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In this paper I will address three topics in the logic of conditionals.  The first is the question 
whether the class of ‘reasonable’ probability functions  must be closed under conditionalization.  
The second topic is the character of logical consequence when probabilities of conditionals come 
into play.  The third is more specific: I want to present a challenge to the possible worlds 
approach in formal semantics, in favor of an algebraic approach.  For this I will use as a case 
study Alan Hajek’s views on counterfactual conditionals, and its problems with infinity.  
Included in this will be reasons to expect algebras of propositions to be incomplete algebras. 
Throughout I will use as foil what is known variously as Stalnaker’s Thesis, or the Conditional 
Construal of Conditional Probability (CCCP).  That is the thesis that the probability of a 
conditional A → B is the conditional probability of B given A, when defined. That the CCCP is 
tenable for a reasonable logic of conditionals I will presuppose in the body of the paper, but I 
will present its credentials in the Appendix. 
The CCCP is to be distinguished from the Extended Stalnaker’s Thesis, or Extended CCCP, that 
the conditional probability of A → B given C equals the conditional probability of B given A 
and C.  That extended thesis has been demolished again and again, and will appear here only in a 
note, to be dismissed.1 

1. Probability functions, the CCCP, and Moore’s Paradox 
Are there statements on which we cannot conditionalize, even though they have positive 
probability? 
This question is akin to the question posed by Moore’s Paradox:  are there statements that could 
not be rationally believed, even though they could be true? Yes, like “It is snowing and I do not 
believe that it is snowing”.  When we replace the intuitive notion of belief by subjective 
probability, we find two new forms: 

An Moore Statement is one that could be true, but could not be believed 
A Weak Moore Statement is one that could be true, but could not have probability one. 
A Strong Moore Statement is one that could have positive probability, but could not 
have probability one. 

The CCCP leads to Moore Paradoxes that involve conditionals (first noticed in Hajek (2011), see 
Appendix 1). 
Example 1.  Imagine the following situation: 
1. The match is not struck 
2. The match is wet 
3. It is not the case that if the match is struck, it will burn. 
That would seem to be a realistic situation, quite easily imagined.  Symbolize these sentences in 
an obvious way, to arrive at this statement:   
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[~S & ~(S →B)]: the match is not struck, and it is not the case that if the match is struck 
then it will burn. 

For a probability function P that respects the CCCP, this statement cannot have probability 1.  
For if P(~S & ~(S →B)) = 1, then P(~S) = 1 and P(~(S →B)) = 1.  But it follows that P(S) = 0, 
so P(B|S) is not defined.  Therefore P does not assign 0 to (S→B), hence does not assign 1 to ~(S 
→B).2 

Therefore this statement is an Ordinary Moore Statement. 
Could P be conditionalized on [~S & ~(S →B)]?  On the face of it, certainly, for at first blush we 
would give that statement a positive probability.  But the result of this conditionalization would 
then be a function that does not respect the CCCP. Therefore, without any special assumptions 
about the logic of →, we conclude: 
Theorem 1.  The class of probability functions that respects the CCCP is not closed under 

conditionalization. 
While the argument so far already sufficed, a complete calculation should show a bit more.  To 
display an example of a Strong Moore Statement, we need to show something which can have 
positive probability.  For this we can use a numerical example. 
 
Example 2.  Tosses with a fair die. 
The basic statements involved are just about the outcome of a toss, and each outcome has 
probability 1/6.  Define: 

A  = the outcome is either two or six.  True in possibilities {2, 6} 
~ A  = the outcome is neither two nor six = the outcome is either odd or 4.  True in 

possibilities {1, 3, 5, 4} 
B    = the outcome is six.   True in possibilities {6} 
Y =  (~ A & ~(A → B)): the outcome is neither two nor six, and it is not the case 
that( if the outcome is two or six, then it is six). 

 
The probability of ~A is 4/6. 
By the CCCP, the probability of the conditional (if A than B), equals P(B | A) = 1/2 = 3/6.  
So the negation of that conditional also has probability three out of six:  P(~(if A then B)) = 3/6. 
The probability of the disjunction of ~ A and ~(if A then B) is the sum of P(~A) and P(~(A → B) 
minus P(Y).  This disjunction cannot have a probability greater than 1.  So  

0 < (3/6) +(4/6) – P(Y) ≤ 1 
Thus Y has a probability greater than or equal to 1/6.  But it cannot have probability 1, by the 
same argument as in the preceding example.  For if P(Y) = 1 then P(~A) = 1, and so P(~(A →B)) 
is undefined.  Therefore Y is a Strong Moore Statement. 
Again we note that Y can play a perfectly good role as antecedent in a conditional.  But the result 
of conditionalizing P on Y will be a function that does not respect the CCCP. 
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2.  Conditionalization and the concept of logical consequence 
The notion of valid argumentation is surely the most basic of all in logic.  Puzzles about  
conditionals overturned many previous ideas about that very notion of valid argument.  If 
familiarity had not bred obliviousness by now, we would still see the impact as revolutionary. 

Counterfactuals 
Before the war (that is, WWII) there were two good theories of conditionals, Arend Heyting’s 
intuitionistic implication (1930) and  C. I. Lewis’ strict implication (1932).3 Both had the guiding 
idea that the conditionals’ behavior must mimic the principles of valid argumentation.   Asserting 
A →B must have something like the force of the assertion that A implies B.  The principal 
principle for the logic of conditionals must therefore be the great law of implication: 

X, A entails B if and only if X entails A →B. 
That has several clear consequences for the logic of conditionals, such as Weakening ((X → B) 
entails (X & A) → B) and Transitivity for the arrow. 
With Goodman (1947) and Chisholm (1953) it became clear that this is wrong for conditionals in 
natural language, especially counterfactuals.  The paradigm counter-example, that “this match 
will (would) light if struck” does not imply “this match will (would) light if wet and struck”, is 
by now the stuff of folklore.   

Probability’s radical impact 
When we then introduce probability, there is a further sea change for our concept of valid 
reasoning. 
It is natural to think, and indeed provable in a ‘classical’ context, that the following three 
entailment relations coincide: 

• For all truth-value assignments v, if v(A) = T then v(B) = 1 
• For all probability functions p,  if p(A) = 1 then p(B) = 1 
• For all probability functions p,  p(A) ≤ p(B) 

I will call the conviction that these three relations coincide the  classical conception of logical 
consequence, or of valid entailment.  It is appropriate to call this conception “classical” for, as I 
shall show in a moment, the coincidence of those three relations is provable from very minimal 
characteristics of classical logic and probability theory.  

But if we accept the CCCP this classical conception will not remain tenable. 

Probability spaces 
Geometry is not, from a modern point of view, the study of what theorems follow from such as 
Euclid’s or Lobachevsky’s postulates.  It is instead the theory of geometric spaces, that is, of 
structures in which those postulates hold.  Similarly, the theory of probability is not the 
deductions from the three or four equations that define a probability function.4  It is the study of 
probability spaces.   
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I will assume here that in a semantic analysis of a relevant sort of language the propositions form 
a Boolean algebra, with or without additional operators.   
Definition.  A probability space PP is a triple <K, F, P> where K is a non-empty set, F is a Borel 
field of subsets of K, and P is a family of probability measures with domain F.  The members of 
F, the ‘measurable sets’, we call propositions. 
When P has just one member I will call the probability space simple. Simple spaces may have 
taken most of our attention, but that is a case of misplaced emphasis.  The classical conception of 
valid entailment requires us to look beyond simple probability spaces.  For the principle, for 
example, that P(A & B) ≤ P(A) does not refer to a single probability assignment – it is an 
assertion about how things are no matter how probabilities are assigned. 
Definition.   A probability space PP = <K, F, P> is closed under conditionalization iff for all p in 
P and all elements e of F, p( -|e) is in P if p(e) > 0. 
Theorem 2.  If PP = <K, F, P> is closed under conditionalization then the following 
relationships coincide for all elements a, b of F: 

1. [certainty]   for all p in P, if p(a) = 1 then p(b) = 1 
2. [ordering] for all p in P, p(a) ≤ p(b) 

These are two consequence relations on the family of propositions.  I will relate them to the 
familiar one of truth-preservation below. 
Proof.  (a) Suppose that for some p in P, p(a) = 1 but p(b) < 1. Then it is not the case that for all p 
in P, p(a) ≤ p(b.  For the converse suppose that for some p in P, p(e) > p(g).  Since F is a Borel, 
hence Boolean, algebra, p(e) = p(e ∩ g) + p(e – g), and p(e ∩ g) cannot be greater than p(g).  So 
p(e – g) > 0.  Define p* to be the conditionalization of p on (e – g).  Then p*(e) = 1 and p*(g) = 
0.  

 
Definition.   A probability space PP = <K, F, P> is replete iff for every non-empty element e of 
F there is a probability measure p in P such that p(e) > 0. 
Theorem 35.  If PP = <K, F, P> is a replete probability space which is closed under 
conditionalization then the following three relationships coincide for all elements a, b of F: 

1. [inclusion] a ⊆ b 
2. [certainty]for all p in P, if p(a) = 1 then p(b) = 1 
3. [ordering]for all p in P, p(a) ≤ p(b) 

The relationship inclusion  is the familiar consequence relation among propositions: if the first is 
true then so is the second, always. 

Proof.  First, by the preceding theorem, certainty and ordering coincide.   

If a ⊆ b	then	p(a)	≤ p(b), and hence also if	p(a)	=	1	then	p(b)	=	1.		So	inclusion		entails	both	
certainty		and	ordering.		
Second,	suppose	that	for	specific	propositions	a,	b,	inclusion	does	not	hold:		it	is	not	the	
case	that	a	⊆ b.   Then (a ∩ ⎯b) is a non-zero element.  By repleteness, there is probability 
measure q in P such that q(a ∩ ⎯b) > 0.  Clearly q(a) > 0 in that case, so the function q*, which is 
q conditionalized on a, is well defined. 
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Since PP is closed under conditionalization, q* is in P.  Since q*(a) = 1 and q*(b) = 0, it follows 
that the relations of certainty and ordering do not hold for a, b. 

 

Failure of the classic conception of entailment 
These arguments for the classic conception of logical consequence assumed closure under 
conditionalization.  And we saw in the previous section that the class of probability functions 
which respect the CCCP is not closed under conditionalization.  That raises the suspicion that 
here the classic conception will fail.  And it does. 
There has been some discussion of the putative validity of the ‘Or to If’ inference.6  There are 
familiar, plausible sounding examples: 

Peter is either in France or in Italy.  Therefore, if he is not in France  then he is in Italy. 
Such examples seem to make it inescapable that “if … then” is the material conditional.7 At the 
same time, there are examples where the inference appears invalid.   
I have no wish to either advocate or deny the validity of ‘Or to If’.  Instead it functions as an 
effective counterexample to the classical conception of valid entailment, for this inference is 
valid by [certainty] but invalid by [ordering]. 

Let A and B be statements: 
a) In all cases, for all probability functions p, if p(~A v B) = 1 then p(A → B) = 1 
b) In many cases, for some probability functions p, p(~A v B) > p(A → B) 

Both a) and b) are true if we equate p(A → B) with p(B | A).  For the first note that if p(~A v B) 
=1 then p(A & ~B) = 0, so p(A & B) = p(A).  Therefore p(B|A) = p(B & A)/p(A) = p(A)/p(A) = 
1.  For the second, imagine we are going to toss a fair die.  The probability that the outcome will 
be either odd or six equals 4/6 = 2/3.  But the probability of six, given an even (not odd) 
outcome, equals 1/3. 
Theorem 4.  If PP = <K, F, P> is a probability space such that F is a Boolean algebra and is 
closed under an additional binary operator →, and for all elements A, B of F and all probability 
functions p in P, it is the case that p(A → B) = p(B|A) when defined, then PP is not closed under 
conditionalization.   
This follows at once from Theorem 2 and the finding that the consequence relations certainty 
and ordering do not coincide in this sort of probability space.8  It is an alternative proof of 
Theorem 1, but this proof is more enlightening.  For it shows that our most fundamental concept 
in logic breaks into several parts.  It shows that a language with conditionals has, in effect, more 
than one logic.9 

Culprit not conditionals but probability of probabilities 
David Lewis explicitly took it as an objection to any construal of the conditional that would not 
include closure under conditionalization.  Recently, in correspondence, Alan Hajek suggested 
that the above results should be taken as a major objection to the CCCP.10   
But in fact the lack of closure under conditionalization does not come specifically from the 
construal of the conditional.  It is characteristic of discourse in which (some) probabilities are 
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themselves probabilistically assessed.  Given the CCCP, conditional statements encode 
information about probabilities.  But the probabilities themselves already involve obstacles to 
conditionalization, in a very ordinary, every-day context.   
If I am asked to bet on the tossing on a die, I may easily say something like this to myself: 

It seems to me only as likely as not, that this die is fair 
equivalently: 

My subjective probability that the objective chance of each outcome is 1/6 equals ½. 
This sort of talk which is surely quite ordinary, generates Moore statements, and lack of closure 
under conditionalization. 

 Consider first the following (not a Moore statement) said when about to toss a die: 

[1] The number six won’t come up, but the chance that six will come up is 1/6. 

On this occasion both conjuncts can be true.  The die is fair, so the second conjunct is true, and 
when we have tossed the die we may verify that our prediction (the first conjunct) was true as 
well. 

Moreover, [1] can be believed and equally, it can have a positive subjective probability.  For 
example, if it is known that the die is fair, then the probability that [1] is the case equals 5/6. 

In this sort of example we express two sorts of probability, one subjective and one objective.  
Are there some criteria to be met?  Is there to be some harmony between the two? 

There are some controversies about how they ought to be related to each other.  I propose what I 
take to be an absolutely minimal constraint: 

Minimal Harmony.  P(ch(A) > 0) = 1 implies P(A) > 0         If I am sure that there is some 
positive chance that A then it seems to me at least a little likely that A. 

Could someone seriously, and rationally, violate this?  What of the gambler who feels lucky, and 
says “Certainly there is some chance that the six will come up, but I am sure it won’t!”  Well, 
good luck!   

To construct a Moore Statement we only need to modify [1] a little: 

[2] The number six won’t come up, but the chance that six will come up is not zero 

~Six & ~[ch(Six) = 0] 

That [2] could be true we can argue just like we did for [1].  But [2] is a Moore Statement for it 
could not have subjective probability 1, by the following argument. 

Assume that P([2]) = 1.  Then: 
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1. P(~Six) = 1 
2. P(Six) = 0 
3. P(~[ch(Six) = 0]) = 1 
4. ~[ch(Six) = 0] is equivalent to [ch(Six) > 0] 
5. P(ch(Six) > 0) = 1 

Here 2. and 5. together are a violation of Minimal Harmony. 
This means also that [2] is a statement on which you cannot conditionalize your subjective 
probability, in the sense that if you do, your posterior opinion will violate Minimal Harmony. 
So we have here another case where the space of admissible probability functions is not closed 
under conditionalization, and it involves no conditionals.   
It appears to be the characteristic of probabilistic assessments of probabilities that they are 
subject to Moore’s Paradox, which makes lack of closure under conditionalization ubiquitous. 

Presumptions that bedevil us 
How does “Or to If” get to tug at our heart strings at all, how does it get to feel plausible?  
There may be a a major defect in the use of natural language examples of counterfactual 
conditionals.  To provide an example of a conditional that others will accept as true, we provide 
reasons that bring it close to certainty.  For example, to motivate “If Hoover had been a 
Communist, he would have been a traitor” we may assert that in those days, the enemy of the 
USA was, precisely, Communism.   
However, the better the reason, the closer the conditional comes to a necessary implication, to C. 
I. Lewis’ curly arrow, ‘necessarily (not A or B)’.  Is it possible that we will then tend to confuse 
the natural language arrow with the curly arrow?   
If Peter must be in France or Italy then he must be in Italy if he is not in France – sure!     
But now, try to do this:  suppose that Peter is not in France, without supposing that Peter is 
certainly not in France.  Can you do it?  The instruction sounds rather like “Suppose that (Peter is 
in France and he might not be in France)”.  What do you do?  Some views now current about 
epistemic modals would see this as the request to suppose the impossible. 
There is a more immediate moral for issues in the logic of conditionals.  When David Lewis 
addressed Stalnaker’s Thesis and proved his celebrated triviality results, he began its motivation 
with  

presumably our indicative conditional has a fixed interpretation, the same for speakers 
with different beliefs, and for one speaker before and after a change in his beliefs.  Else 
how are disagreements about a conditional possible, or changes of mind? (Lewis 1976: 
301).  

And he spelled out how this brings him to closure under conditionalization: 
Our question, therefore, is whether the indicative conditional might have one fixed 
interpretation that makes it a probability conditional for the entire class of all those 
probability functions that represent possible systems of beliefs.  
This class, we may reasonably assume, is closed under conditionalizing. (ibid. 302)   
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But as we have just seen, the relevant probability space cannot be closed under 
conditionalization.  If it were, the classical conception of valid entailment would not be violated.  
This result calls Lewis’ philosophical presumptions, and not just the significance of his triviality 
result, into question.11  It is far from evident that there will be a single algebra of propositions, 
expressed by the sentences in a common language, with these sentences having the same content 
for speakers whose subjective probabilities are different.  Indeed, it is plausibly a function of 
conditionals to convey aspects of a speaker’s doxastic attitudes.12   
What about conditionals’ context-dependence?13  I submit that when the relevant probability is 
subjective, to model a person’s opinion, the conditional statement and the conditional probability 
are context-dependent in the same way.  Witness the parallel examples: 

(A) Peter: If you jumped from here you would die. 
Paul: No, if I jumped from here I would not die.  For I would not jump without a safety 
net.  

(B) Peter: You would most probably die if you jumped from here. 
Paul: No, I would most probably not die if I jumped from here.  For I would not jump 
without a safety net.  

Here we can see in which sense disagreement is possible, the sense in which two speakers 
express disagreement by one saying “I think so!” and the other “I don’t think so!”. The context-
dependent conditionals express the context-dependent subjective probabilities.  

 

4. On Hajek’s ‘Chancy’ Theory of Conditionals 
When probability is introduced into the theory of conditionals, there are many places where 
problems about infinity can enter.  My main purpose here is to argue that they can practically 
force us to leave possible world semantics for a more algebraic approach.  The point is general, 
but I will focus on those problems as they appear for Alan Hajek’s provocative views on 
counterfactuals. 

Hajek’s view of counterfactuals 
Alan Hajek has argued that almost all natural language examples of counterfactual conditionals 
are false.  Think of the historically important example of “If J. Edgar Hoover had been Russian, 
he would have been a Communist”.  There is much to warrant in this assertion, on the basis of 
Hoover’s known character and ambitions.  But is it enough, or even relevant?  What are we to 
imagine about a Hoover born in Russia, growing up in a different social context with different 
friends, and perhaps even different sexual proclivities?  He might have been a faithful 
Communist, eve a commissar, or he might not. 
Hajek, who subscribes to a variant of David Lewis’s concept of objective chance, proposes the 
view that “if A then B” is true (in the case in which A is false)  if and only if the objective 
chance of B, given A, equals 1. 
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What would the logic be like? Difficulties with infinity 
Since objective chance 1 is a form of necessity, we would expect this theory to be akin to C. I. 
Lewis’s theory of strict conditionals, of the form “Necessarily, either not-A or B”.  But how can 
we think about nesting of conditionals, when linked to the chance function? 
Suppose that the domain of the chance function includes a significant variety of propositions, 
even if not all.14  Then such a proposition as that the chance that (if A then B) equals 0.3, may be 
true.  And that would then be understood as the proposition that the chance, that the conditional 
chance of B on A equals 0.3, equals 1.  Does (chance of what the chance is) that make sense? 
On the face of it, it does make sense, but perhaps only in unusual conditions.  Suppose I have 
two dice, one loaded and one fair.  I have a Geiger counter and some radium, the timing of 
individual clicks exemplifying an indeterministic process.  I decide that if the counter clicks 17 
times in the next minute (which is unlikely) then I will toss the fair die, otherwise the loaded one. 
In this situation is would seem to be true that there is a low objective chance that the next die toss 
has objective chance 1/6 of having outcome 6. 
It would be interesting at this point to try and devise a semantics for a language with connectors 
&, ~, →, with models in which those sentences have sets of worlds as semantic values.  The 
admissible valuations (linked to possible worlds) would then be assigning both chances and 
truth-values to propositions.  The constraint to be met on those valuations would then be that, if 
F is assigned to A then (A → B) receives T if and only if the assigned chances are such that the 
conditional chance of B given A is defined and equals 1.   
I will not speculate further on how this could be done.  For as we will see now, possible world 
models of this sort seem to run into serious difficulties when infinity comes into play. 
A chance function is a probability function, and so Hajek’s view places conditionals in a 
dangerous environment.  On the face of it, Hajek’s theory will have exceptions to Modus Ponens.  
This was pointed out in discussion at Hajek’s 2024 lecture at the University of California, Davis, 
by Rohan French: 

[One] If P(B|A) = 1 then P(A ∩ −B) = 0.  But probability 0 does not imply falsity. So on this 
theory both A and (A → B) might be true and B false. 
For example, the probability equals 0 that the mass of the moon, in kilograms, is a rational 
number.  But it might still be true. 

Perhaps worse still,  
[Two] Collections of counterfactuals, each of them true on this theory, could be deductively 
consistent but transfinitely inconsistent.   
As an example, let us take the action of placing a Geiger counter near radium sample from time t 
to t+1.  We can refer to this action, for brevity, as the Action.  The chance that the counter will 
click during that period, if the Action is performed, is according to quantum mechanics, positive 
but not 1.   
Let E be the statement that the counter does not click within [t, t+1], and F(e) the statement that 
the counter clicks within interval e.  In that case 

P(If Action then F( [t, t+1]) or E)   =  1 
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But also,  for each number x in [t, t+1]: 

P(If Action then F([t, t+1] ⎯ [x]) or E)   =  1 

So on Hajek’s theory, each of the conditionals  

If Action then F([t, t+1] ⎯ [x]) or E 
is true.  The intersection of all these true conditionals is: 

If Action then E 
for taking the intersection loses each number in [t, t+1].  But probability of (If Action then E) is 
positive but low.   
So on Hajek’s theory, that conditional is not true.  Therefore there is a collection of propositions 
each of which is true on this theory, but could not possibly be all true.  
Try for regularity?  At this point it might be tempting to say that the probabilities involved 
need to be strictly coherent – ‘regular’, that is, to assign a positive probability to each non-empty 
proposition.  Models could be modified by reducing the propositions modulo differences of 
measure 0, so that all propositions with probability 0 would be identified with the empty set.  
Motivation for this ‘solution’ could come from philosophy of physics.  For example, in their 
famous quantum logic paper, Birkhoff and von Neumann argued that propositions stating 
measurement outcomes which differ only by measure 0 should be identified (Birkhoff and von 
Neumann 1936: 825).  Motivation could also come from the practice in mathematics to focus on 
probability algebras (e. g. Kappos 1969, Birkhoff 1967: 261, example 2).   
But alas, for our subject this idea encounters too many, practically insuperable difficulties 
already noted by Hajek (2012 and ?), and especially violations of symmetry (Parker 2012, 2019).  

Proposal for a radical break 
On Hajek’s view, “the cat is on the mat” and “if the cat purrs then she is on the mat” have very 
different sorts of truth conditions.  That is perhaps one instance of a ubiquitous phenomenon: 
moral realists, for example, hold that factual and moral judgements both have truth values, but 
their truth conditions are of a different sort.   
To give substance to Hajek’s view, or at least its core contention, I propose that we take this 
difference seriously, and that to do so, we break with possible world semantics. 
There is no principled objection to reference to possible worlds in semantics.  They acquired 
their role originally due to Stone’s Theorem, that every Boolean algebra is isomorphic to an 
algebra of sets.  The only step needed was to call the elements of those sets “possible worlds”.  
After that, metaphysical intuitions could guide the construction of set theoretic representation of 
Boolean algebras with operators. 
But what about a true break with the way of possible world semantics?  Possible worlds are not 
even fictions!  If they were fictions, they would have to play the role implied by the fiction, 
which is, to determine what is true and what is false.  No, the only good role for set-theoretic 
representations will just be this: to show that there exist algebras of propositions of the sort we 
require for our purpose. 
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Prolegomenon: CE proposition algebras and the CCCP 
We begin with a logic of conditionals that will play a useful role, although it is constructed in a 
way that does not go with Hajek’s view at all. 
Definition.  A CE proposition algebra  is a triple <1, F, →>, where F is a Boolean algebra with 
unit 1, and  → is a binary operator on F such that for all p, q in F: 

I.   (p → q) ⋀  (p → r) = (p →. q ⋀  r) 

II.   (p→ q) ∨ (p → r) = (p →. q ∨ r) 

III.    p ⋀ (p → q) = (p ⋀ q) 

IV.    (p → p) = 1 
I will call I. – IV. the CE identities. 
Definition. A = <K, F, →, P> is a CE algebra with probability iff <K, F, →> is a CE proposition 
algebra and P is a probability measure whose domain includes F, such that, for all p, q in F: 

P(p → q) = P(q | p) if P(p) > 0, and = 1 otherwise 
Do CE algebras with probability exist? Yes, that there is a large variety of CE algebras with 
probability was a result proved in possible world semantics, closely related to Stalnaker’s 
semantics for his logic of conditionals(van Fraassen 1976).  The corresponding logic CE is a 
weakening of Stalnaker’s, since the semantics lacks the ordering of worlds as a constraint on the 
selection function which defines the conditionals. For the details see Appendix 2. 

Approaching truth algebraically 
From now on we will ignore the set-theoretic representations of CE proposition algebras with 
probability.  Their construction had no use except to establish the existence of the relevant 
algebras for our purpose. 
The theory I will present now exemplifies Hajek’s view of counterfactual conditionals as true, at 
least in the main, precisely if the corresponding conditional probability equals 1.  But it will not 
be exactly what I take Hajek to have envisaged, at least in certain particulars.  And the intuitions 
behind it relate to subjective probability rather than objective chance.  So I will call this theory 
the Hajek* Theory. 
This theory will pertain to a language with the usual syntax: propositional variables, connectors 
~, &, v, →.   Its models will be algebraic structures with the admissible interpretations being 
functions that link the truth of conditionals in the language to probabilities defined on that 
algebraic structure.  
So we begin with a specific, but arbitrary CE algebra with probability A = <1, F, →, P>, and that 
syntax.  F is a Boolean algebra with unit 1, operators ∧,	∨	and	−,	zero	element	0	=	−1.		An 
interpretation || ..|| of this syntax in A is straightforward: 

|| ~A||  = 1 − ||A|| 

||A & B|| =  || A|| ∧ || B|| 

||A v B|| = || A|| ∨ || B|| 
|| A → B|| =  || A|| → ||B|| 
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So far, then, interpretation assigns propositions as semantic values to sentences, but without any 
implication as yet for how truth-values are apportioned. 
I will refer to the zero-degree fragment of this syntax as Lat, and define A0 = {[[A]] : A in Lat}, 
which is a Boolean algebra.  Intuitively, we can think of Lat as the set of empirical statements, 
like “the cat is on the mat”.  But as I will take into account later, some may be theory-infected, 
like “the iron bar is magnetic” which can have some relation to conditionals. 
We need recourse to the algebraic notion of a filter that corresponds to the logical idea of a 
consistent theory, and to its dual.  The following pertains to algebra A. 
Definition. A subset X of F is a proper filter exactly if, for all elements p, q of F, if p is in X and 
p ≤ q then q is in X, and if p, q are in X then so is (p ∧ q), and 0 is not in X. 
Definition.  A subset Y of F is a proper ideal exactly if, for all elements p, q of F, if p is in Y 
and q ≤ p then q is in Y and if p, q are in Y then so is (p ∨ q), and 1 is not in Y. 
To complete the interpretation, there must be associated a proper filter – the truth filter -- the 
members of which are designated as the true propositions.  This truth filter will have a dual ideal 
– the falsity ideal -- whose elements are designated as the false propositions.  And finally, a 
sentence is true (respectively, false) exactly if its semantic value is a member of the truth filter 
(respectively, of the falsity ideal). 
There is some leeway in what the truth filter may be, it is only strongly constrained but not 
determined by what we have so far. 
Step One.  Let T = {p in F: P(p) = 1}.  It follows that T is a proper filter, from the properties of a 
probability function.  T has a dual ideal, namely U  = {1 ⎯ p: p in T}, and this is a proper ideal.  
Step Two. Let T0 be the smallest filter which contains a certain subset of A0, and be a proper 
filter, which does not overlap U.  (The choice of that subset of A0 is otherwise unconstrained.)  
T0 has a dual, the proper ideal U0 = {1⎯ p: p in T0}.  From the special condition that T0 does 
not overlap U, it follows that U0 does not overlap T. 
Step Three.  Let T* be the smallest proper filter that contains both T and T0.  Its dual ideal is 
U* = {1 ⎯	p: p in T*}. 
We specify now that what is true on this interpretation (consisting of || ..|| and the specified truth 
filter) are precisely the sentences whose semantic values are in T*, and what is false, precisely 
the sentences whose semantic values are in U*.  This assignment of truth-values to sentences will 
in general be a partial function only.   

Theorem 6.  T* exists and is a proper filter. 
Proof.  Since A is a CE algebra and A0 is a Boolean subalgebra of A, proper filters T  and T0 
exist.   
We may note that filters are closed under finite meets, and can designate the meet of a finite set 
X as ∧X. 

Define Y = {p in F: there is a finite subset X of T ∪	T0	such	that	∧X ≤ p}.  First, Y is a filter.  
Secondly, Y does not include 0. For if it did, there would be elements p of T and q of T0 such 
that p ∧ q ≤ 0. Then, since A is Boolean, it would follow that p ≤ (1 ⎯	 q) so p is in U0,  which is 
ruled out by the non-overlap constraint. 
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Any filter that contains both T and	T0	must	include	Y.		But	secondly,	Y	itself	is	a	proper	filter.		
So	Y	is	the	smallest	filter	that	contains		T and	T0,	which	is	what	T*	was	defined	to	be. 
 

The Hajek* Theory: what it is like 
Theorem 7.  Any statement that is true in all interpretations of CE algebras is valid in the Hajek* 
Theory. 
Proof.  Since A is a CE algebra, the CE identities cannot be violated in A.  Hence if ||A|| = 1 is a 
CE identity then ||A|| will belong to T*. 

Theorem 8.  The rule of Modus Ponens is valid in the Hajek* Theory. 

Proof. Suppose that p and  (p → q) are both in T*.  Then p ⋀ (p → q) is in T*.  But p	⋀ (p → q) 
= (p⋀ q) is a CE identity.  So (p⋀ q),and hence also q, is in T*. 
So the theorems and ‘simple’ rules of the logic CE are all preserved in the Hajek* Theory.  
However, since the assignment of truth-values may only be partial, certain natural deduction 
rules that trade on sub-derivations (e.g. Conditional Proof, Disjunctive Syllogism) may be 
violated. 
Here are some points about how the Hajek* Theory relates to Hajek’s views.  There 
certainly are conditionals that are true although the corresponding conditional probability is not 
1.  To begin, CE has the ‘strong centering’ principle in common with Stalnaker’s and Lewis’s 
logics of conditionals, so that if A and B are both true then (A → B) is true.  Hajek has 
objections to strong centering. But those examples are not counterfactuals, so not contrary 
Hajek’s view about counterfactuals and probability.  However there can be further exceptions in 
specific models, due to relations between elements of A0 and other elements.  Intuitive examples 
would be like: “this iron bar is magnetic”, a sentence in Lat, which implies “if iron filings are 
near this iron bar then they move toward it” which, being a conditional, is not in Lat.  But the 
implication happens to hold in a specific model where 

||this iron bar is magnetic|| ≤ || iron filings are near this iron bar → they move toward it|| 
so if the former is in the truth filter then so is the latter, regardless of what probabilities are 
assigned. 

Theorem 9.  The Hajek* Theory is not subject to transfinite inconsistencies 
The proof is simple, but comes from a long story.  In model A the truth filter is closed under 
finite meets, but not under arbitrary meets, and does not include 0.  So the sort of example of a 
transfinite inconsistent family of propositions, such as I gave above, cannot be part of a truth 
filter in any model.  
But there is a more important, more fundamental point to be made.  The truth filter, like the 
entire family of propositions, is part of the domain of the probability function P.  When P is a 
non-trivial probability measure on a domain of the cardinality of the continuum, that domain 
cannot be a complete algebra:  it is not closed under arbitrary meets and joins. 
If we accept that propositions must be measurable elements of the algebra of propositions, then 
we must accept also that the algebra of propositions will in general not be complete.  And the 
reason it generally is not complete is precisely avoidance of transfinite inconsistency. 



 14 

The history behind this began at the very creation of measure theory.  Lebesgue introduce his 
famous measure on the continuum, as a generalization of length, area, and volume.  The question 
he asked immediately was: can this measure be extended to all sets of points in the continuum? 
This was answered in the negative, to begin, by Vailati and Hausdorff: if that measure were 
defined on all subsets of the continuum it would violate geometric invariances. 
Did this refute Lebesgue’s theory?  Not at all!  It was accepted as a proof that in general, the 
domain of the measure cannot be the family of all subsets of a given set.  There were more 
interesting negative results since then, of a more general sort. For example: 
Theorem 10.  (Birkhoff 1948: 187.  Theorem 13)15  If the Continuum Hypothesis is true, then no 
non-trivial countably additive measure can be defined for all subsets of the continuum, such that 
every point has measure 0. 
So the domain of a probability measure is in general not a complete Boolean (Borel) algebra. (If 
the domain is complete then it includes all subsets if and only if it includes all the unit subsets.) 
This does not entirely do away with problems about how we are to conceive of truth when 
infinity is in play.  But I would submit that such problems look important only when we focus on 
set theoretic representations, aka possible world semantics.16   
Consider a model of the Hajek* Theory which is set-theoretic, that is, the unit 1 is a set K (the 
possible worlds) and F is a special family of subsets of K.  Now the truth filter T* is part of F, it 
is closed under finite meets, and does not contain the empty set.  But T* is after all a family of 
subsets of K, and the intersection of this entire family may be empty.  In that case there is no 
possible world in which all the true propositions are true! 
Well, that is a model, it is a set-theoretic representation of another model of the Hajek* Theory 
which is just algebraic.  Attend to the latter!  Don’t even think that the set-theoretic models are 
indispensable, let alone that they are specially important – in fact they are just a pons asinorem. 
Don’t let the familiarity and ease of possible world talk seduce you into allowing it to set the 
borders of your philosophical thinking, escape its tyranny! 
More seriously:  the problems that Hajek’s view encounters disappear in an algebraic semantics, 
while they remain (as far as I can see) serious obstacles as long as one attempts to formulate it in 
possible world semantics. 

 

Appendix 1.  Hajek On A Probabilistic Moore’s Paradox  
In Hajek 2011 he describes his own example as a Moore Paradox in my sense (referring to the 
CCCP as the PCCP): 

If you are a Bayesian agent who seeks to conform to PCCP at all times, you are 
apparently unable to revise boldly and moderate your opinions regarding certain 
propositions. These propositions then have a curious status for you: you give them 
positive credence, but you can never learn them where learning is modeled by a bold and 
moderate rule. Borrowing terminology from (van Fraassen, 1984), they are ‘Moore 
propositions’ --  propositions that you cannot learn without violating a structural 
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constraint that is imposed on you (in this case, the upholding of PCCP). (Hájek, 2011, p. 
12–13). 

However, Hajek argument for this conclusion implicitly assumed that updating must be by 
conditionalization.  Hajek’s specific proposal for rational updating is ostensibly weaker.  His 
proposal is that rational updating must be by a rule, and that this must be what he calls a bold 
and moderate rule.  This requirement is the following: 
Definition.  A rule to update prior probability P on evidence E to function PE is bold if and only 
if, for any P and for any E such that P(E) > 0, PE(E) = 1. 
Definition. A rule to update prior probability P on evidence E to function PE is moderate if and 
only if, for any A that implies E, if P(A) > 0, then PE(A) > 0. 
Symmetry arguments establish, however, that if updating P on evidence E is by a rule (that is, 
depends solely on P and E) and is bold, then it is the rule of Bayesian Conditionalization.  So the 
apparently minimal requirement that Hajek imposes is actually closure under conditionalization.  
Anna and Krzysztof Wojtowicz (2024) present a critique of Hajek (2011).  They note that 
Hajek's Moore-like counter-example to the CCCP also violates their proposal of a ‘minimal 
meaning postulate’: 

(IMP) If A is possible, and B is impossible, then A → B is impossible. 
This is then spelled out as:  

It is not rational to hold probabilistic beliefs such that: 
(i) P(A) > 0; 

(ii) P(B) = 0 and; 
(iii) P(A → B) > 0. (Wojtowicz 2024: 8) 

Violation	of	IMP	is	also	a	violation	of	the	CCCP,	since	(i)	and	(ii)	imply	that	P(B|A)	=	0.			
But	IMP	is	stronger	and	would	need	further	argument	to	warrant	it.		For	IMP	can	be	
violated	if	we	do	not	impose	the	CCCP.		For	suppose B is not void, just an area with zero 
probability, and that P(~A) > 1 as well as P(A) > 1.  Then it is possible that the selection function 
s is such that {x: x is in ~A and s(x, A) is in B} has positive probability.  It just happens that for a 
sufficiently large amount of the worlds in ~A, the ‘nearest’ A world is in B.    Then P(~A & (A 
→B)) > 0, so P(A → B) > 0.  

 

Appendix 2.  Existence of CE proposition algebras with probability 
The language under consideration, LCE, has as syntax a set of propositional variables and the 
connectors &, v, ~, →. 
Definition.  M is a model for LCE if M = <K, F, s, P>, where K is a non-empty set, F is a field of 
subsets of K, s (the selection function) is a function of K x F into F such that for all p, q in F 

(a) s(x, p) is either a subset of p or ∧ 
(b) if x is in p then s(x, p) = {x} 
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and the set (p → q) = {x in K:  s(x, p) ⊆ q}is a member of F, and finally, P is a probability 
function whose domain includes F, and is such that P(p → q) = P(q|p) when defined. 
This will be recognized as a variant of Stalnaker’s semantics for the logic of conditionals, 
lacking the ordering of worlds that constrains the selection function there.  Due to this omission,  
the triviality results, including Stalnaker’s own, do not apply. 
If M is a model for LCE then <K, F,  →, P> is a CE algebra with probability. More precisely, 
and more familiarly, when LCE is interpreted in such a model in the usual way, each sentence A 
receives a proposition ||A|| as its semantic value, and we have: 

|| A|| is in F 

||~ A||  = K - ||A|| 
|| A & B|| =  || A|| ∩ || B|| 

|| A v B|| =  || A|| ∪ || B|| 
|| A → B|| =  || A|| → ||B|| 

The range of ||..|| is then included in the domain of probability function P, and is in effect a set-
theoretic CE proposition algebra with probability. 

Theorem (van Fraassen 1976: 278, 289-291)    
If P is a probability measure defined on countable field F of sets on K then there is a model M = 
<K*, F*, s, P*> for LCE and  a one-to-one map f of K into K* which maps F one-to-one into F* 
such that  P(p) = P*(f(p)) for all p in F. 
In terms of language:  any coherent probability assignment to the 0-degree sentences of LCE can 
be extended to a model of the entire language, while respecting the CCCP. This establishes the 
existence of a large variety of CE proposition algebras with probability. 
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NOTES 
 

1 The strongest such triviality proof for the Extended Stalnaker Thesis is Fitelson (2015); see 
discussion of his results, with reference to many preceding ones, by Khoo and Mandelkern 
(2019: Appendix and Note 21).  . 
2 It is possible to add the convention that P(B|S) = 1 if P(S) = 0.  In that case P(~(S →B)) = 1- 
P(B|S) = 0. 
3 Heyting (1930) presents intuitionistic logic Hilbert-style.  Note that his 2.13 (transitivity) and 
2.2 together lead to weakening; compare his 2.27 to what I called the great law of implication. 
4  Contrary to the ‘axiomatic approach’ to probability, including its recent forms (e. g. 
Cieśliński,  Horsten, & Leitgeb 2023). 
5 We can add a fourth condition, equivalent to the other three under these conditions, namely that 
for all p in P, p(b|a) = 1, if p(a) > 0.  This is not needed for my argument below. 
6 Stalnaker (1975) begins with an example of an ‘or to if’ inference, but argues that it must be 
dealt with in pragmatics rather than semantics.  As Santorio (2023) points out, the ‘or to if’ 
inference is closely related to the condition of Weak Sufficiency in Khoo (2022).  Stalnaker 
pointed out that we need to account for the intuitive plausibility one way or another, and I will 
offer my diagnosis in the sub-section “Presumptions that bedevil us”.  
7 The ‘Or to If’ inference sanctions the inference in general of (A → B) from (~A v B).  It is also 
generally accepted (and I assume it here) that from (A & ~B), equivalent to ~(~A v B) we can 
infer ~(A → B).   
8 The result is also a corollary to various other results, derived differently.  The strongest other 
such result, which assumes no more than I do here, is Ned Hall’s First Result in Hall (1994). 
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9 Let me just add a note here about another controversial principle for conditionals, which 
suggest that inclusion does not coincide with the other two consequence relations.  I mean the 
‘And to If’ inference:  (A & B) implies (A → B).  The ‘And to If’ principle holds for Stalnaker, 
Lewis, and my logic CE.   
Alan Hajek has examples to argue that this inference does not preserve truth, specifically when A 
and B are not relevant to each other.  It may well be true both that I will have a croissant for 
breakfast tomorrow, and that the sun will rise tomorrow.  But the claim that, if so, the sun rises 
tomorrow if and only if I have a croissant for breakfast, sounds as if I could, like Joshua, get the 
sun to stay in its path.  It sounds like that, but this may or may not be merely an implicature.   

However, to support the ‘And to If’ principle we may note that: 
[certainty]  for all probability functions P, if P(A & B) = 1 then P(B|A) = 1, if defined 

[ordering] for all probability functions P, P(A & B) ≤  P(B|A), if defined 
10 I imagine that similar sentiments pertain to the Reflection Principle, also much contested, 
which generates Moore statements similarly. 
11 Lewis’ rhetorical question “Else how are disagreements about a conditional possible, or 
changes of mind?”, and its accompanying reasoning, invite our speculations as to what Lewis 
presupposed.  I suggest that first of all he thinks of rational changes of mind as having to be by 
conditionalization (which is today no longer plausible for reasoning with conditionals).  And 
secondly I suggest that he does not allow for our understanding each other, when we make 
statements with additional linguistic functions besides fact-stating, such as expressing opinion or 
making inferential commitments. 
12 As a corollary, the Extended Stalnaker Thesis is in trouble here, for it presupposes closure 
under conditionalization.  But this is just another of the 57 varieties of arguments to that effect. 
13 Alan Hajek (2015: 433) has argued that the CCCP cannot hold because the conditional is 
context-dependent and probability is not.  That may be so for objective probability (chance) but 
it is in my view not the case for subjective probability. 
14 Hajek tends to limit the domain more than Lewis did, and has argued specifically that 
propositions that are non-measurable sets of worlds (e.g. in sense of Lebesgue measure) and 
propositions about free choices must not be assumed to be in the domain. 
15 The Continuum Hypothesis is that the cardinality of the continuum is the second infinite 
cardinal number. For larger context see the same theorem in Birkhoff (1967), Ch XI, sect. 7 
Theorem 13 p, 266). 
16 It might be objected that every Boolean algebra has a(n essentially unique) minimal 
completion.  This follows from Stone’s Theorem, see Halmos (2018: 92-97).  So we can raise the 
same problem for that completion of A.  But, first of all, Stone’s Theorem does not apply to 
Borel algebras (cf. Billingsley 1986: 18-19). Our models, having probability measures involved, 
must in general be Borel and not just Boolean  Secondly, Stone’s Theorem, which is also limited 
in other respects, does not automatically apply to Boolean algebras with additional operators.  


