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Abstract

In previous work the author has proposed a different approach to the problem of von Neumann measurement and wave function
collapse. Here we apply it to the collapse of degenerate states. Our predictions differ from those of von Neumann and, separately,
Lüders in significant ways. An experiment is suggested that might distinguish between the possibilities.
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Introduction.

In earlier work (1, 2) the author has tried to outline a new version of the von Neumann-Wigner Interpretation
(consciousness brings about wave function collapse). We introduced the concept of admissible and inadmissi-
ble  states.  As  an  example,  we  considered  a  situation  where  an  electron  is  introduced  into  a  Stern-Gerlach
apparatus. Initially the detector shines a blue light, indicating that no measurement has yet been performed. If
the  electron comes in  spin-up,  |+>, a  green light  is  triggered. The state evolves from |B, +> into |G, +>. If it
comes in |-> a red light is illuminated and the system becomes |R, ->. A conscious observer watches all this. If a

(|+> + |->)/ 2 electron  were  to  be  introduced  unitary evolution would  have things  evolve into  (|G, +> + |R,

->)/ 2 such that the observer would see a superposition of green and red. This state corresponds to no clearly
definable  conscious  condition.  Wigner  called  this  situation  "absurd."  We  call  it  inadmissible.  Only  states
corresponding to definite  conscious conditions are admissible. The system cannot enter into any inadmissible
state.  We  require  S È Y HtL > = ÈY(t)  >  always,  where  S  is  a  (non-linear)  operator  having  some  interesting
properties:

I)    If   |Y(t)> is  admissible it  does  nothing.  The  state  is  completely unaffected.  Call  the  set  of  all  admissible
states {Ci}.

II)   If  |Y(t)> is not admissible it  will look at all the amplitudes <Ci|Y(t)> for every <Ci|. It will square these

amplitudes and, using these values as relative probabilities, convert  |Y(t)> into one of the |Ci> at random. 

Here,  |Y(t)>  and  |Ci>  do  not  represent  wave  functions  as  such  but,  rather,  state  vectors  in  a  Fock  space.  In

general, they represent all the particles in the universe. To keep things simple we will imagine they pertain only
to the particle(s) being measured, the measuring device, and the conscious observer. S functions as a projection
operator taking mixed states (with respect to consciousness) into definite, admissible, states. Here we give up
the idea of a unitary time-evolution operator. Such an operator has an inverse. We cannot go backwards in time
according to S since the decision how to go forward is made at random. This imparts a natural directionality to

time.  S2  =  S  and  S  has  no  explicit  time  dependence.  We  allow for  admissible  null  states  of  consciousness
corresponding to the existence of no sensations at all. Readers who dislike the von Neumann-Wigner idea can,
for  purposes of  this  paper,  replace it  with  other  criteria  (perhaps involving the  size  and/or  complexity of  the
measuring  device)  that  would  serve  to  determine  the  admissibility  of  a  state.  We  do  like  this  interpretation
since it  provides a role for consciousness in  physics. A universe populated only with Chalmers'  zombies and
Chalmers' zombie-animals (3) would not be the same as ours. It would evolve in a purely unitary fashion. We
would  not  want  to  think  of  consciousness  as  nothing  more  than  an  epiphenomenal  "innocent  bystander"
(although some readers probably would).
     Now |Y(t)> is in no way a function of the spatial coordinates. But it does contain all the information we can
have regarding what is going on where. Specifically, we are interested in <Y(t)|TΜΝ(x,t)|Y(t)> where TΜΝ(x,t) is

the  stress-energy operator  for  our  quantum  field  theory  (2).  To  take  account  of  Relativity we  must  make an
additional  stipulation:  When an inadmissible state is  projected into an admissible one that  new state must  be
such  that  <Ynew(t)|TΜΝ(x,t)|Ynew(t)>  is  altered  only  within  the  future  light  cone  of  the  measurement  event.

Otherwise, physical information regarding the outcome of the measurement could travel faster than light. We
cannot allow for this. If the state undergoes two or more measurements <Ynew(t)|TΜΝ(x,t)|Ynew(t)> can only be

altered  within  the  union  of  the  future  light  cones  of  the  measurement events.  And  it  must  be  altered consis-
tently. The various observers must, ultimately, agree that they saw the same thing. This may look like "spooky
action at a distance." It is. 
     Provided our apparatus is effectively shielded from all outside influences, and supposing that our measure-
ment does not destroy the system, we will  usually end up with a normal von Neumann measurement and the
Born rule. An interesting problem arises if our system is degenerate with respect to eigenvalues that could be
obtained through our measurements. What does the state collapse into then? Dirac (4), von Neumann (5), and
Lüders  (6)  have  tried  to  give  us  answers.  We  note  that  our  above-described  protocol  gives  predictions  that
differ very considerably from those of the above-mentioned authors. For recent discussions see (7, 8, 9, 10).
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Simple Examples.

Suppose we have  a  system that  can  be  characterized by two observables. Here  we will  use  energy and  spin.
Suppose it exists in a Hilbert space spanned by three orthonormal basis states |I>, |II>, and |III> where:
 
1)  |I> = |Energy = E1, spin = ->,  |II> = |Energy = E2, spin = ->,  |III> = |Energy = E2, spin = +>. 

Let there be a pure state we will describe as:

2)   |Y0> = c1 |I> + c2 |II> + c3 |III>  with È c1 È2 + È c2 È2 + È c3 È2 = 1. 

Suppose we measure its energy. (We must find a definite value; a pointer cannot be perceived to point at two

energy values simultaneously.) There is  a  probability, È c1 È2,  that  we will  find  E1.  If we do,  the  state will  be
projected into |I>. If we, subsequently, measure the spin we are certain to find it -. (We assume that our states
are eigenstates of the Hamiltonian and will only change by meaningless phases as time goes on.) On this point
we and the other interpretations all agree. Suppose we find E2. Then into what state is it projected? For Lüders

the  answer  is  simple:  It  is  projected into  Hc2  |II> + c3  |III>)/ É c2 È2 + È c3 È2 .  We can then  measure the  spin.

According to Lüders we have a probability È c1 È2  of ending up in |I>, È c2 È2  of ending up in |II>, and È c3 È2  of

ending  up  in  |III>. There  is  nothing  obviously unreasonable  about  this  result.  But  our  protocol leads  to  very
different conclusions.
      Suppose we measure E2. All linear combinations of |II> and |III> are E2  energy eigenstates and, therefore,
admissible  in  terms of  an  energy measurement.  The  state  could  project  into  any of  them in  the  manner  sug-
gested above. Let us write the most general combination as:
      

3)   Ψa(Β, Θ) = ãä Θ 1 - Β2  |II> + Β |III>  where Β is real and between 0 and 1. 0 £ Θ £ 2 Π.

The above retains an ambiguity since it can be multiplied by an arbitrary phase and nothing is changed. We do
not have to worry about this as the same ambiguity applies to |I>. Since all we are interested in are the relative
probabilities  the  effect  of  taking  this  into  account  nets  out  to  zero.  The  total  probability of  measuring  E2  is
given by:

4)    Ù0

1Ù0

2 Π Ë < Y0 Ë ΨaHΒ, ΘL > È2 M HΒ, ΘL â Θ â Β  where  M  (Β,  Θ) represent a  kind  of  measure  over  the  (Β,  Θ)

"space."

This gives us:

5)   Total probability of E2  = Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 M HΒ, ΘL â Θ â Β.

If M (Β, Θ) is assumed to be independent of Θ the ãä Θ containing terms integrate out and we are left with:

6)   Total probability of E2  = 2 Π Ù0

1I É c2 È2 I1 - Β2M + É c3 È2 Β2M M HΒL â Β.

But what to choose for M  (Β)? Our measure represents the number of admissible states in the interval dΒ  dΘ .
Our (Β, Θ) "space" is, in polar coordinates, just the unit disk. The volume element here is Β dΒ dΘ . This suggests
we should try M (Β) = Β M0.

     

7)    Total probability of E2  = Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β M0 â Θ â Β.

If we set M0 = 2/Π we find that the total probability of ending up with E2 is È c2 È2 + È c3 È2. The total probability

of ending up in any state is È c1 È2 + È c2 È2 + È c3 È2  = 1. This is exactly the result we want. We now measure the

spin. The probability of ending up in |II> is:

8)    Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β I1 - Β2M 2 � Π â Θ â Β = 2
3
 È c2 È2 + 1

3
É c3 È2.

The probability of ending up in |III> is:

9)    Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β IΒ2M 2 � Π â Θ â Β = 1
3
 È c2 È2 + 2

3
É c3 È2.

The act of measuring the energy has cost us some information regarding the spin. We might have started with a
state  having  c2  =  0  and  find  the  spin  to  be  -  after  measuring E2.  This  result  differs  from  the  predictions  of
Lüders and von Neumann. (The above results are relevant only if  c1  does not equal zero exactly and we will
return  to  this  point  momentarily.) Another  difference  is  the  fact  that,  for  us,  the  probabilities depend  on  the
order of measurement — we would obtain a different result if we measured the spin first and, later, the energy.
This is not the case for Lüders. We could imagine making our spin and energy measurements simultaneously.
We  would  then  recover  the  result  of  Lüders.  One  agreeable  consequence  of  our  method  is  that  we  are  not
obliged to use any particular basis for our degenerate Hilbert subspace. We have chosen the most convenient

one but we could, for instance, call |II> (|A> + |B>)/ 2  and |III> (|A> - |B>)/ 2  or whatever we want. Our
results will not change. 
     We could make our situation more complicated by allowing for a new state, |IV> = |Energy = E2, spin = 0>.
Our pure state can now be written:
     
10)    |Y0> = c1 |I> + c2 |II> + c3 |III> + c4 |IV>.

Our most general E2 eigenstate is now:

11)    Ψa(Β, Α,  Θ , ∆) = ãä Θ Α |II> + Β |III> + ãä ∆ 1 - Β2 - Α2  |IV>  where Β and Α are real and between 0 and

1. 0 £ Θ , ∆ £ 2 Π.

Going through the same algebra (here we use M (Α, Β, Θ , ∆) = 6
Π2  Α Β) gives us:

Probability of ending up in |II> = 1
4
( 2 È c2 È2 + È c3 È2 + È c4 È2)

Probability of ending up in |III> = 1
4
( È c2 È2 + 2 È c3 È2 + È c4 È2)

Probability of ending up in |IV> = 1
4
( È c2 È2 + È c3 È2 + 2 È c4 È2).

(If the degenerate subspace has dimension D our measure is given by D!

ΠD-1 Α1...ΑD-1.)

     Let us first measure the energy and, subsequently, the spin. We can examine the resulting change in the von
Neumann entropy, - k Tr [Ρ ln Ρ]. For both us and Lüders it is, of course, positive. But, according to our update
rule, the entropy increase is always greater than or equal to that predicted by Lüders. We might look at this as a
good thing.  Physical processes generally like to increase entropy to the greatest extent  possible. On the other
hand, our update rule requires that "more work" be done on the initial state. Lüders has the advantage here. 
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probabilities  the  effect  of  taking  this  into  account  nets  out  to  zero.  The  total  probability of  measuring  E2  is
given by:

4)    Ù0

1Ù0

2 Π Ë < Y0 Ë ΨaHΒ, ΘL > È2 M HΒ, ΘL â Θ â Β  where  M  (Β,  Θ) represent a  kind  of  measure  over  the  (Β,  Θ)

"space."

This gives us:

5)   Total probability of E2  = Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 M HΒ, ΘL â Θ â Β.

If M (Β, Θ) is assumed to be independent of Θ the ãä Θ containing terms integrate out and we are left with:

6)   Total probability of E2  = 2 Π Ù0

1I É c2 È2 I1 - Β2M + É c3 È2 Β2M M HΒL â Β.

But what to choose for M  (Β)? Our measure represents the number of admissible states in the interval dΒ  dΘ .
Our (Β, Θ) "space" is, in polar coordinates, just the unit disk. The volume element here is Β dΒ dΘ . This suggests
we should try M (Β) = Β M0.

     

7)    Total probability of E2  = Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β M0 â Θ â Β.

If we set M0 = 2/Π we find that the total probability of ending up with E2 is È c2 È2 + È c3 È2. The total probability

of ending up in any state is È c1 È2 + È c2 È2 + È c3 È2  = 1. This is exactly the result we want. We now measure the

spin. The probability of ending up in |II> is:

8)    Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β I1 - Β2M 2 � Π â Θ â Β = 2
3
 È c2 È2 + 1

3
É c3 È2.

The probability of ending up in |III> is:

9)    Ù0

1Ù0

2 Π Ì c2
* ãä Θ 1 - Β2 + c3

* Β È2 Β IΒ2M 2 � Π â Θ â Β = 1
3
 È c2 È2 + 2

3
É c3 È2.

The act of measuring the energy has cost us some information regarding the spin. We might have started with a
state  having  c2  =  0  and  find  the  spin  to  be  -  after  measuring E2.  This  result  differs  from  the  predictions  of
Lüders and von Neumann. (The above results are relevant only if  c1  does not equal zero exactly and we will
return  to  this  point  momentarily.) Another  difference  is  the  fact  that,  for  us,  the  probabilities depend  on  the
order of measurement — we would obtain a different result if we measured the spin first and, later, the energy.
This is not the case for Lüders. We could imagine making our spin and energy measurements simultaneously.
We  would  then  recover  the  result  of  Lüders.  One  agreeable  consequence  of  our  method  is  that  we  are  not
obliged to use any particular basis for our degenerate Hilbert subspace. We have chosen the most convenient

one but we could, for instance, call |II> (|A> + |B>)/ 2  and |III> (|A> - |B>)/ 2  or whatever we want. Our
results will not change. 
     We could make our situation more complicated by allowing for a new state, |IV> = |Energy = E2, spin = 0>.
Our pure state can now be written:
     
10)    |Y0> = c1 |I> + c2 |II> + c3 |III> + c4 |IV>.

Our most general E2 eigenstate is now:

11)    Ψa(Β, Α,  Θ , ∆) = ãä Θ Α |II> + Β |III> + ãä ∆ 1 - Β2 - Α2  |IV>  where Β and Α are real and between 0 and

1. 0 £ Θ , ∆ £ 2 Π.

Going through the same algebra (here we use M (Α, Β, Θ , ∆) = 6
Π2  Α Β) gives us:

Probability of ending up in |II> = 1
4
( 2 È c2 È2 + È c3 È2 + È c4 È2)

Probability of ending up in |III> = 1
4
( È c2 È2 + 2 È c3 È2 + È c4 È2)

Probability of ending up in |IV> = 1
4
( È c2 È2 + È c3 È2 + 2 È c4 È2).

(If the degenerate subspace has dimension D our measure is given by D!

ΠD-1 Α1...ΑD-1.)

     Let us first measure the energy and, subsequently, the spin. We can examine the resulting change in the von
Neumann entropy, - k Tr [Ρ ln Ρ]. For both us and Lüders it is, of course, positive. But, according to our update
rule, the entropy increase is always greater than or equal to that predicted by Lüders. We might look at this as a
good thing.  Physical processes generally like to increase entropy to the greatest extent  possible. On the other
hand, our update rule requires that "more work" be done on the initial state. Lüders has the advantage here. 

Discussion.

It must have struck the reader that  there seems to be something strange about what we have suggested. Con-
sider  the state given in  2).  If c1  º  0  we are already in  an energy eigenstate. If the energy is  measured it  will
certainly be found to be E2. The state is, therefore, admissible and, according to our postulate I, S will leave it
unaffected. We recover exactly the result predicted by Lüders. But, if c1  differs from zero in even the smallest
way, we obtain the dramatically different results described above. This discontinuous change must seem very

peculiar indeed. We could say that S  only projects the state if È c1 È2  is above some critical value. This seems
arbitrary and contrived, however. Another way of achieving a desirable result would be to say that, no matter
how hard we try, we just cannot, as a practical matter, ever really produce a state having c1  º  0 — there will
always be a contribution, however small, from c1. This is probably the best way of looking at it. 

     There might, actually, be a way of testing this idea. Suppose we can construct a system consisting of two
massive spin-1/2 particles, a and b. We are interested in their spins. Particle a will be measured at point A and b
at B. Our most general initial state can be written as eq. 10) with |I> = |+a, +b>, |II> = |+a, -b>, |III> = |-a, +b>,

and |IV> = |-a, -b>. For simplicity, assume that c1  =  c4  = 0. We now measure our entangled state. If A and B

are spacelike separated we can always choose to work in a Lorentz frame where they are simultaneous. In this
case only |I>, |II>, |III>, and |IV> are admissible — both spins become known to the observers at the same time.

Our system will be projected into either |II> or |III> with probabilities È c2 È2  and È c3 È2, respectively. We have,

essentially, just re-performed something like the Aspect experiment (11) and we would get exactly his results.
We think  these  results  will  always hold  true  provided that  A and  B  are  spacelike separated since we cannot
imagine them depending on our  arbitrary choice of  a  coordinate system. But  suppose they are timelike sepa-
rated with B lying inside the future light cone of A. (Aspect could not have looked at this case since his pho-
tons always travel at c.  He might, however, have measured his first photon then, using a mirror, reflected the
second photon back to the polarimeter to be measured later.) Suppose a is measured at A and found to be +.
According to Lüders the state is now |II> and we are certain to find b - when it is later measured. For us the
first measurement can project the state into any linear combination of |I> and |II> (as described above). Thus,
when b is measured at B, there will only be a 2/3 chance of finding it -. It could be +. 
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