epistemic conception of logic while accepting that it
stands apart from ordinary physics in an important way. The relations between
dimensional analysis and experiment are too complex to segregate dimensional
analysis from empirical assumptions, but there is still a sense in which dimen-
sional analysis stands above (or below) the ordinary practice of physics in a
way similar to relative standing of logic and ordinary reasoning. For this rehabil-
itation, I will draw on Gil Sagi’s (2021) recent defense of an exceptionalist con-
ception of logic as a methodological discipline—this contrasts with the usual
exceptionalist conceptions of logic on an epistemic basis (e.g., because it is, a pri-
ori) that is now so unfashionable after Quine (1951). In adding dimensional
analysis to the roster of methodological disciplines, I am accepting the invitation
left open by Sagi that “perhaps there are other methodological disciplines target-
ing scientific practice” (2021, 9741). I offer the claim that dimensional analysis is
the methodological science peculiar to quantitative science, here narrowly con-
sidered as peculiar to quantitative physical science, and so can synonymously be
understood as the logic of quantities.

What is a methodological discipline? We may do well to start with the char-
acterization given by Sagi (2021):

9. That the generation of P-terms and so functional relations can be computed completely and
without arbitrariness is shown in Gibbings (2011). That does not mean that in ordinary practice there
is not an art in determining “which” P-terms (i.e., functional relations) are of interest for the relevant
system.

10. In a later letter to Rayleigh on January 7, 1916 (MP 2017-2296, 33, AIP), Buckingham already
expresses his feeling that his methodological strictures chafed against the zeitgeist: “It is evidently desirable
that this subject should receive a clear exposition. Tolman does not, I imagine, care much for the distinc-
tions between known facts, assumptions made for the sake of building up theories, and purely logical
operations on these facts or assumptions. And it seems that many of the very clever rising generation
of physicists have much the same feeling. I, on the other hand, regard these distinctions as very essential
to clear thinking and sound progress” (p. 6).
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As a start, by amethodological discipline, Imean a discipline that produces
tools, methods or a methodology for some practice. I take a method to be a
systematic procedure or system of rules for carrying out a practice. There
may be methods for very specific practices (measuring the distance be-
tween the earth and the moon, solving differential equations) or general
methods advising a whole discipline (how to conduct a scientific experi-
ment, how to prove a mathematical theorem). . . . A methodology, in
general, is aimed at a higher level of scientific practice, as it concerns the
production and selection of scientific theories. A methodology, I assume,
may give rise to a method (for, e.g., theory choice) or consist of a compen-
dium of methods (for reasoning in science). (9736)

A methodological discipline is defined relationally to what we may call a “cli-
ent” discipline. Themethodological discipline aids practitioners in aligning their
scientific practice to the aims of their first-order client discipline. Put differently,
the aims of a methodological discipline are to ensure that the products of some
client discipline (e.g., theories or models) meet the internal aims of that client
discipline (e.g., prediction, explanation). I am proposing that dimensional anal-
ysis has physics (broadly construed) as a client discipline—dimensional analysis
provides principles and derivational techniques that allow physicists to check the
validity of their quantitative equations and to efficiently derive new ones.11

What is the relation between a methodological discipline and a client disci-
pline? An intriguing characterization of the relation between them given by Sagi
involves an extension of the use-mention distinction: client disciplines use tools,
methods, and concepts that are mentioned (e.g., criticized, constructed) by the
corresponding methodological discipline. Although physics uses concepts of
quantity, principles of homogeneity, and dimensional systems, it is left for di-
mensional analysis to discuss the nature of quantities, to justify and determine
the consequences of dimensional homogeneity (e.g., the P-theorem), and to
elaborate and distinguish dimensional systems.12 It is important that this
exceptionalist, relational conception ofmethodological disciplines does not lapse
into a sort of epistemic foundationalism as attacked by Quine (1951). We can
capture both the special position of a methodological discipline and its revis-
ability by distinguishing two phases of research:

11. A similar distinction between “framed” and “framing” inquiry has been articulated and de-
fended by Henne (2023).

12. A closely related and analogous methodological discipline is metrology, which provides the (ex-
perimental) physicist with units of measurement, values for constants, rules for error propagation, and
so forth. Metrology is an important case to consider as the divide between methodological discipline
and client discipline(s) has become sociologically and institutionally regimented in a clarifying way.

HOPOS | Dimensional Analysis, 1914–1917

280



BUSINESS AS USUAL. The methodological discipline constructs, describes,
and regiments the techniques and concepts used by the client discipline.
The rules set by themethodological discipline exert normative force on the
practitioners of the client discipline; when there is a discrepancy, the prin-
ciples set by the methodological principle take precedence.

NEGOTIATION. Problems or developments in the client discipline lead to
reconsideration of the principles of the methodological discipline and
the relationship between the two—neither discipline takes normative pri-
ority to the other. This phase ends by the establishment of a new “business
as usual” paradigm between client and methodological disciplines.

In the business as usual phase, the client-provider relation is as expected, and
the methodological discipline provides tools and methods that hold normative
force over the practices of the client discipline (they are relatively a priori in
the sense of Friedman [2001])—an equation of physics found to violate dimen-
sional homogeneity is an equation to be corrected (or at least used with great care
in special circumstances). In the negotiation phase, usual business is disrupted,
and internal pressures from the client discipline (e.g., empirical results, para-
doxes) lead to adjustments in the methodological principle and even shifts in
what aspects of the relevant scientific practice belong to which discipline. The
historical episode to be considered here is usefully described in these terms: In
the early twentieth century, pragmaticmatters (above all, the development of air-
planes; see Sterrett [2005]) led to a formalized business deal between the nascent
methodological discipline of dimensional analysis and the physical sciences.
While this deal quickly came to be “business as usual,” Tolman attempted in
1914 to renegotiate the deal. Inspired by radical developments in the client dis-
cipline, physics, Tolman attempted to augment the foundations of the method-
ological discipline with a new relativity principle and thereby provide new
constraints on the client discipline. AlthoughTolman’s negotiation failed, it made
explicit many implicit aspects of the initial deal between dimensional analysis
and physics, some of which have yet to be fully clarified. In the next subsection,
I clarify an important aspect of the usual deal. In the rest of the article, I raise and
attempt to answer one question left to be negotiated: To what extent do features
of our dimensional systems represent objective structure?

1.3. Dimensional Systems and Unit Systems

Dimensional analysis depends on some assumptions regarding physical quanti-
ties. They must form a complete dimensional system,meaning that the complete

Jalloh | FA L L 2024

281



set of quantities are reducible to products of powers of fundamental units multi-
plied by a numerical scale factor (for proofs, see Bridgman [1931] and Berberan-
Santos and Pogliani [1999]):

Qi 5 kiu
a
a u

b
bu

g
c :::

Qi is some arbitrary quantity, ki is some numerical factor, and ux is some funda-
mental unit. The Greek exponents are known as dimensions, following Fourier
(1878).13 Each basic unit is assigned a basic dimension. In a mechanical dimen-
sional system, for example,

m 5 uM

l 5 uL

t 5 uT

where l,m, and t are arbitrary mass, length, and time quantities set to be units by
convention, (e.g., a kilogram, a meter, and a second). Each of these units has a
basic dimension:

m½ � 5 M

l½ � 5 L

t½ � 5 T:

In abstraction from the actual units, we can use these basic dimensions to derive
the dimensions of all other mechanical quantities.14 Thus, dimensional systems,
which are determined by the basic dimensions, are more coarse-grained than
unit systems. For each dimensional system there is an infinite set of logically pos-
sible coherent unit systems that are all interconvertible and form what I call a
“dimensional group.”15 For example, the dimensions of force, F, and the dimen-
sions of velocity, V, are given so:

F½ � 5 MLT22

V½ � 5 LT21:

13. This sometimes leads to expressions like “has exponent d in dimension X,” which are equivalent
to expressions like “has dimension Xd.”

14. Italicized capital letters are variables for quantities; for the remainder of this section, I retain
lowercase variables for units (excluding dimensionless constants ki). Unitalicized capital letters represent
dimensions.

15. There is some complexity in the nature of units that I am suppressing. The important thing is
that dimensional groups consist of units defined by “similar scales” (Ellis 1964). The group structure of
similar unit systems is not to be confused with the group structure of dimensional systems (which unit
systems inherit; see de Boer 1995).
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These dimensional formulae correspond to definitions of mechanical units:

f 5 kf mlt
22

v 5 kvlt
21:

For a coherent system of mechanical units, kf 5 kv 5 1.16 We can distinguish
basic quantities, which have dimensional exponent 1 in only one of the basic di-
mensions (and exponent 0 otherwise), and derived quantities, which have arbi-
trary dimension in any of the basic dimensions. Basic quantities are measured by
fundamental units, and derived quantities are measured by defined units. The
dimensions of the derived quantities encode formal relations between them
and the basic quantities: these relations identify the transformation rules for de-
rived quantities on changes in the fundamental units.

For any derived mechanical quantity Q, its defined unit, q, will be a mono-
mial function of the fundamental units, just as described above:

q 5 mal btg:

The Greek dimensional exponents determine how the defined unit changes with
arbitrary scalar transformations of the fundamental units,

q0

q
5

m0

m

� �a

� l 0

l

� �b

� t 0

t

� �g

,

where the primed units are the new units. If we halve the fundamental time unit
2t 0 5 t and leave the mass and length units unchanged, for example, the unit of
force, f, will quadruple because gf 5 22 and the velocity unit, v, will double
because gv 5 21:

f 0

f
5

m0

m

� �1

� l 0

l

� �1

� t 0

t

� �22

5
t
2t

� �22

5 4

v0

v
5

m0

m

� �0

� l 0

l

� �1

� t 0

t

� �21

5
t
2t

� �21

5 2:

16. The usage of the terminology “complete” and “coherent” varies widely. I am also making a dis-
tinction between dimensional and unit systems that is not usually made, although see Abraham (1933).
I reserve “complete” for dimensional systems with a reduction base, as I go on to describe. I reserve
“coherent” for any unit system of a complete dimensional system such that the derivative quantities
are defined with dimensionless scale factors ki 5 1. Complete equations, which are interpreted accord-
ing to a complete dimensional system, are unit-invariant (in algebraic form) for any coherent unit sys-
tem of that dimensional system. This captures the lessons of Grozier (2020), although he does not make
the distinctions I make, as the mistakes he diagnoses could be avoided by the recognition of the dis-
tinction between dimensional systems and the more fine-grained unit systems.
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The use and operation of these unit transformation rules and their duality with
dimensional formulae are uncontroversial. Although many of the methods that
dimensional analysis provides to physics are uncontroversial, controversy re-
mains regarding the meaning of its subject matter, quantity dimensions and di-
mensional formulae.

One interpretation of dimensional analysis harks back to Buckingham’s con-
ception of dimensional analysis as a formal logic concerned with conventionally
decided transformation rules on defined or stipulated “objects.” In this view, di-
mensional formulae are understood to be formal rules for the use of units and
numerical representations of quantities, which are purely conventional. In this
reading, representations of dimensions like M are purely syntactic shorthand
for change ratios such as m0/m. The basis of a dimensional system and the cor-
responding formulae for derived dimensions are therefore reducible to rules of
translation between ultimately conventional unit systems that regiment our
practice of assigning numbers to objects and systems.

There is a competing interpretation of dimensional analysis that holds quan-
tity dimensions to be entities in their own right, irreducible to mere convention
and formal rules. In this view, dimensional formulae not only represent unit
transformation rules but also reveal the metaphysical character of quantities.
Not only is a unit of force defined, but a quantity of force is constructed or con-
stituted by the dimensions of mass, length, and time. It is as if the basic dimen-
sions are the fundamental substances from which the more complex derivative
quantity dimensions are composed.With this interpretation, there is a uniquely
correct dimensional system that represents the objective dimensional structure
of quantities: its basic dimensions are fundamental dimensions, and its dimen-
sional formulae represent grounding relations between the fundamental and de-
rivative dimensions.17

To further explicate and critically examine these two interpretations of di-
mensional analytic methods and objects, I set them against questions regarding
the objectivity of the two main features of dimensional systems discussed: basic
quantity dimensions and dimensional formulae.

1.4. Metaphysical Questions and Answers

A dimensional system is to be understood as a formal system that consists sim-
ply in a set of basic—that is, independent—quantity dimensions (a basis) and a

17. This controversy dates back to the development of the dimensional calculus by Maxwell and
others (see Mitchell 2017) and continues to the present day, with Skow (2017) arguing against the in-
terpretation of dimensional formulae as denoting constitution relations (but defending them as defini-
tional relations).

HOPOS | Dimensional Analysis, 1914–1917

284



rule that all other (derivative) dimensions are products of powers of the basic
dimensions.18 While dimensional formulae are in a sense extraneous to the
system—all derivative dimensions already “exist,” given a basis—in physics,
we care about particular derivative quantities like pressure or volume, and so
we might also distinguish dimensional systems by the dimensional formulae
for the set of canonical physical dimensions. Let’s distinguish two aspects of a
dimensional system that suffice to identify it: a basis and a set of dimensional
formulae for derivative dimensions.19

Metaphysical questions concern the relations between dimensional systems
and dimensional structure, if there is any. Dimensional structure would be the
ontic analog of a dimensional system—if there is objective dimensional struc-
ture, then there is a dimensional system that correctly represents this aspect of
the world. This brings us to the first ontological question, the general question
of realism.20

DIMENSIONAL REALISM. Is there objective dimensional structure that cor-
responds to a dimensional system?

Alternatively, this can be put as a question: is there an objectively correct dimen-
sional system for the world? A subsidiary question further specifies some partic-
ular aspect of dimensional systems that may be objectively determined:

FUNDAMENTAL BASIS. Is there a fundamental dimensional structure that
corresponds to a dimensional basis?

Is it the case that the dimensionsM, L, andT form a unique basis formechanical
dimensions (with ½F � 5 MLT22)? Or is there another set—for example, F, L,
and T (with ½M � 5 FL21T2)—that would serve just as well?21 The general onto-
logical question can be understood as raising the question of whether or not our

18. This rule is Bridgman’s lemma (see references in sec. 1.1). Independence can be understood
thus: two quantity dimensions are independent if neither depends on the other—that is, no product
of powers of the one appears in the dimensional formula for the other and vice versa. One might
say, “Well, I can define the dimensions of mass to be L21ML, so mass is not independent of length.”
The response is that no exponents of like dimension in dimensional formulae are allowed to go
unsummed (in this case, the two powers of length cancel out). A set of basic dimensions spans a dimen-
sional system in just the same way that a set of basis vectors spans a vector space (see Corrsin [1951] and
de Boer [1995]).

19. We can alternatively represent a system just by dimensional formulae—that some quantity di-
mensions have a single dimension of power 1 indicates that they are basic.

20. This dimensional structure is supposed to be “joint-carving” in the sense of Sider (2011).
21. An explication of “just as well” is given in sec. 3.1.

Jalloh | FA L L 2024

285



dimensional systems represent anything at all. The fundamental basis question
further speciates forms of realism. If a dimensional realist believes there is a set of
objective basic quantity dimensions, they are a fundamentalist; if not, they are a
functionalist. A conventionalist rejects objective dimensional structure tout
court and so automatically rejects objective fundamental dimensional structure
corresponding to the basis of a dimensional system.22 The relationships between
thesemetaphysical positions and the answers they provide to the questions above
are summarized in the flowchart (fig. 1).

As I show, both fundamentalism and conventionalism about quantity dimen-
sions are articulated and defended in the years 1914–17. A third view, function-
alism is presented here as a synthesis of the two, responsive to problems of both
historical positions.23

Tolman (1917) provides the first full articulation of quantity dimension
fundamentalism. Quantity dimension fundamentalism combines a dimensional
realism with a commitment to a fundamentality principle: there are funda-
mental quantity dimensions that metaphysically ground the derivative quantity
dimensions.

FUNDAMENTALISM. There is only one correct dimensional system, and it
represents the dimensional structure of the world. Dimensional formulae
describe the natures of quantity dimensions.

Tolman’s fundamentalism comes out of a debate concerning his proposed prin-
ciple of similitude, which was to replace the principle of dimensional homoge-
neity as the foundation of dimensional analysis.

22. One might wonder if it may speciate forms of antirealism as well. One might think that if an
antirealist holds that there is such an objective basis set, they are an operationalist. The operationalist
cannot hold that this set is objectively basic in the metaphysical sense that we are concerned with here; it
must be an epistemic fundamentality (the operationalist distinction is often between primary and sec-
ondary quantities; see Ellis 1968). For this reason, operationalism is not considered here, although this
is closer to the later view of Bridgman (1931; see also, Gibbings 2011).

23. Dialectically, this division of the logical space is similar to that in Skow (2017). The analogy
would be that Skow’s positivist stands in for my conventionalist, his contructivist for my fundamental-
ist, and his definitional connectionist for my functionalist. There are some differences: Skow’s defini-
tional connectionist is also a fundamentalist as they are committed to nonrelativity, the position that
there is an objectively determined basis for our dimensional system. That said, Skow’s definitional
connectionist comes closer to my functionalist due to an emphasis on the necessary connections be-
tween distinct quantity dimensions (Skow 2017, 194). An appreciation of the full force of convention-
alist symmetries would lead Skow’s definitional connectionist to drop the idea of unique real definitions
of derivative dimensions, and so fundamental dimensional structure, yielding a functionalist account.
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PRINCIPLE OF SIMILITUDE. “The fundamental entities out of which the phys-
ical universe is constructed are of such a nature that from them a miniature
universe could be constructed exactly similar in every respect to the present uni-
verse.” (Tolman 1914, 244)24

Tolman conceptualized his principle of similitude as a relativity principle, the
relativity of size (i.e., length scale). In the first instance, this principle is to be un-
derstood and was understood as a particular instance of quantity dimension fun-
damentalism. In this instance, Tolman held that there was only one fundamental
mechanical dimension, length. With the adoption of certain laws as providing
dimensional formulae that grounded mass, time, and other mechanical quanti-
ties in length, Tolman was able to recover the intuition behind his relativity
of size principle: a universal scale transformation of lengths ought to be an em-
pirical symmetry (e.g., a doubling of all the lengths overnight would not be em-
pirically detectable). At first, Tolman defends his principle by giving up the
metaphysical, fundamentalist reading of it. He ultimately recants and gives up
the principle and defends a more tenable fundamentalist picture.

As it turns out, Tolman’s principle of similitude is false, owing to its conflict
with Newtonian gravity and the relevant confirming evidence thereof. This was
pointed out almost immediately by Buckingham (1914) and amplified by
Ehrenfest-Afanassjewa (1916b) and Bridgman (1916). Tolman himself thought
a new theory of gravity was imminent.25 The empirical disconfirmation of

24. A major warning is to be heeded here. In this article, “the principle of similitude” or “the method
of similitude” refers to uses of Tolman’s principle. More generally, “similarity methods” are just another
term for using traditional dimensional analysis based on the principle of dimensional homogeneity and
proportionality principles (see Sterrett 2017). At the risk of misunderstanding, I am sticking with the ter-
minology used by those in the debate—although it is relatively clear that Buckingham (1914) intended to
reclaim the terminology of similitude from Tolman. In the end, Buckingham won out.

25. The relationship between Tolman’s principle and the emergence of novel theories of gravity, let
alone questions about the nomological nature of the constants (see sec. 2.3), is much too large a topic to
be dealt with here. I will note only that Nordström (1915) developed a version of his scalar gravitational
theory (an early competitor to Einstein’s general theory of relativity) that is consistent with Tolman’s
principle. The development and significance of such a theory is left for future work.

Figure 1. Flow chart through the logical space of quantity dimension metaphysics
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Tolman’s principle does not undermine the interest of the methodological and
metaphysical issues that were raised by the debate concerning his principle.
The positions outlined in the debate and the arguments given for them have im-
plications for the general study of dimensional systems.26

2. From Tolman’s Principle of Similitude to Arguments
against Fundamentalism

In this section, I discuss the debate surroundingTolman’s principle of similitude in
three parts, roughly in historical order. Each subsection deals with a dialogue between
Tolman and an interlocutor: Edgar Buckingham, Tatiana Ehrenfest-Afanassjewa,
or Percy Bridgman. Each dialogue brings forward the metaphysical issues latent
in the methodological debate, but special attention is paid to the dialogue with
Bridgman, which leads to explicit metaphysical accounts of quantity dimensions.

A brief note on the scientific context for this debate is necessary. The con-
cern with the foundations of dimensional analysis is connected to other radical
changes in the foundations of physics in general.

2.1. Contextualizing Dimensional Analysis in the Wake of Relativity

This debate regarding the foundations of dimensional analysis was not about rel-
ativity, nor quantum mechanics.27 That said, it is important for comprehending
this debate to understand some of the fundamental questions that were raised by
relativity, which caused Tolman to reconsider the very nature of physical quan-
tities. Maila Walter situates the development of dimensional analysis as part of a
broader reckoning with the radical consequences of relativity theory: “The di-
mensional analysis controversy revealed a generous amount of confusion about
the meaning of relativity and measurement. . . . Einstein’s abrogation of the tra-
ditional meaning of measurement has demonstrated that the relationship be-
tweenmathematics and physical reality had to be reconsidered. The dispute over
dimensions was just one manifestation of a general concern that would be stated
with more precision and politicized by the logical positivists” (1990, 84). The
following description of this broader context is based onWalter’s more thorough
accounting of the relevant foundational debates in the wake of relativity.28

26. A reader with pure metaphysical interest may skip to sec. 3.
27. For an initial look at the application of dimensional analysis to quantum mechanics, see Semay

and Willemyns (2021). For a contemporary and systematic application of dimensional analysis to gen-
eral relativity, see Porta Mana (2021).

28. One of the broader trends I will not discuss was the search for a natural and rationally deter-
minable set of fundamental units (see Walter 1990).
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The special theory of relativity was met with suspicion and disbelief when it
was brought to the attention of American physicists—the promulgation and ac-
ceptance of the theory in America is due in no small part to the efforts of Gil-
bert Lewis andRichardTolman in 1908.29 Lewis andTolman (1909), in American
pragmatist fashion, describe the principle of relativity as grounded in the general-
ization of experimental facts (e.g., the Michelson-Morley experiment). The prin-
ciple is accordingly understood as a constraint on what is measurable by Lewis
and Tolman: “[Einstein] states as a law of nature that absolute uniform transla-
tory motion can be neither measured nor detected” (712).

This is to say that only relative motion has “physical significance” or objectiv-
ity. This principle, combined with the postulate of the frame invariance of the
speed of light, leads to the shocking consequences of relativity theory: time di-
lation and length contraction. Lewis and Tolman’s grounding of relativity and its
consequences in measurement lead them to an antirealist interpretation of such
consequences:

Let us emphasize once more, that these changes in the units of time and
length, as well as the changes in the units of mass, force, and energy which
we are about to discuss, possess in a certain sense a purely factitious signif-
icance; although, as we shall show, this is equally true of other universally
accepted physical conceptions. We are only justified of speaking of a body
in motion when we have in mind some definite though arbitrarily chosen
point as a point of rest. The distortion of a moving body is not a physical
change in the body itself, but is a scientific fiction. (1909, 717)30

Lewis and Tolman describe these phenomena as changes in units and “in a cer-
tain sense psychological.” They claim that the acceptance of these distortions is
the cost of retaining our fundamental conceptions of physics. The psychological
unreality of these distortions owes to the fact that their occurrence appears to

29. They presented a paper, “Non-Newtonian Mechanics and the Principle of Relativity,” at the
Christmas meeting of the American Physical Society in 1908, as stated by Kevles (1995, 90). However,
I can find no trace of an article in Physical Review, as he claims. The article (draft completed in May
1909) was published both in Philosophical Magazine and the Proceedings of the American Academy of Arts
and Sciences the following year, with an inverted title: “The Principle of Relativity, and Non-Newtonian
Mechanics.”Here I cite the latter, American publication. A citation for the former can be found in Wal-
ter (1990). See also, Goldberg (1984, 1987) on the American response to relativity.

30. The special theory of relativity was seen as upending our fundamental concepts of physical
quantities—when Lewis and Tolman refer to “units,” they are conflating the functions of units as ref-
erence quantities (i.e., standards) and as numerical fixed points. The terminology of units versus quan-
tities versus magnitudes was not standardized for decades.
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depend on whether or not some observer considers herself at rest—a judgment
lacking in objectivity due to the relativity principle.

The more proper evaluation of the situation is given in Lewis and Tolman’s
(1909) claim that absolute motion has no significance—dilation and contrac-
tion are artifacts of an arbitrarily chosen rest point, thereby retaining something
of our “fundamental conceptions.” This claim is a common feature of symme-
try arguments and occurs in Tolman’s argument for the principle of similitude, as
well as recent debates on quantity symmetries.31 In arguing for the existence of a
symmetry transformation, and thereby the unreality of the supposed features of
reality that vary under that symmetry, the basis for the symmetry argument
seems to be undermined because there is no such feature to be transformed.
In Einstein’s case, this is absolute velocities. In Tolman’s case, with the principle
of similitude, it is absolute lengths. This is only a matter of charitable interpre-
tation and convenience; any appearance of self-undermining can be removed by
restating these relativity principles as statements about what objective structure
there is. The theory of special relativity rejects any objective, frame-independent,
velocity structure. Tolman’s principle of similitude rejects any objective, absolute
length magnitudes, which become dependent on a choice of comparative stan-
dard, analogous to how length quantity values are relative to a choice of unit
standard.

2.2. Tolman versus Buckingham

The inciting event for the debate is Tolman’s (1914) publication of “The Prin-
ciple of Similitude,” which puts forward a relativity principle—the relativity of
size—as the founding principle of dimensional analysis.

RELATIVITY OF SIZE. A global transformation of the length scale is both a
dynamical and empirical symmetry—there is no objectively determined
length scale.

I hope this is a useful updating of Tolman’s principle in conformity with
how we now generally understand the principle of relativity, as a symmetry
principle. This gloss is good only insofar as it has the same consequences as
Tolman’s (1914, 244) own statement of the principle of similitude. Tolman exhib-
its the consequences of this principle by way of a thought experiment:

31. See Dasgupta (2013), Baker (2020), Wolff (2020), and Martens (2024) (and their citations) for
more on the absolutism-comparativism debate in themetaphysics of quantity. The supposedmass doubling
symmetry at the center of the debate is a direct analogue of Tolman’s miniature universe transformation.
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• Consider an observer O with a meter stick that measures the length of
some extension, s, to be ls 5 1m.

• Now consider a counterpart world, a “miniature universe” in which
there is a counterpart of the original observer, O 0, and both his “me-
terstick” and the extension s have been shrunk in length by a factor
of x.

• Because both the length of the unit standard and the measured exten-
sion have changed by the same factor, the assigned value of the length
will be invariant: l 0s 5 1m0.

• The length quantity of the counterpart extension in the miniature uni-
verse of O 0, expressed in the units of O, will be l 0s 5 x � 1m or, more
generally, l 0 5 xl .

Given that this transformation equation, l 0 5 xl , is expressed in a single system
of units (it is true in either the units of O or O 0), it must be understood as
an equation of quantities—this accounts for Tolman’s interpretation of the trans-
formation to the miniature universe as a metaphysical transformation.32 Ac-
cepting the speed of light postulate, their temporal measurements must also
stand in the same relation: t 0 5 xt. From assuming the invariance of other laws
(e.g., Coulomb’s law), Tolman derives a whole set of symmetry transformations
(table 1).33 From these results Tolman determined the functional form of several
physical equations describing important physical phenomena: ideal gases, black-
body radiation, the electromagnetic field, and so on.

In the same year, Buckingham’s landmark paper, “On Physically Similar Sys-
tems,” presented the most influential proof of the P-theorem. Buckingham ar-
gued that Tolman’s principle was only a “particular case” of his result—this has
some truth to it (see sec. 2.3). I will not here go through the full derivation of
the theorem (see Gibbings [1982, 2011], Pobedrya and Georgievskii [2006],
and Sterrett [2009, 2017, 2021]). Buckingham states the essential content of
the theorem in terms of absolute units (equivalent to “coherent unit system,” de-
fined earlier). Using such an absolute/coherent system, the theorem shows that
a duality exists between active and passive interpretations of changes of the

32. One might ask whether this equation necessarily involves expressions in both systems of units;
however, that would confuse its role as a quantity equation with its role as a numerical equation. Both
interpretations are available, but, in Tolman’s argument, this must be an equation of quantities as the
tranformation is ontic, not a mere formal translation (see de Courtenay 2015).

33. Table 1 is selectively adapted from Tolman (1914, 226). Note the invariant quantities and the
corresponding theoretical commitments of Tolman’s principle: the constancy of the speed of light, elec-
tromagnetic theory, and the laws of thermodynamics.
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fundamental units, corresponding to the distinction between transformations
of formal and ontic dimensions (see sec. 2.3):34

When absolute units are used, the validity of a complete physical equation
is unaffected by changes in the fundamental units. Hence in changing
from a system S to a similar system S 0 it is immaterial to the validity of
the equation in question whether we do or do not retain our original fun-
damental units. If we alter the sizes of the fundamental units [Q1] . . . [Qk]
in the same ratios as the kinds of quantity Q1 . . . Qk which they measure,
the numerical value of any quantity of one of these kinds will be the same
in both systems. And if we do not change the relations of the derived and
fundamental units of our absolute system, every derived unit [P] will
change in the same ratio as every quantity P of that kind, so that the
numerical value of every quantity in the system S will be equal to the
numerical value of the corresponding quantity in the similar system S 0.
(Buckingham 1914, 354)35

Table 1. Induced Transformations of Quantity
Magnitudes under Similitude Transformations

Quantity Kind Symmetry Transformation

Length l 0 5 xl
Time duration t 0 5 xt
Velocity v 0 5 v
Acceleration a 0 5 x21a
Mass m 0 5 x21m
Force f 0 5 x22f
Energy U 0 5 x21U
Energy density u0 5 x24u
Electrical charge e 0 5 e
Entropy S 0 5 S
Temperature T 0 5 x21T

Note.—Adapted from Tolman (1914, 226).

34. This active-passive transformation duality can be made intuitive by considering the double in-
terpretation of a fundamental unit in the case in which it is defined with respect to a material standard.
A passive transformation corresponds to switch from a material meter-long standard for a length unit to
a distinct, material, foot-long standard for a length unit. An active transformation corresponds to the
(metaphysical) compression of a meter-long length standard to a length of 1 foot. The dual active-
passive interpretation of the P-theorem is dealt with in more detail by Jalloh (forthcoming).

35. Walter’s discussion contains a claim that requires correction. Walter distinguishes similitude, “a
simple way to investigate the manner in which a change of scale affects the properties of physical systems,”
from dimensional homogeneity, which requires that “the operation of addition and the relationship of
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While Buckingham follows the Maxwellian tradition of discussing dimensional
analysis in terms of invariance of “complete” equations under transformations
of the fundamental units, we can understand his claim here as a generalization
of Tolman’s similitude principle—insofar as the principle of dimensional ho-
mogeneity is agnostic with respect to particular dimensional systems.36 It is im-
portant to emphasize that the P-theorem follows (almost) directly from the
principle of dimensional homogeneity. Therefore, for all involved, the results
of the P-theorem—assuming an orthodox dimensional system—are results of
the approach that I am calling “the principle of dimensional homogeneity”
(where mass, length, and time are the basic mechanical quantity dimensions,
etc.). There is a logical distinction between the principle and the principle plus
a dimensional system, but the principle has no function independent of the
adoption of a dimensional system (thus the “almost”).

In a coherent unit system, the relations between basic and derived quantities
are defined such that arbitrary changes in the magnitudes of the basic quantities
induce changes in the derivative quantities such that representationally adequate
and dimensionally homogeneous equations remain true. This is done without
stipulating a particular invariance with respect to transformations of the length
quantities. In brief, the theorem states that all physical equations are dimension-
ally homogeneous and so can be put in the form A1 1 A2 1 : : : 1 AN 5 0,
where each A term is a product of powers of the fundamentalQ terms (the basic
quantities of the dimensional system; e.g., masses, lengths, and times), and each
term has the same dimension: ½Ai� 5 ½Aj�. Therefore, subtracting AN and then
dividing through by 2AN yields an equation with dimensionless P-terms:37

P1 1 P2 1 : : : 1 PN21 5 1:

These dimensionless P-terms will be invariant under any change of numerical
value (passive transformation) or magnitude (active transformation) of the basic
dimensions.38 For example, let an arbitrary P-term be the ratio between two
masses ma 5 2000 g and mb 5 1000 g, so Pa=b 5 2. If we actively transform

equality are valid only for objects [i.e., quantities] of the same kind [i.e., dimension]” (1990, 86–87). The
claim to be criticized is that “Buckingham, like everyone else” conflated these two bits of dimensional rea-
soning. This claim is false: Buckingham (1914) clearly distinguishes similitude and dimensional homo-
geneity as he uses the principle of dimensional homogeneity to provide a proof of the P-theorem, which
in turn defines a criterion for physical similarity. One follows from the other, but there is no indication that
these are to be equated.

36. For more on the Maxwellian prehistory of this debate, see Mitchell (2017).
37. The dimensionless quantities and the theorem get their name from the fact that the dimension-

less terms of the equation have the form of product-functions: P 5 ∏ N
i Qxi

i .
38. This is the case where a basic dimension is understood as the set of all the quantities of that kind

with an ordering that allows for the mapping by a choice of scale to a set of numbers (see Ellis 1964).
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the dimension by doubling the masses, then ma 5 4000 g,mb 5 2000 g, then
Pa=b 5 2. If we passively transform the dimension by a different choice of scale,
a change to kilogram units, then ma 5 2 kg, mb 5 1 kg, then Pa=b 5 2.

Buckingham notes that Tolman’s principle requires an assumption of speed,
charge, and entropy as the invariants of its symmetries (table 1). For Bucking-
ham, this is merely a specific realization of the general P-theorem—that is, di-
mensional homogeneity. This specification is merely an unorthodox choice of
dimensional system. Buckingham raises three objections to adopting this dimen-
sional system and therefore Tolman’s principle. First, it moves what are thought
of as empirical laws from the client discipline of physics to the relatively a priori
methodological discipline of dimensional analysis: “The unnecessary introduc-
tion of new postulates into physics is of doubtful advantage, and it seems to me
decidedly better, from the physicist’s standpoint, not to drag in either electrons
or relativity when we can get on just as well without them” (Buckingham 1914,
356).39

Second, it makes this move unnecessarily. Buckingham goes on to show that
the principle of dimensional homogeneity with the ordinary dimensional system
can derive equations that Tolman credits the principle of similitude with. Third,
Buckingham shows the essential inconsistency of Tolman’s system and Newto-
nian gravity, due to variance of the gravitational constant across the supposed si-
militude transformation. Although Tolman himself derives the inconsistency of
his approach with Newtonian gravity (see Tolman 1914, 254), Buckingham is
the first to note this as a problem (see Buckingham 1914, 375). Ehrenfest-
Afanassjewa is then the first to locate this discrepancy in the gravitational con-
stant and makes much of this in her criticism of Tolman (see sec. 2.3).

Tolman (1915) responds to Buckingham and argues that the principle of si-
militude is superior to the principle of dimensional homogeneity on grounds of
the latter’s inability to constrain the functional form of equations with dimen-
sional constants of unknown dimensions. These are cases in which dimensional
homogeneity necessitates the introduction of dimensional constants: consider
Stefan’s law, u 5 aT 4. By the lights of the dimensional analyst, in advance of
the establishment of the dimensions of a, the equation could have a different al-
gebraic form—for example, u 5 aT 3.

In this case, the dimensional analyst is tasked with determining a function
that relates the energy density of a blackbody, u, and its absolute temperature,
T. Their respective dimensions, ML21T22 and V, are incommensurable, so
the principle of dimensional homogeneity is of no help. Without either the di-
mensions of the mediating constant or the form of the function relating the two

39. Ehrenfest-Afanassjewa (1916b) makes this same complaint.
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inhomogeneous quantities, the dimensional analyst armed only with the princi-
ple of dimensional homogeneity can make no derivations.

In contrast, the principle of similitude tells us that u must be numerically
equivalent to its scale counterpart, u0:

u 5 F (T ) 5 u0 5 F (T 0) 5 x4F (x21T ):

Referring to table 1, we see that u scales with x4 and T with x21, so the solution
for this equation requires taking temperature to the fourth power, and the equa-
tion is only fixed up to a scalar factor a, yielding Stefan’s law:40

u 5 aT 4:

Now considerations of dimensional analysis nonarbitrarily yield the dimensions
of the constant. As the dimensional analyst starts with neither the form of the
equation nor the dimension of the constant, the principle of dimensional ho-
mogeneity is not determinative. If the dimensional analyst had the form of the
law, the constraint of dimensional homogeneity would immediately yield the di-
mensions of the constant. If the dimensional analyst has the dimensions of the
constant, the constraint of dimensional homogeneity would determine the func-
tional, algebraic form of the equation. Tolman (1915) puts the relation of the
two principles thus:

Where dimensional constants enter, the principle of dimensional homoge-
neity is of no avail in predicting the form of a relation, since we cannot tell
beforehand what the dimensions of the constant are going to be. For such
problems we must have recourse to the principle of similitude. On the
other hand, when dimensional constants do not enter into the relation, al-
though we may apply either principle, the principle of similitude is usually
the less powerful since it merely prescribes invariance when the different
measurements are multiplied by powers of a single arbitrary multiplier x,
while the principle of dimensional homogeneity prescribes themore drastic
requirement of invariance when the multiplications are carried out with a
different arbitrary multiplier for each fundamental property. (232)

Understanding Tolman’s claim relies on distinguishing two ways in which a
principle may be “stronger.” The first way is that a principle may be logically

40. One way to think about the nature of the functional results yielded by either form of dimen-
sional analysis is that the results give the family of curves that corresponds to the function but do not
give the value of the coefficients. Those are found by experiment (see Gibbings [1974, 2011] on the
relation of dimensional analysis to experiment).
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stronger than another; in this case, the principle of similitude is the stronger
principle as it provides more determinate derivations than the principle of dimen-
sional homogeneity does, particularly in cases in which there is a dimensional
constant of unknown dimension.41 The second is that one principle may bemore
robust than another; in this case, the principle of dimensional homogeneity is a
more robust principle as it is commutes with more supposed symmetry transfor-
mations—in particular, arbitrary transformations of the mass, length, and time
that do not conform to the similitude transformations given in table 1. With
some irony, the Euclidean standard is the guide to fundamentality that physicists
adopt—the standard of logical strength. In contrast, for mathematicians, robust-
ness seems to be the guide to fundamentality with respect to principles.42 The
question with respect to the operative, logical standard is one of efficiency:
how much am I getting for what cost? On this standard, the principle of simili-
tude would win out—if it weren’t false.

2.3. Tolman versus Ehrenfest-Afanassjewa

An interpretative issue brings us back to the metaphysical considerations at hand.
Tatiana Ehrenfest-Afanassjewa most clearly states an objection to Tolman’s prin-
ciple shared by the other respondents: the principle of similitude is merely an ap-
plication of the principle of dimensional homogeneity to a special dimensional
system, and if the assumption of this dimensional system is unfounded, the prin-
ciple is specious.43 She states in the first paragraph of her response:

An accurate analysis shows that Tolman’s considerations possess at least a
close connection with the reduction to a definite hypothesis of the

41. Because the principle of dimensional homogeneity provides no constraint on the functional struc-
ture of such equations, one might like to say that these are cases in which the principle of dimensional ho-
mogeneity is inapplicable and that the principle of similitude enjoys a wider range of applicability.

42. The reason for the discrepancy between the standards of mathematics and physics comes from
different standards of modality. From the physicist’s perspective, many mathematical models are just
that, and the robustness criterion is of no relevance when a class of possible worlds is fixed. Another
way to put the debate between Tolman and his critics is that they disagree about the class of physically
possible models (given the empirical data).

43. Walter’s account of this historical debate is overly dismissive of Ehrenfest-Afanassjewa’s contribu-
tions, especially her later, post-Dimensional Analysis, mathematical intervention (Ehrenfest-Afanassjewa
1926), which is described only as “extensive and confusing” (Walter 1990, 101). This dismissal is unfor-
tunately mirrored in responses by Bridgman (1926) and Campbell (1926)—although Bridgman includes
Ehrenfest-Afanassjewa (1926) in the list of important references that appeared in between editions of
Dimensional Analysis (the list can be found in the preface to the revised edition.) A major reconsideration
of her work in dimensional analysis is under development, but see also San Juan (1947), Palacios (1964),
and Johnson (2018) for developments of her approach to dimensional analysis. For a more general reeval-
uation of her work in mathematics and physics, see Uffink et al. (2021).
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conviction of the homogeneity [unit invariance44] of all the equations of
physics, a conviction which is commonly used without any foundation.
This is not the intention of the author, as appears from his third paper on
the same subject, yet he really does nothing else but construct a system of
dimensions of his own (indeed one that in some respects deviates from
the C.G.S. [centimeter-gram-second unit] system), and he examines all
equations with a view to homogeneity as regards this system of dimensions.
(Ehrenfest-Afanassjewa 1916b, 1)

Although Tolman (1916) rejects the presentation of his principle as determin-
ing a system of dimensions, he accepts the presentation of the relationship be-
tween the two principles: the principle of similitude involves a further empirical
ansatz, which is to be settled by the investigations into the nature of gravity, and
the principle is to be given methodological priority due to its usefulness. His dis-
agreement with Ehrenfest-Afanassjewa can be clarified by way of a distinction
made in sec. 1.3. When Ehrenfest-Afanassjewa states that Tolman is establish-
ing a principle of homogeneity restricted to a special set of dimensions, she is
referring to formal dimensions—dimensions considered only as change ratios
for a group of unit systems. When Tolman claims that this is not the case, he is
considering ontic dimensions—dimensions considered as descriptions of the
natures of quantities through their dimensional formulae.

FORMAL DIMENSIONS.Dimensions encode the transformations of numer-
ical representations of quantities due to changes in unit systems.

ONTIC DIMENSIONS. Dimensions are properties of quantities in physical
systems; they encode similarity relations that are invariant between
scaled systems.45

We could just as well distinguish these as unit dimensions and quantity dimen-
sions.46 Formal dimensions are merely formal devices translating between unit

44. Homogeneity—that is, unit invariance—is sometimes treated as the fundamental principle of
dimensional analysis in lieu of dimensional homogeneity. Authors vary on which is to be taken as ax-
iomatic and which is to be derived, but the cases in which unit invariance and dimensional homoge-
neity come apart are so few and spurious as to be dismissed for our purposes (but see Bridgman 1931). I
treat both approaches as the “dimensional homogeneity” approach. For more on the mathematical def-
inition of homogeneity, see Ehrenfest-Afanassjewa (1926), San Juan (1947), and Palacios (1964).

45. This distinction is given by Johnson (2018, 105–12). A similar distinction between dimension-first
and unit-first attempts to provide a mathematical model for the quantity calculus is noted by Raposo (2018).
For the connection between similarity relations and ontic quantity dimensions, see Sterrett (2009).

46. This distinction became clearer in the 1930s (see Abraham 1933).
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conventions. Ontic quantity dimensions, according to the fundamentalist at
least, correspond to objective dimensional structure.

Ehrenfest-Afanassjewa argues that Tolman’s similitude transformations
should be understood only as formal transformations—that is, unit changes.47

She places conditions on Tolman’s ontic interpretation of these transforma-
tions as indicating actual changes in size (e.g., a miniature universe):

1. that a model universe in the sense defined above is possible,
2. that we possess all equations which are wanted for a full description of
the whole universe,

3. that the latter condition is especially fulfilled by those equations which
in the C.G.S. system serve to fix the dimensions of the different quan-
tities. (Ehrenfest-Afanassjewa 1916b, 4)

To these conditions, she raises three objections. First, the unit transformation
coefficients (or scale factors) for time, length, and mass (and so on) are fixed
independently of any investigation into the possibility of such model universes.
Second, the full description condition necessitates that the transformation co-
efficients (she also says, in quotes, the “dimensions”) of the derived quantities
are fixed by the similitude transformation in a way that unnecessarily mini-
mizes the number of basic dimensions by disallowing the introduction of novel
(nonmechanical) basic dimensions (reducing “the number of degrees of free-
dom of the transformation”). Third, there is no reason to think that the current
fundamental dimensions are sufficient to capture all of nature (“which should
give a necessary reduction of the degrees of freedom” in the dimensional sys-
tem), and Tolman’s reduced mechanical basis (consisting of just length) is in-
sufficient to capture Newtonian gravity.48

47. “The transition from the numbers xi to x 0 i may also be thought of in another way: instead of
imagining measurements to be made with the same units in two different worlds, we may conceive the
measurements to be carried out applying two different sets of units to the same objects (‘in the same
world’)” (Ehrenfest-Afanassjewa 1916b, 3).

48. Ehrenfest-Afanassjewa suggests a strategy for saving the ontic interpretation of the dimensional
symmetries: the scaling of dimensional constants, so as to guarantee quantity symmetries (for contem-
porary arguments about this strategy, see Roberts [2016], Jacobs [2023], Martens [2024], and Jalloh
[forthcoming]). The introduced constant can be understood two ways: either as some real quantity,
such as a postulated constant of matter, or else “denote it as a product of special values of the active
variables occurring in the equation” (Ehrenfest-Afanassjewa 1916b, 5). She develops this more thor-
oughly as the introduction of “formal variables” in Ehrenfest-Afanassjewa (1916a). The upshot is that
such an extension of the “ ‘physical’ meaning of the constants” trivializes the possibility of active scale
transformations and the invariance of equations under such transformations and so “ceases to afford a
criterion for distinguishing between equations which are ‘physically allowable’ and arbitrary equations”
(Ehrenfest-Afanassjewa 1916b, 6).
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Tolman objects to Ehrenfest-Afanassjewa’s characterization of his principle
as determining another “system of dimensions” distinct from that correspond-
ing to the then standard centimeter-gram-second unit system—at least insofar
as dimensions are understood in the ontic sense.49 Tolman gives an initial state-
ment of the fundamentalist conception of an ontic system of dimensions:

The dimensions of a quantity may be best regarded, I believe, as a short-
hand statement of the definition of that kind of quantity in terms of cer-
tain fundamental kinds of quantity, and hence also as an expression of
the essential physical nature of the quantity in question. If, for example,
we define force as mass times acceleration, the dimensions of force will
be [mlt22] and this may be regarded as a shorthand recapitulation of the
definition of force in terms of mass, length and time, and also as an ex-
pression of the essential physical nature of force.

The reason, now, why certain physical equations have to be dimen-
sionally homogeneous is because in the cases under consideration the
physical nature of the quantities equated has to be the same. (Tolman
1916, 9)

Tolman argues that the second principle invoked, that the dimensions of a
quantity express the essential nature of that quantity, grounds the principle
of dimensional homogeneity. That an equation must have terms of equal ex-
ponent in each basic dimension on either side follows if equations are taken
to describe not only numerical equalities but also “quantity identities.” Here
Tolman assimilates the definition of derived quantity dimensions and their
metaphysical constitution. That the nature of physical quantities does not
unproblematically follow from their dimensional formulae is discussed in
the literature (e.g., Skow 2017; Johnson 2018)—Tolman’s conflation of defi-
nition and constitution is a target of Bridgman’s conventionalist critique.

The ontic interpretation of dimensional systems makes clear Tolman’s rea-
son for denying that the principle of similitude provides one. According to the
principle of dimensional homogeneity force is defined and constituted by
mass, length, and time, according to the formula ½ f � 5 MLT22. Under the
system of dimensions that would be given by the principle of similitude, force
is a function only of length, ½ f � 5 L22. If Tolman were committed to a system
of dimensions given by the principle of similitude, he would say the principle’s

49. This is the dimensional system for which CGS is a coherent unit system (see sec.1.3). In this
respect, there is no difference between the CGS system and a meter-kilogram-second system.
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attributes force the nature of an inverse area. For this reason, Tolman retreats to
treating his principle as an empirical ansatz regarding the possibility ofminiature,
indistinguishable universes that is available for (dis)confirmation through the
implied theory of gravity. This is a retreat from his original ontic interpretation
of his similitude transformations.

2.4. Tolman versus Bridgman

Tolman’s principle qua empirical ansatz is the target of Bridgman’s critique:
“If the exact form of the equations and their mode of application should turn
out to be exactly identifiable with the correspondingmanipulations of the theory
of dimensions, then the principle of similitudemust be judged not to be new. . . .
I shall try to show in this note that such an identification is possible; that in so far
as the principle of similitude is correct it gives no results not attainable by dimen-
sional reasoning, and that in its universal form as stated above it cannot be
correct” (1916, 424).50 Bridgman’s aim is to show that Tolman’s principle of
similitude is more determinative than the principle of dimensional homogeneity
at the cost of reliability.

Bridgman diagnoses Tolman’s apparent examples of the greater determina-
tivity of the principle of similitude by drawing attention to a special feature of
the dimensional constants involved. In particular, “The principle of similitude
may be applied with correct results to all those cases in which the dimensional
constants have such a special form that they are not changed in numerical mag-
nitude by the restricted change of units allowed by the principle” (Bridgman
1916, 425)

The dimensions of Stefan’s constant, a, are ML21T22V24, so we can express
a as Naml21t22v4, where Na is some dimensionless number and m, l, t, and v

are units of mass, length, time, and temperature, respectively. Now apply the
principle of similitude:

a 5 a0 5 Naxm
0xl 021x2t 022x24v024 5 Nam

0l 021t 022v024:

The x factors cancel, and the numerical value of Stefan’s constant is invariably
Na. That only some such constants are invariant under dimensional scale
transformations is evident in Tolman’s failure to capture Newtonian gravita-
tion: G 5 NGM21L3T22 scales with factor x22. The conclusion of Bridgman’s
argument is that the method of similitude requires an assumption regarding

50. “The universal form” is the statement that the materials that constitute the universe could be
used to create an empirically indistinguishable universe that differed only in size.
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the dimensionality of the relevant constant(s) just as the method of dimen-
sional homogeneity does: a user of the principle of similitude must assume that
the dimensional constants that figure in the fundamental equations are such
that their dimensional transformation coefficients cancel out. This assumption
bears out surprisingly often. In addition to a, Bridgman cites the gas constant,
the velocity of light, and the constant of quantum action. Is there some meta-
physical significance to this seeming conspiracy of the dimensional constants?

Bridgman answers in the negative—the apparent conspiracy can be explained
by the dimensional structure of our conventionally defined unit systems. By lim-
iting valid unit transformations to those that leave that some choice of constants
invariant (e.g., c and e in Tolman’s system), a number of consistent systems of di-
mensions can be defined. Bridgman amplifies Buckingham’s observation that the
number of independent basic dimensions or units can be determined by the
number of unit-invariant quantity relations (i.e., laws) we choose to accept as ax-
iomatic (i.e., relatively a priori, as indicated in sec. 1.2). Apparently, then, the
number of basic quantity dimensions (and number of dimensional constants)
is conventional. If force were to be set as an additional fundamental quantity,
for example, there would be a new dimensional constant in Newton’s second
law; instead, we take the law, with this would-be constant set to unity, as a
unit-invariant axiom. Bridgman argues that we accept dimensional definitions
not owing to somemetaphysical identity but because of the frequency of the cor-
responding experimental fact.

Bridgman provides a helpful demonstration of the conventionality in-
volved. I will modify his convention of using the square brackets [x] to using
curly brackets {x} to denote the unitless numerical value of x (in line with con-
temporary standards; see JCGM 2012). Bridgman provides a description of
each of the constants of nature in terms of the fundamental units (five con-
stants and five basic units):51

G 5 Gf gm21l 3t22 5 G 0f gm021l 03t 022

c 5 cf glt21 5 c 0f gl 0t 021

k 5 kf gml 2t22v21 5 k0f gm0l 02t 022v021

h 5 hf gml22t21 5 h0f gm0l 022t 021

E 5 Ef ge22ml23t22 5 E 0f ge022m0l 023t22:

51. G is the gravitational constant; c is the light constant; k is the (Boltzmann) thermodynamic con-
stant; h is the quantum constant; E is the (Coulomb) electric force constant. The following two sets of
equations are adapted from Bridgman (1916, 429).
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These equations can be used to determine the value of the constants under changes
of fundamental units. Alternatively, they can be reformulated to determine the
unit transformations that keep the values of the constants fixed:

l 02 5
hf g
h0f g

cf g
c 0f g

� �23 Gf g
G 0f g l

2

t 02 5
hf g
h0f g

cf g
c 0f g

� �25 Gf g
G 0f g t

2

m02 5
hf g
h0f g

cf g
c 0f g

Gf g
G 0f g

� �21

m2

v02 5
hf g
h0f g

cf g
c 0f g

� �5 kf g
k0f g

� �22 Gf g
G 0f g v

2

e02 5
hf g
h0f g

cf g
c 0f g

Ef g
E 0f g

� �21

e2:

Tolman’s transformation equations can be derived by holding all constants fixed
except forG; however, different transformation equations can be defined by varying
other constants and holding G fixed. In each of these systems, some constant or
other is the odd man out (i.e., is variant under similitude transformations). Gener-
ally speaking, if we wish to freely vary some number of the fundamental units (as
Tolman does for length), we have to vary the same number of universal constants.
The indeterminacy of which constants are varied due to the conventional choice of
which fundamental unit (i.e., basic dimension) to ground our dimensional system
in (i.e., a choice of alternative similitude principles) was taken by Bridgman to un-
dermine Tolman’s characterization of his principle as an empirical ansatz to guide
the development of a novel theory of gravity. There is no more reason to hope
for a new theory of gravity guided by this principle than a new theory of electricity.
The constant or physical theory that “the” principle of similitude is in tension with
is a matter of arbitrary choice. This arbitrariness—reducing time to length rather
than reducing length to time—is unavoidable for Tolman in the absence of an ontic
conception of his dimensional system. In other words, the choice of dimensional
system associated with the principle of dimensional homogeneity is arbitrary,
and a generalized principle of similitude does not yield unique empirical predic-
tions—which is to be expected given Tolman’s retreat to presenting the principle
as only defining a formal system of dimensions (see sec. 2.3).

Tolman presents a full-fledged metaphysical account of “measurable quanti-
ties” in his final response regarding the principle of similitude. This account is
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in no way reactionary—it does not constitute an argument in favor of the prin-
ciple of similitude—but rather serves a foundational purpose:

The time is already ripe for a much more comprehensive and systematic
treatment of the field of mathematical physics than has hitherto been at-
tempted, and the completion of this task would make it possible to derive
all the equations of mathematical physics from a few consistent and inde-
pendent postulates, and to define all the quantities occurring in these
equations in terms of a small number of indefinables. The purpose of this
article is to discuss from a somewhat general point of view the nature of the
quantities which occur in the equations of mathematical physics and to
consider a set of indefinables for their definition. We shall thus hope to
help in the preparation for that more complete systematization of mathe-
matical physics which is undoubtedly coming. (Tolman 1917, 237)

Tolman aims to prepare the way for a generally axiomatic treatment of physics
as a whole.52

Tolman reintroduces his metaphysical posit by way of discussing the rela-
tion that holds between fundamental and derived quantities, which is repre-
sented by dimensional formulae: “The dimensional formula of a quantity may
be regarded as a shorthand statement of the definition of that kind of quantity
in terms of the kinds of quantity chosen as fundamental, and hence also as a partial
statement of the ‘physical nature’ of the quantity in question” (1917, 242).53

Tolman holds that the apparent necessity of five fundamental quantity dimen-
sions (three mechanical ones, one for electromagnetism, and another for ther-
modynamics) is due to there being “five fundamentally different kinds of ‘thing’”:
space, time, matter, electricity, and entropy.

Beyond being sufficient to account for all known physical quantities, Tolman
puts forth two further conditions on a set of fundamental quantity dimensions.
The fundamental quantities must be extensive—this allows for extensive meth-
ods of measurement for all derived quantities, even those that are themselves in-
tensive (consider the role of a thermometer inmeasuring the temperature).54 The

52. Appropriate to the generality of his aims, Tolman takes Russell’s (1903) distinction of magni-
tude and quantity as his starting point. Tolman’s system, including his fundamental distinction of in-
tensive and extensive quantities, cannot be dealt with here in full.

53. That dimension can at most be only a partial description of the nature of a quantity is here set
aside (see Lodge [1888] and Mari [2009]).

54. “In case the derived quantity has intensive rather than extensive magnitude some more or less
artificial correlation of the magnitude in question with quantities having extensive magnitude will then
have to be used, as has been done in the case of our ordinary temperature scale” (Tolman 1917, 248).
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set of fundamental quantity dimensions must also be such that they provide an
optimal level of simplicity to the system of quantities.

With all this on the table, Tolman argues that Bridgman’s conventionalism
is due to a confusion of quantity dimension and unit dimension:

The fact that it has become usual to pick out the units for derived quan-
tities in the way indicated has sometimes led to an unfortunate confusion
as to the real significance of dimensional formulae. Thus there has grown
up the practice of speaking of the dimensions of a unit when what is really
intended is the dimensions of the quantity involved. It certainly seems
best, however, to use the dimensional formula of a quantity as a shorthand
restatement of its definition in terms of the fundamental kinds of quan-
tity. The dimensional formula is thus a symbol for the physical nature of
the derived quantity and a recapitulation of the necessary relation between
different kinds of quantity rather than the statement of a relation between
units which we find convenient. (Tolman 1917, 249)

The dimensional relations between quantities are necessary, not conventional.
This necessity distinguishes quantity dimensions from unit dimensions, or
dimensional systems from unit systems (see sec. 1.3). Generally speaking, a di-
mensional system or a unit system can be used to fix the other by defining a co-
herent system of units. Nonstandard dimensional systems are often defined
in this way by setting a constant equal to 1 and eliminating one kind of unit
for another—for example, the spatialization of time units in relativity theory
on the adoption of the light postulate. If one takes this to be a true elimination of
the constant c, then one adopts a dimensional system in which time and length
quantities are equivalent.55 Tolman rejects any such conventionalism regard-
ing the basic quantity dimensions. For him, the reduction of the time dimen-
sion to the space dimension would be the same as reducing pressure to volume
on account of using them to form a two-dimensional graph—a well-founded
correlation is insufficient for a dimensional reduction, let alone the reduction
of a fundamental quantity dimension.56 By distinguishing the necessary

55. Physicists often talk in this manner, but it is apparent that they usually take this to be a change
only in unit systems and not in dimensional systems. The “suppressed” constants return when it is time
for physical interpretation (but see Rücker 1888).

56. Although Tolman is a metaphysical realist about dimension, he thinks what we take to be the
number of dimensions is a manner of empirical inquiry. The special sciences, following the example of
thermodynamics, may introduce new kinds of measurable quantities (e.g., economics). The reduction
of the number of dimensions seemed to him impossible, but not logically so.
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dimensional relations of quantities from the conventional “dimensional” rela-
tions of units, Tolman takes himself to be reiterating what I am calling the
“ontic-formal dimension distinction” he made in Tolman (1916). This con-
fusion between the “dimensions of quantity” and “dimensions of unit” he claims
may be “a contributory cause for a number of criticisms which have been made
on the principle of similitude” (Tolman 1917, 251). That said, Tolman stops
short of an explicit defense of his principle and, as far as I’ve seen, never defends
or makes use of it again. As I argue in the next section, the points he makes
against Bridgman’s libertine conventionalism do point the way to a meta-
physics of quantity dimensions, but one weaker than the quantity-dimension
fundamentalism that he develops over the course the debate concerning his
principle of similitude.

2.5. Verdicts

As mentioned, the failure of Tolman’s principle of similitude was overdeter-
mined. There is, however, much to learn about the foundations of dimensional
analysis from the debate concerning its relation to the principle of dimensional
homogeneity. Here are the results we may take from each of the criticisms dis-
cussed in the previous sections.

Buckingham correctly shows that the principle of dimensional homogeneity
can generate a broad class of symmetry transformations, of which Tolman’s “rel-
ativity of size” is only a special case corresponding to the adoption of an unortho-
dox dimensional system. Tolman is right to claim that the principle of similitude
is the more determinative principle because it can be used to derive functional
equations for systems with unknown dimensional constants, whereas the prin-
ciple of dimensional homogeneity is useless.

Ehrenfest-Afanassjewa sharpens the criticism that Tolman’s principle is
merely setting up a peculiar dimensional system. She argues that Tolman’s di-
mensional system is an allowable, qua formal system, but Tolman has not met
the conditions needed to give it an ontic interpretation. In particular, the ontic
interpretation of the dimensional system will require the variability of the
magnitude of the gravitational constant across the similitude transformation—
a transformation she takes to be nomologically impossible (see Jalloh [forth-
coming] on “constant necessitism”). Tolman capitulates that his principle
only works as setting up a formal system of units—although he thinks this
may still constrain the form of future theories of gravity—and puts forward
a fundamentalist metaphysics of dimensions, independent of the form of fun-
damentalism (length fundamentalism) apparently adopted in his initial 1914
paper.
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Bridgman shows the apparent extra domain of determinativity to not be
an argument in favor of the methodological priority of Tolman’s principle of
similitude, contrary to Tolman. The epistemic benefit of the principle is limited
as it depends on an assumption about the dimensions of the relevant constant
but not its exact dimensional formula; its dimensions must be such that it is in-
variant under the similitude transformation. Although this turns out to generally
be the case (with the notable exception of G), Bridgman shows that given the
number of constants and the number of basic dimensions, any principle of si-
militude based on the scaling of a single such basic dimension would lead to
some constant or another being left out. The similitude transformations follow
from this conventional choice and dimensional homogeneity, and Tolman’s cho-
sen unit system fails to be empirically adequate in the case of gravity. Tolman,
systematizing his response to Ehrenfest-Afanassjewa, does not defend the prin-
ciple of similitude but rather aims to clarify a confusion. Tolman distinguishes
between ontic quantity dimensions and formal unit dimensions and claims that
Bridgman’s conventionalist argument depends on a confusion between the two.
Whereas unit systems are indeed conventional, dimensional systems, constituted
by dimensional formulae, are supposed to be representative of the intrinsic
metaphysical nature of the quantities they describe. We cannot choose the basic
quantity dimensions. Tolman’s retreat to an understanding of the principle of
similitude as merely showing the convenience and viability of a particular kind
of unit systemmarks a complete rejection of the ontic interpretation of the prin-
ciple of similitude, but it also marks the beginning of a debate regarding the
metaphysics of quantity dimensions. For more on Tolman’s and Bridgman’s
views on their return to this issue in the 1930s, see appendix S1.

3. Recovering Dimensional Realism:
Arguments against Conventionalism

In this section I summarize the two metaphysical accounts of quantity dimen-
sions that emerge from the early methodological debate and propose a synthe-
sis that overcomes difficulties with both positions. As described in section 1.4,
fundamentalism, the metaphysics of dimensions espoused by Tolman, and con-
ventionalism, the antimetaphysics espoused by Bridgman, can be understood as
opposite positions regarding two theses:

DIMENSIONAL REALISM.There is objective dimensional structure that cor-
responds to a dimensional system.

FUNDAMENTAL BASIS. There is a fundamental dimensional structure that
corresponds to a dimensional basis.
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The fundamentalist accepts both theses, and the conventionalist rejects both
theses. The conventionalist case against fundamental basis relies on the sym-
metry in defining equations: we can just as well take f 5 ma to define the
force dimension in terms of the dimensions of mass and acceleration as we
can take it to define the mass dimension in terms of the dimensions of force
and acceleration. The conventionalist case against dimensional realism there-
fore follows: If there exist a multiplicity of acceptable bases, then there is no
unique dimensional system that represents objective dimensional structure.
The conventionalist takes the existence of such symmetry transformations
and the following lack of a unique dimensional system to provide evidence
for the further antirealist claim that there is no objective dimensional structure.
Such an argumentative strategy is familiar from the space-time literature: if some
putatively objective structure varies under a transformation that is a symmetry of
the laws (dynamical symmetry) and leads to an empirically indistinguishable
system (empirical symmetry), then that structure is not in fact objective. For
example, Leibniz famously argued against the existence of absolute space-time
positions by showing that a universal translation of positions 5 miles to the west
would be both a dynamical and empirical symmetry.57

I make the case here that there is a dimensional realism that can be recov-
ered in light of the conventionalist symmetry argument. The conventionalist
would be too rash if they were to take their symmetry argument to show that
there is no dimensional structure whatsoever. Earlier I distinguished dimensional
systems by their basis dimensions (see sec. 1.4); however, I now show that the
objective dimensional structure that is represented by such dimensional systems
is more coarse-grained. I do not attempt to give a newmodel of dimensional sys-
tems that is “reduced,” so that there is nothing in a dimensional system that does
not correspond to objective dimensional structure. Rather, I present a “sophisti-
cated” account of dimensional systems such that equivalent dimensional systems
related by an isomorphism (a change of basis) are taken to represent the same
objective dimensional structure.58 To recover some form of dimensional realism,
some distinctions regarding the relations between dimensional systems and

57. For developments of such symmetry arguments, see Ismael and van Fraassen (2003) and
Dasgupta (2016). I leave undetermined what is to be done with the “surplus structure,” whether it is
to be straightforwardly eliminated from our ontology or shown to be reducible to a fundamental, objective
structure interacting with some subjective aspect. For a classic exposition of the analogous space-time de-
bate, see Earman (1989).

58. On the difference between reduced and sophisticated theories, see Dewar (2019) and Martens
and Read (2020). I will not make a stand here on whether a reduced theory is preferable to a sophis-
ticated one or if a reduced one is possible in this case. It is just the case that a sophisticated theory of
dimensional systems is readily available to me while a reduced one is not.
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dimensional structure must be made. I divide each realist thesis into two
subtheses, yielding four fundamentalist commitments:

DIMENSIONAL REPRESENTATION. Dimensional systems represent objective
dimensional structure.

DIMENSIONAL UNIQUENESS. There is a uniquely correct dimensional sys-
tem that represents the objective dimensional structure of the world.

FUNDAMENTAL BASIS SIZE.The size of the set of basic quantity dimensions
is objectively determined.

FUNDAMENTAL BASIS IDENTITY. The individual identities of basic quantity
dimensions are objectively determined.

Dimensional representation and dimensional uniqueness make up dimen-
sional realism. This analysis is to be understood similarly to van Fraassen’s
(1989) analysis of scientific realism. Dimensional representation is a statement
that dimensional systems are to be taken literally; they purport to represent
something objective and so can be judged to do so more or less adequately. Di-
mensional uniqueness says that only one such dimensional system is ultimately
correct. Similarly, fundamental basis size and fundamental basis identity make
up fundamental basis. There are two possibly objective aspects of the funda-
mental dimensional structure. I argue that we can be realist about one aspect
of the basis of dimensional systems (size) without being realist about the other
(identity).

The conventionalist argument against fundamental basis is only partially
successful: conventionalist transformations of the identities, but not the num-
ber of basic quantity dimensions, are consistent with the empirical success of
dimensional analysis. A dimensional system for mechanics that treats force as a
basic quantity (and mass as derived) is as empirically adequate as a dimensional
system that treats instead mass as a basic quantity instead. However, although
there appears to be no natural constraint on which quantity dimensions appear
as basic, there is a natural lower limit on the number of quantity dimensions
that can adequately represent a physical system. In fact, in Tolman’s rebuttal to
Bridgman’s conventionalism, he puts forward the essential argument in favor of
the objectivity of the number of basic quantity dimensions: the problem of
insufficient bases. The problem is that the reduction of the number of basic
quantity dimensions reduces the determinative power of the principle of dimen-
sional homogeneity; therefore, it seems that the reduced dimensional system
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misrepresents some dimensional structure necessary to have a determinative di-
mensional analysis of physical systems. For example, Tolman (1917, 250) shows
that the dimensional analytic derivation of the equation for the centripetal force,

f 5 k
mv2

r
,

becomes much more indeterminate when the dimensions of length and time are
equated (reducing the basic mechanical dimensions to two by making velocity
dimensionless):59

f 5 k
mvn

r
:

This is evidence that a dimensional system that collapses the length and time
dimensions lacks the representational capacity to adequately describe the cen-
tripetal force—Palacios (1964) calls such violations of this natural constraint
the problem of insufficient bases. However, Tolman went too far in holding that
this shows that the identities of the basic quantity dimensions are objectively
determined by nature; in fact, it is the number of basic dimensions that is
so determined.

When dimensional realism is taken as a package deal, the conventionalist
attack on objective basis identity is enough to justify an antirealism about
quantity dimensions. However, we can divide dimensional realism into dimen-
sional uniqueness and dimensional representation. If conventionalist critique
requires the rejection of fundamental basis identity, then dimensional unique-
ness must also be rejected. Dimensional realism can be salvaged as the conjunct
of just dimensional representation and fundamental basis size. The form and
ramifications of this moderated dimensional realism is discussed in section 3.3,
but first the case against a thoroughgoing conventionalism needs to be given.
In the next sections, I give two arguments against an antirealist conventionalism:
the first is the problem of insufficient bases, which is revealed by the Rayleigh-
Riabouchinsky paradox; the second is the inability of the conventionalist to
account for the explanatory nature of dimensional analysis altogether.

3.1. The Generalized Rayleigh-Riabouchinsky Paradox
and the Problem of Insufficient Bases

In an early exposé of dimensional analysis, Rayleigh (1915) uses dimensional
analysis to derive equations for a number of systems, including a case of heat

59. This is even worse when you consider that vn could be folded into k, hiding any dependence on
velocity.
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transfer between a rigid rod and a stream of fluid (Boussinesq’s problem).
Riabouchinsky (1915) showed that by reducing the number of dimensions in-
volved in describing the system from four to three—by eliminating the inde-
pendent dimension of temperature via adoption of the mechanical theory of
heat—dimensional analysis results in a less determinate result. This appears
to be a paradox: more knowledge about the system, that temperature has
equivalent dimension to energy, yields a less informative result. This surprising
result shows that not all laws can be taken to give reductive dimensional for-
mulae—on pain of inadequate representation. This means that the multiplic-
ity of a dimensional system is not fully conventional but rather is restricted on
one side by nature.

We can better understand this so-called paradox and the problem it raises by
consideration of a simpler case. The Rayleigh-Riabouchinsky paradox can be
generalized to an observation regarding the determinacy of dimensional sys-
tems in general. The case of dimensional reduction I wish to consider in fact
appears in Buckingham’s (1914, 372–75) response to Tolman: the reduction of
the mechanical dimensional system’s basis from three to two basic dimensions
by using Newton’s force laws to define a dimensional formula for mass in terms
of length and time.60 I show how such a dimensional reduction is done and
then how it leads to lower specificity in the derivation of the period of a pen-
dulum compared with the treatment in section 1.1.

To begin, we set Newton’s two force laws equal to each other,

G
mm0

r2
5 m0a,

simplifying the expression we get:

G
m
r2

5 a:

Now we make G into a dimensionless number and, for convenience, assume
we are working in a coherent set of units such that G 5 1. The resulting
equation,

m 5 ar2,

will define the unit mass, with dimensions

½m� 5 ½a�½r2� 5 LT22L2 5 L3T22:

60. The choice of which dimension is reduced to the other two is arbitrary, although this kinematic
reduction recalls a “Laplacian” reduction of mass (see Martens 2018).
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We make the same assumption regarding the quantities, which may be in-
volved in modeling a simple pendulum, in our reduced kinematic dimensional
system:

t½ � 5 T

m½ � 5 L3T22

l½ � 5 L

g½ � 5 LT22:

It is not clear from inspection that mass is irrelevant to the pendulum period.
We have to be more systematic and apply the algorithmic method supplied
from the P-theorem; this will also provide us with the concepts needed to un-
derstand in full generality the problem of insufficient bases.

Importantly, the P-theorem informs us that for any system, the number of
quantities that describe the system, N, and number of basic dimensions that
derive the dimensions of those quantities, B, determine the number of dimen-
sionless P-terms that are sufficient to describe the system: N 2 B. In this case,
N 5 4 and B 5 2, so we should expect there to be two P-terms sufficient to
describe the pendulum. To determine the forms of the P-terms, we must solve
two sets of equations for the dimensional exponents of the component terms.
Each set is composed of equations for each basic dimension. Two equations
and four variables means that the exponents of two variables must be arbitrarily
determined. We choose the simplest case for each P-term: P1 ∝ t1l 0 and
P2 ∝ t0l 1. The P-terms will each have the form

P1 5 tma1gb1

P2 5 lma2gb2 :

Now we set up the two sets of linear equations to determine exponents of zero
in each basic dimension for the two P-terms:

T : 22a1 2 2b1 1 1 5 0

L : 3a1 1 1b1 1 0 5 0
     

22a2 2 2b2 1 0 5 0

3a2 1 1b2 1 1 5 0:

These equations yield the following solutions:

a1 5 2
1
2

a2 5 2
1
4

     
b1 5

1
2

b2 5
3
4
,
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so
P1 5 tm21

2g
1
2

P2 5 lm21
4g

3
4:

Solving for t, we get the equation t 5 km1=2g21=2W(lm21=4g 3=4), where W is
some power function. This compares unfavorably with the more specific equa-
tion derived in the full mechanical dimensional system, t 5 k

ffiffiffiffiffiffiffi
l=g

p
. The

move to a reduced basis generates spurious P-terms. On the other hand, at
some point, an increase in the number of basic dimensions will not reduce
the number of P-terms that describe a system. Palacios uses these conditions
to provide criteria for insufficient and superabundant bases: “If it happens that
in augmenting in some way a given basis, the number of independent p monomi-
als decreases, then the original basis was incomplete, whilst if the same system
of such monomials is always obtained then, the original basis is complete and
the augmented one is superabundant” (1964, 67). I dub a dimensional system
that is neither insufficient (or incomplete) nor superabundant with respect to a
physical system to be a “well-tuned” dimensional system.

That a dimensional system can be more or less well tuned, that there is an
objective standard (maximally efficient dimensional analysis) for how well a di-
mensional system describes physical systems, belies the conventionalist position.
The conventionalist cannot account for the differences among an insufficient, a
well-tuned, and a superabundant dimensional system, whereas the dimensional
realist has an easy answer: the well-tuned system accurately represents the dimen-
sional structure of the physical system in question, the insufficient system lacks
certain representational capacities, and the superabundant system has unneces-
sary resources. Nature constrains the number of bases from below; a general
Occamist norm constrains the number of bases from above.

3.2. Accounting for Dimensional Explanations

Recently, philosophers of science have given accounts of how dimensional anal-
ysis provides explanations and in doing so have attempted to eliminate any
sense of paradox from the Rayleigh-Riabouchinsky phenomena discussed in
the previous section. Lange (2009) has argued that dimensional analysis pro-
vides explanations of derived laws that screen off the fundamental laws. Di-
mensional analysis explains certain similarity features of systems that are
independent of various aspects of their constitution (and so the sometimes distinct
sets of fundamental laws that govern the phenomena in question).61 I want to

61. Lange considers the dimensional similarities of waves in a fluid and standing waves in a string
(Lange 2009, sec. 4.)

HOPOS | Dimensional Analysis, 1914–1917

312



emphasize something about how Lange’s account of dimensional explanations
applies to the generalized Rayleigh-Riabouchinsky paradox. Dimensional expla-
nations using dimensional systems with more basic quantity dimensions (partic-
ularly ones considered derivative in conventional systems) apply to a larger set of
counterfactual cases. They apply to systems independently of the values and the
dimensions of the (in this system, dimensional) constants that link the additional
basic dimensions into the laws.62 Bridgman (1931, 59) considers a case in which
volume is treated as an additional basic mechanical dimension independent of
length, which allows for the derived equation to apply even in non-Euclidean
geometries where v 5 l 3 may not hold.63 This would introduce a dimensional
volume constant q, where v 5 ql 3 and ½q� 5 VL23, which could have a non-
trivial value (i.e., not 1). In the thermodynamic case, it could be that the value of
Boltzmann’s constant or the gas constant was different, such that a unit of tem-
perature would not be equivalent, in either value or dimension, to a unit of en-
ergy, invalidating any mechanical reduction of thermodynamics. In both cases,
the derivation that allows for the possibility of the variations in constants—that
is, does not treat the relevant laws as a priori—is themore explanatorily powerful
in the sense that it is more general.64 Pexton (2014) gives a different although
consistent account of how dimensional analysis explains: dimensional analysis
provides models of systems that make apparent patterns of modal dependence
(i.e., counterfactuals). On Pexton’s modal-model theory of dimensional explana-
tions, Rayleigh-Riabouchinsky phenomena can be accounted for by the fact that
for some systems, such dimensional reductions (e.g., that of temperature to en-
ergy) are simply irrelevant. It is no surprise that irrelevant factors can introduce
noise (in the form of extra degrees of freedom) that interfere with the power of an
explanation given by the model. As seen with Lange’s account, there is a tradeoff
between abstraction and explanatory power.

The conventionalist makes both the general explanatory power and also the
dependence of explanatory power on a choice of dimensional systemmysterious.
Surely if some choice of convention is better than another, not as a matter of

62. Lange (2009) holds that this is a counterlegal. This depends on the somewhat controversial but
underappreciated thesis that the values of the constants are part of the laws (e.g., nomologically neces-
sary). For reasons why this may not be the case, see Jacobs (2023) and Jalloh (forthcoming).

63. This fails to hold in a very mundane case: a liter of volume was defined (by the CGPM in 1901,
until 1964) as the volume occupied by a kilogram of pure water in standard conditions rather than as a
cubic decimeter, as it is currently. While the two definitions aim to define the same quantity, the cor-
respondence is not exact, meaning that the former definition requires a constant to relate the volume
and length unit, and the conceptual independence of volume from length in this defintion requires that
this constant be dimensional (see Petley 1983, 137).

64. The explanation is powerful because it applies to more possible (or impossible) worlds; the der-
ivation has greater modal robustness.
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what is convenient to deal with but in its explanatory capacities, we ought to ques-
tion whether dimensional systems are indeed a matter of convention after all. The
dimensional realist has a nicer story to tell about the explanatory power of
dimensional analysis: dimensions exist, and some dimensional systems better
describe (some aspects of ) their natures than others.65 However, the conven-
tionalist critique still has some bite. Generally, the Rayleigh-Riabouchinsky
paradox shows only that the number of basic quantity dimensions, the degrees
of freedom in the dimensional system, is constrained by nature. Both practice
and mathematical theory give reason to believe that the basis of a dimensional
system is not unique.66 This conventionalist constraint on our metaphysics of
quantity dimensions can be seen by considering the symmetric nature of de-
fining equations: the relation between volume and length is equally well ex-
pressed by the formulae V 5 L3 and L 5 V1=3. What is needed is a metaphysics
of dimensions that captures the objective structure of dimensional systems while
leaving open for convention a choice of basis. Furthermore, this structure needs
to be such that it provides a foundation for the representational and explanatory
success of dimensional analysis. In the next section, I introduce such ametaphys-
ics of quantity, a moderate realism: quantity dimension functionalism.

3.3. Functionalism: The Best of Both Worlds?

If the empirical adequacy of our dimensional systems is to serve as a guide to
our metaphysics of dimensions, then it seems that we must give up fundamen-
tal basis identity and its corollary, dimensional uniqueness, because the empirical
success of our quantitative representations of systems are insensitive to some
changes in our dimensional formulae. Sensitivity to other changes in our dimen-
sional formulae—namely, the problem of insufficient bases and the dependence
of explanatory on dimensional systems—drive us to be committed to fundamen-
tal basis size and dimensional representation. As neither position articulated in
the past century provides an adequate metaphysics of dimensions according to
these criteria, both fundamentalism and conventionalism are to be rejected.

In their stead, I offer quantity dimension functionalism. Here I repeat the
basic formulation of the view given in section 1.4:

65. An extended argument for dimensional realism from dimensional explanations has been pro-
vided by Jacobs (2024).

66. Mathematical models of dimensional systems are legion. Often, dimensional systems are mod-
eled as vector spaces or groups. A full account of the metaphysics of dimensional systems in light of
these models must be postponed. For mathematical models of quantity dimensions and some of their
physical and metaphysical implications, see San Juan (1947), Corrsin (1951), Palacios (1964), Whitney
(1968a, 1968b), de Boer (1995), Tao (2012), Johnson (2018), and Raposo (2018, 2019).
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FUNCTIONALISM. There is an objectively correct set of dimensional sys-
tems—each system describing the dimensional structure of the world
equally well. While there is no unique basis for these dimensional sys-
tems, the number of quantity dimensions that are fundamental is objec-
tively determined.

This position is indeed a form of structural or sophisticated realism in which
quantity dimensions are without fundamental intrinsic natures or quiddities
but rather have their natures as a matter of their relative positions in the (quo-
tient) dimensional system.67 Quantity dimension functionalism is most closely
related to the sense of functionalism in the space-time literature, wherein
“spacetime is as spacetime does” (Knox 2013, 2019; Lam and Wüthrich 2018).
However, as a “role functionalism,” rather than a “realizer functionalism,” there
is no commitment to underlying primitives that “realize” particular dimensional
roles; functionalists can be thoroughgoing structuralists regarding quantity di-
mensions.68 The relative positions in dimensional structure are the invariant ob-
jects described by different dimensional formulae given a choice of basis—no
quantity dimension is reducible to any particular dimensional formula but only
to an ensemble of them related by the (conventionalist) symmetry transforma-
tions of the dimensional system. Ultimately, these positions are to be understood
as nomic roles.69

Although these dimensional nomic roles are not reducible to the dimen-
sional formulae that describe them, we can learn about the structure of these
nomic roles from considerations of the structure of dimensional formulae. As
mentioned, dimensional formulae—and so, the dimensional dependence rela-
tions they describe—are symmetric; some quantity dimensions cannot be said
to ground others, except relative to a basis; and quantity dimension symmetries
(i.e., active dimension scale symmetries; for discussion, see Roberts [2016],

67. For simplicity’s sake I will collapse the set of objectively correct dimensional systems into a sin-
gle dimensional system. In group theory, this operation is called “quotienting,” and the resultant quo-
tient dimensional system can be understood as that invariant under all of the transformations among
different dimensional bases. A similar structuralist defense of dimensional realism can be found in Ja-
cobs (2024), although he does not take on the historical orientation that I have here.

68. On the distinction between role functionalism and realizer functionalism, see McLaughlin
(2006). I invoke the distinction to defend my “functionalist” label from the complaint that it
surreptiously commits me to quiddities, the realizers of dimensional roles. In fact, the existence of re-
alizers or quiddities is of no importance. It is important only that the role is more fundamental than the
realizer.

69. I cannot give a general treatment of nomic essentialism/structuralism here; for a survey, see
Wang (2016). It is worth noting that dimensional structure seems to be an additional “high-order
mathematical feature,” which tells in favor of a nomological rather than a causal structuralist account
of physical properties (see Berenstain 2016).
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Martens [2021], and Jalloh [forthcoming]) will be tightly constrained, as they
will involve the transformations of all the quantity dimensions with relevant
mutual dependency relations.70 Such quantity dimensions symmetries define
a class of dynamical symmetries—dimensional analysis is used to determine
similarity relations, transformations under which two systems can be used as
(dynamic) models of each other (for details, see Sterrett [2009, 2017]). These
dimensional dependence relations therefore play a double role of identifying
the quantity dimensions relative to each other and of constraining the forms
of the laws.71

In this functionalism view, we can say something about the nature of the
dimensional structure of the world as a whole. Dimensional structure is an or-
der of modal structure that is more coarse-grained than that of the nomological
modal structure of the laws as traditionally conceived. If the laws are consid-
ered as strict equalities between quantities, then dimensional structure captures
the more coarse-grained proportionality relations between quantities that hold
with natural necessity. These dependence relations are central to the nature of
the laws, although they undetermine their “strengths”—their relative strengths
being captured by the relative values of their characteristic constants.72 Much
more can be said to explicate the version of nomic essentialism to which the
quantity dimension functionalist is committed to and to defend it from various
objections in the metaphysics literature (most notably, by Sider [2020]). My
aim here is only to introduce the view, which is hopefully sufficiently moti-
vated by consideration of the alternatives with which the history of dimen-
sional analysis has furnished us.

4. Conclusion

This article has exposited an unduly neglected debate regarding the methodo-
logical and metaphysical foundations of dimensional analysis and has evaluated
the merits of the two major positions: conventionalism and fundamentalism.
Both positions are found lacking. Conventionalism regarding quantity dimen-
sions fails to account for the explanatory success of dimensional analysis and

70. On the viability of symmetric dependency relations, see Barnes (2018).
71. One might quibble here with my “constraining” language. With Campbell (1924) and Palacios

(1964), one may argue that the laws constrain dimensional analysis by defining the relations between
dimensional quantities. I do not want to establish any sort of priority claim here regarding the structure
of the physical dimensions or the forms of the laws; they are mutually constraining, and I claim only
that one takes precedence over the other depending on the epistemic context.

72. This last point was made clear to me by Bryan Roberts; see also, Dahan (2020) on the idea of
constants characterizing the laws.
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representational constraints on dimensional systems. Fundamentalism fails to
fit with the conventionality found in scientific practice and fails to give reason
to privilege any basis over others for a dimensional system. I have set forth the
basic outline of a functionalist account of quantity dimensions in which the
empirical constraints on the number of basic quantity dimensions and the con-
ventionality regarding which quantity dimensions are treated as basic are re-
spected. The metaphysical residue that the functionalist is realist about are the
symmetric, nomologically necessary dependency relations between quantity
dimensions, which correspond to the dimensional forms of the laws and so en-
code metaphysically robust proportionality relations.
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