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1. Introduction

1.1. Dethroning the Queen? Quantum chemistry is the use of quantum mechanics

(and quantum field theory) to model molecules and their dynamics, with the goal of

explaining and predicting their chemical properties and reactions. The status of quantum

chemistry is important to questions concerning the place of physics among the sciences,

and is a principal putative case of reduction between sciences that describe different

domains and entities. Prima facie, quantum chemistry is an example of the success of

reductionism and exemplifies the fundamentality of physics with respect to chemistry

and other natural sciences.1 However, the received view in the philosophical literature on

quantum chemistry is that attention to models and scientific practice reveals not only that

quantum chemistry does not reduce to quantum physics, but that the two are explicitly

in conflict. A principal argument for this view is based upon a supposed non-quantum

feature of the ‘Born-Oppenheimer approximation’ (BO) which is the most commonly

used model of molecular dynamics in quantum chemistry, and involves approximations

including separability of the molecular wavefunction, adiabaticity, and ‘clamped’ reduced

Hamiltonians. It has been claimed in the philosophy literature that BO violates the

Heisenberg uncertainty principle, and so is in conflict with quantum theory.2

1There are of course different notions of both reduction and fundamentality, and at least both epistemic
and ontic versions of each.
2See Woolley and Sutcliffe (1977); Woolley (1978); Claverie and Diner (1980) for the original quantum
chemistry discussion and Hendry (1998, 2006, 2010a,b); Lombardi and Castagnino (2010); Hendry (2017);
Fortin and Lombardi (2021); Accorinti and González (2022); Fortin and Lombardi (2021) for various
strands of anti-reductive interpretation of these ideas. The strongest anti-reductionist claim is that
BO violates the uncertainly principle and is made in Lombardi and Castagnino (2010); Chang (2015);
González et al. (2019); Fortin and Lombardi (2021); Accorinti and González (2022). However, this claim
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This claim has been developed in most detail by Olimpia Lombardi and various

coauthors (Lombardi and Castagnino 2010; González, Fortin, and Lombardi 2019; Fortin

and Lombardi 2021; Lombardi 2023). A further influential analysis is due to Chang

(2015), who asserts that:

...the typical method of quantum-mechanical treatment of molecules be-

gins with the Born–Oppenheimer approximation, which separates out the

nuclear wavefunction from the electronic wavefunction [...] Additionally, it

is assumed that the nuclei have fixed positions in space. In this “clamping-

down” approximation, the atomic nuclei are treated essentially as classical

particles; as Olimpia Lombardi points out, this picture is non-quantum in

a very fundamental way as the simultaneous assignment of fixed positions

and fixed momenta (namely, zero) to them violates the Heisenberg uncer-

tainty principle. But without such classical scene-setting, the quantum

calculations are quite impossible (Chang 2015, p. 198)

In our terms, Chang claims that BO involves both the separation of wavefunctions

(which is what he calls ‘the Born-Oppenheimer approximation’) and a ‘clamping-down’

approximation, and that the latter violates the Heisenberg uncertainty principle, so the

BO as a whole is not fully quantum. Lombardi (2023) puts the claim even more strongly.

When endorsing Torretti’s (2000) view that bringing together theories without worrying

about their incompatibility, seemingly ‘outrageously’ (p. 119), is nonetheless scientifically

legitimate on pragmatic grounds she notes:

The [Born-Oppenheimer], as used in the context of quantum chemistry,

is a vivid example of how scientists “outrageously” appeal to incompati-

ble theories in their practice. In this case, quantum chemical models of

molecules are obtained by combining classical mechanics to describe the

nuclei and quantum mechanics to account for the motion of the electrons.

(p. 115)

The Lombardi and Chang idea that BO violates Heisenberg uncertainty is the basis for

more general anti-reductionist claims (Accorinti and González 2022; Cartwright 2022).

Cartwright argues that this alleged conflict between the quantum chemistry of molecules

is not made in the various papers by the anti-reductionist philosopher of chemistry Robin Hendry. We do
not address the reduction-emergence debate in general, but our analysis of the emergence of molecular
structure via Born-Oppenheimer is compatible with reduction, and in the same spirit as Scerri (2012);
Hettema (2017); Franklin and Seifert (2020); Seifert (2020, 2022); Scerri (2024b,a).
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and Heisenberg uncertainty implies not only that chemistry fails to reduce to physics, but

that the two are incompatible. This case is one of the main motivations for ‘dethroning

the queen’ (i.e. not privileging physics among the sciences). After quoting the passage

from Chang above (with no reference to Lombardi et al.), Cartwright says:

This approximation treats the atomic nucleus as a classical particle.

But this fundamentally violates quantum mechanics which, following the

Heisenberg uncertainty principle, maintains that we cannot have a simul-

taneous assignment of fixed positions and fixed momenta. The approxima-

tions that provide the reduction violate the very theory that the chemistry

is being reduced to [...] the success of quantum chemistry relies fundamen-

tally on assumptions that belong to classical chemistry (Cartwright 2022,

pp. 106-7)

To our knowledge, it has never been claimed in the scientific literature that BO violates

Heisenberg uncertainty.3 So either philosophers of science have uncovered an important

scientific fact that scientists themselves have somehow missed, or the arguments of the

philosophers are incorrect. One main aim of this paper is show the latter to be the case:

BO does not violate the Heisenberg uncertainty principle.4 We correct this important

misrepresentation of scientific and mathematical fact in the philosophical literature by

analysing a textbook-style presentation of BO, to show that the Heisenberg uncertainty

principle is not violated. This analysis is of independent value since it identifies the

idealizations that do and do not play a role in BO.

The second aim of this paper is to consider the formal structure of BO in the context

of concerns regarding the rigour of its textbook presentation. In particular, we examine

subtle issues that have been raised regarding the formal justification of a particular set of

mathematical idealizations involved in modern formalisation of BO. Sutcliffe and Woolley

(2012) argue that assumptions regarding the discrete spectra of electronic Hamiltonians

3This includes the notable discussions of Woolley and Sutcliffe (1977); Woolley (1978, 1998); Sutcliffe
and Woolley (2005, 2012) which offer a sustained critique of key aspects of the approximation of an anti-
reductionist flavour. The only scientific reference that we have found cited to support the violation claim
is in Accorinti and González (2022). These authors quote remarks in (Villaveces C and Daza C 1990,
pp. 100-1) that make reference to a potential contradiction between identifying a quantum chemical
structure with a single point in a nuclear configuration space and the uncertainty principle as part of a
motivation for moving beyond such an approach. No argument is provided that such a step is taken in
context of BO. The only direct justification of the claim provided by Accorinti and González (2022) is
the remarks of (Chang 2015, p.198). Cartwright (2022) relies entirely on Chang (2015). Chang (2015)
in turn only cites a talk by Lombardi.
4For related critical remarks see Scerri (2024b,a). We give a more thorough analysis, but the latter paper
addresses related challenges beyond the scope of our work.
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used in BO are unjustified. Furthermore, they suggest that removing these unjustified

mathematical idealizations requires making use of resources of classical physics together

with empirical data introduced ‘by hand’. The issue turns on mathematical questions

relating to the interpretation of the direct integrals and the projection of Hamiltonian

operators onto subspaces within a Hilbert space. We consider the response to Sutcliffe and

Woolley (2012) in Jecko (2014) and examine the latter’s argument that the mathematical

idealizations can be justified without recourse to classical or empirical assumptions.

The third and final aim of this paper is to use the analysis of BO to open up

wider questions concerning the role of reduction and rigour in quantum chemistry. In

§4 we provide a prospectus for future philosophical work on the foundations of quantum

chemistry that is informed by scientific practice, as all parties agree that it should be.

We argue that such philosophical work should be disentangled from the unwarranted

mobilisation of quantum chemistry against the fundamentality of physics. We show that

attending instead to the conceptual, formal and methodological questions which scientists

themselves ask raises a range of issues and open questions relating to the various types

of semi-classical modelling, the role of persistent environmental interactions, and the

problem of isolating distinctively ‘chemical’ modes of quantum modelling practice.

1.2. The Idealization and Rigour Problems. When quantum chemists and physi-

cists talk about BO they refer to an approach to solving the quantum mechanical equa-

tions for a molecule that builds on – but modifies and extends – pioneering work by

Born and Oppenheimer in 1927. §2.1 provides a short history of the approach and its

development, while §2.2 and §3 provide a detailed analysis of two levels of rigour of the

modern form of the approximation. This section sets out schematic argument patterns

for the analysis of the challenges to the modern BO in the sources cited above. First

we sketch BO in simple terms. The basic idea is to use to the high ratio between the

electron and nuclear masses to produce trial solutions to a molecular Schrödinger equa-

tion: we consider the time-independent equation, but the method extends to dynamical

problems as well. There are two distinct aspects of BO: a separation ansatz and an

adiabatic approximation. The ansatz is that the molecular wavefunction, Ψ(x1, x2), is

approximated by the product of a function of nuclei positions, θa(x1), and a function of

nuclei and electron positions, ψa(x1, x2), so that we have: Ψ(x1, x2) = θa(x1)ψa(x1, x2).

The approximation is that the rate of change of the ψa(x1, x2) with respect to the nuclear

position is approximately zero; this condition provides an equation for θa(x1).
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The justification of BO is central to the idealization problem detailed below. The ar-

guments of Lombardi and Castagnino (2010); González et al. (2019); Fortin and Lombardi

(2021); Chang (2015) share a fundamental misrepresentation of how the approximation is

justified in quantum chemical practice which is in terms of stability under de-idealization

(as in many other cases). What then is the salient idealization of BO, and how is it justi-

fied? The intuitive idea is that the total kinetic energy of the nuclei is small compared to

the potential energy of the molecule and the total kinetic energy of the electrons. (This

is because a nucleon is far heavier than an electron, and so typically moves far more

slowly, and kinetic energy is mv2). It is this energy difference that makes the molecular

wavefunction Ψ(x1, x2) effectively separable. Mathematically, ψa(x1, x2) is an eigenstate

of a so-called ‘clamped’ Hamiltonian (the sum of the potential energy of the molecule plus

kinetic energy of the electrons only). It is best thought of as a family of electron (x2)

wavefunctions, one for each fixed nuclei configuration (x1) with a corresponding family of

energy eigenvalues λa(x1). Each family of eigenvalues then picks out a ‘potential energy

surface’ as illustrated in Figure 1. (This part of BO is taken to somehow violate quan-

tum theory, but it does not as we explain in detail below.) θa(x1) is, formally speaking,

a wavefunction for the nuclei in this potential. The molecular energy is approximately

the sum of λa(x1) with the nuclear kinetic energy, and because of the energy difference,

close to the former. So if the gaps between the λa(x1) are large only ψa(x1, x2) is rele-

vant to Ψ(x1, x2) – superposing with other eigenstates of the clamped Hamiltonian shifts

the energy too far. Figure 1 shows the crucial representative features of the potential

energy surfaces. It makes clear that energy gaps do not exist for all values of x1. It also

illustrates that the gap can exist for a given range of values, about a minimum.

One expects that the nuclei of a stable molecule are localized to a region around such

a point; the nuclear wavefunction effectively vanishes outside. Thus the more specific

assumption made in BO is:

Heavy: in a stable molecule the nuclei are approximately localized in a

state in which their kinetic energy is much smaller than the electron kinetic

energy (though not zero).5

The idealized model is one in which Heavy holds for any nuclear configuration, x1, cor-

responding to a stable molecule. That is, the energy gaps exist for all such values of

x1, unlike in case of the energy surfaces shown in Figure 1. Inferences based upon such

5A more precise version – and rationale for the name – will be given in §2.2, once some of the necessary
formalism has been set up.
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Figure 1. Eigenvalues λn of the clamped Hamiltonian, as (hypothetical)
functions of the heavy, nuclear degrees of freedom x1. In the region around
x1 = x the first three electronic energy levels can be seen to be widely
separated: specifically, by far more than the kinetic energy of the nuclei.
This is the condition for stable molecules, and for BO.

an idealized model are justified to the extent that they are stable under relaxing the

idealization, and they remain approximately valid when x1 is restricted to a given re-

gion. §2.2 considers the stability under de-idealization of the Born-Oppenheimer model

as found in the textbook presentation that formalised the heuristic and informal picture

sketched above. The approximate validity of the BO separation ansatz and the BO adi-

abatic approximation follows deductively from Heavy and this derivation is stable under

de-idealization from an arbitrary to a specific range (see §2.2).6

The idealized model involved in Heavy is entirely consistent with quantum theory:

such a model involves strictly false assumptions regarding the range of validity of Heavy

but does not involve any assertions inconsistent with quantum theory. By contrast,

consider the following idealizing assumption:

Clamped: molecular nuclei have fixed definite positions and zero kinetic

energy.

The idealized model in which Clamped is literately true would be one in which ‘clamped’

molecular nuclei have classical positions and momenta (namely zero), in conflict with the

Heisenberg uncertainty principle.

6The adiabatic approximation can be expected to break down in various circumstances. The most
obvious is when the nuclei are light, as with hydrogen. Yang et al. (2023) note: “considering the
high mobility of light hydrogen atoms, the non-adiabatic coupling of different electronic states beyond
the Born-Oppenheimer approximation is expected to be prominent” (p. 2). Such coupling gives rise
to conical intersections between energy surfaces that are used to understand reaction pathways (Baer
2006). Much of current work in quantum chemistry goes beyond BO by considering the interactions
between electronic and nuclear vibrational motion which leads to the coupling of different energy states
of molecules (Yarkony 2012). See also Sibaev et al. (2020); Agostini and Curchod (2022)



8 ON THE QUANTUM THEORY OF MOLECULES

In such a model it would be plausible to argue that a classical modelling procedure

is required to apply the approximations involved. However, no evidence provided by the

authors mentioned above that such an idealizing assumption is part of BO in either its

original or modern form. Nor is the use of the family of clamped Hamiltonians equivalent

to Clamped, which effectively selects one member of the family. As established in detail

below, the modern form of BO makes explicit use of Heavy precisely as explained above.

This is a much logically weaker assumption than Clamped and consistent with the nucleus

being a fully quantum particle.

Our argument regarding idealizations and BO is as follows:

The Idealization Problem

I1. Idealized models are related to less idealized models via approximation rela-

tions.

I2. Inferences based upon idealized models are justified if the features of the ideal-

ized model that ground the relevant inference are stable under de-idealization

I3. The fundamental idealization of the BO model is Heavy. Inferences about

the behaviour of molecules in the relevant regime are indeed stable under

de-idealization

I4. The BO model does not involve the idealization Clamped. Rather, a param-

eterised family of ‘clamped’ Hamiltonians are used as a tool to construct the

effective molecular wavefunction in which the nucleus is fully quantum and

the eigenstates of the full molecular Hamiltonian include an explicit nuclear

kinetic energy term.

I5. The conflict with the Heisenberg uncertainly relation (and stability under

de-idealization) of Clamped is irrelevant to the use of models based on BO.

The second challenge to the BO that we consider concerns the rigour of certain

assumptions about the spectrum of the clamped Hamiltonian spectrum in the separation

ansatz. This rigour problem has not to our knowledge previously been discussed in the

philosophy literature, but has been raised by important figures in quantum chemistry

that have greatly influenced the philosophy of chemistry from a broadly anti-reductionist

standpoint. Here we give a brief overview of the problem.

The derivation of the clamped Hamiltonian spectrum starts by expanding the molec-

ular wavefunction: Ψ(x1, x2) =
∑

a θa(x1)ψa(x1, x2). This expansion appears to be a
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mathematical fact, since (ignoring degeneracy) the ψa form a complete orthogonal basis

because they are the eigenstates of a Hermitian operator. However, this reasoning as-

sumes that the spectrum is discrete, when in fact it contains a continuous part, reached

as the system ceases to be a stable molecule, and becomes an unbound collection of nuclei

and electrons.

One reasonable concern is that since in any continuous spectrum there are no normal-

izable eigenstates, BO does not, as it stands, lead to square-integrable eigenfunctions.

Sutcliffe and Woolley (2012) conclude from this that BO requires further classical as-

sumptions that do amount to the introduction of fixed nuclear positions. They reason as

follows:

It is thus not possible to reduce the molecular Schrödinger equation to a

system of coupled differential equations of classical type for nuclei moving

on potential energy surfaces [...] without a further approximation of an

essentially empirical character. An extra choice of fixed nuclear positions

must be made to give any discrete spectrum and normalizable [square-

integrable] eigenfunctions. In our view this choice, that is, the introduction

of the clamped-nuclei Hamiltonian, by hand, into the molecular theory is

the essence of the “Born-Oppenheimer approximation” (p. 7)

Three related points: First, as already noted, at no point do Sutcliffe and Woolley claim

that BO violates the Heisenberg uncertainty principle. Second, the problem that they

raise is one of formal rigour, namely that BO, involves problematic simplifications of the

behaviour of mathematical objects, in particular assumptions of normalizable eigenfunc-

tions for operators without purely discrete spectra. One might thus plausibly understand

this as a problem of justifying a ‘mathematical idealization’. Third, their conclusion that

fixed nuclear positions must be put in ‘by hand’ only follows if that is the only way to

deal with the rigour problem.

Sutcliffe and Woolley’s reasoning involves an analogue of Clamped, and so it could be

taken as supporting the idealization argument in spirit (though not in technical detail). In

any case, the rigour problem they raise is a valid challenge to textbook level presentations

of BO. However, it has been addressed in more advanced treatments. In particular,

mathematical physicists have reframed BO as seeking an approximation to an eigenvalue

and eigenstate of the total molecular Hamiltonian lying in the low energy, discrete part of

its spectrum. §3 considers some of the details of this more rigorous treatment following the
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insightful work of Jecko (2014), which is both an overview of the mathematical literature

on BO, and a response to various worries raised by Sutcliffe and Woolley (2012).

Our argument regarding rigour and BO is as follows:

The Rigour Problem

(1) The textbook presentation of the BO model includes mathematical idealiza-

tions that presume the existence of normalizable eigenstates with discrete

spectra.

(2) A close analogue of Clamped is necessary to justify these mathematical ide-

alizations, so the idealization problem putatively reoccurs in the context of

trying to make the BO model rigorous (Sutcliffe and Woolley 2012).

(3) However, the relevant mathematical idealization can be justified without ap-

pealing to anything like Clamped. (Jecko 2014).

2. The Born-Oppenheimer Approximation

2.1. The Historical Treatment. During the late nineteen-twenties J. Robert Oppen-

heimer was in Europe studying the new quantum theory with the leading experts. His

most important scientific result of this time, and (arguably) his most important con-

tribution to theoretical science, was a paper with Max Born applying quantum theory

towards the approximate solution of the (time-independent) molecular Schrödinger equa-

tion. The approach taken in their 1927 paper Zur Quantentheorie der Molekeln (‘On the

Quantum Theory of Molecules’) prescribes a perturbative expansion, so to distinguish it

from later treatments, we designate it the ‘Perturbative Expansion Born-Oppenheimer

approximation’ or PBO.7

There are four fundamental features of the physics of molecules. Firstly, molecules

have relatively stable three-dimensional arrangements of nuclei (in ambient conditions on

Earth). Born and Oppenheimer say: ‘An arbitrary configuration of electrons and nuclei

cannot always be treated by a general approximation procedure. We will here consider

only states which correspond to a stable molecule.’ (start of Part III; n.b., this does not

mean a molecule with fixed nuclei.) Secondly, the spatial structure of molecules can rotate

and vibrate so molecules have rotational and vibrational energy modes. Thirdly, the force

that overwhelmingly dominates the physics of molecules is electromagnetism, and nuclear

7The following summary of it is based on the English translation of the original paper (Born and Op-
penheimer 2000) and the discussions of Sutcliffe and Woolley (2012) and Scerri (2024b,a).
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forces and gravity can be ignored. Molecules are composed of positively charged nuclei

and negatively charged electrons and thus electrons and nuclei attract each other, while

electrons repel each other, as do nuclei. Fourthly, and most significantly, nuclei are very

much heavier than electrons so nuclear kinetic energy is very much smaller than electronic

kinetic energy.

This last feature is the physical basis upon which Born and Oppenheimer found PBO.

In particular, they introduce a small parameter, κ =
(

m
M

) 1
4 where m is the electron mass

and M is the nucelon mass; the ratio m/M is roughly 1/2000 and κ ≈ 0.15. The crucial

idea is to treat the nuclear kinetic energy as a perturbation of the energy, expanded in

powers of κ. The original PBO is indicated by the authors to be valid from zeroth to

fourth order in κ with nuclear vibrational energy corresponding to terms of second order

and the rotational energy to fourth order in the energy. The coupling effects among

electronic states appear beyond fourth order in κ.

The principal achievement of PBO is to show that one can use the electronic Hamil-

tonian for a fixed nuclear configuration to construct a family of electronic wavefunctions.

These wave-function can then be used to calculate approximate eigenvalues for the full

molecular Hamiltonian on the assumption that the nuclear motion is confined to a small

vicinity of a privileged equilibrium configuration. Up to order κ4, approximate wavefunc-

tions can then be written as products of ‘electronic’ wavefunction and ‘nuclear’ wave-

functions (Sutcliffe and Woolley 2012, p.3) (the physical significance of these objects is

discussed in more detail in following sections).

Seeds of later confusion in the philosophical discussion were sown in the description

that Born and Oppenheimer provide of the zeroth order equations. In particular, Part

II of their paper is titled ‘Electronic Motion for Stationary Nuclei’ and includes the

statement that ‘if one sets κ = 0 one obtains a differential equation in the [electron

position variables] alone, the [nuclear position variables] appearing as parameters’. The

solution of such a ‘reduced’ equation is then indicated to ‘represent the electronic motion

for stationary nuclei’. As noted by Sutcliffe and Woolley (2012), ‘it is perhaps to this

statement that the idea of an electronic Hamiltonian with fixed nuclei as arising by

letting the nuclear masses increase without limit, can be traced. In modern parlance [the

Hamiltonian] is customarily referred to as the “clamped-nuclei Hamiltonian” (p. 2).

Clearly, however, the representational content of a perturbative model should not be

conflated with its zeroth order terms on pain of misunderstanding their ubiquitous use
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as scientific models. PBO does not represent the nuclei as fixed; rather it organizes an

expansion in which the only leading, zeroth order, term has that character – equivalently,

it expands around a fictitious system in which the nuclei are clamped. These are entirely

different modelling strategies. (In the same way, one should not conflate a purely Newto-

nian model with a perturbative expansion involving the Newtonian model plus relativistic

corrections.) The result of PBO is, of course, (in principle) a wavefunction that satisfies

the uncertainty relations for both electrons and nuclei. Thus, the idealizing assumption

Clamped does not form part of PBO and the idealization problem does not occur.

It is thus already clear that there is a fully quantum treatment of molecules that fall

under the scope of PBO – that quantum chemistry really is quantum chemistry! How-

ever, as detailed by Sutcliffe and Woolley (2012), PBO was made redundant by later

work of Born (1951) and Born and Huang (1954), and it is their approach that ‘for many

years...been regarded in the theoretical molecular spectroscopy/quantum chemistry litera-

ture as defining the “Born-Oppenheimer approximation”, with the original PBO method

being relegated to the status of historical curiosity’ (p. 3). It is also the later approach

that recent philosophers of chemistry have claimed is not, after all, quantum; and so

the next section presents it carefully, showing that it too treats all parts of molecules as

quantum.

2.2. A Textbook Style Presentation. This section is a treatment of the modern BO,

drawing in parts upon Messiah (1962) and Jecko (2014) (but with no serious attempt at

historical reconstruction). It is at textbook level, though it fills in the argument more

than standard texts.

Suppose a system is comprised of two parts, with canonical variables x1 ∈ Rm and

x2 ∈ Rn. In the usual way, the state of the system in the x-representation – the wave-

function – is Ψ(x1, x2) ∈ L2(Rm × Rn), and the canonically conjugate observables are

i∂/∂xi. The Hamiltonian is the sum of kinetic, T̂i, and interaction, Ŵ , parts:

(1) Ĥ = T̂1 + T̂2 + Ŵ ,

with Ŵ some function of the variables xi, and T̂i a power (or sum of powers) of the

corresponding conjugate variables, ∂n/∂xni . In the case of a molecule, the first two terms

will be the kinetic energies of nuclei and electrons ( p̂2/2m ∝ ∂2/∂x2i ), respectively, and

the third the Coulombic potential energy.
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We are interested in finding the eigenstates of Ĥ, which cannot be done analytically,

but requires approximation. So suppose further – and this is the crucial assumption –

that in the range of states of interest the kinetic energy of the x1 subsystem is far smaller

than both that of the x2 part, and that of their interaction energy: T1 � T2,W (where

O denotes the expected value of observable Ô). What ‘range of states’? In the first

place, those wavefunctions that only have (non-negligible) support in a range of values

of α < x1 < β; the first system is effectively localized within that region. (Moreover, the

states should be below some maximum energy level.) Elaborating and sharpening this

condition will be one of the tasks of the following discussion. But already we emphasize

that it should be viewed as an ansatz, a temporary supposition to be later verified: we

make it to find solutions, which must then be inspected to see that they really solve the

(time-independent) Schrödinger equation. If so the supposition is vindicated; if not then

it must be given up.

Of course, we seek motivation for making any ansatz, a reason to think that it

will turn out to be vindicated. But such motivation should not be understood as its

justification – to repeat, if an ansatz is justified, it is wholly by its success in finding

solutions. In the present case the ansatz is motivated by the composition of a molecule,

in which the nuclei comprise the first system, and the electrons the second: in typical

states, because electrons are 2000 times lighter than nucleons, they are more easily set in

motion, and a stable state is one in which almost all the kinetic energy is in the motion

of the former, and if it is a low energy state then the nuclei can only be displaced from

a potential energy minimum by a small amount (Messiah 1962, XVIII.12).

Supposing the assumption holds – do the supposed solutions exist, justifying it? As a

first step, consider normalized solutions to the (time-independent) Schrödinger equation

for the so-called ‘clamped’ Hamiltonian:

(2)
(
T̂2 + Ŵ (x1)

)
ψa(x1;x2) = λa(x1)ψa(x1;x2),

with a = 1, 2, . . . . Part of the spectrum of T̂2+Ŵ (x1) is continuous, so not all such states

are normalizable, square-integrable functions. In this section we follow standard practice

and ignore this complication. Here ‘clamped’ is understood purely formally – specific

nuclear coordinates are picked out, but there is no implication that nuclei are physically

located at x1. It is as if the light, electronic subsystem sees the heavy, nuclear subsystem

at a fixed value of x1, so the Hamiltonian for that value is considered effective. Thought



14 ON THE QUANTUM THEORY OF MOLECULES

of this way, Ŵ is a parameterized family of x2 operators Ŵ (x1): so there is not just

one but infinitely many clamped Hamiltonians. In that case, the T̂2 + Ŵ (x1) eigenvalues

λa(x1) and eigenstates ψa(x1;x2) are also parameterized families; hence the semi-colon.

That is, formally speaking, the energy and state of the electronic subsystem vary for fixed

energy level a, as x1 varies. (Of course, whether or not the x2 physically jump between

energy levels – ‘potential energy surfaces’ – depends on the dynamics of the motion; we

speak here only of the form of the spectrum.) From the crucial assumption, one next

infers:

Heavy: the gaps, |λn(x1)− λm(x
′
1)|, between the λa(x1)s are much greater

than the values of T1, when compared for any α < x1, x
′
1 < β.

Clearly, this inference is not deductive; even if T1 � |λn(x1) − λm(x1)| for α < x1 < β,

because λn(x1) varies with x1, it is possible that λn(x1) ≈ λn+1(x
′
1) for some values in that

range. However, there should be sufficiently small ranges for which the condition holds,

so what is really assumed is that there are eigenstates of Ĥ whose support approximately

lies in such a region. See Fig. 1. For a molecule, for instance, this amounts to the

assumption that there are energy eigenstates in which the nuclei are sufficiently localized

at the bottom of the potential energy well, which is quite reasonable for small excitation

levels.

The reader may feel that a certain amount of hand waving is occurring; arguably

it gets worse! However, our goal here is not to prove that BO is valid under certain

conditions, but to give an intuitive account of the mathematical and physical significance

of the conditions. The approximation has been subject to the more rigorous attentions

of mathematical physicists, so the argument outlined here rests on solid mathematical

ground (see §3 and Jecko (2014)).

Below we show how BO uses Heavy, but before that we should say more regard-

ing (2); since its meaning is at the heart of the interpretation of BO, this is not the

final word. Because they are a set of eigenstates for a self-adjoint operator of the x2
electron subsystem, the ψa(X;x2) – for any specified nuclear x1 = X ∈ Rm – form

a complete orthonormal basis for (square-integrable) x2 wavefunctions L2(Rn): that is,∫
ψaψbdx2|x1=X = δab. Thus (since in addition T̂2 + Ŵ commutes with x1) any (x1, x2)

wavefunction on Rm × Rn can be written:

(3)
∑
a

θa(x1)ψa(x1, x2).
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Note that the RHS is not a sum of nuclear {χa(x1)} and electron{ζa(x2)} (tensor) product

states,

(4)
∑
a

χa(x1)ζa(x2).

No, ψa(x1, x2) represents a ‘direct integral’, taking, for each x1 ∈ Rn, an x2 wavefunction

ψa(x1; ·) satisfying (2) from a distinct copy of the L2(Rn) Hilbert space. Both (3) and (4)

give the general form of L2(Rm × Rn) functions: the latter from the familiar properties

of the tensor product; the former simply because specifying an L2(Rn) function for each

value of x1 (in a suitably smooth way) specifies such a function – ψa(X;x2) is just the

cross-section of ψa(x1, x2) at x1 = X.8 So one cannot read (the terms in the sum) (3)

as describing separate nuclear and electronic states: rather ψa(x1, x2) is a wavefunction

for both parts (unlike an electron wavefunction ψa(X; ·)). A lack of clarity regarding this

situation, and perhaps specifically conflation of these two expansions, has led to confusion

regarding the interpretation of BO, as discussed in §2.3.

For now we proceed with our explication of the approximation itself. In particular,

Heavy has two important (though equivalent) consequences whose derivation we now

sketch.9 The arguments are straightforward, and in both cases the important point is

that they follow from Heavy alone (with no appeal to Clamped).

Derivation 1. Separability Ansatz from Heavy. There are eigenstates of Ĥ with

the approximate form θa(x1)ψa(x1, x2): the so-called ‘Born-Oppenheimer ansatz’. To

see this, suppose (for reductio) that the E-valued energy eigenstate Ψ(x1, x2) has non-

negligible contributions from two10 different (orthonormal) θa(x1)ψa(x1, x2), with energies

8Thus contrast (3), with (2); the former expresses a function over Rm × Rn, while the latter expresses
a continuous infinity of equations for x2 wavefunctions, one for each value of x1. The use, in ψa, of a
comma in former versus a semi-colon in the latter indicates just this difference.
9The following arguments are presented without careful attention to the distinction between x1-
parameterized families of wavefunctions and operators on the one hand, and their direct integrals on
the other. They are best read as equations relating the corresponding differential operators and func-
tions in the position representation, which is indifferent to the distinction.
10This assumption is not innocuous as strictly the following depends on it; it is however illustrative of
the role energy gaps play in BO in general.
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λm(x1) < λn(x1):

ĤΨ = Ĥ
1√
2
(θmψm + θnψn) =

E√
2
(θmψm + θnψn)

= (T̂1 + T̂2 + Ŵ )
1√
2
(θmψm + θnψn)(5)

= T̂1
1√
2
(θmψm + θnψn) +

λm√
2
θmψm +

λn√
2
θnψn,

using (1) and (2). (In the final step we use the fact that T̂2 contains only x2 derivatives,

while Ŵ is a function of x1 and x2, so both operators commute with θa(x1)). The following

argument does not depend on our simplifying assumption of equal, real amplitudes.

The sum of the second two terms is a vector that fails to be parallel to Ψ by a

vector whose amplitude is the order of (λn − λm)/
√
2: for instance, one could either add

(λn − λm)θmψm/
√
2 or subtract (λn − λm)θnψn/

√
2. That is to say, by (5) – namely the

supposition that Ψ is an eigenstate – we have

(6) |T̂1
1√
2
(θmψm + θnψn)| ≈ (λn − λm)/

√
2.

But for any Hermitian operator and normalized vector, |Ôφ| cannot exceed the greatest

eigenvalue. So in this case, by Heavy,

(7) |T̂1
1√
2
(θmψm + θnψn)| ≤ Tmax

1 � (λn − λm)/
√
2,

a manifest contradiction. Hence the supposition is false, and an eigenstate of total energy

cannot be a sum of θaψa, but has the product form

(8) ĤΨa(x1, x2) ≈ Ĥθa(x1)ψa(x1, x2) ≈ Eaθa(x1)ψa(x1, x2).

�

Put another way, such states (approximately) diagonalize the total Hamiltonian: there

are no cross-terms for such states with different values of a.

Derivation 2. Adiabatic Approximation from Heavy. Recall that the position repre-

sentation of T̂1 has the form ∂2/∂x21:

T̂1θaψa ∝ ∂2

∂x21
θaψa

=
∂2θa
∂x21

· ψa + 2
∂θa
∂x1

· ∂ψa

∂x1
+ θa ·

∂2ψa

∂x21
.(9)
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However, θaψa diagonalizes both T̂2+Ŵ using (2), and (approximately) Ĥ = T̂1+ T̂2+Ŵ

from (8). Therefore it also (approximately) diagonalizes T̂1: 〈θbψb|T̂1|θaψa〉 ∝ δa,b. In the

x1-representation,

(10)
∫

dx1θ∗b (x1)
∫

dx2ψ∗
b (x1, x2)

{∂2θa
∂x21

ψa + 2
∂θa
∂x1

∂ψa

∂x1
+ θa

∂2ψa

∂x21

}
∝ δa,b.

Since different ψa are orthogonal (since distinct eigenstates) the x2 integral means that

the first term in the sum is proportional to δa,b. However, neither of the derivatives of

ψa will be orthogonal to ψb (and similarly for θ), so that the remaining terms will not be

proportional to δa,b – unless they are zero. Thus (10) entails that

(11) ∂ψa(x1, x2)

∂x1
≈ 0,

(which is the more specific statement that often goes under the name the ‘Born-

Oppenheimer approximation’).

�

Since (11) says that ψ changes ‘slowly’ with respect to x1 it is often referred to as

an ‘adiabaticity’ condition, even though it is an entirely time-independent condition, c.f.

Huggett and Thébault (2023). Note also that the only assumption in the derivation of

adiabacity is the separation ansatz, and thus the reasoning can be reversed, and we can

take the derivation to show the equivalence of the approximation and ansatz.

Making the adiabatic approximation (11) in (9) yields

(12) T̂1θaψa = ψa
∂2θa
∂x21

= ψaT̂1θa.

Hence, the significance of the ansatz and approximation is that the part of the joint state

Ψa(x1, x2) that expresses the kinetic energy of the nuclei can (approximately) be factored

out as θa(x1). But to repeat the discussion after (3), it cannot be over-emphasized that

Ψa(x1, x2) has not been factored into strictly nuclear and electronic parts, since the other

factor, ψa(x1, x2), depends on both, not just the electron configuration.

We are now in a position to solve the molecular energy eigenstate problem for the

system. From (8), one needs to find θa(x1) and ψa(x1, x2); the latter is given by (2), so

all we need is the equation for the former. From (8) we have:

(13)
(
T̂1 + T̂2 + Ŵ

)
θa(x1)ψa(x1, x2) ≈ Eaθa(x1)ψa(x1, x2),
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while from (2) and (12) we have

(14) ≈
(
T̂1θa(x1)

)
· ψa(x1, x2) + λa(x1)θa(x1)ψa(x1, x2),

which gives:

(15) (T̂1 + λa(x1)− Ea)θa(x1) ≈ 0.

This has the form of a (time-independent) Schrödinger equation for the nuclear vari-

ables, ‘living’ on a potential energy surface λa(x1), but recall the discussion after (12).

That cannot be the correct literal description of the nuclei in BO, since both θa(x1) and

ψa(x1, x2) represent aspects of the nuclear subsystem.

To sum up, from the Born-Oppenheimer separation ansatz (8), finding the eigenstates

Ψ(x1, x2) of Ĥ reduces to finding solutions to (2) and (15), and taking their product, a

significant simplification. (Of course, these equations can still not be solved analytically,

but will generally require further approximations, for instance the WKB approximation.)

Call this the ‘BO method’. The following section examines the idea that BO conflicts

with the Heisenberg uncertainty principle.

2.3. Idealization and Uncertainty. At the heart of the interpretation of BO is the

use of (2), in which the nuclei might appear to be represented as being ‘clamped’ in place.

If this were literally the case, then they would be regarded as classical at this stage of the

method. But recall our discussion of (3): the resulting electron wavefunctions are found

simply in order to formally express the full molecular wavefunction Ψ(x1, x2) in a useful

way.

As pointed out above, the subsystem wavefunction for a given parameter value,

Ψ(X; ·), is the cross-section of the full wavefunction, Ψ(x1, x2) at x1 = X, with no physical

significance of its own. (One might say that it is the probability amplitude for the x2
subsystem conditional on the x1 subsystem ‘being found at’ x1, but that would be taken

with the usual grain of salt when we speak of quantum quantities with continuous spectra

taking on a definite value.) Conversely, Ψ(x1, x2) is the direct integral of a parameterized

family of eigenfunctions, Ψ(x1; ·). Moreover, given a family of bases ψa(x1; ·) for L2(Rn),

and their direct integral ψa(x1, x2) it is a mathematical fact that the total wavefunction

Ψ(x1, x2) can be expanded as
∑

a θa(x1)ψa(x1, x2) for some functions θ(x1).
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In BO one solves (2) for every value of x1, and since each clamped Hamiltonian

is Hermitian, there is a family of bases, which one uses to expand Ψ(x1, x2), the wave-

function of the full system, both electrons and nuclei. Note that this procedure involves

no approximations at all (given the mathematical idealization of a discrete spectrum, to

be discussed in §3); approximations are used later to select just one term in the sum,

and to find an equation for the θ(x1). In short, the use of the clamped Hamiltonian

(or rather, infinity of clamped Hamiltonians) is purely formal, for constructing a useful

expansion, and should not be given physical significance. At no stage in the method does

BO involving representing the nuclei to be anything but quantum.

One might contrast this direct integral with a tensor product expansion, which,

while also being formal, ascribes wavefunctions to subsystems that we take to represent

the physical states of them in the joint system. In the direct integral formalism, the

subsystem wavefunction ψa(X, x2) does not provide such a representation; at best it

represents the physical state an electron would have if it were in Coulomb potentials

centred at the X, and not actually interacting with quantum nuclei. But even this

interpretation is irrelevant to the fact that BO utilizes a formal decomposition of the

quantum state of the molecule; there simply is no requirement that its elements have

a physical interpretation at all. (And of course we should also distinguish BO from a

very simple approximation in which the nuclei are treated as classical charges at the

minimum, x, of the potential energy surface, in which idealization there is no molecular

wavefunction at all, just an electron wavefunction.)

And of course, because all the relevant wavefunctions are vectors in a Hilbert space

– namely wavefunctions – in the mathematical framework of BO, the specific challenge

found in quantum chemistry orthodoxy is addressed: as is familiar, the Heisenberg un-

certainty relations are automatically respected. That is, the uncertainty relation for a

single degree of freedom are expressed with the variances of position and momentum

variables: σ2
x =

∫∞
−∞ x2 · |ψ(x)|2 dx and σ2

p =
∫∞
−∞ p2 · |ψ̃(p)|2 dp where ψ(x) and ψ̃(p)

are the position and momentum basis wavefunctions, respectively. If the wavefunctions

in question are elements of a Hilbert space, given by square-integrable functions on the

real line L2(R) – as they are in BO – the Heisenberg uncertainty relation, σxσp ≥ }
2
, is

a simple mathematical consequence of the fact that position and momentum are Fourier

conjugates.11 A violation of the relation would require a ‘wavefunction’ sharply peaked in

11An equivalent formulation of the Heisenberg uncertainty relations focuses on the observables rather
than the wavefunction. In particular, for arbitrary Hermitian operators we can derive the more general
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both the position and momentum basis simultaneously, contrary to this basic fact about

QM and BO. They would only be violated if, the model represented electron or nuclei

states as other than vectors in Hilbert space: say, as a delta functions in both position

and momentum space.12 Similarly, that the ‘nuclear wavefunction’ θa(x1) ∈ L2(Rm) is

a vector in a Hilbert space means that it cannot violate the Heisenberg uncertainty re-

lation; it does not and cannot violate the Heisenberg uncertainty relation. (The scare

quotes remind the reader that the ‘electronic wavefunction’ ψa(x1, x2) also plays a role in

representing the state of the nuclei.)

Moreover, as already noted, it would be a mistake to naïvely interpret Ψa(x1, x2) as

being factored into strictly nuclear and electronic parts. The factor, ψa(x1, x2), depends

on the nuclear configuration as well, not just the electron configuration. The role of ‘clas-

sical’ parameters and the ‘clamped’ Hamiltonian in constructing ψa(x1, x2) is entirely

irrelevant to the status of the nuclei as quantum particles, which is never in doubt at any

stage of the treatment. BO provides an inherently quantum representation of molecular

structure that does not admit a classical separation into purely electronic and nuclear

representations. The quantum nature of the nuclei in BO is highlighted in the discus-

sion of Jecko (2014) who notes in his concluding section: ‘ We emphasise that, in the

mathematical treatment of the Born-Oppenheimer approximation, the nuclei are always

considered as quantum particles. The use of clamped nuclei is just a tool to construct an

appropriate effective Hamiltonian but the latter is a quantum, nuclear Hamiltonian with

restricted electronic degrees of freedom’ (Jecko 2014, p. 20).

3. On the Mathematical Treatment of Born-Oppenheimer

We now turn to the question of rigour in textbook treatments of BO and consider

features of the modern mathematical BO approximation that are sufficient to allay the

relevant concerns. Recall that Sutcliffe and Woolley (2012) claim that the clamped Hamil-

tonian in general has a continuous part to its spectrum; physically plausible, for energies

at which the constituents have disassociated, and there is not longer a stable molecule.

Robertson-Schrödinger uncertainty relation which encodes a very general property of products of vector
norms in inner product spaces called the Cauchy–Schwarz inequality. As such, the generalised uncertainty
principle is not an independent postulate in quantum theory but rather a basic feature of the Hilbert
space formalism.
12See Footnote 21 for a short discussion of precisely such a possibility in the context of mixed classical-
quantum models in which there is failure of positivity of the density matrix in the quantum part of the
model. As discussed there, this is understood by the scientists themselves as a pathological feature of
the models rather than a putative representation of Heisenberg uncertainty violation.
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Thus some further ingredient is needed to underwrite modelling a molecule with nor-

malizable square-integrable eigenfunctions with a discrete spectrum. They suggest that

extra empirical input and classical assumptions are required to deal with this issue. This

is the ‘rigour problem’ introduced above, which we now return to in more detail. We fol-

low the treatment of Jecko (2014) who identifies three principal problems with textbook

treatments of BO.13

The second two of these problems are crucial to the rigour problem sketched above.

The first is more minor, namely, that the analysis only involves the internal energy of the

molecule, even though it has centre of mass motion and associated kinetic energy, with

a continuous spectrum (absent boundary conditions). To separate out the internal levels

(to find the spectrum, or the spatial structure, or for scattering) one can transform to a

centre of mass frame (of the molecule or just its nuclei, depending on the problem), and

subtract the Hamiltonian centre of mass term. This procedure introduces a new term

into the Hamiltonian (the Hughes-Eckart energy), which is suppressed by the ratio of

electronic to nuclear masses (∼ 10−3), so is neglected in a first approximation.14

The second problem arises because the expansion (3) is not really a sum, but a

sum of low energy states plus an integral over states in the high energy, continuous part

of the spectrum of T̂2 + Ŵ . As is familiar, in any continuous spectrum there are no

normalizable eigenstates, something finessed in familiar ways by physicists via the Dirac

delta function, and more rigorously by the theory of ‘spectral decomposition’. However,

in the present case details of the structure of the spectrum, in particular the existence

of ‘thresholds’, (Jecko 2014, §V), make the expansion highly non-trivial, and hard to

control. Its existence is thus – from a mathematically rigorous point of view – an ‘in

principle’ matter only.

The third problem is that the appropriate formalism for a mathematically rigorous

treatment is, as mentioned earlier, that of the direct integral (Reed and Simon 1978,

280-7). Any L2(Rm ×Rn) function f(x1, x2) is understood as an L2(Rn)-valued function

f(x1, ·) with x1 ∈ Rm. One then naturally defines the direct integral of a parameterized

family of operators Ô(x1) on L2(Rn), as the operator Ô on L2(Rm × Rn) whose effect

13Thierry Jecko has also emphasized to us in correspondence that there are rigorous approaches to the
quantum treatment distinct from BO, for instance the ‘exact factorization’ of Abedi et al. (2010).
14Sutcliffe and Woolley (2012) caution that ignoring it can make the Hamiltonian ill-defined.



22 ON THE QUANTUM THEORY OF MOLECULES

on f(x1, x2) is the direct integral of Ô(x1)f(x1, ·): i.e., it acts on each x2 function as the

appropriate operator in its state space.15

In response to the last two problems, mathematical physicists have a somewhat

different perspective on BO to that above. The goal is to approximate an eigenstate

(and eigenvalue) lying in the low energy, discrete part of the spectrum of the molecule

(1). To do this, one considers eigenstates of the Hamiltonian projected onto the subspace

in which its spectrum is discrete. See (Jecko 2014, §IV) for details of the following

sketch. Let us call T̂2 + Ŵ , the direct integral of the clamped Hamiltonians T̂2 + Ŵ (x1),

the ‘reduced Hamiltonian’. While the latter acts on L2(Rn), the state space of the electron

subsystem, the former acts on L2(Rm ×Rn), the state space of the full system, including

both the electrons and the nuclei: both, that is, are treated quantum mechanically. It is

also called the ‘electronic Hamiltonian’, but that would be misleading for our purposes

since it acts on the state of the whole molecule. Analogously for the projection operator:

for a given x1 = X and a finite discrete range of eigenstates ψa(X;x2) of T̂2 + Ŵ (x1)

there is an operator

(16) P̂ (X)f(x2) =
N∑
a=1

ψa(X;x2)

∫
ψ∗
a(X;x2)f(x2)dx2

projecting f(x2) ∈ L2(Rn) onto the subspace spanned by the ψa(X;x2). P̂ , the direct

integral of the P̂ (x1), then projects states in L2(Rm × Rn) onto the discrete subspace

spanned by the corresponding ψa(x1, x2) eigenstates of the electronic Hamiltonian. Since

P̂ also acts on the full molecular states space, it too treats nuclei as well as electrons as

quantum mechanical.

To overcome the issue of a continuous spectrum, the first approximation made is to

seek eigenstates of the projected molecular Hamiltonian Ĥeff = P̂ (T̂1+ T̂2+ Ŵ )P̂ , instead

of T̂1 + T̂2 + Ŵ . One assumes that if an eigenstate of the latter exists in a given narrow

range of the energy, then it can be approximated by an eigenstate of the former lying in

the same range: one replaces the tricky problem of solving the ‘true’ Hamiltonian with

the simpler problem of solving an effective Hamiltonian for the energy range of a stable

molecule. Formally, Ĥeff acts on L2(Rm×Rn): first a state is projected onto the ψa(x1, x2)

subspace, then acted on by the molecular Hamiltonian, and the result projected again

onto the subspace. Ĥeff too treats both nuclei and electrons as quantum. Note that the

15There are important questions of the self-adjointness of the various Hamiltonians involved. And we
continue to ignore degeneracy in the spectrum.
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effect of Ĥeff is always to produce a vector in the finite dimensional subspace spanned by

the ψa(x1, x2), so (a) all states orthogonal to that subspace are eigenstates of Ĥeff with

eigenvalue 0, and (b) all its other eigenstates lie in that finite subspace, and so have finite

cardinality. In relation to §2.2, one has made rigorous (3), now understood as expanding

solutions of the Schrödinger equation for the projected Hamiltonian.

Sutcliffe and Woolley (2012) argue that the direct integral decomposition of the

unprojected reduced Hamiltonian entails that it has a purely continuous spectrum, and

hence that the expansion assumed at the start of BO is invalid (p. 6). Their argument

is not entirely explicit, but plausibly they are appealing to Theorem XIII.86 of Reed and

Simon (1978) (work which they cite elsewhere). However, such an appeal is inapplicable

to the projected reduced Hamiltonian, since one of the conditions of the theorem is an

infinite spectrum, which is exactly what the projection destroys. They are of course

correct that empirical input is used in the rigorous BO, namely the relevant range of

energies. But it is hard to imagine any argument from that fact to the failure of the

model to be quantum. (Nor does it seem a failure of reduction that a derivation not be

carried out entirely from first principles; the approximation itself is justified rigorously,

and the empirical input merely tells us that the system is in the range in which it holds.

Moreover the use of the approximation can be vindicated post hoc by showing that the

relevant conditions indeed hold.)

The previous section shows that textbook BO is fully quantum, and adding a step

in which the reduced Hamiltonian is projected onto a discrete part of its spectrum in no

way undermines that argument. The projected Hamiltonian is still quantum, indeed a

quantum theoretical approximation to the quantum reduced Hamiltonian. The difference

is rather that BO is no longer understood as the lowest order in some well-defined exact

expansion, but rather as an approximation, with some well-understood corrections, to an

exact solution. This situation is in contrast, not only to our textbook style presentation,

but also to those of Born and Oppenheimer, Born and Huang, and Messiah; while more

careful than ours, theirs remain heuristic.16 Once the appropriate formal machinery has

been deployed BO can be formalised to the standards of rigour of mathematical physics.

By clarifying the arguments of Sutcliffe and Woolley (2012), this section has not only

emphasised that they fail in a rigorous fully quantum treatment, but also that they do

16See (Jecko 2014, §V) for a detailed comparison.
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not at all indict the mere appearance of the clamped Hamiltonian in BO. Hence, the anti-

reductivist arguments in philosophy of chemistry are not only unwarranted and incorrect

but misidentify the salient challenge to the status of the BO.

4. Rigour and Reduction in Quantum Chemistry

This final section widens the focus and considers questions of mathematical rigour

and reduction in quantum chemistry more generally. There is a rich interplay between

physical and mathematical idealizations in the relevant highly diverse scientific arena:

from the complex practicalities of atomic spectroscopy; to high abstractions of mathe-

matical physics; to hybrid experimental-theoretical-computational modelling of molecular

structure. The philosophy of chemistry must attend to the full scope of such scientific

practice in order to be fit for purpose. Many of the questions raised in this section track

elements of the Sutcliffe and Woolley exchange with Jecko, which we propose as the locus

of future research in the philosophy of quantum chemistry.

Let us start with the role of ‘classical’ assumptions in the emergence of ‘determinate

molecular structure’. Let us first assume that what is meant by ‘determinate molecular

structure’ is provided by the regime in which the adiabatic approximation is valid, and

thus the nuclei are such that the variation of the ‘electron’ wavefunction with respect to

nuclear positions is approximately zero. §2-3 show exhaustively that the emergence of

such structure requires neither classical assumptions in the sense of clamped nuclei, nor

violation of the uncertainty relation. Rather the assumption required for BO is Heavy

which is entirely consistent with a fully quantum treatment of the molecule. There is

a richer notion of molecular structure that includes the number, angles and lengths of

chemical bonds and chirality (Franklin and Seifert 2020). BO is far from sufficient to

model such structure, although plausibly in some circumstances it may prove necessary.17

In this context, there is a lively current debate about the requirement for a solution to

the measurement problem of quantum theory in order to account for the emergence of

molecular structure (Franklin and Seifert 2020; Fortin and Lombardi 2021; Seifert 2022;

Miller 2023). We take no particular position in this debate here, other than to note that

it remains to be seen whether there are any fundamental differences between foundational

problems in quantum chemistry and other applications of quantum mechanics to matter

systems.

17It is certainly not the case that the BO is necessary in general. See Footnote 6 for references on
quantum chemistry beyond the BO.
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More generally, in the context of discussions of ‘classical’ and ‘semi-classical’ assump-

tions we enjoin scientists and philosophers to apply more semantic precision. Our positive

proposal is as follows. Firstly, models such as BO should be described as ‘quantum’ mod-

els of molecules, since, not withstanding the approximations, all aspects of the molecules

in question are treated in quantum mechanically.

Secondly, one may legitimately deploy the term ‘semi-classical’ in a broad sense to

indicate an application of quantum theory in which, while the system is treated quantum

mechanically, the model includes radiative fields that are not. In this sense, the original

quantum theory of the atom, as well as the modern quantum-mechanical treatment, is

‘semi-classical’ since the electromagnetic field through which the nucleus and the elec-

trons interact is not quantized, cf. (Boucher and Traschen 1988). Similarly for most of

quantum chemistry including BO. It would be moot to claim that chemistry does not

reduce to quantum physics because the physics in question is semi-classical in this sense,

because huge amounts of what is ordinarily called ‘quantum physics’ is! (E.g., standard

non-relativistic quantum-mechanics other than free particles, including most condensed

matter physics.) Such semi-classical physics is a kind of quantum physics.

Thirdly, one should distinguish various more limited and specific meanings of ‘semi-

classical’. One specific sense of ‘semi-classical’ is the case in which a quantum mechanical

expansion, in terms of classical zeroth order plus quantum corrections, is truncated at

some order in } (or other parameter such as mass ratios) in order to provide a limiting or

approximate model.18 In such cases, the semi-classical model is a sub-model within the

general framework of quantum theory.19 A formally closely related, but physically and

conceptually rather different, sense of ‘semi-classical is found in the context of certain

‘semi-classical’ approaches to gravity where the field equations are re-written in terms

of classical metric variables on the left-hand side but the first moment (i.e. expectation

value) of the stress-energy tensor is inserted on the right-hand side. A further notion

of semi-classicality is when specific behaviour occurs in the limit (usually } → 0) in

which the classical theory is understood to obtain.20 Finally, we also have a specific

18The two most important examples are when such a truncation is made in a quantum moment expansion
(typically leading to Ehrenfest type equations) or in an expansion for the wavefunction (typically leading
to a WKB-approximation).
19We thus recover the idea familiar from Nickles reduction of a successor theory containing a version of
the predecessor theory via the application of a set of mathematical operations to its models (Palacios
2022).
20Such cases have been much discussed in the physics and philosophy of physics literature (Berry 1977,
2001; Batterman 2001; Bokulich 2008; Rosaler 2015; Steeger and Feintzeig 2021) and they merit study
in the context of quantum chemistry.
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use of the term ‘semi-classical’ applied to mixed classical-quantum models. Such models

simultaneously feature representations of classical and quantum states and dynamics.

The former in terms of classical phase space states and Poisson bracket structure and the

latter in terms of operators, density matrices and commutator brackets structure.21

It is useful to distinguish the distinct modelling contexts in which semi-classical

models, in one or more of the more specific senses, might be deployed within quantum

chemistry and articulate the relevance for reductive explanations in each context. They

are as follows. (1) Mathematical Idealization: The model is being used to represent a fully

quantum phenomena and the semi-classical features are a mathematical idealization that

relates the semi-classical effective model to a (less) idealized fully quantum model. Given

the stability of salient explanatory features under de-idealization there no potential prob-

lem for reductive explanations of the relevant phenomena. (2) Physical Idealization: The

model is being used to represent a fully quantum phenomena but this representation is

via proxy model of semi-classical phenomena that approximate the quantum phenomena

for the purposes and degree of accuracy required. Again, there is no problem for reduc-

tive explanations given stability of the salient explanatory features under de-idealization

(Bokulich 2008, 2017). (3) Emergent Phenomena: The model is being used to represent

emergent semi-classical phenomena that occur in the context of classical-quantum limit

behaviour. There is a putative problem for any account of reductive explanation that is

incompatible with emergence qua novel and robust behaviour, but not for any account of

reductive explanation that is so compatible, cf. (Bokulich 2008; Butterfield 2011; Franklin

2024).

A further issue warranting attention in the philosophical analysis of quantum chem-

istry is the role of the environment (Ladyman and Thébault 2024). In this context,

Sutcliffe and Woolley (2012) say ‘one should not expect useful contact between the quan-

tum theory of an isolated molecule and a quantum account of individual molecules, as

met in ordinary chemical situations where persistent interactions (due to the quantized

21 Mixed classical-quantum models have been widely applied in non-adiabatic quantum chemical mod-
elling (Tully 1991; Crespo-Otero and Barbatti 2018) and bring up various interesting issues that are
worthy of philosophical engagement. For example, in this context there is the possibility of failure of
positivity of the density matrix in the quantum part of the model which, in turn, allows the possibil-
ity of inconsistency with the Cauchy-Schwartz inequality that would be required for the violation of
Heisenberg uncertainty type relations (Bondarenko and Tempelaar 2023; Gay-Balmaz and Tronci 2023).
Significantly, such a feature is understood by the scientists themselves as a pathological feature of the
models rather than a putative representation of Heisenberg uncertainty violation or, moreover, a failure
of reduction. Indeed, work on the topic takes density matrix positivity to be a precondition of physically
consistent mixed classical-quantum dynamics.



ON THE QUANTUM THEORY OF MOLECULES 27

electromagnetic field, other molecules in bulk media) and finite temperatures are the

norm.’ (p. 7). These remarks, together with related ideas developed by Seifert (2022),

form a fruitful basis for an ‘open systems view’ of quantum chemistry in the manner

recently proposed for quantum physics more generally by Cuffaro and Hartmann (2021).

We expect that such a view would prove to be consistent with any suitably nuanced

understanding of model-based understanding of reduction and idealization.22

We conclude with the following questions: Is there a methodological distinction be-

tween the use of models in modern quantum chemistry, and other examples of quantum

modelling practice in matter systems, such as applications of quantum mechanics to solid

state or few body systems? Is there space for distinctively ‘chemical’ modes of quantum

modelling practice? In answering such questions philosophers need to re-conceptualise

the physics-chemistry interface with quantum chemistry recast as a ‘littoral zone’, with

its own distinctive modelling ecology, influenced by both disciplines. The distinctive

chemical features in the methodology of quantum chemistry are rooted in experimental

practices, such as spectroscopy, rather than formal features of the models.
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