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Abstract
In this paper I raise a worry about the most extended resolutions of the problem
of time of canonical quantizations of general relativity. The reason for this is that
these resolutions are based on analogies with deparametrizable models for which
the problem can be solved, while I argue in this paper that there are good reasons
for doubting about these resolutions when the theory is not deparametrizable, which
is the case of general relativity. I introduce an example of a non-deparametrizable
model, a double harmonic oscillator system expressed by its Jacobi action, and argue
that the problem of time for this model is not solvable, in the sense that its canonical
quantization doesn’t lead to the quantum theory of two harmonic oscillators and the
standard resolutions of the problem of time don’t work for this case. I argue that as
general relativity is strongly analogous to this model, one should take seriously the
view that the canonical quantization of general relativity doesn’t lead to a meaningful
quantum theory. Finally, I comment that this has an impact on the foundations of
different approaches to quantum gravity.

Keywords Quantum gravity · Problem of time · General relativity · Canonical
quantization · Constrained systems
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It is a well-known fact that the canonical quantization of general relativity, in any of its
formulations, leads to a problem of time. When one applies the standard quantization
rules for gauge theories to general relativity what one finds is a series of constraint
equations but no dynamical equation which describes an evolution in time of the
quantum state. There is a number of proposals for how to interpret this ‘timeless’
quantum state and for how to recover the usual time evolution of our physical theories.
However, most of these proposals are based on analogies with simpler models, which
in this paper I will argue that are misleading. The reason for this is that most of
these models correspond to deparametrizable theories, that is, theories in which time
is represented as one of the variables of the theory, while general relativity is not
deparametrizable, as the way temporal information is encoded in the theory is more
sophisticated.

I will start by briefly reviewing the problem of time in Sect. 1. First I will intro-
duce the constrained formalism, an extension of the canonical formalism to be able
to accommodate theories like gauge theories or reparametrization invariant theories.
Next, I will sketch how the quantization procedure for these theories works: basi-
cally, the quantization procedure is the same as for any other theory expressed in the
canonical formalism, but with the complication that we now have to impose a series
of constraints to our quantum states. However, I will show how the imposition of the
constraints for reparametrization invariant theories implies that there is no non-trivial
quantum dynamics for these theories, which is known as the problem of time.1

In Sect. 2 I will introduce a simple example: the case of a non-relativistic particle
expressed in a reparametrization invariant way. I will show that the problem of time in
this case can be solved and Iwill argue that the reasonwhy this is so is that time is part of
the configuration space of this model. In other words, we are able to identify a variable
as time and deparametrize the theory, i.e., to express the dynamics not with respect to
an arbitrary parameter but with respect to the physical time. I will further argue that
this model of resolution of the problem of time can be extended, with some caveats, to
other models, which are also deparametrizable. A model is deparametrizable if time,
or spacetime coordinates, appear explicitly as configuration or phase space variables
or can be identified and separated in some of these spaces bymeans of some coordinate
transformation or canonical transformation. I will also argue that most of the attempts
of resolution of the problem of time for the case of quantum gravity are based on cases
similar to this one.

On the other hand, in Sect. 3 I will introduce a different kind of models which also
show a reparametrization invariance but which are not deparametrizable, that is, even

1 Authors like Kuchar and Isham speak about the problems of time in the plural, as there are several
technical and conceptual problems related to this.

123



Reassessing the problem of time of quantum gravity Page 3 of 37 21

if we can choose freely the way we parametrize our theory, this doesn’t mean that time
is encoded in the configuration space of the models. In particular, I will introduce a
simple example of a model describing a system of two harmonic oscillators, and I will
show how the resolutions of the problem of time for deparametrizable models fail in
this case. In this sense, I argue that the problem of time is more serious for theories of
this kind, and that it may even be unsolvable.

The relevant question to address if we are interested in the quantization of gravity
is therefore whether general relativity is a deparametrizable theory or not. In Sect. 4 I
briefly introduce general relativity in its canonical formulation and comment on some
results which show that it is not deparametrizable. In this sense, in the same way that
the problem of time wasn’t solvable for the case of the two harmonic oscillators, I will
argue that we may be in the same situation for the case of general relativity, and that
the attempts of resolution may be misguided. I will also comment on some positions
like Kiefer’s [1] which argue that even if general relativity is not deparametrizable,
there is a sense in which spacetime is encoded in the configuration space of the theory
and that some of the resolutions which applied to deparametrizable models may still
apply to general relativity. I will argue that the way time is supposed to be encoded
in the configuration space of general relativity is unclear and that the two arguments
usually formulated to support this claim, namely, the thick sandwich conjecture and
the counting of degrees of freedom argument, aren’t valid, as they could also be applied
to the double harmonic oscillator example to reach the wrong conclusion that time is
encoded in the configuration space of the system. In this sense, the analogy between
general relativity and my example is strong, which leads to the conclusion that the
problem of time is serious in quantum gravity, perhaps even unsolvable.

Finally, in Sect. 5 I comment on the impact that this analysis has on theories and
models of quantum gravity. In particular, I will argue that the worry raised in this paper
has an impact not only on quantum geometrodynamics, but also on the more modern
LQG, on related approaches and also on cosmological models. My argument in this
paper shows that all these theories and models are based on some foundations which
are at least questionable.

1 The problem of time

In this first section I will briefly review the way the problem of time arises for
reparametrization invariant theories. First, I will introduce the constrained formalism
which is used for describing the dynamics of singular systems like gauge sys-
tems or reparametrization invariant systems. Then, I explain how the presence of
constraints alters the usual canonical quantization procedure. Finally, I introduce
reparametrization invariant models and how the quantization procedure makes the
quantum dynamics trivial for these models, which is known as the problem of time.
I refer the reader to [2–4] for detailed introductions to the constrained formalism and
its quantization.

A word on notation. Throughout the paper I will be using Einstein’s summation
convention and every time there are repeated indices a sum over themwill be assumed.
I will be using greek indices μ, ν to represent spacetime indices and latin indices a, b
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to represent spacetime indices restricted to just the spatial ones. Other indices like
α, A, i will be used for indexing constraints, fields or variables, and their meaning
should be clear from the context.

1.1 Constrained Hamiltonian dynamics

The kind of models we are interested in are formally indeterministic, i.e., given a
set of initial conditions at a time the equations of motion don’t determine the final
state at a later time. For instance, in the 4-potential version of electromagnetism, the
gauge invariance of the theory makes it the case that an initial state determines the
final 4-potential only up to a gauge transformation. Similarly, general relativity fails
to determine uniquely the value of the metric at a coordinate point xμ, given that
the diffeomorphism invariance of the theory makes it the case that the coordinates
are meaningless, and there are different solutions of Einstein equations which assign
different values of themetric to the same coordinate point. Notice that in both cases this
indeterminism is just formal and that the theories are deterministic from the physical
point of view: an initial configuration of the electromagnetic field determines it at any
posterior (and previous) time and any configuration of the metric at a Cauchy slice
determines the geometry of the whole spacetime. The formal indeterminism of these
theories can be dealt with in the Hamiltonian formalism, which will be the starting
point for the quantization of these theories.

The first step for expressing a gauge theory or a reparametrization invariant theory
in the Hamiltonian formalism is to define an action:

S[qi ] =
∫

dt L(qi , q̇i , t), (1)

where L is the Lagrangian of the theory, qi represent the different variables or fields
in the theory. Imposing that physical trajectories minimize the action leads to the
Euler–Lagrange equations, which contain the dynamics of the theory:

δS

δqi
= 0 → q̈ j

∂2L

∂q̇ j∂q̇i
= ∂L

∂qi
− q̇ j

∂2L

∂q j∂ q̇i
. (2)

This system of differential equations has a unique solution just in case one can invert
the Hessian matrix ∂2L

∂q̇ j ∂q̇i
and express the accelerations q̈i in terms of the positions and

velocities. The theories we are interested in have multiple solutions, corresponding
to different gauges or different parametrizations, and hence it is a necessary property
of these theories that the Hessian matrix is not invertible. In this case we say that the
Lagrangian is singular.

Let me mention that singular Lagrangians allow not only for indeterminism, but
also it can be the case that the set of possible initial conditions is restricted, in the
sense that there will be initial conditions for which there doesn’t exist any solution
of the Euler–Lagrange equations. For instance, this is the case for electromagnetism:
only initial conditions satisfying Gauss law can satisfy the equations of motion. In the
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case of general relativity we will also find in Sect. 4 that not every initial condition is
allowed.

When one tries to express a theory with a singular Lagrangian in the Hamiltonian
formulation, one finds the following problem. The canonical momenta pi are defined
by the transformation pi = ∂L

∂q̇i
, and this can be shown to be invertible if and only if

the Hessian matrix is. As we are dealing with singular Lagrangians, the definition of
the momenta is not invertible, and only a subregion of phase space corresponds to the
image of qi , q̇i under this transformation. This subregion, the constraint surface, is
defined as the region where a number of functions φα , known as primary constraints,
vanish. Therefore, any physical evolution can be described by an evolution in the
constraint surface and not as an evolution in the whole phase space.

There are different ways of defining the dynamics in this formalism. Here it will
be enough for us to introduce the total Hamiltonian:

HT = Hc + vαφα, (3)

where Hc is the canonical Hamiltonian defined by Hc = q̇i pi − L on the constraint
surface but extended2 to be a function for the whole phase space and vα are arbitrary
functions. The dynamics for the phase space variables and any phase space function
f is defined by the Hamilton equations of motion:

q̇i = {qi , HT } = ∂Hc

∂qi
+ vα ∂φα

∂qi
(4)

ṗi = {pi , HT } = −∂Hc

∂ pi
− vα ∂φα

∂ pi
(5)

ḟ (q, p, t) = { f (q, p, t), HT } + ∂ f (q, p, t)

∂t
, (6)

where it is assumed that the constraints are satisfied,3 i.e., φα = 0, and the brackets
represent the Poisson brackets. In order for these dynamics to be consistent with
the primary constraints it may be the case that further constraints need to be imposed,
which are known as secondary constraints, and/or that the vα are not arbitrary functions
but are fixed. This latter case is uninteresting for the purposes of this paper, as we are
interested in situations in which there is no condition on the vα whichmakes it the case
that the solutions of the equations of motion depend on arbitrary functions, showing
the formal indeterminism of the theories we are studying.4

Finally, in the constrained formalism one can define gauge generators, which gen-
erate gauge transformations which transform solutions of the equations of motion into

2 As a function on the whole phase space there are different canonical Hamiltonians one can define. In any
case, the dynamics they define are equivalent, corresponding to redefinitions of the free functions vα .
3 Let me mention that in this paper and in the literature with the term ‘constraints’ one refers both to certain
functions φα or operators φ̂α and to the condition that these functions vanish or that the action of those
operators on certain states vanishes.
4 For completeness, let me say that systems like the ones we are interested in are called first-class systems,
systems in which the vα are fixed are second-class, and that there are systems in which one has a mixture
of first-class and second-class constraints.
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other solutions of the equation of motion with the same physical content. Gauge gen-
erators take the form of a linear combination of constraints,5 multiplied by a number
of functions ε. In this sense, any phase space function f under an infinitesimal gauge
transformation is changed by:

δ f = { f ,G[ε]}. (7)

For gauge theories like electromagnetism one can identify the gauge-invariant quan-
tities as the quantities which don’t change under a gauge transformation, that is, the
ones which have vanishing Poisson brackets with the gauge generator. This way of
defining gauge transformations and gauge invariance is a useful characterization in
the constrained formalism, although we will see that it may be misleading in the case
of reparametrization invariant theories. Now we can turn to study the quantization of
constrained systems.

1.2 Quantization

Let me start by reviewing the canonical quantization procedure for an unconstrained
system. At a kinematical level, the quantization requires defining a Hilbert space
in which some of the functions of the phase space of the theory are represented as
linear operators. The algebra of operators intends to mimic the Poisson algebra of the
classical theory:

[ f̂ , ĝ] = i�{̂ f , g}. (8)

However, the quantization cannot be complete in the sense that there is no way of
assigning an operator to every phase space function such that for any two arbitrary
functions (8) is satisfied.6 Therefore, one chooses a restricted algebra of functions
and quantizes it, while for the rest of phase space functions there will remain some
ambiguity. For instance, for the quantum mechanics of a single particle one quantizes
q and p so that their associated operators satisfy [q̂, p̂] = i�. In this case there is some
ambiguity in defining a quantum operator for the function qp, as both (but not only)
q̂ p̂ and p̂q̂ could be the quantum counterpart of this function.

For having a complete quantum theory one needs to define a Hamiltonian operator,
which will define the dynamics of the theory. In general, there will be some ambiguity
in quantizing the classical Hamiltonian function, and different choices will be avail-
able, giving rise to different quantum theories. Once a choice is made, it defines the
dynamics for the expectation value of any operator by means of:

d

dt
〈Ô〉 = 1

i�
〈[Ô, Ĥ ]〉 +

〈
∂ Ô

∂t

〉
. (9)

5 In the literature there is some confusion about gauge transformations and their generators. It is sometimes
claimed that first-class constraints generate gauge transformations, but as it is argued by Pitts [5] this claim
is not true, and the generators take the form of some specific linear combination of the constraints.
6 This is a well-established fact proved as a theorem in [6].
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Table 1 Correspondence between the elements of a classical and a quantum theory

Classical theory Quantum theory

Basic space Phase space P Hilbert space H
Observables Functions on P Operators onH
Algebra Poisson algebra Commutator algebra

Dynamics ḟ (q, p, t) = { f (q, p, t), H} + ∂ f (q,p,t)
∂t

d
dt 〈Ô〉 = 1

i� 〈[Ô, Ĥ ]〉 + 〈 ∂ Ô
∂t 〉

This form of expressing the dynamics is equivalent to more familiar representations
such as the Schrödinger or the Heisenberg pictures.

I summarize the correspondence between the classical and the quantum theory in
Table 1 and steps of the quantization process as:

1. Start with a classical theory defined on a phase space.
2. Choose a subalgebra of functions on phase space and quantize them, i.e., build

an algebra of operators on a Hilbert space H such that the commutator algebra is
defined by the Poisson algebra of the classical functions [Eq. (8)].

3. Build a Hamiltonian operator which is a quantization of the classical one. The
dynamics of the theory is contained in Eq. (9) or in some equivalent form.

This quantization procedure can be adapted to constrained systems.7 In the canon-
ical description of a constrained system, not every point in phase space represents
physically meaningful states, as these are restricted to the constraint surface. Simi-
larly, in the quantum description we will distinguish between two Hilbert spaces: a
‘bigger’ one which is the counterpart of the whole phase space and a ‘smaller’ one
which will be the counterpart of the constraint surface. The bigger space is known as
the kinematical Hilbert space and it is defined in the same way as the Hilbert space of
an unconstrained system, i.e., it is a Hilbert space in which a series of operators exists
such that their operator algebra mimics an algebra of functions in phase space. The
physical Hilbert space is defined as the subspace of this space, or as the distributional
space over this space for infinite-dimensional systems, of states which satisfy:

�̂A|ψ〉 = 0 ∀A, (10)

where �̂A are the quantizations of all the constraints of the theory, both primary and
secondary. That is, states in the physical Hilbert space are states which satisfy the
quantum version of the constraint equations �A = 0 which define the constraint
surface.

Notice that the imposition of the constraints has as a consequence that states in the
physical Hilbert space are invariant under the action of the quantum counter-part of
the gauge generators, as they will take the form Ĝ = εA�̂A and hence Ĝ|ψ〉 = 0.
This is an important difference with the classical case: in the classical case a point on
the constraint surface was not gauge-invariant, i.e., under the action of the gauge gen-
erator this point would in general change. Therefore, while the classical constrained

7 This is usually known as Dirac quantization, as it was first formulated by Dirac in [7]. I refer the reader
again to [2–4] for more careful discussions.
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formalism allowed for some gauge freedom, the quantum formalism only allows for
gauge-invariant states. This will be a source for the problem of time for reparametriza-
tion invariant systems.

Finally, the dynamics is specified by a Hamiltonian operator defined on the physical
Hilbert space. This operator can be defined by quantizing the total Hamiltonian and
by noticing that the terms to vαφ̂α don’t have any effect on the evolution due to the
conditions (10). In this sense,we also see how the gauge freedomand the indeterminacy
thatwe had in the classical case has disappeared in the quantumcase, as the dynamics is
independent of the choice of the arbitrary functions vα and is defined by the canonical
Hamiltonian.

There are some technicalities that may arise in the quantization of a constrained sys-
tem, such as the possibility of anomalies, i.e., the possibility that the relations between
the classical constraints no longer hold for the quantum ones. Leaving those aside, the
quantization procedure for a constrained, first-class system can be summarized as:

1. Start with a classical gauge theory defined on a phase space.
2. Choose a subalgebra of functions on phase space and quantize them, i.e., build an

algebra of operators on akinematicalHilbert spaceHkin such that their commutator
algebra is defined by the Poisson algebra of the classical functions [Eq. (8)].

3. Impose the constraints. That is, define the physicalHilbert spaceHphys as the space
of the states which satisfy �̂A|ψ〉 = 0. The states in this space are automatically
gauge invariant.

4. Build a Hamiltonian operator which is a quantization of one of the Hamiltonians
that generate the constrained dynamics in the classical theory. The dynamics of
the theory is contained in Eq. (9) or in some equivalent form.

Next, I will show how for reparametrization invariant systems this procedure leads to
the problem of time.

1.3 Quantization of reparametrization invariant theories: the problem of time

A theory with a reparametrization invariance is a theory which is expressed in a
way that is independent of a choice of coordinatization, either of spacetime or of a
trajectory or structure in a space or spacetime. The best-known example is of course
general relativity, but any theory can be expressed in a reparametrization invariant
way by introducing the appropriate structures, as will be clear in the next section.
From a formal perspective, we can classify reparametrization invariant theories into
two groups: theories with homogeneous Lagrangians and generally covariant theories.
In the first category we will find theories like the two examples I will study in more
detail in this paper, and they can be shown to be constrained systems which have a
vanishing canonical Hamiltonian and D constraints per space point in D dimensions.
These D constraints are in correspondence with the D degrees of freedom one has for
choosing a set of D coordinates in D dimensions. The total Hamiltonian can therefore
be expressed as:

HT =
∫

dD−1x
(
NH0 + NaHa

)
, (11)
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Reassessing the problem of time of quantum gravity Page 9 of 37 21

where there is implicit a summation over the space indices a, H0 and Ha are the D
constraints of the theory, and N and Na are arbitrary functions, just as the vα before.
I will comment on the meaning of the constraints and the multipliers below, after I
introduce generally covariant theories.

Generally covariant theories are theories formulated on the language of differen-
tial geometry. In this language coordinates on their own don’t have any geometrical
meaning, but instead the geometric properties of spacetime are encoded in the metric
tensor gμν

8 which can be used to define quantities like distances and angles. Generally
covariant theories are invariant under reparametrizations which take into account the
geometrical nature of this formalism, that is, under reparametrizations the different
geometrical objects have different transformation rules according to their geometrical
properties: scalars transform as scalars, tensors as tensors, and so on.

For this type of theory we will find a similar constraint structure to the one one finds
for theories with homogeneous Lagrangians. For studying a generally covariant theory
in the canonical formalism it will be useful to introduce the ADM variables.9 In this
formulation spacetime is foliated into spacelike surfaces of constant time coordinate
and the components of themetric are divided into two groups, whichwill play different
roles. First, the spatial components of the metric gab will describe a metric for the
D − 1 space which is evolving in time. The rest of the components g0μ get a different
interpretation: they can be seen as encoding the information about the vector n normal
to the spacial slice at every instant of time. A convenient way of expressing this is by
means of the lapse function N and shift vector Na .10 These functions allow to express
the vector field ∂t which describes the foliation in terms of the normal to the foliation
and a tangential vector:

∂

∂t
= Nn̂ + Na ∂

∂xa
. (12)

Now,when applying the canonical formalism to a generally covariant theory expressed
in these variables we find a canonical Hamiltonian of the form:

Hc =
∫

dD−1x
(
NH0 + NaHa

)
. (13)

This form is suggestive, as the parallelism with (12) is evident: the canonical Hamil-
tonian which generates evolution in t is naturally decomposed in two parts one which
generates evolution normal to the foliation and another tangential one, with N and Na

describing precisely how ∂t decomposes in these two components. Notice also that
this is the form we found for the total Hamiltonian (11) for a theory with homoge-
neous Lagrangian. In this case, however, N and Na are dynamical variables, although
one finds that the momenta conjugate to them, P0 and Pa are primary constraints
of the theory. Furthermore, H0 and Ha are secondary constraints, and are known as

8 Here I will be using the {−,+, +,+, ...} sign convention.
9 The name comes from its proponents in [8].
10 In particular, the relation between the metric components and these functions is: N =

√
−g00 and

Na = −g0a/g00.
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the Hamiltonian and momentum constraints. The total Hamiltonian of a generally
covariant theory can therefore be expressed as:

HT =
∫

dD−1x
(
NμHμ + λμPμ

)
, (14)

where the λμ are arbitrary functions, just as the vα before and I am introducing the
more compact notation NμHμ = NH0 + NaHa . This total Hamiltonian is slightly
more complicated than the one for the homogeneous case, but it shares an essential
feature for its later quantization, namely that the total Hamiltonian is just a sum of
constraints. We will see that this is problematic for the quantization of the theory and
will give rise to the problem of time, even if it is unproblematic from the classical
perspective.

Before quantization, it is important to say a word about the gauge generator for a
reparametrization invariant theory. The gauge generator is also a sum of constraints11

and it transforms a solution of the equations of motion to another solution with a
different parametrization. For instance, in general relativity a transformation generated
by this generator transforms a solution of Einstein equations to another which is
diffeomorphic to it. Moreover, one can show that a particular case of gauge generator
for any reparametrization invariant theory is precisely the total Hamiltonian of the
theory. This just implies that a solution of the equations of motion and another one in
which everything happens, say, 1 second later represent the same physical events.

However, the fact that the total Hamiltonian is a case of gauge generator has caused
some confusion. For instance, Earman [10] has argued that this fact has to make us
consider that time evolution is just gauge evolution and that we should reconsider
our metaphysical picture of time and of the physical content of a theory like general
relativity. Some other authors [9, 11, 12] have rightly argued against this position.
Indeed, there are two notions of gauge invariance, and once one is clear about this
the conceptual trouble disappears. The way in which a reparametrization invariant
theory is a gauge theory is in that two different solutions to the equations of motion
can represent the same physical events but with a different labeling. This sense of
gauge invariance affects a whole solution, or if you want, a whole spacetime. There
is another sense of gauge invariance which is just instantaneous and it is exemplified
in theories like electromagnetism. In these theories, we can consider the description
of a system at a given time and gauge transformations to be transformations which
just transform the description of the system at a time. In this sense, instantaneous
gauge transformations are considered not to change the physical state of the system
at a given time. However, a transformation generated by the total Hamiltonian of a
reparametrization invariant theory is not a gauge transformation from this instanta-
neous perspective, as it transforms an instantaneous configuration of the system to
another one at a later time. That is, two descriptions of the universe that differ in that
in one every event happens one second earlier (with respect to some coordinate time)
than in another can be considered gauge equivalent in the global sense of the term,
but not in the instantaneous view of gauge, as the physical content at, say, t = 0 will
clearly be different for both descriptions.

11 For the expression for general relativity see for instance [9].

123



Reassessing the problem of time of quantum gravity Page 11 of 37 21

This makes it the case that reparametrization invariance has to be treated in a dif-
ferent and more careful way than a gauge invariance like the one in electromagnetism.
For instance, in electromagnetism the physical content of the theory at a time is in the
quantities that are invariant under gauge transformations. However, imposing some-
thing like that in the case of a reparametrization invariant theory is too strong, as
imposing invariance under the action of the gauge generator at a time is equivalent to
imposing invariance under time evolution.12 This will also turn out to be problematic
in the quantum case.

Finally, we can analyze what happens when we apply the steps outlined in the
previous subsection to a reparametrization invariant theory. When we apply step 3
we find that states in the physical Hilbert satisfy the constraint equations for the
Hamiltonian and momentum constraints:

Hμ|ψ〉 = 0, (15)

and also for the momenta conjugate to Nμ in the generally covariant case:

Pμ|ψ〉 = 0, (16)

Now, when we try to apply the fourth step we are in trouble, as the fourth step tells us
that the dynamics is defined by the total Hamiltonian of the theory, but its action on
physical states vanishes. Therefore, we find that we are missing the dynamical part of
our quantum theory and that we have defined a physical Hilbert space but we lack a
temporal evolution equation for states in this space. This is in a nutshell the problem
of time of reparametrization invariant theories.

Notice that the problemarises because the imposition of the constraints is too strong,
as it plays a double role: not only it makes it the case that the constraints are satisfied
but it also implies an invariance under the quantum counterpart of the gauge generator.
For a gauge theory like electromagnetism this may be fine, but for a reparametrization
invariant theory like general relativity it is not, as I have argued above that temporal
evolution is not a gauge transformation from an instantaneous point of view.

In the next section I will show how this problem can be overcome for deparametriz-
ablemodels, and how this inspired tentative solutions for the problemof time in general
relativity. However, I will argue that these resolutions work precisely because of the
deparametrizability of these theories. I will later argue that general relativity is not
deparametrizable and that one may doubt about the applicability of these resolutions
to it.

2 Deparametrizable models

This section is divided into two parts: first I introduce an example of a deparametrizable
model and explain the way the problem of time arises in it and then I explain how

12 This has also been argued in [13], where it was further argued to define observables not as invariant
under the action of the gauge generator but as covariant.
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there are some resolutions which are able to give us a meaningful quantum theory that
overcome this problem. I argue that these resolutions rely on the deparametrazability
of the model.

As it will become clear below, a deparametrizable model is a model which is
defined in such a way that time, or spacetime coordinates, can be identified as vari-
ables of the model. That is, in this kind of model time (or spacetime coordinates) will
appear explicitly as a variable in configuration or phase space or it can be identified and
separated by means of some appropriate transformation, such as a coordinate transfor-
mation in configuration space or a canonical transformation in phase space. Evolution
in these models is defined with respect to arbitrary parameters, but these models can
be deparametrized, i.e., these parameters can be eliminated and the dynamics can be
expressed with respect to the physically meaningful time or spacetime coordinates.

2.1 Example: non-relativistic particle

In this subsection I will study a simple model, the reparametrization invariant version
of the dynamics of a classical particle. This simple case is commonly13 used as an
example to follow for the quantization of general relativity and hence it is an important
model to study. We start with the Newtonian action

S[x] =
∫

dt

[
1

2
m

(
dx

dt

)2

− V (x)

]
, (17)

and we introduce a reparametrization invariance in the theory by introducing an arbi-
trary parameter τ such that the physical time t is now a configuration variable which
depends on τ :14

S[x, t] =
∫

dτ

[
1

2
m
ẋ2

ṫ
− ṫ V (x)

]
. (18)

One can check that this reparametrization invariant system leads to Newton equations
in the x, t variables. This model has a homogenous Lagrangian and therefore one can
show that it has a vanishing canonical Hamiltonian and that it satisfies the Hamiltonian
constraint:

H0 = pt + 1

2m
p2x + V (x) = pt + H(x, px ) = 0, (19)

where I have introduced the Hamiltonian function H , which is the Hamiltonian func-
tion of the system once the reparametrization invariance is removed. This model is
a one-dimensional model as it only depends on one parameter, in this case τ . This
model is clearly deparametrizable, as we are able to identify the variable t as the time

13 For instance, this case is discussed in [14–17].
14 There is a sense in which t is not treated as an ordinary configuration variable, as it is imposed that is
monotonic in τ . This implies that for every value of t there is a unique value of τ .
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variable and given any solution of the equations of motion of the model we are able to
invert the relation t(τ ) and express x(τ ) as x(t). Let me mention that in general, we
can introduce an artificial temporal or spatiotemporal reparametrization invariance to
any Hamiltonian theory to obtain a reparametrization invariant theory with homoge-
neous Lagrangian15 by adding some extra parameters. Obviously, these models are
deparametrizable, as we can always eliminate these extra parameters.

We can apply the quantization schema introduced in the last section to this system.
The natural kinematical Hilbert space for this system is Hkin = L2[R2, dxdt], that
is, the space of square-integrable functions both in position x and time t . In this
representation, the constraint condition for physical states takes the form:

Ĥ0ψ(x, t) = −i�
∂

∂t
ψ(x, t) + Ĥψ(x, t) = 0. (20)

This equation is nothing but the familiar Schrödinger equation of quantummechanics.
Solutions to this equation are distributional, in the sense that they are not square
integrable and do not belong to the kinematical Hilbert space. This can be seen by
computing the norm of such a function on this space:

〈ψ |ψ〉 =
∫

dt
∫

dx |ψ(x, t)|2 =
∫

dtC = ∞. (21)

Here I have used the fact that the spatial norm C of a function satisfying Schrödinger
equation is conserved in time. For defining the physical Hilbert spaceHphys not only
one needs to specify the vector space, which is the space of functions satisfying (20),
but also one needs to specify an inner product for this space. In this case we have the
natural candidate:

〈ψ1|ψ2〉 =
∫

dxψ∗
1 (x, t0)ψ2(x, t0), (22)

which is the familiar inner product used in quantum mechanics. The parameter t0 is
an arbitrary time parameter, given that the unitarity property of Schrödinger evolution
makes it the case that the value of the inner product is independent of t0.

As I have explained in the previous section, when we apply the last step of the
quantization procedure we find a problem of time. The total Hamiltonian is just given
by the Hamiltonian constraint (multiplied by a lapse function) and hence its action
on physical states vanishes. In this sense, there is no evolution with respect to the
parameter τ . As I commented above, this is an unwanted feature, as in the classical case
the temporal evolution of the system was described by the evolution of the variables
x and t with respect to τ .

Despite this, this case doesn’t seem very problematic. After step 3 we obtained
functionswhich satisfy the Schrödinger equation and it is straightforward to reinterpret
them as the usual wavefunctions of standard quantum mechanics. Crucial for this is
that we are able to identify the configuration variable t as a time variable and to,

15 See for instance [2, pp. 291-294].
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consequently, treat it differently from the position variable x . By doing this we recover
the standard quantum mechanics of a non-relativistic particle.

Notice that this solves the problem of time in that by inspecting the states in the
physical Hilbert space we were able to recover a time and a unitary time evolution
with respect to it. However, the time evolution we were originally looking for, that is,
evolution in τ is not recovered. This is arguably not problematic in this case, as one
can argue that t is the physical time and that physical time evolution is evolution in t .
But in the case of general relativity this won’t be so clear, as I will argue later. Before
that, I will sketch in the next section how this case and similar examples motivate
several proposals for resolutions of the problem of time.

2.2 Proposals of resolution for the problem of time

The example I just exposed motivates a few proposals of resolution of the problem of
time that I will briefly introduce here. For exhaustive reviews of these in detail I refer
the reader to [14, 15]. These resolutions take as a lesson from the last example that
time is in some way encoded in the configuration space of the theory and on states
on the physical Hilbert space and that one just has to cleverly interpret these states to
recover time and quantum mechanics.

The first proposal of resolution is just to do exactly the same as we have done for
the case of the non-relativistic particle, i.e., to take states in the physical Hilbert space
and interpret them as solutions of some Schrödinger-like equation. For making this
interpretation one has to distinguish a variable as a time variable, or D variables as
spacetime variables for the field-theoretic case. If one is lucky, evolution with respect
to this time variablewill be unitary, and standard quantummechanics can be recovered.
However, this is not necessarily the case, as is illustrated by the quantization of the
relativistic particle model, which leads to the Klein-Gordon equation, which is not
unitary. There are further problems with this approach, like the fact that one may be
able to choose different variables as time variables, leading to different and sometimes
inequivalent quantum theories.

Some of the technical difficulties of this approach may be avoided if one identifies
the time variable before starting the quantization process. By doing so, one can rewrite
the dynamics of the theory in termsof this timevariable and avoid the reparametrization
invariance and the problemof time. This strategy suffers from the samemultiple choice
problem I just mentioned, but it doesn’t suffer from the problem of unitarity.

These two approaches share an important feature: in both cases there is a
deparametrization going on, i.e., in both cases one identifies the time (or spacetime)
variables and is able to express the dynamics in terms of these variables. The differ-
ence is just the moment in which this identification is performed, as it can be done,
technical difficulties notwithstanding, both before or after quantization. Again, I refer
the reader to [14, 15] for a longer discussion of these approaches and the technical
difficulties associated with them.

A similar resolution specific for the case of general relativity is the semiclassical
resolution, which only aims to solve the problem of time for a subset of states in the
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physical Hilbert space for which a series of approximations apply. For these states, or
at least for some regimes in these states, the strategy also involves a deparametrization.

A different proposal is the frozen observables resolution, which focuses on observ-
ables rather than on states. For an observable to be well-defined in the physical Hilbert
space it has to commute with the constraints. This implies that its classical counterpart
has to be invariant under the action of the gauge generator. I have argued above that
the instantaneous view of gauge transformations is problematic for reparametrization
invariant theories and too strong. Indeed, the classical quantities that satisfy this con-
dition are constants of motion. Despite this, authors like Rovelli [18, 19] argued that
the physical content of a quantum theory can be recovered from these quantities which
are referred to as evolving constants of motion.

Let me illustrate this with the observables for the example of the non-relativistic
particle and let me set the potential V (x) to be 0. In this case we can define the classical
phase space function:

XT (x, t, px , pt ) = x + px
m

(T − t). (23)

It is easy to show that this function has vanishingPoissonbracketswith theHamiltonian
constraint and that it is a constant of motion the value of which is the position of the
particle at physical time T . In this sense, it is claimed that these constants of motion
represent all the dynamical content of the theory. Notice that even if these quantities
don’t evolve with respect to the parameter τ , they form a family parametrized by T
and if we study the evolution of XT we recover the dynamics of the particle with
respect to physical time. The idea to solve the problem of time is to extend this to the
quantum case, i.e., to find the operators X̂T and to recover dynamics and temporal
information from their evolution in T .

There are a few technical issueswhichmake it difficult to find anddefineobservables
which arewell-defined in the physicalHilbert space of a complicated reparametrization
invariant theory like general relativity. I refer the reader to the reviews [14, 15] and
also to [16] for a discussion of those. From a conceptual point of view there are a
couple of points that are worth raising.

First, one can doubt the sense in which functions like XT are genuine observables.
When we start building a theory defined on a configuration space, we usually assume
that the configuration variables are the quantities for which we have a physical inter-
pretation andwe can, in principle, measure or observe. All other phase-space functions
can be computed from the values of these basic variables and their rates of change. For
instance, we can say that the position cubed of a particle is an observable not because
one can go and measure it in any straightforward way, but because we believe the
position itself to be observable. Similarly, functions like XT reflect the fact that given
the position of a particle at a time t , and knowing the equations of motion, one can
compute what its position was or will be at time T .

Moreover, one can define quantities like:

XT ,a,b(x, t) = x − a + px
m

(T − (t − b)). (24)
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These quantities also satisfy that they have vanishing Poisson brackets with the Hamil-
tonian constraint and hence they will also represent well-defined operators on the
physical Hilbert space. However, their physical interpretation is slightly different:
they do not represent what the position of the particle will be or was at a given time,
but they represent the position the particle would take at time T if its actual position
and time at parameter time τ were shifted by a and b. This is a kind of function which
is observable in the sense that one can compute it if one observes x and t and knows
the equations of motion, but not in any intuitive meaning.

A possible way out of this is to focus just on the observables X̂T and reject any other
observable defined on the physical Hilbert space. By analyzing just these observables
one is lead to an interpretation very similar to the one we found by interpreting the
states in the physical Hilbert space but now from a Heisenberg picture of quantum
mechanics. The relation between the approaches is explored in more detail in [16].
However, even if for the case of the non-relativistic particle things work out well,
for a more general theory we can find other problems like that the evolution of the
operators, if we are able to define them, may not be unitary. But more importantly for
my argument in this paper is that we have had to define a set of observables which
basically defined the evolution of some variables with respect to the others. This is a
way of deparametrizing the theory, as at the end of the day we are finding a set of ‘true’
observables which evolve with respect to some ‘true’ time. In this respect, the frozen
observables resolution is dependent also on the assumption of deparametrazability, and
I will raise the doubt that it may not be applicable for theories like general relativity.

Finally, let me mention a different strategy championed by Rovelli which focuses
not on states or operators, but on transition amplitudes.16 Rovelli defines transition
amplitudes between states in the kinematical Hilbert space by making use of the
projector17 η, which is a map that takes any state in the kinematical Hilbert space
and returns a state in the physical Hilbert space. In this way the inner product of the
physical Hilbert space defines a transition amplitude. For instance, in the case of the
non-relativistic particle one defines the transition amplitude as:

(η(x1, t1)|η(x2, t2)) =
〈
x1|e

−i(t1−t2)

�
Ĥ |x2

〉
= K (x1, t1; x2, t2). (25)

The first equality can be reached by analyzing the exact form of the projector of this
theory and the expression is the expression one finds in standard quantum mechanics
for the propagator K (x1, t1, x2, t2). The propagator is an object which contains all the
dynamical information of the theory, as it is a representation of the evolution operator.
The idea of Rovelli is to generalize this to any reparametrization invariant theory and
define the transition amplitude by means of the appropriate projector map η and inner
product of the physical Hilbert space.

There are some technical and conceptual difficulties in this approach, but for now
let me point out that the transition amplitude thus defined can be interpreted as a
propagator in a clear-cut way in the case of some deparametrizable theories like our

16 See [20, 21].
17 This map is referred to as the projector but it is only a proper projector map for the case of Hamiltonians
with discrete spectra.
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example. That is, by identifying which variables work as coordinates for spacetime
points we can interpret the transition amplitude as the propagator which defines evo-
lution with respect to those spacetime variables. For non-deparametrizable theories,
the interpretation of such an object becomes more complicated as I will argue in the
next section.

Let me conclude this section by insisting on the main point for my argument: the
strategies that solve the problem of time for the non-relativistic case rely on it being
a deparametrizable theory, and it is therefore at least worrisome to try to apply the
same strategies to non-deparametrizable theories. In the next section Iwill introduce an
example of one such theory and argue that one cannot successfully apply the strategies
defined in this section to it.

3 Non-deparametrizable models

This section follows the same structure as the previous one. In the first part I introduce
an example, in this case of a non-deparametrizable reparametrization invariant model,
and the way its quantization leads to a problem of time. In the second part I go through
the resolutions of the problem of time outlined in the previous section and argue that
they are not satisfactory for this model. This leads to the conclusion that the problem
of time is not solvable for this model and that this conclusion may be extended to other
non-deparametrizable models.

3.1 Example: two harmonic oscillators

The example I will study in this section is the dynamics of a system of two harmonic
oscillators expressed by its Jacobi action:

S[x, y] = 2
∫

dτ

√
m

2

(
ẋ2 + ẏ2

) (
E − 1

2
(kx x2 + ky y2)

)
. (26)

Examples similar to this were studied in [22] for supporting a Machian perspective of
time.18 In this view, an absolute time scale ismeaningless andwhat is reallymeaningful
in mechanics is the succession of configurations. This action exemplifies well this
view, as the trajectories which minimize it agree in that they describe two oscillators
oscillating between the same two positions, but they disagree in the values of τ they
assign to each instant (Fig. 1). This example can be generalized to consider a whole
universe as described by classical mechanics. From Barbour’s perspective, one can
make sense of the dynamics of the universe even in the absence of the metric aspect
of time, just by retaining the ordering relation it defines. In this sense a history of the
universe is described by a trajectory in configuration space, and it doesn’t matter the
way we parametrize this trajectory.

18 For a more recent review of Newtonian systems studied from a Machian perspective and using Jacobi’s
principle see [23].
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Fig. 1 Two equivalent solutions of the equations of motion of the double harmonic oscillator model. They
represent the same sequence of oscillations but they differ from each other at the particular values of τ

they assign to each moment of time. In this way the parametrization on the left-hand side represents the
Newtonian parametrization in which the oscillations are regular and the one in the right-hand side represents
a parametrization in which the oscillations become faster as τ passes

Notice however that there is a choice of time parameter which is special in that it
makes the equations of motion look simpler. We can define a special time parameter

t by imposing dt =
√

m(ẋ2+ẏ2)
2E−kx x2−ky y2

dτ . With respect to this parameter t what one

finds is that the equations of motion become the Newton equations of motion for the
harmonic oscillator and that the oscillations of both oscillators are regular with respect
to this time parameter, even if each one has its own frequency. In this sense, the factor√

m(ẋ2+ẏ2)
2E−kx x2−ky y2

is a lapse function which plays a similar role to the one played by the

metric in a generally covariant theory: it relates a physically meaningful time t with
the arbitrary parameter τ , just as the metric relates the coordinates along a worldline
with the proper time.

Systems like this one satisfy, to a degree, a thick sandwich conjecture. We can
formulate the conjecture in the following way: for determining a full dynamical tra-
jectory it is enough to specify an initial and a final state for the system, without giving
any information of the time elapsed between both instants. In this case, the conjecture
holds to some extent: given an initial and a final configuration one can determine tra-
jectories in configuration space which solve the equation of motion. However, these
are not necessarily unique, as, depending on the values of the initial and final states
and of the couplings of the oscillators, there may be more than one trajectory in con-
figuration space which obeys the equations of motion and satisfies the initial and final
condition. Notice that this can be seen as an alternative version of classical mechanics
where instead of specifying an initial and a final configuration and the time elapsed
between them one specifies the configuration and the energy of the system. Therefore,
there is a very natural sense in which we can say that temporal information is encoded
in the energy and in the equations of motion, as the configuration space is the same in
both formulations. We will find a similar conjecture for the case of general relativity
in the next section.

We can now analyze this model using the Hamiltonian formulation. We find that
this system is a constrained system with a vanishing canonical Hamiltonian. The total
Hamiltonian is therefore:
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HT = NH0 = N

(
1

2m
p2x + 1

2m
p2y + kx

2
x2 + ky

2
y2 − E

)
, (27)

where N is an arbitrary positive function andH0 = 1
2m p2x + 1

2m p2y + kx
2 x

2+ ky
2 y2− E

is the Hamiltonian constraint for this system. It can be shown that different choices of
N correspond to different parametrizations of time and that it plays the role of a lapse
function.Notice that even if this example looks similar to the one in the previous section
(both are theories with homogeneous Lagrangians), now time is not a variable in the
configuration space of the theory. We see that this theory is not a deparametrizable
one, as both degrees of freedom x and y represent physical degrees of freedom and
not a time coordinate.

However, notice that, in a limited sense, one can use one of the variables as a clock
for the other. If we consider just an oscillation of the first oscillator we can describe
the position of the second one as a function of the position of the first one. That is, for a
restricted amount of time we can consider y as a function of x . But the position of the
first oscillator x is not a good clock for long periods of time, as there is a moment in
which it reaches a maximum and turns back. Therefore specifying a value of x doesn’t
uniquely specify an instant of time. For this reason, it is important to emphasize that
even if x , or y, can work as clocks at some moment of the dynamical evolution of
the system, they are not time variables. Time, in this Machian view, is defined by the
sequence of configurations and not by any variable in this configuration.

Now we can consider the problem of time for this system. The kinematical Hilbert
space of the system is just the space of square-integrable functions on the real plane
L2[R2], and the constraint equation is:

(
1

2m
p̂x

2 + 1

2m
p̂y

2 + kx
2
x̂2 + ky

2
ŷ2 − E

)
|ψ〉 = 0 → Ĥ |ψ〉 = E |ψ〉. (28)

This is just the time-independent Schrödinger equation for the system of two harmonic
oscillators. Obviously, if we were expecting to get the standard quantum theory for
two harmonic oscillators, the conclusion we reach is that this quantization procedure
has failed.

Notice that in the case of the non-relativistic particle we could lose evolution in τ

as long as we could define evolution in t . In the case of the double harmonic oscillator
it seems more harmful to lose evolution in τ , as I have argued above that temporal
evolution is a succession of configurations of both x and y and not definable by
relative evolution as x(t) was in the case of the deparametrizable model of the non-
relativistic particle. In other words, as the configuration space of this example is a
proper configuration space and not an extended one we don’t have any time variable
left if we lose τ , while in the deparametrizable example we still had t .

Looking more carefully at what is going on in this case we find an interesting
feature. In action (26) there explicitly appears E , which is the energy of the system. In
this sense, one can read this as saying that it is part of the dynamics, or if you want, of
the laws that describe the system. This is a difference with the standard formulation
of mechanics, in which the total energy is a conserved quantity but it is not fixed by
the action. Therefore, it is not so surprising that the quantization which stems from
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action (26) leads to just the quantum way of stating that the system has a fixed energy
E . However, in quantum mechanics one needs a superposition of energies for having
a non-trivial time evolution, and the Hamiltonian constraint just forbids it.

In this case, a straightforward way of resolving the problem of time is to formulate
the dynamics of the two harmonic oscillators in its standard Newtonian form and
quantize it. However, as we will see, for theories like general relativity this move
doesn’t seem to be available and hence the problem seems to be inescapable. In the
next subsection I will make a few comments about how the strategies outlined in the
previous section fail to solve the problem of time for our example.

3.2 Applying the proposals to our system

It is straightforward to see that the strategy of deparametrizing and then quantizing
doesn’t really make sense if we believe our theory not to be deparametrizable. There is
no variable in our phase space which represents time, and even if we were to conflate
the notions of time and clock, the variables which can work as clocks only do so for a
limited amount of time. More technically speaking, there is no phase-space function
which increases monotonically with time, and hence no good clock for all times. Still,
we can do some violence19 to the formalism and replace the original constraint with:

H0 = 1√
2m

px +
√
E −

(
1

2m
p2y + kx

2
x2 + ky

2
y2

)
. (29)

Phase space points satisfying this constraint automatically satisfy the original con-
straint, although not every point in the original constraint surface satisfies this new
constraint and this constraint doesn’t generate the full dynamic trajectories. This con-
straint has the same form as the one we found for the non-relativistic particle (19).
However, despite the formal similarity the quantization of this constraint only leads to
a Schrödinger equation in a limited sense. The square function of an operator is only
Hermitian if the operator is positive-semidefinite and it is clear that for big enough
values of x we get a negative number inside the square root. If the square root is not
Hermitian, the evolution generated by the quantization of the constraint is not unitary.
Moreover, the operator inside the square root can also become negative because of
the y-dependent operators. Therefore, the evolution defined by the quantization of
this constraint is only unitary for a limited range of values of x and if we restrict the
allowed states.

Recalling the discussion before, we know that x only worked as a clock for a
limited range of time. In this sense one could argue that the quantum mechanics we
have found is a good quantization for the second oscillator during half an oscillation
of the first oscillator. However, this isn’t satisfactory, as the way we are treating both

19 A similar strategy can be found in [24] for a more symmetric version of the same model. The version of
the model in that paper is subject to my conceptual criticisms below, although it is able to overcome some
technical difficulties by adding some (somewhat ad hoc) modifications. A similar model and interpretation
can also be found in [25] and it is also vulnerable to my criticisms in the main body of the text. I thank an
anonymous reviewer for mentioning these papers to me.
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variables is radically different: one is acting as a classical time parameter while the
other is a quantum variable. While one oscillator just evolves classically following
an oscillation, for the other we can have all the phenomena and properties typical of
quantum mechanics.

The strategy of quantizing and then finding an interpretation is also problematic.
For solving the quantum constraint equation (28) it is useful to use the basis formed by
harmonic oscillator energy eigenstatesψn for both oscillators. The constraint equation
in this basis becomes:

�ωx

(
nx + 1

2

)
+ �ωy

(
ny + 1

2

)
= E, (30)

where ωx =
√

kx
m and ωy =

√
ky
m are the frequencies for the two oscillators. This

equation can be solved only for specific values of E . For these values, we can find
values of nx and ny which satisfy the constraint. States in the physical Hilbert space
are superpositions of states with those values of nx and ny :

ψ(x, y) =
∑

�ωx

(
nx+ 1

2

)
+�ωy

(
ny+ 1

2

)
=E

cnxnyψnx (x)ψny (y), (31)

where cnxny are the amplitudes for the allowed combinations of nx and ny . Now,
for applying the deparametrization strategy we should pick one of the variables as
representing time and the other one as the dynamical variable.Obviously, the symmetry
between x and y makes it the case that none of the choices is natural. Furthermore,
if we consider x (similarly for y) to be a time parameter we find again the problem
that evolution in x isn’t unitary and that the amplitude for very big x goes to 0. In
this sense, deparametrizing after quantization doesn’t do better than deparametrizing
before quantization.

Now we can analyze the frozen observable strategy by studying the operators
defined in the physical Hilbert space of the system. In this case, it is easy to find
that the operators acting on the x space commute with the constraint only if they com-
mute with the x-Hamiltonian, 1

2m p̂2x + kx
2 x̂

2, and similarly for operators acting on the
y space. Therefore, any function f (nx , ny) defines an operator on the physical Hilbert
space, which acts as:

f̂ (nx , ny)ψ(x, y) =
∑

�ωx

(
nx+ 1

2

)
+�ωy

(
ny+ 1

2

)
=E

cnxny f (nx , ny)ψnx (x)ψny (y).

(32)

It is unclear in which way, if any, one could find a sense of evolution which made
physical sense in the family of functions f (nx , ny).

As I said above, by looking at just half an oscillation of the first oscillator x , it is
a well-defined question to ask what is the value of y when x takes a given value X .
We can even construct a phase space observable YX which would be analogous to
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XT in the example of the previous section. However, this observable would only be
well-behaved for the oscillation in which we are defining it. Outside of that domain
the function will not have a vanishing Poisson bracket with the constraint and won’t
be a constant of motion any more.20 Therefore, we have trouble with YX even at a
classical level. At a quantum level, things are technically even more complicated as
the function YX is not trivial and nothing grants us that its quantization will commute
with the quantum constraint. That is, it may be the case that there is no quantization
of YX which is a well-defined operator in the physical Hilbert space.

Apart from these issues, the general worry in this section remains also for this
strategy. Choosing a preferred variable to be the one which defines temporal evolution
seemswrong in this case, not only because both variables are on a par, but also because
we have the intuition from the classical theory that temporal evolution is defined as a
sequence of configurations and not by any physical variable acting as a clock.

Despite this, let me mention that authors like Rovelli [18, 19] don’t want to commit
to any choice of preferred variable in their resolution of the problem of time. Therefore
they would allow both XY and YX to contain the physical information of the theory.
However, this leaves us with no clear notion of temporal evolution, as both evolution in
X and evolution in Y would be described by some set of operators. How to make those
temporal evolutions compatible is unclear. Therefore, even ifwewere able to define the
observables,wewould be leftwith a series of observableswith an unclear interpretation
which goes against our intuitions of what we expected of a quantum theory. To be fair
to Rovelli, he acknowledges21 that in his view the usual Schrödinger picture can only
be recovered for some systems or as an approximation. However, in my opinion this
doesn’t give a satisfactory way of interpreting the formalism and it doesn’t answer the
general worries about the relational strategy for non-deparametrizable models I have
raised in this section.

Finally, the transition amplitude strategy is also not satisfactory for this case. One
can compute the transition amplitude for two (improper) states in the kinematical state
to find:

(η(x1, y1)|η(x2, y2)) =
∑

�ωx

(
nx+ 1

2

)
+�ωy

(
ny+ 1

2

)
=E

ψ∗
nx (x1)ψ

∗
ny (y1)ψnx (x2)ψny (y2).

(33)

This object cannot be interpreted as a time evolution operator in any straightforward
way. For instance, if we try to interpret it as an evolution operator in x it is not unitary,
as we find that the norm

∫
dy1|(η(x1, y1)|η(x2, y2))|2 depends on x1. That is, if we

were to use (η(x1, y1)|η(x2, y2)) to define a state in y we would find that the norm of
this state would depend on the ‘time’ x .

As was the case for the other resolutions, the transition amplitude strategy finds the
problems that we lack a time parameter for interpreting the objects we have found as
describing something evolving and that taking one of the physical degrees of freedom

20 The reason for this is that the inverse trigonometric functions needed to define such an observable are
multivalued.
21 Again, I refer the reader to [18, 19].
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to be something like a time not only is technically problematic, but it goes against the
spirit of the classical theory.

One argument in favor of the transition amplitude strategy for the case of general
relativity relies on the sandwich conjecture for that theory. The argument could also be
applied for our model: in the same way that for our classical model we can know the
time elapsed between an initial and a final configuration, maybe specifying an initial
and a final state for the transition amplitude also determine the time for the quantum
case. However, in the transition amplitude we have found there was no hint of that
and the thought may be misled, as in the classical case it wasn’t the initial or final
configurations that carried information about time, we were able to get time back just
because we knew the equations of motion and the energy of the system.

Similarly to the case of the frozen observables strategy, one may insist on the
transition amplitude strategy for theories like general relativity, even if acknowledging
some of the difficulties pointed out in this section. This position has been also defended
by Rovelli.22 However, the physical interpretation of these transition amplitudes is at
best dubious. The reason for this is that the properties of a quantum propagator do not
apply to these amplitudes, and hence one cannot use these transition amplitudes for
obtaining a wavefunction evolving in time, which makes it the case that one cannot
apply neither the standard formalism of quantum mechanics nor any of the standard
realist interpretations of the theory.

Before closing this section, let me comment that a very similar example has been
discussed in the literature. This is the model introduced in [26] and which has been
discussed since [21, 27]. This model is a more symmetric version of the double oscil-
lator model I have been considering, and a similar analysis applies to it. However, let
me mention that it is a trickier case, as the symmetry makes it the case that there is
a conserved quantity (the angular momentum if one reinterprets the positions of the
two oscillators as the x and y coordinates of a single particle) and one can define a
monotonically increasing phase space variable (the polar angle φ). One can avoid a
number of the problems raised above by considering that φ acts as a time variable
and by deparametrizing the theory. This solves the technical problems, but not the
conceptual ones (such as why would we want to consider φ as a time coordinate and
not want to quantize it). In any case, the example I have considered in this section
is generally non-deparametrizable, and hence quantizations of the symmetric model
which interpret it as deparametrizable23 do not invalidate my analysis of the system
analyzed in this section.

Let me close this section by insisting that the problem of time for non-
deparametrizablemodels like the one I have just analyzed seems a serious problem and
that the resolutions which are popular in the quantum gravity literature don’t seem
to be able to satisfactorily solve it. Next, I will argue that general relativity is not
deparametrizable and that the same analysis applies to it.

22 See [20, 21]
23 In particular, I am referring to the quantummodel developed in section VI of [27]. I thank an anonymous
reviewer for pointing to me this possible counterexample.
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4 General relativity is not deparametrizable

If the analysis of the previous two sections is correct, the deparametrazability or not
of a reparametrizable theory is crucial for solving the problem of time that arises
when quantizing it. We have seen several proposals of resolution which work quite
well for simple deparametrizable models, not so well for more complex ones, and
probably not at all for non-deparametrizable ones. Therefore, as we are interested in
quantum gravity, i.e., quantizations of general relativity, we should consider whether
it is a theory that can be deparametrized or not. In this section I will introduce general
relativity and I will argue that it is not deparametrizable and that there is no clear sense
in which its configuration variables carry information about time.

General relativity is a case of a generally covariant theory as I have introduced
them in Sect. 1. As I explained in that section, to canonically quantize the theory
we need to express it in the Hamiltonian formalism. However, notice that not every
model of general relativity can be expressed in this way, as general relativity allows for
non-globally hyperbolic spacetimes, i.e., for spacetimes which cannot be decomposed
as a space evolving in time. These spacetimes are usually regarded as problematic
or unphysical, as they can show features like having closed timelike curves. For this
reason, the restriction to globally hyperbolic spacetimes needed for expressing general
relativity in the Hamiltonian formalism isn’t considered troublesome.

Expressed in the ADM variables, a model of general relativity describes the evolu-
tion in time of a D−1-metric gab, a lapse function N and shift vector Na and, possibly,
somematter fields φα . All these quantities are defined as fields on a D−1-dimensional
space manifold. General relativity has a reparametrization or diffeomorphism invari-
ance, as different models can describe the same physical spacetime but described using
a different foliation or a different way of assigning coordinates to spacetime points. In
the discussion below I will focus on general relativity for four spacetime dimensions,
that is, D = 4.

The time coordinate describing the foliation doesn’t have any metrical meaning, it
just contains ordering information, i.e., leaves of the foliation with a bigger parameter
go after the leaves with a smaller one. In this, it is perfectly analogous to the parameter
τ in the two examples I have studied in the previous sections. However, when we
want to recover metrical time information, that is, information not about which event
goes before another, but information about how much time has elapsed between the
two events, what we find is that general relativity is similar to the example in the last
section and not to a deparametrizable theory. In the deparametrizable theory, metrical
time was one of the variables in the configuration space of the theory, while in general
relativity none of our variables seems to bemetric time. In the case of the two harmonic
oscillators time wasn’t a variable in the configuration space and the dynamics was
independent of the way we chose to label time, but there was a preferred time we
could define which was no other than the Newtonian time. This time was defined by:

dt =
√

m(ẋ2 + ẏ2)

2E − kx x2 − ky y2
dτ. (34)
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This definition can of course be generalized to any Newtonian system, as shown by
Barbour.24 In general relativity we seem to be in the same situation as the proper time
between two events is defined infinitesimally as:

ds2 = −gμνdx
μdxν = N 2dt2 − gab(dx

a + Nadt)(dxb + Nbdt). (35)

Proper time in general relativity and Newtonian time in the example in the previ-
ous section are analogous according to Barbour. In both cases we have well-defined
dynamical theories which determine a set of physical events with precise ordering
relations25 and, even if we can define a preferred metric time in both cases, it is not
necessary to do so. In this sense, Barbour considers Newtonian time in Newtonian
physics and proper time in general relativity to be convenient ways of treating time
that may simplify our calculations, but he rejects that they have any further meaning
as the ‘true’ scale of time.

In both cases we can define an ideal clock as a system which directly correlates
its physical state with the metric time: in the Newtonian case the reading of an ideal
clock gives the absolute time, while in the general relativistic case an ideal clock
shows the proper time elapsed along its worldline. Of course, real clocks are not ideal
and there may not exist any real physical system which ever measures metric time.
In any case, it should be clear that in both models metric time and clocks are defined
in analogous ways. Therefore, there is a good case supporting that time in general
relativity is represented in a similar way to the one chosen by Barbour and not to the
one in the deparametrizable models. Notice that this conclusion holds independently
of our philosophical position regarding absolute time scales.

Let me now introduce the phase space structure of general relativity.26 First, the
momenta conjugate to the spatial metric are:

πab = −|g|1/2
(
Kab − gabK

)
, (36)

where Kab is the extrinsic curvature tensor which describes how the spatial metric
changes along the direction normal to the space surface, that is:

Kab = Lngab. (37)

24 I refer the reader again to [22] for a discussion of Newtonian systems using Jacobi’s principle.
25 These ordering relations are different in both cases. In the Newtonian case the ordering relation is given
by the absolute time, while in the general relativistic case events are partially ordered by the causal structure
of spacetime.
26 I refer the reader to [8, 9, 14, 28] for more detailed introductions and derivations of the canonical
formulation of general relativity. These derivations and formulations are based on the Einstein-Hilbert
action of general relativity and are of extended use in the literature. Let me mention however that general
relativity can also be expressed by means of the BSW action and that one can perform a canonical analysis
based on this formulation. Expressing general relativity in that way wouldn’t affect my analysis, and it has
been used to make emphasis on the connection with Jacobi-like actions which is a point I am also arguing
for in this paper. I refer the interested reader to [29] for a discussion of general relativity in terms of the
BSW action.
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The momenta conjugate to the lapse function and shift vector are primary constraints
with no physical meaning, as discussed above:

Pμ = 0. (38)

When matter fields are present, we will also have some momenta πα associated to
the fields. As a generally covariant theory it has the same constraint structure I have
described above, with Hamiltonian and momentum constraints given by:

H0 = Gabcdπ
abπcd − |g|1/2R[g] + C0,matter (39)

Ha = −2∇bπ
b
a + Ca,matter , (40)

where Cμ,matter are the matter contributions to the constraints, R is the 3-dimensional
curvature of space, and Gabcd is known as the supermetric and defined as:

Gabcd = |g|−1/2

2
(gacgbd + gbcgad − gabgcd) . (41)

These constraint equations correspond to 4 of the Einstein equations of general rela-
tivity, namely to:

G0μ = κT 0μ, (42)

where G0μ are the temporal components of the Einstein tensor, T 0μ are the temporal
components of the stress-energy tensor in the case we consider matter fields and κ is a
constant. These 4 equations are constraint equations, that is, they don’t determine how
the variables of the theory evolve, but they just are conditions that have to be satisfied at
every instant of time. This means that in general relativity one cannot choose arbitrary
initial conditions, just as in electromagnetism one has to require of the initial state of
the electric field that it satisfies Gauss law.

The other 6 Einstein equations are dynamical equations and they can be derived in
the constrained Hamiltonian formalism from Hamilton equations for the total Hamil-
tonian:

HT =
∫

d3x
(
NμHμ + λμPμ

)
, (43)

where the 4 arbitrary λμ reflect the formal indeterminism of the theory, as different
choices of them would correspond to different coordinatizations of the spacetime
compatible with the initial conditions.

We see that the canonical analysis of general relativity is what we were expecting
from our general analysis in Sect. 1 and from the other examples studied in this paper.
Therefore, its quantizationwill lead to a problemof time, and hence it will be important
to determine whether it is a deparametrizable theory or not. The main difference with
the other examples, at the level of the canonical formalism, is that in general relativity
we have secondary constraints, and the variables N and Na are a bit special. Their
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equations of motion are determined by the arbitrary λμ and therefore we have some
freedom for choosing them in any way that is convenient. In this sense they are more
like Lagrangemultipliers andwhen considering the initial value formulation of general
relativity one can focus on the spatial metric and matter fields.

The remaining elements of the phase space are the metric gab and matter fields φα ,
and their conjugate momenta πab and πα . As I commented before, general relativity
doesn’t look like a deparametrizable theory, as all of these phase space variables
have their own physical interpretation and don’t seem to represent a time variable. In
particular, the interpretation of matter fields is clear, and given that we can consider
general relativity for different kinds of matter fields and even for no matter fields at
all, if general relativity were a deparametrizable theory it seems that the most natural
place to look for spacetime variables is in the geometric degrees of freedom, that is,
in gab and πab.27 A way of formulating this is the following. We would be looking
for a canonical transformation of the form:

gab, π
ab → Xμ, pμ, φA, πA. (44)

That is, we are looking for a transformation that separates the 12 phase space variables
(6 components of the metric and 6 conjugate momenta) into two groups. In the first
group we would have 4 coordinates Xμ that would be able to identify any spacetime
point and 4 momenta pμ conjugate to them. And the second group would represent
the true dynamical degrees of freedom of general relativity, which would be contained
in two fields φA and conjugate momenta πA. This would be very attractive, as it would
allow us to express general relativity in terms of the physical coordinates Xμ, it would
give us a clear picture of the physical content of general relativity and would allow
us to apply the quantization strategies outlined in Sect. 2. Moreover, according to
this canonical transformation there would be only two true gravitational degrees of
freedom φA, in accordance with other arguments from general relativity that have led
physicists to believe that such is the number of degrees of freedom of general relativity.
For instance, it is a well known fact that there are two possible polarization states for
gravitational waves.

However attractive this proposal may sound there are two problems with it. First, at
a conceptual level we have seen that the variables of general relativity have a physical
meaning on their own and none seems to be encoding time. Therefore, it doesn’t look
possible that one could build spacetime coordinates from them. Consider again the
analogy with the model of the two harmonic oscillators: it seems quite obvious that in
the configuration space of the two harmonic oscillators we have just the description of

27 I thank an anonymous referee for raising the objection that general relativity may become deparametriz-
able by adding thematter degrees of freedom, as suggested for instance by themodel in [30]. However, there
are several problems with this line of objection. First, these additional matter fields that need to be added are
pretty special and there is nothing in our standard model of particle physics similar to them. Furthermore,
these fields may be unphysical, as they may need to violate the energy conditions of general relativity (see
for instance the discussion in [31]). From a more conceptual point of view, even if the fields behaved in
a monotonic way in time and space, one could resist the claim that the theory is deparametrizable, as this
claim seems to conflate the notions of clock and time, and the notions of rods and space. Therefore, and
for the reasons above, I will not consider the matter content of general relativistic models in order to assess
their deparametrizability.
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the two oscillators and nothing else. Similarly, in the configuration space of general
relativitywhatwe have is the description of a three-geometry (andmaybe somematter)
and nothing else. Second, there is a major technical difficulty: Torre [32] showed
that the constrained phase space of general relativity cannot be identified with the
constrained phase space structure of a deparametrizable model,28 and hence it cannot
be treated as such.

This analysis already shows that general relativity is not a deparametrizable theory.
Nevertheless, in the quantumgravity literature29 one can find claims that time is hidden
in the configuration space of the theory. In this way, the hope is that general relativity
could be something in between both examples in this paper: a non-deparametrizable
theory but which still has information about time in its configuration space and for
which the resolutions for the deparametrizable models could apply. However, the way
time is supposed to be hidden in general relativity is unclear and I will now argue
against the three arguments most commonly used for supporting that claim.

The first argument comes from the thick sandwich conjecture of general relativity,
first stated in the 1962 paper “Three-dimensional Geometry as Carrier of Information
about Time” [33]. In this paper it is argued that given the thick sandwich conjecture,
one can see three-geometry as carrying some information about time. The sandwich
conjecture in this case is similar to the one I have introduced for the system of two
oscillators: given an initial and a final 3-geometry the equations of motion of general
relativity uniquely determine the full 4-dimensional geometry in between, without
needing to specify any information about the time elapsed between the initial and final
states. However, even if the conjecture turned out to be true, this doesn’t mean that the
3-geometry carries information about time, as it should become clear if we compare
with the example of the two-harmonic oscillators. It is only by means of the equations
of motion of the system that the initial and final configurations of the oscillators
determine the time elapsed between the initial and final moments and hence I rejected
that the configuration of the oscillators carried information about time. Similarly, it is
not the 3-geometries, but the Einstein equations which would determine the temporal
information in the case of general relativity, were the conjecture to be true.

The other argument supporting that time is somehow included in the configuration
space of general relativity comes from some counting of degrees of freedom. This
kind of argument performs an analysis of either the configuration or phase space of
general relativity, finds that there are more degrees of freedom than the two physical
degrees of freedom that there are believed to be in general relativity and argues that
the difference has to be in the temporal information that 3-geometries are supposed to
carry. For instance, Kiefer [1] provides two ways of reaching this conclusion. First, in
configuration space

The three-metric hab[gab in my notation] is characterized by six numbers per
space point (often symbolically denoted as 6 × ∞3). The diffeomorphism con-

28 For a deparametrizable model, if we perform a transformation like (44), we find that the constraints take
the form pμ + hμ(Xμ, φA, πA) for some functions hμ. This can be shown to imply that the constrained
space is amanifold, i.e., that it satisfies some properties like being smooth. Torre showed that the constrained
space in the case of general relativity is not smooth, and hence that the constraint spaces cannot be identified.
29 See for instance the quotations below from [1].
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straints (4.70) [Momentumconstraints (40)] generate coordinate transformations
on three-space. These are characterized by three numbers, so 6−3 = 3 numbers
per point remain. The constraint (4.69) [Hamiltonian constraint (39)] corre-
sponds to one variable per space point describing the location of� in space-time
(since� changes under normal deformations). In a sense, this one variable there-
fore corresponds to ‘time’, and 2 × ∞3 degrees of freedom remain. [1, p. 114]

Second, in phase space:

[...]the canonical variables (hab(x), pcd(y)) are 12 × ∞3 variables. Due to the
presence of the four constraints in phase space, 4 × ∞3 variables have to be
subtracted. The remaining 8 × ∞3 variables define the constraint hypersurface
�c. Since the constraints generate a four-parameter set of gauge transformations
on �c (see Section 3.1.2), 4 × ∞3 degrees of freedom must be subtracted in
order to ‘fix the gauge’. The remaining 4 × ∞3 variables define the reduced
phase space �r and correspond to 2 × ∞3 degrees of freedom in configuration
space -in accordance with the counting above [1, pp. 114–115].

This kind of reasoning works well for gauge theories like electromagnetism. However,
there are reasons to doubt that it may also apply to general relativity. In the first place,
I have argued above that reparametrization invariance cannot be treated exactly as a
gauge theory, as a reparametrization is a gauge transformation from the global point of
view, i.e., it transforms solutions of the equations of motion to physically equivalent
solutions of the equations ofmotion, but not from the instantaneous point of view: given
two reparametrization-equivalent models, the physical state at the instant represented
by a given parameter time is in general different for both cases. Second, to speak
about the degrees of freedom at a spacetime point is tricky in the case of a generally
covariant theory: while in the case of a theory like electromagnetism for specifying a
spacetime point it is enough with giving the coordinate point, in the case of general
relativity to speak about the degrees of freedom at spacetime point is harder because
the transformations we care about move things around, i.e., change the coordinate
points where physical events happen and also because the concept of spacetime point
is harder to define.

To see that the degree of freedom counting is unreliable, we can try to apply it to the
examples in the previous sections. Both cases are formally analogous: we have con-
figuration spaces with two variables x, t or x, y, both are described by homogeneous
Lagrangians and in both cases evolution and gauge are generated by the Hamiltonian
constraint. We can count the degrees of freedom applying Kiefer’s method. In con-
figuration space we get that there supposedly is 1 degree of freedom in both theories,
that is 2 degrees of freedom—1 gauge transformation. Similarly, in phase space we
start with 4 variables and we have to subtract 1 constraint and 1 gauge transformation,
giving the two phase space variables associated with one degree of freedom. For the
case of the non-relativistic particle we are satisfied with the outcome as the system we
are describing has one degree of freedom, namely the position of the particle.

However, for the case of the double harmonic oscillator the result of the counting
seems wrong. The system we are describing is a system formed by two oscillators,
and intuitively it has two physical degrees of freedom. The conclusion of the counting
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of degrees of freedom argument for this case would lead us to think that of the two
oscillators one would be something like a time and the other one the physical degree
of freedom. Above I have argued that even if we can use one of the oscillators as a
clock, that is, as a device to keep track of time, it doesn’t make sense to consider it as
a time and the other as something like the real physical system. One could be more
sophisticated and argue that time is not directly one of the configuration variables
but some combination of them or that the way time is encoded in the configuration
variables is not so straightforward. However, as I have been arguing this doesn’t seem
very plausible and it seems more reasonable to state that the configuration variables
are just configuration variables and that the only way in which they carry information
about time is by means of the equations of motion. Therefore, we should reject the
degree of freedom counting argument for this case.

This shows that one should be careful when applying this sort of reasoning. More-
over, given the strong analogy between the double harmonic oscillator example and
general relativity I have been arguing for, we have a good case for rejecting the
conclusion from Kiefer’s arguments that in general relativity time is encoded in three-
geometry. This rejection raises doubts about the applicability of the resolutions of the
problem of time to the case of general relativity.

Finally, the third kind of argument which is used in the literature for claiming that
time is part of the configuration or phase space of general relativity is by making more
or less explicit proposals for this identification.30 In [34] some of this proposals are
explored and found to have some conceptual problems. In particular, let me mention
one particularly strong proposal, which is suggested by the form of the Hamilto-
nian constraint (39). The first term in this expression, Gabcdπ

abπcd is known as the
kinetic term and it is formally analogous to the kinetic term one finds in the quanti-
zation of a relativistic particle, ημν pμ pν . In this case, the momenta p0 are conjugate
to the time variable, and one can characterize them because they are time-like with
respect to the Minkowski metric η, i.e., they satisfy ημν pμ pν < 0. In the case of
geometrodynamics we find that the supermetric Gabcd , as defined in (41), is hyper-
bolic with signature {−,+,+,+,+,+}. That is, the supermetric is analogous to the
Minkowski metric in that it defines a ‘time-like’ direction in superspace, the space of
3-metrics gab. This suggests that time is encoded in this ‘time-like’ direction, just as
in the case of the relativitic particle time is ‘marked’ in the constraints by a negative
sign.

However, there are several reasons to resist this kind of argument. First, the super-
metric is a metric in an abstract infinite-dimensional space and its relation, if there is
to be one, with the metric of spacetime is unclear. Kuchar [34] points this out, and he
argues that even for Euclidean spacetimes, i.e., even for spacetimes with no time-like
direction, the supermetric would still have the same hyperbolic signature. In this sense,
the fact that the supermetric has a ‘time-like’ direction seems to be just a consequence
of the form of the dynamics and not relatedwith the structure of spacetime. Second, the
time-like direction of the supermetric is associated with conformal transformations,
i.e., with transformations which just (locally) expand or contract space. However,
Kuchar also argues that identifying something like a local volume element with the

30 I am thankful to Brian Pitts for pointing out this kind of argument to me.
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time variable is problematic, as we can conceive of spacetimes that in their evolution
expand, contract or remain at a fixed volume. In this sense, from a conceptual point of
view the identification of some component or function of the metric tensor with time
remains problematic.

Let me also complement those arguments with a comparison with the double har-
monic oscillator model. In this model we don’t have a kinetic term with negative sign
but we can introduce a change to the model to introduce a negative sign. The action
would now become:

S[x, y] = 2
∫

dτ

√
m

2

(−ẋ2 + ẏ2
) (

E − 1

2
(kx x2 + ky y2)

)
. (45)

The equations of motion for such an action do not represent Newtonian trajectories,
and they could be considered unphysical. Despite this, the interpretation of the model
remains the same: it represents the evolution of twodegrees of freedomwith respect to a
parameter τ . Nowwehave an asymmetry between x and y, andwe could take theminus
sign in the kinetic term for ẋ to signal that x has become time. However, this would
be wrong, as just changing the form of the dynamics doesn’t change the interpretation
we make of the variables and what they represent. Moreover, the dynamics of x still
allow for x to behave in a not monotonically way: even if solutions to the equations
of motion do not correspond with an harmonic oscillator any more, some solutions
still describe trajectories with velocities which change sign. This example shows that a
negative sign in the action31 is not necessarily a hint that some variable represents time,
as this negative sign can arise naturally in some non-Newtonian models, and it doesn’t
imply that that variable will behave monotonically. In this sense, in general relativity
it seems plausible that the negative signs that arise are just a consequence of the form
of the dynamics and it may be wrong to import our intuitions and interpretations from
other models. Furthermore, as I have argued above, to argue that something like a local
volume element is time one would need to show that it behaves monotonically. And
even if that case, one could still argue against this identification, as from an intuitive
point of view this volume element could be argued to be a configuration variable with
a physical meaning and not time.

With this I conclude this section, where I have argued that general relativity is
not deparametrizable and that the arguments supporting that time is encoded in the
configuration or phase space of the theory are misleading, as, among other reasons,
they would lead to wrong conclusions for the case of the double harmonic oscillator.
In this sense, the arguments in this section show the strength of the analogy between
general relativity and the double harmonic oscillator example. In the next section I
will comment on the consequences this has for the quantization of general relativity.

31 This negative sign is also translated to a negative sign in the Hamiltonian constraint: H0 = − 1
2m p2x +

1
2m p2y + kx

2 x2 + ky
2 y2 − E
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5 Consequences for quantum gravity

My argument above should have made it clear that the non-deparametrazability of
general relativity means that the problem of time for any canonical quantization is
moreworrisome than for amodel like our first example and that there are good grounds
for believing that the resolutions that worked for that example won’t work for this case.
In this section I will make a few comments on the consequences this has for different
approaches to quantum gravity.

First, we have quantum geometrodynamics which is the direct quantization of
general relativity in its ADM formulation as I have formulated above. That is, in
geometrodynamics one seeks for wavefunctions defined on superspace, that is the
space of 3-dimensional metrics gab. It should be straightforward to see that my argu-
ments above directly affect this attempt to formulate a quantum theory of gravity. For
instance, Kiefer [1] argues for a semiclassical resolution of the problem of time in the
context of quantum geometrodynamics, but this resolution relies on the assumption
that one can interpret some of the variables in the configuration space as a time vari-
able, but the argument above give us strong reasons for believing that that is not the
case. For further criticisms of semiclassical approaches see [35].

After the discovery of the connection formulation of general relativity byAshtekar32

part of the quantum gravity community shifted to loop quantum gravity (LQG),33

which is the result of applying the canonical quantization program to general relativity
expressed in this new set of variables. In this formulation the information that before
was encoded in the 3-metric gab is represented by the triadfield eai which canbe thought
of as a set of orthonormal vectors at every point of the three-manifold. The conjugate
variable to the triad field is the connection Ai

a , which is also related to the extrinsic
curvature Kab. The connection variables contain essentially the same information as
gab and Kab, together with some extra gauge freedom, but their introduction allows
for some simplifications that motivated the shift from the purely geometrodynamical
variables to them. However, from the perspective of the problem of time nothing really
changes with the introduction of these variables: we still have a reparametrization
invariant theory that shows a problem of time when quantizing. Furthermore, the
same arguments that lead us to think that general relativity is not deparametrizable
and that the strategies for solving the problem of time in deparametrizable theories
won’t work for general relativity will also apply for this reformulation of the theory.

Let me mention the two ways in which the problem of time has most commonly
been addressed by the LQG community. The first way was by means of the Dirac
observables strategy that I have outlined before. For instance, in the book [37] this
strategy is advocated. The way this is done is exactly as described in (2.2), i.e., the
observables Thiemann aims to define are coincidence observables which describe the
value that a physical quantity takes when others (4 in the case of general relativity)
take some values, just like XT in (23) described the position of the particle at the time
T . However, as I have argued above, this strategy doesn’t seem to work, not only for
technical but also and more importantly for conceptual reasons, if the theory we are

32 See [36].
33 See [20] for the standard reference in LQG.
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considering is not deparametrizable, just as in the case of general relativity. In this
sense, my arguments above lead one to reject a formulation of LQG based on the Dirac
observables strategy like Thiemann’s.

More recently, the LQG community has shifted to the transition amplitudes strategy
and to formulations of the theory which rely on covariant quantizations like the ones
used in spin foammodels. This shift is well-represented by Rovelli’s book [20], where
it is explicit that the goal of the theory is the definition of ‘transition amplitudes’ in
an analogous way to the transition amplitudes I defined before in Eq. (25), that is, the
transition amplitude is defined using states in the kinematical Hilbert space, a map η to
the physical Hilbert space and an inner product in this space. In covariant formulations
and spin foam models one can define transition amplitudes by means of some analog
of a path integral without referring to the canonical formalism, but notice that it is
usually the case that some equivalence between the formalisms is expected.34 Even if
that were not the case, some of the conceptual worries that I have raised here about
the transition amplitude still apply to transition amplitudes defined in ways different
from the canonical formalism.

To insist, the transition amplitudes strategy worked well for the case of the
deparametrizable model of the non-relativistic particle as the transition amplitudes
it defined are nothing but the propagator of the theory, which allowed one to recover
the standard formulation of quantum mechanics. For non-deparametrizable models I
have argued that the quantity defined as a transition amplitude does not satisfy the
properties we would expect of a propagator and hence it cannot be given that inter-
pretation.35 Therefore, if one wants to insist that the quantities defined as transition
amplitudes have some physical meaning and interpretation one cannot appeal to the
notions and intuitions that applied to the case of the deparametrizable model. In this
sense, the interpretation of these quantities as probabilities remains unclear, and the
standard interpretations of quantum mechanics are not available in this case, as we
lack the usual structure of a quantum state evolving in a Hilbert space.36 Moreover, in
the double harmonic oscillator example it was clear that the inner product didn’t have
any straightforward interpretation as a transition amplitude and that it was signaling
that the canonical quantization program simply failed to give a successful quantization
of the theory. In the case of LQG this is a possibility one should also consider.

Finally, the problem of time also affects some cosmological models, which use
symmetry reduced versions of either geometrodynamical or connection variables.37

Given the simplicity of the models considered, it is common to see that the strategy
followed for these models consists in deparametrizing the theory. For instance, it is
common to see that the models describe the quantum evolution of some geometrical

34 Consider for instance the textbook [17]. The transition amplitudes defined in this book (see for instance
chapter 7) are defined by means of a spin foam model and not directly from the canonical formalism, but
they are nevertheless considered to be some sort of approximation to the ‘true’ transition amplitudes which
would agree with the ones defined by the canonical formalism (see the discussion in sections 2.4 and 8.3.2).
35 Interestingly, for the case of LQG the same point is raised in [37, p. 96], where it is argued that one
should refer to these inner products as inner products and not as transition amplitudes.
36 See [21], where it is argued for such a probabilistic interpretation of ‘transition amplitudes’ defined by
means of the inner product of the physical Hilbert space.
37 I refer the reader to [38] for a comparison of models using both kinds of variables.
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degrees of freedom in a time that is given by some scalar field.38 The arguments above
also work against this kind of model, and one should be cautious when inferring any
physical prediction from them.

Let me conclude this section by mentioning three other different attitudes that
one may have towards the problem of time. First, Barbour [22, 40, 41] endorses the
view that the problem of time leads to a timeless ontology where there is no flow
of time but just instants with some probability to happen. Second, a Bohmian can
accept a static wavefunction, as long as they are able to define a guidance equation
which describes a temporal evolution for some basic ontology of the quantum gravity
theory.39 Finally,wefind proposals like [43, 44], inwhich instead of quantizing general
relativity one quantizes shape dynamics, which is an empirically equivalent theory but
with a different set of symmetries. The hope is that as this theory doesn’t show the
same temporal reparametrization invariance as general relativity one can avoid the
problem of time.

6 Conclusions

In this paper I have argued that the problem of time affects all reparametrization
invariant theories, but that the potential resolutions of it may work only for a subset of
them, the deparametrizable ones. I have argued for this by comparing two examples: a
deparametrizable model of a non-relativistic particle and the Jacobi action describing
a system of two harmonic oscillators. This comparison showed that in the case of
the double harmonic oscillator the most reasonable conclusion is that the canonical
quantization of the model doesn’t lead to a physically meaningful quantum theory.

For the case of general relativity I have argued that it is not a deparametrizable
theory and that its configuration space doesn’t seem to encode information about time
in any way, just as happened for the case of the double harmonic oscillator. Therefore,
I have argued that the theories of quantum gravity based on the resolutions of the
problem of time that worked for deparametrizable models may be ill-founded.
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