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ABSTRACT
In this paper, I consider a recent controversy about whether first-class constraints 
generate gauge transformations in the case of electromagnetism. I argue that 
there is a notion of gauge transformation, the extended notion, which is different 
from the original gauge transformation of electromagnetism, but at the same 
time not trivial, which allows the making of that claim. I further argue that one 
can expect that this claim can be extended to more general theories, and that 
Dirac’s conjecture may be true for some physically reasonable theories and only 
in this sense of gauge transformation. Finally, I argue that the extended notion 
of gauge transformation seems unnatural from the point of view of classical 
theories, but that it nicely fits with the way quantum versions of gauge theories 
are constructed.
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1 INTRODUCTION
In the literature dealing with the constrained formalism used for the Hamiltonian treatment 
of gauge theories, there is a widely accepted claim that first-class constraints generate gauge 
transformations.1 This claim is referred to as the Dirac conjecture or Dirac hypothesis,2 and 
it has been challenged in the literature. One criticism of this claim was formulated by Brian 
Pitts (2014),3 who showed that, in the case of electromagnetism, the electric field as defined 
in the standard way, that is, 


0–A A , doesn’t remain invariant under a transformation 

generated by the secondary constraint of the theory. This criticism has recently been 
replied to by Oliver Pooley and David Wallace (2022), who showed how even if 


0–A A  

doesn’t remain invariant, the empirical content of electromagnetism can be preserved by 
correctly identifying the electric field. To this, Pitts has acknowledged (Pitts 2022) that the 
empirical content can be preserved in the way proposed by Pooley and Wallace, but he 
argues that this doesn’t correspond to a gauge transformation, just to a de-Ockhamization, 
i.e., a trivial transformation in which one substitutes a quantity with the sum of two other 
quantities. Furthermore, he argues that, if one accepts the claim by Pooley and Wallace, 
one also has to accept the claim that (at least some) second-class constraints generate gauge 
transformations, contrary to the “orthodoxy” Pooley and Wallace aimed to defend.

In this paper, I will analyze this controversy and I will note that much of the argument 
depends on what counts as a gauge symmetry. In this sense, I will distinguish between three 
possible notions of gauge symmetry. The first one is to consider gauge transformations to be 
any transformation that affects the mathematical structures of a theory but leaves its empirical 
content intact. This is the notion of gauge transformation, which Pitts argued is too broad 
and generous, as it would include all the artificial de-Ockhamizations that have nothing to 
do with what physicists refer to when they speak of gauge theories. This notion of gauge 
transformation allows claiming that first-class constraints generate gauge transformations, 
but it also entails that second-class constraints also do, contrary to the orthodoxy.

The second notion of gauge transformation is the more restrictive one that Pitts seems to 
have in mind. This would correspond to the “genuine” gauge transformations, which are the 
symmetry transformations of theories like electromagnetism or Yang-Mills theories. These 
theories are formulated not in terms of the directly observable and physical quantities but in 
terms of some more convenient quantities. For instance, in the case of electromagnetism, the 
introduction of the 4-potential allows writing Maxwell equations in the form of second-order 
differential equations or defining the potential energy of a particle in an electromagnetic 
field. It also allows expressing the theory by making use of the Lagrangian formalism, in 
which the original gauge symmetry appears as a symmetry of the action. When expressed 
in the Hamiltonian formalism, this symmetry transformation is generated by the gauge 
generator, which, as Pitts argued, is a tuned sum of constraints. In this sense, for theories like 
electromagnetism, we can start with an original notion of gauge transformation, even before 
expressing the theory in Lagrangian or Hamiltonian form.4 In the Lagrangian formalism this 
symmetry is represented by a symmetry of the action, and in the Hamiltonian formalism 

1 This claim appears in the textbooks on the subject (Sundermeyer 1982, Rothe and Rothe 
2010) as well as in journal articles (Wipf 2008).

2 The reason for this is that Dirac defended this claim in his influential analysis of 
constrained systems (1964), although other authors had made similar claims before (Bergmann 
and Schiller 1953).

3 This criticism is complementary to previous criticisms like the one in Pons (2005).

4 The same holds for the case of general relativity, where the “gauge” symmetry, the 
diffeomorphism invariance of the theory, is known before formulating the theory in either 
Lagrangian or Hamiltonian form.
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the symmetry transformations are generated by the generator. For theories like Yang-Mills 
theories, it is more common that the theories are formulated directly in the Lagrangian 
formalism, but even here a good case can be made that the “genuine” gauge transformations 
are symmetry transformations of the action, and hence, that they are generated by the gauge 
generator. First-class constraints do not generate transformations that are symmetries of the 
original Lagrangian action, and therefore they do not generate gauge transformations in this 
restricted sense, as both parts in this debate acknowledge.

Having these two notions of gauge transformation in mind, Pitts (2022) argues that the claim 
that first-class constraints generate gauge transformations is either trivial (if we take the first 
notion) or false (if we take the second). In either case, the orthodoxy would be in trouble, 
as in the first case it would have to admit that second-class constraints generate gauge 
transformations, and in the second that first-class constraints do not. For this reason, I think 
that the position Pooley and Wallace ought to take is that first-class constraints generate 
gauge transformations in a third, intermediate sense, which is at the same time not the 
original Lagrangian gauge transformation but not a completely trivial de-Ockhamization. 
It is by adopting this notion of gauge transformation that one can save the orthodoxy and 
claim that first-class constraints in electromagnetism generate gauge transformations, while 
second-class constraints in theories like Proca electromagnetism do not.

This third notion of gauge transformations shares with trivial de-Ockhamizations that 
there appear new compensating fields and variables in the formalism, but contrary to the 
case of de-Ockhamizations, one can preserve the empirical content with no need to pay 
much attention to them, or to introduce redefinitions. In this sense, the de-Ockhamizations 
in this sort of transformation would only affect accessory variables and not the physically 
relevant and empirically observable ones.

Part of the controversy between Pitts and Pooley and Wallace lies precisely on this point. While 
Pitts sees the issue from a Lagrangian-first perspective, which takes configuration variables 
( μA  in the case of electromagnetism) as physical and momentum variables (


π) as accessory, 

Pooley and Wallace take a Hamiltonian-first perspective in which they adopt the opposite 
view, namely, that some momentum variables (


π) are physical while some configuration 

variables ( 0A ) are just accessory. For this reason, it is important to notice that adopting Pooley 
and Wallace’s view breaks with the more natural understanding of classical theories and 
the way they are represented using the Lagrangian and Hamiltonian formalisms. However, 
despite this, it is a position one can hold in a consistent way to save the orthodoxy.

The next natural question to ask is which of the three notions of gauge symmetry is best 
or physically more relevant. From the point of view of classical physics, this seems a 
strange question, as the physical content of a classical gauge theory lies in its empirical 
content. For instance, it is Maxwell’s equations for the electromagnetic field and the 
Lorentz force equation, which exhaust all the physical content of electromagnetism. In 
this sense, classical gauge transformations, in any of the three senses discussed above, do 
not seem interesting from the point of view of physics but just from the point of view 
of how we represent physics. From this perspective, one may be tempted to keep gauge 
transformations at a minimum and keep just the original Lagrangian ones and preserve 
the Lagrangian-Hamiltonian equivalence. When we move to quantum physics, it may be 
the case that gauge structures play a more non-trivial role, and that the issue becomes more 
relevant, but notice that neither Pitts nor Pooley and Wallace discuss the physical relevance 
of adopting one view of gauge or another.

In this article, I will note there seems to be a reason for adopting the middle-way view of 
gauge transformations: quantization. When following canonical quantization procedures, 
one imposes that physical states satisfy the first-class constraints in a way that is equivalent 
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to imposing that they are invariant under transformations generated by them. It is, 
therefore, very natural to read these transformations as the quantum version of a gauge 
transformation, and hence this fits very naturally with the middle-way view of gauge 
transformations in which first-class constraints generate gauge transformations.

To insist, in this article I will argue that there are (at least) three possible notions of gauge 
transformation:

1. Trivial gauge transformations: Any transformation that preserves the empirical 
content of the theory, even if one needs to introduce compensating fields and 
redefine what counts as physical. This includes de-Ockhamizations. In the 
Hamiltonian formalism, they are generated by any phase space function.

2. Genuine or original gauge transformations: Gauge transformations associated 
with symmetries of the original, non-de-Ockhamized Lagrangian action or that can 
be defined even before making use of the Lagrangian formalism. In the Hamiltonian 
formalism they are generated by the gauge generator.

3. Extended gauge transformation: A transformation that preserves the empirical 
content of the theory, with no need to redefine physical fields, even if one needs to 
introduce compensating fields and redefine accessory fields. This notion implies a 
departure from the original Lagrangian action and symmetries and adopting a view 
in which conjugate momenta can be physical and configuration variables accessory. 
In the Hamiltonian formalism, they are generated by first-class constraints.

I will argue that, from the point of view of classical physics, the second sense is more 
natural, while the third sense is consistent and fits nicely with canonical quantization 
procedures. I will illustrate this with a discussion of some relevant examples.

Let me clarify that, besides this classification of gauge transformations, there is a further 
distinction that appears in the literature and that is conceptually independent of most of 
what is discussed in this article. This is the distinction between global gauge transformation, 
a transformation that transforms solutions of the equations of motion into solutions of the 
equations of motion, and local or instantaneous gauge transformation, which transforms 
the fields at an instant of time or at a spacetime point. For most theories, both ways of 
thinking about gauge transformations are equally fine, but for reparametrization invariant 
theories, such as general relativity, it is only from the global point of view that one can speak 
about gauge transformations.5 For the examples discussed in this article, we won’t have to 
worry about this distinction, and one can think about gauge transformations either way.

Finally, let me make a methodological remark. While, in the literature, one sometimes finds 
the claim that it is the gauge structure of a theory that defines its physical content, I will be 
taking the opposite perspective. That is, I will be discussing examples with clear physical 
content and then I will be making claims about the different theoretical representations 
of this physical content and the symmetries of these representations. For instance, I will 
be discussing the dynamics of free Newtonian particles, which will uncontroversially 
consist of particles moving with uniform velocities ( )q t , and then I will be considering 
different symmetry transformations of possible representations of these dynamics. In the 
case of the debate about electromagnetism, all the parts seem to agree in that the empirical 
content of the theory is an electromagnetic field that satisfies Maxwell’s equations and 
which “pushes” electrically charged particles, and then they disagree about what is to be 
considered gauge.

5 See the arguments for this in Maudlin (2002), Mozota Frauca (2023), and Pitts (2017; 2018).
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The structure of the article is the following: I will first discuss in more detail paradigmatic 
examples of genuine gauge transformations and de-Ockhamizations in section 2, but I will 
introduce some more subtle examples that can be argued to be halfway between the two. 
These examples can be built by means of a “momentum de-Ockhamization,” i.e., by the 
introduction of an unphysical degree of freedom with the sole aim of compensating for the 
changes that the putative gauge transformation is introducing in the momentum variables 
used for describing the system. Despite being built artificially and by the introduction 
of unphysical degrees of freedom, I will argue that they are closer to “genuine” gauge 
transformations than pure de-Ockhamizations, as the de-Ockhamization affects the 
momentum variable that can be considered to be accessory and not the configuration one, 
which can be considered physical. In this sense, we will find a parallelism with the case 
of electromagnetism: if de-Ockhamizations affect (arguably) accessory variables, like p in 
the example I will discuss or 0A  in the case of electromagnetism, while leaving intact the 
(arguably) physical ones, one can argue that the transformation is not of the trivial kind, 
even if it is not a symmetry of the original, minimal Lagrangian.

Then, I will move to analyze the cases of Maxwell electromagnetism and Proca 
electromagnetism in section 3. I will follow Pitts in arguing that second-class constraints6 
generate gauge transformations in Proca electromagnetism if one takes a trivial definition 
of gauge. That is, only if we perform some redefinitions and reidentifications are we able 
to preserve the empirical content of Proca’s theory. I will agree with Pitts in that this is 
bad news for the orthodoxy: If one relaxes too much the standards for what is considered 
a gauge transformation, any transformation can count as a gauge transformation, and the 
orthodoxy wants to maintain that first-class constraints generate gauge transformations, 
while second-class do not.

Next, I will analyze the case of standard electromagnetism in the extended formalism, and I 
will argue that a consistent notion of gauge transformation is available, which allows keeping 
the orthodoxy and claiming that first-class constraints generate gauge transformations in 
electromagnetism. The price to pay is to lower the standards that Pitts holds, but not as much 
as to let any transformation be considered a gauge transformation. This notion of gauge still 
has the consequence that second-class constraints do not generate gauge transformations, and 
that de-Ockhamizations aren’t considered gauge transformations, either. The discussion will 
illustrate how this notion of gauge transformation depends crucially on what we take to be 
physical and accessory variables, as it will define gauge transformations to be transformations 
affecting and even de-Ockhamizing accessory variables, but not the physical ones.

In section 4, I move away from the particular case of electromagnetism and the examples 
discussed in this article and argue for three general claims. First, I give a more detailed 
argument supporting the claim that any phase space function, in any theory (gauge or not), 
can be said to generate a trivial gauge transformation in the form of a de-Ockhamization. 
Second, I argue that, when the theory is a first-class system and the phase space function 
or functions chosen are constraints, this procedure leads to an extended formalism in 
which the symmetry transformations are generated by the first-class constraints. Third, 
I further argue that this symmetry transformation is plausibly a gauge transformation in 
the extended sense once some restrictions are in place. In this sense, I argue that it seems 
possible that Dirac’s conjecture can be kept for most physical theories and for the extended 
notion of gauge, although I do not give rigorous proof for it.

6 To be clear, while Pitts argued that it is just the primary constraint of the theory that 
generates a trivial gauge transformation, I will argue the secondary constraint also generates a 
trivial gauge transformation, and that indeed any phase space function can be used to generate 
a trivial gauge transformation.
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Finally, in section 5 I will analyze how this affects the quantization of theories. I will argue 
that Dirac’s quantization procedure nicely fits with the extended Hamiltonian formalism 
with the assumption that observables are invariant under transformations generated by the 
constraints, given that the way constraints are imposed automatically implies invariance 
under the quantum counterpart of such transformations. In this sense, even if the extended 
sense of gauge transformations was a bit unnatural from the classical perspective, it is 
the sense that fits better with the way quantum theories are built. If someone wanted to 
stay closer to the original, “genuine” gauge transformations in quantizing the theory, one 
should devise a different quantization procedure in which constraint imposition does not 
lead to the extended Hamiltonian notion of gauge symmetry.

2 GAUGE, DE-OCKHAMIZATIONS, AND OTHER 
TRANSFORMATIONS
I will start by giving a series of examples of different transformations that can be given 
the name of “gauge transformations,” even if in different senses. That is, all of them can 
be interpreted as leaving intact the empirical content described by the models they are 
applied to, but one may have different intuitions about whether they really are gauge 
transformations or not.

2.1 GENUINE GAUGE SYMMETRY: ELECTROMAGNETISM

The paradigmatic case of genuine gauge transformation is the (original) gauge symmetry 
of Maxwell electromagnetism, and as it is the central example in the controversy, it will be 
useful to introduce it now. The physical content of electromagnetism can be summarized in 
the four Maxwell equations and the Lorentz force equation, which describe the evolution 
of the electric and magnetic fields, 


E and 


B, in the presence of charged matter and the 

effect of these fields on the dynamics of such matter. However, it is convenient to introduce 
the 4-vector field μA , which relates to 


E and 


B by means of:

 
 

0= –E A A  (1)


 

= × ,B A  (2)

where 

A represents the spatial components of μA . This introduces a redundancy, as for 

each pair 
 
,E B there exists a whole family of 4-potentials that give rise to the same 

 
,E B. The 

gauge transformation of electromagnetism is any transformation that maps from one μA  to 
another in the family. In particular, they can be expressed in the form:

 ¶+ ,μ μ μA A   (3)

where  is a function of the spacetime coordinates. The introduction of μA  allows for 
expressing the theory in the Lagrangian formalism:

 
æ ö÷ç ÷  ⋅ç ÷ç ÷çè øò

    3 2 2
0 0

1 1[ ] = ( – ) – ( × ) – ( + ) ,
2 2em μS A dtd x A A A A ρ j A  (4)

where ρ and 

j describe the charge density and current. The gauge symmetry of the theory is 

reflected in the action, as it is invariant under a transformation of the form 3, provided that 
ρ and 


j satisfy the continuity equation ⋅

 
+ = 0ρ j . This feature implies that the Lagrangian 
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is singular7 and that one needs to use the constrained formalism if one wants to express 
electromagnetism in the Hamiltonian language.

In particular, this system has a primary constraint 0
1 = = 0C π ,8 where 0π  is the momentum 

conjugate to 0A  and the dynamics of the system can be defined9 by the total Hamiltonian 
density:

 ⋅ ⋅
       0 0 2 2 0

0 0 0 0
1( , , , ) = ( , , )+ = ( + ) – ( )+ ( + )+ .
2T cH A π A π H A π A λπ π B A π A ρ j A λπ  (5)

Imposing consistency of the primary constraint, i.e.,  0 = 0π  leads to the secondary 
constraint ⋅

 
2 = – = 0C π ρ . Imposing consistency of the secondary constraint, i.e., 

⋅
 

( ) = 0d
dt π , doesn’t lead to any new constraints or to any condition on λ. This is because 
the constraints are first-class, i.e., »1 2{ , } 0C C .10

The dynamics defined by the Hamilton equations, together with the two constraint 
equations, are equivalent to the dynamics defined by the Euler-Lagrange equations for 
the action 4 together with the equation 

.

0=λ A . The Euler-Lagrange equations, as well as 
the original Maxwell equations, do not imply any dynamical equation for 0A , and this 
is explicit in the total Hamiltonian formalism where 0A  is allowed to vary according to 
the arbitrary function λ. In this sense, the original gauge symmetry is explicit in the total 
Hamiltonian equations.

One can find the Hamiltonian version of the gauge transformation of the theory by finding 
the transformation which is a symmetry of the total action:

 æ ö÷ç ⋅ ÷ç ÷çè øò
   0 3 0 0

0 0[ , , , ]= + – – .em cS A π A π dtd x A π A π H λπ  (6)

In this case, one can show that the transformations of the phase space functions are 
generated11 by the gauge generator:

 ( )ò 3
1 2= – .G d x C C   (7)

and the arbitrary function λ transforms as +λ λ  . It is straightforward to see that this 
transformation is just the same gauge transformation of the original Lagrangian action 
and of the 4-momentum version of Maxwell equations, i.e., it transforms μA  into ¶+μ μA .

In this sense, we see how the total Hamiltonian formalism preserves the same structures 
and symmetries that were present at the original 4-momentum and Lagrangian 
formalisms. The physical content of the theory, in any of its three formulations, is the 
electric and magnetic fields. In the total Hamiltonian formalism, the magnetic field is 
given by 

 
× A, while for the electric field we have two variables playing that role, 


π and 

7 The implication does not work in both directions, as second-class systems will also have 
singular Lagrangians but no (genuine) gauge symmetry.

8 Rather than a constraint, it is an infinite number of constraints, one per space point, i.e., 
1( ) = 0C x . However, many times one refers to this family of constraints simply as the primary 

constraint.

9 I refer the reader to Rothe and Rothe (2010) for a detailed derivation of the total 
Hamiltonian formalism.

10 The symbol  means weak equality, i.e., equality on the constrained surface. In this case 
the equality is strong, as it holds in the whole phase space.

11 This means that the infinitesimal transformations are of the form ( , ) ( , ) + { , }f q p f q p f G . 
The finite version of these transformations is given by an “exponentiation” of the infinitesimal 
one. For the cases considered in this article, this distinction won’t make a difference until I 
consider the general case in section 4.
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


0–A A , in the same way that in the Hamiltonian formulation of the dynamics of a single 
particle both p and mq represent linear momentum. These three phase space functions 
remain invariant under a transformation generated by the gauge generator and are thus 
considered observables. The other non-trivial phase space function which is invariant is 
the momentum 0π , which is constrained to be 0.

For the case of other “genuine” gauge theories we find the same structure, i.e., a singular 
Lagrangian with a number n of independent local symmetries, which correspond to n 
primary constraints and which can be represented in the total Hamiltonian formalism 
using a canonical Hamiltonian plus these n constraints multiplied by n arbitrary functions. 
The original n gauge symmetries correspond to the n symmetries of the total action, which 
are generated by the n generators. When there are secondary constraints, the form of these 
generators is that of a tuned sum of constraints12 and they are not just simply any first-class 
constraint. First-class constraints, when secondary constraints are present, do not generate 
symmetry transformations of the total Hamiltonian nor symmetry transformations of the 
original Lagrangian action. To look for the physical content of the theory, one should look 
at what remains invariant under the transformations generated by the generators.13

In this sense, we can read Pitts (2014) as arguing precisely for this claim. To argue that 
every first-class constraint generates a gauge transformation, one needs to move to the 
extended formalism, which I will come back to discuss in section 3.2. For now, let me 
insist on the highlight of this discussion: if one has a gauge theory defined by means of a 
Lagrangian action showing just the “genuine” gauge symmetries of the theory, whichever 
way you define them, the proper way of preserving these symmetries in the Hamiltonian 
formalism is by means of the total Hamiltonian.

2.2 DE-OCKHAMIZATION

Brian Pitts suggests that, besides genuine gauge transformations, we find other 
transformations that can be argued to leave the physical content of the theories unaffected. 
However, these transformations lack any physical motivation and correspond to just an 
artificial overcomplication of our formalism. In this sense, one goes from a (relatively) 
simple physical theory to an unnecessarily complicated one, contrary to Ockham’s razor, 
and hence the name. The well-discussed example he gives is the substitution of force by 
gorce plus morce, as introduced in (Glymour 1977) and discussed since.

Here I will take a simple example: the dynamics of a free particle in Newtonian physics. A 
free particle moves in a straight line at uniform velocity, as one can derive by minimizing 
the action:

 ò 2[ ]= .
2
mS q dt q  (8)

Now someone comes along and defines a “gauge” transformation that adds to a given ( )q t  
an arbitrary function ( )μ t . That this is to be considered a gauge transformation strikes us 
as odd, as ( )q t  goes from describing a trajectory with uniform velocity to any arbitrary 

12 Two different derivations of the relations that need to hold between the coefficients of the 
different constraints of the generator can be found in Rothe and Rothe (2010, Sects. 5.3 and 5.4).

13 This is not necessarily the same as saying that the observables of the theory are the 
phase space functions that remain invariant under a transformation, as the discussion of 
reparametrization invariant shows us that this is more subtle. I refer the reader to Mozota Frauca 
(2023), Pitts (2017; 2018, and Pons, Salisbury, and Sundermeyer (2010) for discussions of this 
point and for the distinction between global and instantaneous types of gauge transformations.
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function, no matter how wild. To this, the proponent of the transformation tells us that 
we are right, but that after the transformation we cannot interpret ( )q t  as describing the 
trajectory of a free particle, and that we should take –q μ to represent the position of the 
new particle. Furthermore, they propose that we should also replace the original action 
with a new one:

 ò   2[ ] = ( – ) .
2
mS q dt q μ  (9)

One can see that this new action has an explicit symmetry under the transformation 
+ , +q q μ μ  . The equations of motion for this Lagrangian are:

  ( – )= 0.d
dt q μ  (10)

That is, –q μ describes particles moving at uniform velocities, as we were expecting. This, 
of course, works in order to keep the empirical content of the theory but, as Pitts argues, if 
this is to be considered a gauge transformation, it is only in a very trivial way, which does 
not have anything to do with any possible, preexisting genuine gauge symmetry.

In this sense, for any theory one can choose any arbitrary transformation and say it is a 
symmetry transformation or even a gauge transformation, as one only needs to introduce 
enough compensating functions to undo the transformation and to redefine or change the 
way the variables in the formalism correspond to physical quantities in the real world.

It is in this sense that Pitts emphasizes that, in his opinion, the claim that first-class 
constraints generate gauge transformations is either trivial or false. For the simple example 
I have introduced, this seems to be the case, as the transformation doesn’t keep the physical 
content of the theory intact unless we reinterpret –q μ as describing the trajectory of the 
particle, and this is trivial in the sense that we have just introduced.

We can express this in the Hamiltonian language. The momentum conjugate to q in the 
de-Ockhamized action 9 is:

 ¶
¶

 
= = ( – ).Lp m q μ
q

 (11)

This is just the physical linear momentum expressed in the de-Ockhamized variables. The 
Hamiltonian is:

 
2

= + .
2
pH pμ
m

 (12)

Making use of the symplectic structure of the phase space, we can identify momentum p as 
the “gauge” generator which generates the transformation + ,q q p p  , as long as we 
accompany this with the transformation +μ μ , just as in the case of “genuine” gauge 
transformations the gauge transformations needed of the combined action of the gauge 
generator and a change in the arbitrary functions accompanying the primary constraints, 
e.g., λ in the case of electromagnetism.14 The most striking difference with the case of 

14 There is an alternative description of de-Ockhamizations in the language of phase spaces 
and constrained systems which consists of taking the compensating functions to be phase space 
variables. If one chooses that formalism, de-Ockhamizations correspond to transformations 
generated by +μP , where μP  is the momentum conjugate to μ and  the arbitrary phase space 
function that defines the de-Ockhamization. Despite this, I will stick to the formulation that 
takes compensating functions to be arbitrary functions and not phase space variables, as it is 
the formulation used in both Pitts (2022) and Pooley and Wallace (2022) for the discussion of 
electromagnetism.
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‘genuine’ gauge transformations is that the symmetry transformations do not need to be 
generated by constraints or combinations of constraints, any phase space function can 
generate a symmetry transformation if one just adds the pertinent compensating functions.

It is in this sense that one can argue that any phase space function, including any constraint, 
generates a “gauge” transformation.15 However, in general they won’t correspond to any 
“genuine” gauge transformation, and one needs to change the physical interpretation one 
gives to the variables in the formalism and to change the equations of motion to include 
the effect of the compensating functions. All of this has an ad hoc feeling that justifies the 
claim that it is false or just trivially true that any phase space function generates a gauge 
transformation. That is, general phase space functions generate gauge transformations 
only in the trivial sense of gauge transformation.

2.3 MOMENTUM DE-OCKHAMIZATION

The example in this subsection aims to capture the intuition behind the “extended” sense 
of gauge transformation, despite not being related to an extended formalism of gauge 
theories and drawing intuition from different sources. However, it aims to illustrate how 
a de-Ockhamization can be considered not to fit in either the trivial or the genuine gauge 
transformation categories. The trick for this is that, while the transformation is formally a 
de-Ockhamization (and hence not a genuine gauge transformation), it is one that affects 
accessory variables and not physical variables. For this reason, one can ignore the effects 
of these transformations, contrary to what happened in the previous example, where we 
had to introduce a redefinition of our physical variables. It is in this sense that this kind 
of example is different from other de-Ockhamizations and can be considered to deserve 
a different category. In section 3.2, I will argue that the extended transformations of 
electromagnetism fit in this category.

In the example of a non-relativistic particle, let me adopt the following perspective, which is 
natural in the context of classical mechanics. We start with a theory, Newtonian mechanics, 
which states that free bodies move in straight lines with uniform velocities. In this sense, the 
physical content of the theory is given by the set of physically allowed trajectories ( )q t , where 
q represents the position of a particle or body in space. Now we can express this theory in the 
Hamiltonian formalism, where a variable p will appear, but it can be consistently understood 
to be just an accessory variable: At the end of the day we just care about the trajectories ( )q t , 
and p is just a useful part of the mathematical machinery we use for computing them. From 
this point of view, q is a physical variable while p is an accessory variable.

If one accepts this perspective, then one may have different intuitions about de-
Ockhamizations depending on which variables are affected by them. In the previous 
example, the de-Ockhamization affected ( )q t , and we were forced to accept a redefinition 
in order to keep the physical content of the model. In the following example, p is affected, 
but ( )q t  is not, and hence one can claim that the physical content is not affected by this 
transformation and that this kind of transformation is different. Something similar 
will happen in the case of electromagnetism, as Pooley and Wallace will claim that 
the (according to them) physical content 


π is preserved even if the accessory 0A  is de-

Ockhamized.

15 Let me make clear the difference between Pitts’s position and mine: While Pitts argues 
that some constraints generate trivial gauge transformations, I am arguing for the more general 
claim that any phase space function generates a trivial gauge transformation, provided that 
the appropriate compensating functions are in place and that the new identifications and 
redefinitions are performed.
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Having said this, let me introduce the example. Consider the following action for the 
Newtonian particle:

 
æ ö÷ç ÷ç ÷ç ÷çè øò  2[ ]= + ( + ) ,

2
mS q dt q μq μq  (13)

where μ is an arbitrary function. From the Lagrangian perspective, not much has changed, 
as we have just added a total derivative term to the action 8. The equations of motion for q 
are independent of μ, and they describe particles moving uniformly in straight lines, as one 
could have expected. However, when we move to the Hamiltonian formalism we find that 
a de-Ockhamization has taken place, as momentum is now:

 ¶
¶


= = + .Lp mq μ
q

 (14)

This is, we find that the momentum for this action has been shifted by an arbitrary function. 
The Hamiltonian becomes:

 
2( – )= – .

2
p μH qμ

m
 (15)

The equations of motion for this Hamiltonian are equivalent to the ones of the free particle 
in the sense that solutions for ( )q t  still represent uniformly moving particles, although 
the equation for p now has changed and depends on μ. p has lost its interpretation as the 
linear momentum, but this is a loss we may accept, as the physical meaning of canonical 
momentum variables, for standard, classical, non-gauge theories, is defined by means 
of the Lagrangian or, equivalently, of the Hamiltonian of the theory. That is, from the 
perspective we are taking in this example, momentum variables are accessory variables 
that draw their physical meaning from the Hamilton equation for velocities (which we 
assume to be physical).16

Indeed, if one works on the Hamilton equations of motion of this model, at the end of the 
day one is left with:

 = 0,mq  (16)

that is, the equations of motion have not been affected by the de-Ockhamization and we 
find no trace of the compensating function μ in them, nor of the “accessory” momentum 
p. This is in contrast with the equations of motion of the model in the previous example 
10, in which the compensating function appeared. This feature allows us to claim that 
the two de-Ockhamizations are fundamentally different: While one affects just accessory 
structures and leaves the physical quantities and equations of motion unaffected, the other 
one affects physical quantities and equations of motion and requires some redefinition in 
order to preserve the physical content.

This model has a symmetry transformation which consists of replacing p with +p  and 
μ with +μ . This transformation leaves the action invariant, and its phase space part 
is generated by –q. Calling this symmetry a “gauge” transformation goes against the 
conventional wisdom that there is no gauge symmetry in the dynamics of a free Newtonian 
particle, and it is certainly artificial in that we have introduced an arbitrary function. On the 
other hand, it is a transformation that leaves ( )q t  (and its equations of motion) untouched, 

16 For theories like electromagnetism this will be controversial, but I take it to be a 
reasonable position that for a theory describing the movement of bodies, the position of these 
bodies can be assumed to be physical and other variables acquire their meaning from their 
relations with them.
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with no need to introduce a redefinition of the physical meaning of the configuration space 
variables of our model. There is a de-Ockhamization that only affects p, and hence it does 
not represent linear momentum anymore. However, as mq isn’t affected, one can claim that 
the de-Ockhamization affects the accessory representation of linear momentum but not the 
linear momentum itself. In the case of electromagnetism, we will find a similar situation: 
We will find two expressions (


π and 


0–A A ), which represent the same physical quantity 

and the argument for considering that a de-Ockhamization is a gauge transformation will 
rely on the fact that only one of the two, which is considered accessory, is affected by the 
de-Ockhamization, while the other and the empirical content are arguably preserved.

From this point of view, the claim that de-Ockhamizations represent bad physical changes 
or trivial transformations can be challenged in the case of momentum de-Ockhamization 
by adopting the position I have been taking in this section. As the transformation leaves 

( )q t  and its equations of motion intact, it is not a bad physical change. As one can ignore 
the effect of the transformation and one does not need to introduce compensating 
functions to extract the physical content of the theory, it is not a trivial transformation 
either. Therefore, one can hold that this kind of transformation lies in between completely 
trivial and genuine gauge transformation.

This kind of argument is the same that we will find in the case of electromagnetism for 
arguing that first-class constraints generate gauge transformations. To insist, the idea is that 
we have a family of transformations that are not of the original, Lagrangian, or “genuine” 
kind, as they carry with them a de-Ockhamization and the introduction of new variables. 
However, while for general de-Ockhamizations one needs to take care of these new 
variables and perform new identifications in order to keep the empirical content, in the case 
of electromagnetism and in the case of momentum de-Ockhamization this is not necessary. 
For this reason, one can argue that these transformations are part of a third category which 
is neither the original one, nor the category of trivial de-Ockhamizations. I will come back 
to this point when I discuss electromagnetism in the extended formalism in section 3.2.

3 TRANSFORMATIONS IN ELECTROMAGNETISM 
AND PROCA THEORY
Having introduced the three different kinds of transformations that one can consider to be 
gauge transformations, now we are in a position to analyze the two relevant cases for the 
controversy between Pitts and Pooley and Wallace in some detail. I will first analyze the 
case of Proca theory, and I will agree with Pitts in that the primary constraint of the theory 
generates a trivial de-Ockhamization. However, I will extend his claim and argue that the 
secondary constraint also generates a transformation that can be considered to be of the 
trivial kind of gauge transformation. In any case, I will agree with him in that the study 
of Proca’s electromagnetism shows how a too-trivial notion of gauge transformation goes 
against the orthodox view, as the orthodox view claims that second-class constraints do not 
generate gauge transformations.

Then, I will move to the case of electromagnetism in the extended formalism and argue 
that one can see the transformations generated by the constraints in this case as pertaining 
to the third category of transformations. I will notice that for this, one needs to claim that 
momentum variables are physical while configuration variables are accessory (in this 
case), which implies an important departure from Lagrangian intuitions. Despite this, I 
will conclude that it is a consistent position and that it allows for saving the orthodoxy.
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3.1 THE ACTION OF THE CONSTRAINTS IN PROCA 
THEORY

Proca theory is defined by the action:

 
æ ö÷ç ÷ç   ⋅ ÷ç ÷ç ÷÷çè øò

     2
3 2 2

0 0
1 1[ ]= ( – ) – ( × ) – – ( + ) .
2 2 2

μ
Proca μ μ

mS A dtd x A A A A A A ρ j A  (17)

This Lagrangian is just the electromagnetic Lagrangian with the addition of the term 
2 2 2 2

02 2– = ( – )μm m
μA A A A , where the parameter m is the “photon mass.” This term spoils 

the local symmetry of the Lagrangian, so there is no “genuine” gauge transformation now. 
If one derives the equations of motion for μA , one can check that the electric and magnetic 
fields have not only charged matter as sources, but also that the very same μA  plays this role. 
This means that, if we take two 4-potential configurations like μA  and ¶+μ μA 17 and their 
velocities, which were physically equivalent in the Maxwell theory, as initial conditions at 
a time t, their time evolutions will differ, affecting also the electric and magnetic fields. In 
Proca theory, μA  is a physical field and not a gauge field.

Nevertheless, Proca theory also has some properties of its close relative Maxwell 
electromagnetism. Its Lagrangian is also singular, it is also a theory with constraints, 
indeed with very similar constraints, and needs to be treated in the Hamiltonian formalism 
as a constrained system. Its total Hamiltonian density is:

 ⋅ ⋅
        2

0 0 2 2 0
0 0 0 0

1( , , , ) = ( , , )+ = ( + ) – ( ) + + ( + )+ .
2 2

μ
T c μ

mH A π A π H A π A λπ π B A π A A A ρ j A λπ  (18)

Its primary constraint is just the same as in Maxwell electromagnetism, 0
1 =C π , and imposing 

its constancy leads to the secondary constraint ⋅
  2

2 0= – +C π ρ m A , which is the same 
constraint as in electromagnetism but with the addition of an extra term 2

0m A .18 This extra 
term makes the constraints second-class, as now we have ¹2 3

1 2{ ( ), ( )} = – ( – ) 0C x C y m δ x y . 
This implies that when we impose constancy of the secondary constraint what we obtain 
is the condition ⋅

 
=λ A. This reflects the fact that Proca electromagnetism is not a gauge 

theory and that there is no room for arbitrary functions in this theory. On the same line, 
there is no local symmetry in the total action. In this sense, Proca theory is just like any 
non-gauge theory but with the added complication that it has constraints.

For this reason, it reflects the “conventional wisdom” that second-class constraints do not 
generate gauge transformations, as they appear in non-gauge theories. Pitts (2022) argues 
that, if one applies the reasoning of Pooley and Wallace (2022) to the case of Proca, one 
would have to claim that the constraint 1C  generates a gauge transformation. This is contrary 
to the “conventional wisdom” that Pooley and Wallace wanted to defend, and hence Pitts 
argues that, by trying to save the “first-class constraints generate gauge transformations” 
doctrine, they have ended up trivializing the notion of gauge and being forced to accept 
that second-class constraints would generate gauge transformations too. Now I will 
analyze in some detail this example and evaluate Pitts’s claims. In particular, I will expand 
on his claim and I will argue that 2C  also generates a trivial gauge transformation. More 
importantly, I will also argue that Pooley and Wallace can resist Pitts’s arguments and 
defend a notion of gauge transformation which does not entail that secondary constraints 
in Proca theory generate gauge transformations.

17 For both of them to be acceptable initial conditions to Proca equations,  has to satisfy 
= 0μ

μ   .

18 This is a version of Gauss law that takes 0A  to act as a source of the electric field.
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Pitts shows that the action of 0
1 =C π  is to shift the 0th component of the 4-potential, 0A , 

and that, in Proca theory, this can be considered a symmetry transformation only if one 
introduces a de-Ockhamization and a compensating function 1μ , such that it is 0 1–A μ  that 
ends up playing the role that 0A  was playing before. That is, the physically meaningful 0A  
has been replaced by the now unphysical 0A  and 1μ , just as in section 2.2 the physically 
meaningful q was replaced by –q μ. I completely agree with his analysis on this point: 1C  
only generates gauge transformations of the trivial kind.

However, Pitts also claims that “only the primary (second-class) constraint, not the 
secondary (second-class) constraint, generates a gauge transformation (by the standards 
at hand)” (2022, 19), where he is referring to gauge transformations of the trivial kind. 
This claim is true if one is referring to the de-Ockhamized model he is discussing, but I 
will argue that it is false if one refers to other de-Ockhamized versions of Proca theory. 
In particular, the secondary constraint 2C  also generates a trivial gauge transformation, 
that is, it is a symmetry of a de-Ockhamized action in which a function 2μ  is introduced 
to compensate the effect of the transformation. I will refer to this theory as the doubly de-
Ockhamized Proca theory, as one needs to introduce two de-Ockhamizations. In this sense, 
what I am arguing for is what I anticipated in the introduction and in the discussion of the 
examples in section 2, that any phase space function can generate a trivial transformation 
if the right compensating functions are introduced appropriately. In section 4, I will give a 
more formal argument for the general claim.

Let me now give the expression of the doubly de-Ockhamized Lagrangian for Proca theory, 
which has as trivial gauge symmetries the symmetries generated by 1C  and 2C . This is an 
extension of the Lagrangian given by Pitts in (Pitts 2022) to include the de-Ockhamization 
associated with 2C . The doubly de-Ockhamized Lagrangian is:

 
        

.
2

0 0 0 1 0 1 2 2 2 0 2 0( , , , ) = ( – , – , – , – ) + ( + ),ProcaL A A A A L A μ A μ A μ A μ m μ A μ A  (19)

where ProcaL  is the Lagrangian in the Proca action 17, and 1μ  and 2μ  are the compensating 
functions introduced to compensate the effects of the transformations generated by 1C  and 

2C . There are two effects of the de-Ockhamization. First, when the de-Ockhamization 
affects configuration variables, the Lagrangian is modified to depend on the de-Ockhamized 
variables. That is, in the same way that in the example in section 2.2 the Lagrangian went 
from depending on q to depending on –q μ, in this case the Lagrangian depends on the 
de-Ockhamized version of the 4-potential μA . Second, as the de-Ockhamization also 
affects the momentum variable 0π  (this will be clear below), we need to introduce a total 
derivative term to account for the change in momentum. This is just as in the example in 
section 2.3, where the term  +μq μq was introduced in order to de-Ockhamize p. In section 
4, I will come back to comment on this general pattern.

By performing the Legendre transform to this Lagrangian one can find the Hamiltonian 
associated with this action:


     0 0 2 2

0 2 0 1 2 1 1 2 2 2 1( , , , ) = ( – , , – , – ) + – – ( + ),TH A π A π H A μ π A μ π m μ μ C μ C μ m μ ρ  (20)

where TH  is the total Hamiltonian of the Proca theory (18)19 but for the de-Ockhamized 
variables, that is, in this extended version 


2–A μ  plays the role of 


A in the original Proca 

theory, 0 1–A μ  plays the role of 0A , and 0 2
2–π m μ  plays the role of 0π  (and 


π stays the 

19 As discussed above, λ is not a free function but fixed to be 
 

A . In the de-Ockhamized 
version it becomes 

 
2( – )A μ  .



15Mozota Frauca 
Philosophy of  Physics 
DOI: 10.31389/pop.48

same). 0 2
1 2= –C π m μ  and ⋅

  2
2 0 1= – + ( – )C π ρ m A μ  are the constraints expressed in 

the de-Ockhamized variables. This is the Proca version of the extended Hamiltonian, 
which requires the introduction of two arbitrary functions (one per constraint), and 
requires reinterpreting the variables in the formalism according to the de-Ockhamization 
performed. The terms  2

2 1– ( + )μ m μ ρ  do not play any role in the Hamiltonian dynamics.

One can check that the dynamics defined by the Hamiltonian 20 or by the action built 
using the Lagrangian 19 is invariant under transformations generated by both 1C  and 2C  as 
long as 1μ  and 2μ  change accordingly. Explicitly, there is invariance under transformations 
of the form:

0 0 1+A A   (21)

0 0 2
2+π π m   (22)


 

2 +A A   (23)
 
π π  (24)

1 1 1+μ μ   (25)

2 2 2+μ μ  , (26)

where 1  and 2  are arbitrary functions associated with the transformations generated by 1C  
and 2C , respectively.20

In this sense, by going to this extended version of Proca theory, we have formulated a theory 
with two additional symmetries. Certainly, they are not genuine gauge transformations 
from the point of view of Pitts, as they are not there in the original Proca theory, which is 
not a gauge theory. But, now the relevant question is, are these transformations just trivial 
de-Ockhamizations, or are they something more interesting as the gauge transformations 
of electromagnetism, according to Pooley and Wallace? While Pitts argues that there is 
no difference between these artificial transformations for Proca theory and the extended 
transformations of electromagnetism, I will argue here and in the next subsection 
that there are important differences that allow us to consider them different kinds of 
transformations. That is, according to the “extended” notion of gauge transformations, 
one can consistently claim that the constraints in Proca electromagnetism do not generate 
gauge transformations, while the constraints in Maxwell electromagnetism do.

As discussed above, the key criterion for deciding when a transformation is a gauge 
transformation in the extended sense or a trivial de-Ockhamization is whether it is 
a transformation that affects the physical, empirical content of the theory or if it is a 
transformation that affects accessory structures. In the case of Proca electromagnetism, μA  
is not a gauge field but a physical field, as I have discussed above. As the transformations 
generated by 1C  and 2C  affect μA , they cannot be said to affect just accessory variables, and 
one needs to introduce redefinitions and identifications in order to recover the physical 
content of the theory. Furthermore, this can be seen in that, in the equations of motion of 
this model, the fields 1μ  and 2μ  appear. For instance, the de-Ockhamized version of Proca’s 
version of Gauss law is

 ⋅
  2

0 1– + ( – ),π ρ m A μ  (27)

20 More explicitly, the form of the generator of the phase space part of this transformation is 
 3

1 1 2 2= ( , ) ( , ) + ( , ) ( , )G d x t x C t x t x C t x   .
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and similar results can be found for Proca equation, the dynamic equation of the theory. 
In this sense, when we compare this case with the examples in sections 2.2 and 13 we find 
that this case is similar to the position de-Ockhamization  –q q μ, and hence that the 
transformations are gauge transformations only in the most trivial sense of the term.

However, I will show next that in the case of Maxwell electromagnetism, this won’t be the 
case, which allows for a consistent way of keeping the orthodoxy.

3.2 ELECTROMAGNETISM IN THE EXTENDED 
FORMALISM

Now we can finally turn to the main case of disagreement between Pitts and Pooley and 
Wallace, electromagnetism expressed in the extended formalism. Both parties agree that 
the extended formalism in the case of electromagnetism is obtained by de-Ockhamizing 
the electromagnetic potential, i.e., by replacing 0A  with 0 –A μ. The de-Ockhamized action21 
is thus:

 
æ ö÷ç ÷  ⋅ç ÷ç ÷çè øò

    3 2 2
0 0

1 1[ ]= ( – ( – )) – ( × ) – (( – ) + ) ,
2 2em μS A dtd x A A μ A A μ ρ j A  (28)

and the extended Hamiltonian density:

 ¢ ⋅
    0 0 0

0 0= ( , , )+ + ( – ) = ( , , – ) + – .em c cH H A π A λ π μ π ρ H A π A μ λπ μπ  (29)

Here, the function ¢λ  is related to λ in the original total action 6 by means of ¢ = +λ λ μ and 
it is also an arbitrary function reflecting the original gauge freedom of electromagnetism. 
Now we have enlarged the original symmetry group of the action and symmetry 
transformations are generated by the constraints 1C  and 2C  independently, as long as ¢λ  and 
μ change accordingly. In particular, the symmetry transformations are given by:

0 0 1+A A   (30)

0 0π π  (31)


 

2+A A   (32)
 
π π  (33)

1 2+ –μ μ    (34)

¢ ¢ 1+λ λ  . (35)

As before, 1  and 2  are arbitrary functions associated with the constraints 1C  and 2C  
respectively. We can recover the original gauge symmetry by setting 1 2=  .

In this de-Ockhamized, or extended, formalism we find the same physical quantities as 
in the original version of electromagnetism: We have the magnetic field as represented 
by 
 

× A and the electric field as represented by 

π and also by 


0– ( – )A A μ . All these 

21 While electromagnetism can be thought of as the 0m   limit of the Proca theory, we have 
seen that their symmetry structure is very different. For this reason, in order to have symmetry 
transformations generated by the two constraints in Proca theory we need to de-Ockhamize the 
model twice, while in the case of electromagnetism with just one de-Ockhamization we obtain 
the desired symmetry structure. For this reason, the model discussed in this subsection is not, 
in a straightforward sense, the 0m   limit of the model discussed in the previous section. It 
is possible to build a doubly de-Ockhamized version of electromagnetism that corresponds to 
that limit, but its discussion is conceptually very similar to what I discuss in this section. I am 
thankful to an anonymous reviewer for inviting me to consider this relationship between models.
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quantities are invariant under the transformations above and therefore “gauge” invariant. 
The second expression for the electric field carries a μ-dependence and therefore is 
de-Ockhamization dependent, while the first one remains independent of that de-
Ockhamization, as it is just 


π. Moreover, one can express the Hamilton equations for 


π 

and 
 

× A just in terms of 

π and 

 
× A (and of 


j), and this, together with the constraint 

⋅
 

– = 0π ρ  and the identity ⋅ 
  

( × ) = 0A , gives the four Maxwell equations with no need 
to change the way one interprets 

 
× A or 


π.

This is clearly similar to the case of the momentum de-Ockhamization I discussed in section 
2.3. For that example, we had that the linear momentum of the particle was represented 
by mq but also by the de-Ockhamized –p μ. By choosing the non-de-Ockhamized version, 
we didn’t need to worry about how de-Ockhamization affected the physical meaning 
of p, and indeed at the end of the day the equations of motion for the physical q were 
unchanged. This was straightforward in the Lagrangian formulation and required using all 
the equations of motion, including the ones for p, in the Hamiltonian formulation. Based 
on the primacy of the Lagrangian formalism and on our interpretation of the theory, q was 
considered a physical variable and p and μ, just accessory variables.

In the case of the extended formalism for electromagnetism, one could make a similar claim: 
that 


π and 

 
× A (together with ρ and 


j) are the physical variables in the formalism while 

0
0 ,A π , and the curl-free component22 of ¢


,A λ  and μ are just accessory variables. This can 

be motivated by the observation that 

π and 

 
× A do, indeed, behave like the electric and 

magnetic fields, but it is relevant to note that now we are inverting the role of momentum and 
configuration variables: While in the particle case we were claiming that the configuration 
space variables were the physical ones and the momentum variables were accessory 
variables, now it is (some) configuration variables that we would claim that are “accessory.”

Pooley and Wallace adopt a perspective in which 

π is considered physical and that the 

transformations generated by the constraints should be considered gauge transformations, 
despite the fact that there is a de-Ockhamization and an expansion of the formalism. At 
the same time, I think it is not necessary for them to embrace the most trivial view of gauge 
transformations, as Pitts’s (2022) arguments were pushing them to embrace. There is a 
definition of gauge transformation, the extended view, as I presented it in the introduction, 
which is consistent and allows the saving of the orthodoxy. From the extended perspective, 
when the de-Ockhamization or extension does not affect the physical variables and their 
equations of motion, one can consider that the symmetry transformations associated with 
it are gauge transformations in this extended sense. In the case of electromagnetism, as de-
Ockhamization leaves 


π, 
 

× A, and their equations of motion unaffected, one can adopt 
the extended view of gauge transformations by considering that 


π and 

 
× A represent the 

physical content of electromagnetism.

Pitts argued against this possibility (2014), as it represents an important departure from 
the Lagrangian understanding of classical theories. I refer the reader to Curiel (2014) for 
a discussion of classical systems and for an argument for why they are Lagrangian rather 
than Hamiltonian, but it is the case that, for generic classical theories, momentum variables 
and phase space are defined starting from a Lagrangian. In this sense, the most natural 
reading of classical theories is from a Lagrangian point of view, and the Hamiltonian 
formulation and variables are just convenient rewritings of the Lagrangian dynamics. 
From this perspective, claiming that some momentum variables are physical while some 
configuration space variables aren’t, seems odd, and this is what Pitts argued in 2014.

22 That is, the part that does not contribute to 
 

× A  and which is not invariant under the 
transformations above.
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However, we are not dealing with a generic classical theory but with a gauge theory. In the 
4-potential formulation of electromagnetism, one can challenge the claim that configuration 
space variables have physical meaning, as it is 

 
× A and 


0–A A  which do, and the latter 

lives in the tangent bundle and not in configuration space. In this sense, it is true that, in 
a sense, μA  are accessory variables used to encode the physical 

 
× A and 


0–A A , and 

when one moves to phase space this is even stronger as I have commented above that the 
evolution of 


π and 

 
× A is independent of 0A , the curl-free component of ¢


,A λ  and μ. 

What is more questionable is the claim that the physical meaning of 

π is independent of 

μA  if we want to have the full analogy with the momentum de-Ockhamization, where the 
meaning of q is independent of p.

One way to go would be just to postulate that 

π is the electric field, but Pitts rejects this 

on the grounds that “the electric field is what pushes on charge.” However, Pooley and 
Wallace argue that, on the extended formalism, once the Lagrangian or Hamiltonian for 
matter is added, 


π is what appears in the equations of motion of matter playing the role of 

the electric field and, hence, that it is “what pushes on charge.” This is not exactly true, as 
what appears playing the role of the electric field is 


0– ( – )A A μ  as can be seen by deriving 

the Lorentz force expression for a charged particle using the (de-Ockhamized) action:

 
æ ö÷ç ÷⋅ç ÷ç ÷çè øò

      2
0

1[ ]= – ( ( ) – ( )+ ( )) .
2

S x dt mx q A x μ x x A x  (36)

This result is obtained independently of whether one directly uses this Lagrangian or 
instead one finds the Hamiltonian and then uses Hamilton equations. Similarly, Pooley 
and Wallace find that the same holds for an example using a matter field. The same is 
expected to happen for any generic matter theory: If one starts with an action depending 
on μA  and which leads to equations of motion only depending on the electric field 


0–A A  

and magnetic field 
 

× A and one de-Ockhamizes the potential 0A , then one will find that 
the de-Ockhamized electric field is what pushes charges around.

However, it is not immediate that one can equate the de-Ockhamized electric field with 

π. 

For doing so, we need to use one of the Hamilton equations, and therefore one can argue 
that the meaning of 


π depends on μA  after all, or at least on the Hamiltonian. This is clearly 

different from the case of q in the case of a single particle, as one can wildly change the 
dynamics of that theory, i.e., its laws of motion, its Lagrangian or its Hamiltonian, that one 
can still interpret q as describing the trajectory of a single particle. If we consider instead 
a different dynamics for the electromagnetic field but the same coupling to matter, we will 
find that it is still 


0– ( – )A A μ  that plays the role of the electric field in pushing charged 

matter, even if its dynamics may not obey Maxwell equations anymore. Meanwhile, 

π will 

cease to be equal to the electric field.

In this sense, one can conclude that, while configuration space variables for a classical 
theory have physical meaning which is quite theory independent, the meaning of 


π is not, 

and would only ascribe physical meaning to it by means of the theories where it appears, 
just as in the case of any other momentum variable. This is, of course, valid as long as the 
way we couple matter to the electromagnetic field in the Lagrangians and Hamiltonians we 
use via the configuration variables μA .

This sort of worry shows that there is a difference between the de-Ockhamized 
electromagnetism and the example of momentum de-Ockhamization and adds up 
to the general Lagrangian worry of Pitts. Despite this, the “extended” view of gauge 
transformations remains a consistent view of gauge transformations which, no matter how 
natural we find it, is able to give a definition of gauge transformation that does not fall into 
the trivial category. Moreover, even if from a Lagrangian perspective it seems that there is 
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no reason for adopting it, I will argue in section 5 that a reason for adopting it lies in the 
quantization of gauge theories. Before this, in the next section I study how the analysis 
extends from the examples considered here to the general case.

4 CONSEQUENCES FOR THE DIRAC’S 
CONJECTURE AND THE EXTENDED FORMALISM
The discussion above should have made clear the sense in which one can claim that all 
first-class constraints generate gauge transformations in the case of electromagnetism 
while still claiming that second-class constraints or arbitrary phase-space functions don’t. 
However, Dirac’s conjecture wasn’t concerned just with electromagnetism, but with any 
generic first-class gauge theory, in particular with those with secondary constraints, which 
are the controversial ones. What can we say about the general case in light of the above 
discussion?

In this section, I will argue for three general claims. First, for any theory and phase space 
function, we can define a de-Ockhamization which leads to a theory with symmetry 
transformations generated by that phase space function. Second, when the theory is a 
gauge theory, this procedure leads to Hamiltonians of the extended form, at least to first 
order. And third, Dirac’s conjecture seems plausible when some restrictions are in play. 
That is, it seems that for any generic first-class system the first-class constraints generate 
gauge transformations in the extended sense. This means that, even if they are associated 
with a de-Ockhamization, it seems plausible that physical variables and their equations 
of motion aren’t affected by this de-Ockhamization. For this, it will be generally the case 
that some phase space momenta will be considered physical and that some configuration 
variables will be considered accessory, just as in the case of electromagnetism. In any 
case, note that my arguments for the case of Dirac’s conjecture are just some plausibility 
arguments and not rigorous proof.

In this article, I have claimed several times that any phase space function can generate a 
gauge transformation if the necessary compensating functions are introduced. Now, I will 
give a construction of how this can be achieved for a generic theory. I will call ,Q P the 
phase space functions prior to the de-Ockhamization, and ,q p the phase space functions 
after a de-Ockhamization generated by a phase space function  .23 The relation between 
these variables is:

 ⋅
2

3= (exp– { , }) = – { , }+ {{ , }, } + ( )
2

μQ μ q q μ q q O μ     (37)

 ⋅
2

3= (exp – { , }) = – { , }+ {{ , }, }+ ( ),
2

μP μ p q μ p p O μ     (38)

where the exponential of the Poisson bracket, ⋅exp– { , }μ  , is defined as a series in which the 
n-th term implies taking the Poisson bracket with n  times and μ is an arbitrary function 
of time or spacetime. This definition is analogous to the way the exponential of an operator 
is defined in quantum mechanics. This expression makes it clear that in the examples in 
this article (in both sections 2 and 3), it was enough to keep just the first order, given that, 
for simple constraints like the ones considered terms like {{ , }, }q   , containing multiple 
Poisson brackets would vanish.

23 The presentation in this section is in terms of generic Hamiltonian systems, the 
generalization to field theory is straightforward, and involves a spatial smearing of the constraints 
and functions generating de-Ockhamizations and gauge transformations, just as in the discussion 
in the previous section.
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This definition is such that the result is invariant under a transformation generated by 
 , and which involves the appropriate change in μ, as it is easy to check. That is, under a 
transformation:

 ⋅(exp { , })q q    (39)

 ⋅(exp { , })p p    (40)

+ ,μ μ   (41)

Q and P do not change. This is precisely the symmetry transformation found in the 
examples in this article.

Now let me show the way in which the Hamiltonian action for ,Q P changes when one 
introduces the variables , ,q p μ. We start with an action principle of the form:

 ( )ò [ , ]= – ( , ) .S Q P dt PQ H Q P  (42)

And now, we simply replace ,Q P by their de-Ockhamized expressions ⋅(exp– { , })μ q , 
⋅(exp– { , })μ p . By working on the term PQ one can express it in the following way,24 up to 

a total derivative term:

 ¶   2= – – + ( ).tPQ pq μ μ O μ   (43)

This allows rearranging terms in the action so that it takes a Hamiltonian form:

 ( ) ( )ò ò [ , ]= – ( , ) = – ( , , ) ,extS q p dt PQ H Q P dt pq H q p μ  (44)

where the “extended” Hamiltonian is:

 ⋅ ⋅ ¶ 2( , , ) = ((exp– { , }) ,(exp– { , }) )+ + + ( )ext tH q p μ H μ q μ p μ μ O μ     (45)

This is the form of the “extended” Hamiltonians in sections 2 and 3.1, up to a total derivative 
term in the last case and taking into account that the simple form of the constraints makes 
it the case that no higher order term in μ appears. If now one finds p such that it minimizes 
the action and substitutes it in the action, one finds the Lagrangian expression of the de-
Ockhamized theory. This shows what I have claimed before; one can de-Ockhamize any 
theory using any phase space function to generate such a de-Ockhamization: One just 
needs to replace the original variables ,Q P with their de-Ockhamized expressions, which 
will generally depend on the compensating function introduced μ.

Now we can turn to the second general claim I want to argue for in this section. We are 
interested in the case in which   is a first-class constraint and not just an arbitrary phase 
space function. That is, we are interested in de-Ockhamizing using the constraints, so that 
they will generate symmetry transformations.

The total Hamiltonian of a generic first-class system is:

 1( , ) = ( , )+ ,A
c AH Q P H Q P λ   (46)

24 For this result, I am building on expression 5.16 in Rothe and Rothe (2010, 73), but 
allowing for the constraints to include an explicit time dependence, which explains the tμ   
term that doesn’t appear on that expression.
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where 1
A  represent the primary constraints of the system and I am using the convention 

that a repeated index represents a summation. We will be allowing for the presence of 
secondary constraints that arise when imposing that the constraints do not evolve in time 
and, making use that the system is first class, i.e., that the Poisson bracket of any two 
constraints weakly vanishes.25 Secondary26 constraints can be thus defined as

 
¶
¶

–1
–1= { , } + .

A
A A n
n n cH

t


   (47)

Having introduced this, let me de-Ockhamize this system using as a generator the 
constraint 1

1 . Applying expression 45 we find that the extended Hamiltonian is:

 ¶ 1 1 2
1 1 1( , , ) = ( , )+ ( , ) + + + ( )A

ext c A tH q p μ H Q P λ Q P μ μ O μ    (48)

To obtain an expression similar to the extended Hamiltonian of electromagnetism (29) we 
need to expand the total Hamiltonian, i.e., the canonical Hamiltonian and the constraints, 
in powers of μ. To first order, this gives:

 1 1 2
1 1 1 1 1( , )+ ( , ) = ( , )+ ( , ) – { , } – { , }+ ( )A A A

c A c A c AH Q P λ Q P H q p λ q p μ H λ μ O μ      (49)

The term 1
1– { , }cμ H   combines with the term ¶ 1

1tμ   to give rise to a term containing the 
secondary constraint as defined by expression 47. This leads to the extended Hamiltonian:

  1 1 2
1 1 2 1 1( , , ) = ( , )+ ( , )+ + + { , }+ ( ).A A A

ext c A AH q p μ H q p λ q p μ μ λ μ O μ      (50)

Note that this is exactly the form of the extended Hamiltonian of electromagnetism 29, 
as there was only one primary constraint and there were no tertiary or higher-order 
constraints.

Now, one could iterate and de-Ockhamize using some other primary constraint (if there 
were) such as 2

1 , or using a secondary constraint, although this de-Ockhamization 
may be uninteresting if there are no higher-order constraints. For instance, in the case 
of electromagnetism, once one has de-Ockhamized using the primary constraint 1C , 
further de-Ockhamizing using 2C  just leads to the same extended Hamiltonian but with 
a redefinition of ¢λ  and μ, i.e., one has still two “free” functions, one of which can be 
used for recovering the variables in the original total formalism. Once every possible de-
Ockhamization has been performed, it seems that one would end up with an extended 
Hamiltonian of the form:

 2( , , ) = ( , )+ ( , ) + ( ),n A
ext c A n iH q p μ H q p λ q p O μ  (51)

where the indices of n
Aλ  now include all secondary constraints and the n

Aλ  are now functions 
of the original free Aλ , linear in the de-Ockhamizing free functions iμ  (one per secondary 
constraint), and possibly also functions of the phase space coordinates ,q p. One can expect 
the higher-order terms to be also some function of the constraints and, hence, the final form 
of the extended Hamiltonian is precisely the extended Hamiltonian of Dirac’s conjecture:

 ( , , ) = ( , )+ ( , ),n A
ext c A nH q p μ H q p λ q p  (52)

25 That is, ,
,{ , } =A B AB p C

n m nm C pK   , where K  are some functions.

26 Here I am using “secondary” to refer also to tertiary, quaternary, and any n-ary constraints 
of the system.
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where the λ now can be more complicated functions of the iμ . As I said above, this isn’t 
any formal proof but just a plausibility argument. However, note that for cases with simple, 
linear constraints such as the ones in the examples considered one doesn’t need to worry 
about higher-order terms and it is true that de-Ockhamization of first-class systems leads 
to an extended Hamiltonian. In this sense, I consider that my second claim is plausible, 
i.e., that extended Hamiltonians of first-class systems are associated, at least to first order, 
with de-Ockhamizations generated by the constraints, which are symmetry generators of 
the de-Ockhamized system.

If the above is true, then for any extended system one should be able to express the 
original ,Q P in terms of ,q p, and n

Aλ , and they should be invariant under transformations 
generated by the constraints when the n

Aλ  transform appropriately. As discussed in the 
previous section, this is enough to satisfy the most trivial definition of gauge symmetry 
and not a gauge symmetry from the most strict point of view. For the orthodox view 
to be true, as I have discussed in the previous section, what one needs is that these 
symmetry transformations are not just trivial transformations, but also “extended” gauge 
transformations. For this, I have argued that the physical variables (which one may need 
to argue they may be momentum and not configuration variables) and their equations of 
motion have to be independent of the de-Ockhamization. My third claim in this section is 
that, once some restrictions are in place, it seems plausible that this is the case and hence 
that Dirac’s conjecture is true from the extended perspective.

Let me start the analysis of this issue by considering a first-class system with a primary, 
a secondary, and a tertiary constraint, and by assuming that the gauge symmetry of 
this system can be understood from a local point of view. That is, this system is not a 
reparametrization invariant model like general relativity and it makes sense to speak 
about what is observable at a time for this system.27 To simplify, let’s assume that all of the 
constraints have strongly vanishing Poisson brackets among themselves. In this case, the 
symmetry generator of the total Hamiltonian28 would be:

  1 2 3= + + .G C C C    (53)

Invariant quantities have vanishing brackets with each of the constraints or involve some 
time derivatives, just as was the case for 


0–A A  in the case of electromagnetism. But, now 

we can even have second temporal derivatives, which complicates the case. In the case of 
electromagnetism we could express 


0–A A  just as 


π, but when terms involving two temporal 

derivatives of configuration variables, or one temporal derivative of momentum variables, are 
present, invariant quantities cannot be expressed just as pure phase space functions, i.e., they 
will necessarily involve some time derivative. In this case, if we assume that the invariant 
quantities involving second temporal derivatives are part of the physical content of the 
original theory, then they are left out if someone claims that it is just quantities with vanishing 
Poisson brackets with the constraints that capture the physical content of the theory.

This shows that some limitation needs to be imposed. In the case in which the gauge invariant 
content at a time (or spacetime point) of the original Lagrangian formulation can be encoded 
just as a combination of configuration space variables and velocities, then they can be expressed 
as phase space functions with no temporal derivative involved and, as they must be invariant 
under the action of the generator, they will then have vanishing Poisson brackets with all the 
constraints separately. It is just in this kind of theory that the definition of observable as the 

27 Again, see the discussion in Mozota Frauca (2023) and Pitts (2017; 2018).

28 An example of a Lagrangian with this constraint structure can be found in Castellani 
(1982, Sect. 4). This Lagrangian does not correspond to any physically interesting model.
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function that has vanishing Poisson brackets with all the first-class constraints can apply. In 
this case, one could argue on the same lines as I have discussed in the previous section that 
these functions are the physical observables29 of the theory and that they are preserved in the 
extended formalism, even if their counterparts, expressed as functions of configuration space 
variables and velocities, are de-Ockhamized. As in the case of electromagnetism, this entails 
a departure from the Lagrangian formalism as Pitts noted, but it is a consistent definition of 
gauge transformation that would allow to preserve the orthodoxy.

Finally, we can also briefly comment on the case of reparametrization invariant theories 
like general relativity.30 In this case, as I have mentioned in the introduction, it has been 
argued that the notions of gauge transformation at a time and observable may not make 
sense. However, from the point of view that takes transformations to be transformations 
between solutions of the equations of motion it may be the case that an extended sense of 
gauge transformation is available. For instance, in the case of general relativity each gauge 
generator is a combination of two types of constraints, one that affects the geometrical 
tensors ( ,ab abg K ) and another one that affects the lapse function and shift vector (


,N N). It 

is plausible to say that the primary constraint acts as a de-Ockhamization of this latter set of 
functions and that the physical content of the theory can be read just from the geometrical 
ones.31 In this sense, it could be the case that Dirac’s conjecture is right even in the case of 
general relativity, in that first-class constraints generate gauge transformations, in the global 
(as opposed to spatiotemporally local) and extended senses.32 This is perfectly compatible 
with the claim that in the context of general relativity it does not make sense to define 
“observables” to be gauge invariant quantities at a spacetime point.

For these reasons, I believe that Dirac’s conjecture is possibly true for the kind of theories I 
have discussed here33 and once we adopt the extended notion of gauge. As I said above, my 
arguments give support to this possibility but they do not provide strict proof.

5 QUANTIZATION
Finally, in this last section I want to come back to the original motivation to introduce 
the extended Hamiltonian formalism. As I have argued above, moving to the extended 
formalism is probably equivalent to performing a de-Ockhamization, although rigorous 

29 Note, however, that my argument starts from an analysis of the classical theory and 
its physical content (maybe even before expressing it in a Lagrangian formulation) and then 
studies in which conditions phase space function capture this content. This is opposite to the 
analysis one sometimes finds in the literature, in which it is claimed that the formal properties 
of phase space functions determine whether they are observable or not.

30 A formal discussion of this kind of system in the constrained Hamiltonian formalism can 
be found in Pons et al. 1997.

31 More precisely, given the relations between ,ab abg K  and 


,N N , it seems likely that one 
can recover ( , )N t x  and 


( , )N t x  from ( , )abg t x  and ( , )abK t x . This is related to the thin sandwich 

conjecture.

32 During the review process of this article, Pitts has published a new article (Pitts 2024) 
in which he analyzes the case of massive theories of gravity. These theories stand in the same 
relation to general relativity as Proca theory to Maxwell’s electromagnetism. For this reason, the 
analysis in this case is analogous. That is, Pitts argues that in the massive case a second-class 
constraint can be argued to generate a gauge transformation of the trivial kind. As I have argued 
for the case of electromagnetism, one can find important differences between the massive and 
massless cases, which allow defending that there is an extended sense of gauge transformation 
that applies to the transformations defined in the massless case and not in the massive models.

33 There were some possible counterexamples to Dirac’s conjecture (Henneaux and 
Teitelboim 1992) that were argued not to be counterexamples in Rothe and Rothe (2010). It is 
beyond the scope of this article to discuss these examples, but the fact is that they are rather 
artificial, unphysical, and different from standard gauge theories.
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proof for this seems to be missing. From the point of view of the classical theory there do 
not seem to be many reasons for adopting this formalism, and maintaining the Lagrangian-
Hamiltonian equivalence would be a strong reason for rejecting it. One reason for adopting 
the extended formalism would be a preference for expressing gauge-invariant quantities 
just as phase space functions and not as temporal derivatives of these functions. Now, 
when we move to canonically quantizing the theory, one could argue that this preference is 
indeed an obligation, as quantum observables in the quantum theory correspond to phase 
space functions in the classical one. Moreover, the way constraints are imposed in the 
quantum formalism naturally leads to the extended notion of gauge transformation. In this 
section I will expand on these claims, showing that the way the canonical quantization of 
gauge systems is performed is most naturally understood from the extended view of gauge.

In Dirac’s quantization procedure for gauge theories (1964), constraints are imposed by 
requiring that physical states satisfy

 "ˆ ( ) = 0 ,αψ q α  (54)

where ˆ
α  are the operator counterparts of the classical constraints, both primary and secondary, 

and ( )ψ q  is a wavefunction(al) defined on the configuration space of the original theory. States 
satisfying the constraint equation are invariant under transformations of the form:

 
ˆ

.αψ e ψ   (55)

It is in this sense that it is very natural to consider that the quantum counterparts of the 
first-class constraints generate gauge transformations and that physical states are just 
gauge-invariant states. In this sense, this way of quantizing gauge theories very naturally 
fits with the extended definition of gauge in the classical theory.

As I have argued above, the extended formalism is related to a de-Ockhamization, and 
therefore it is interesting to study how de-Ockhamized theories could be quantized in 
analogous ways to Dirac’s quantization. Let me consider the quantization of the single 
particle example above. Before de-Ockhamization the quantum theory describes the 
evolution of states ( )ψ q  under the action of the quantum counterpart of the Hamiltonian. 
When we introduce a position de-Ockhamization we introduce a “gauge” symmetry 
generated by p in the classical theory. It would be absurd to impose invariance under a 
transformation of the form  ˆ( ) ( )pψ q e ψ q  as it leads to q-independent states. Instead, 
one would have to recall that after de-Ockhamizing, q has lost its original meaning, and 
treat it in some appropriate way. For instance, one can fix μ and define states of the form 

( )μψ q . The physical position operator would now correspond to ˆ ˆ= –μq q μ. Under a “gauge” 
transformation we would have that states transform in the following way:

 ˆ
+( ) ( ) = ( + ) = ( ).p

μ μ μ μψ q e ψ q ψ q ψ q 
  (56)

The initial and final states are different states, but the operators ˆμq  and +ˆμq  have identical 
expectation values for the states ( )μψ q  and + ( )μψ q , respectively.34 This shows that, for 
a de-Ockhamization, imposing invariance under the generating operator is too strong 
a requirement, as one generally needs to consider the presence of the compensating 
functions and the way they affect the interpretation of the variables in the formalism.

34 There is an alternative version of this argument in a Heisenberg-picture-like version 
of gauge transformations, i.e., in a version in which it is operators that are affected by 
transformations and not states. While q̂ is not invariant under a transformation generated by 
ˆ ˆ, μp q , it is invariant once we take into account that μ also transforms to +μ .
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In the case of electromagnetism, we could try to apply this lesson. This means that as 
the constraints 1C  and 2C  are related with de-Ockhamizations of 0A , one shouldn’t impose 
invariance under the quantum transformations they generate. However, given that they 
are constraints, if we follow Dirac’s quantization procedure we are forced to impose such 
an invariance. Luckily, even if in the particle case imposing invariance under the operator 
generating the de-Ockhamization leads to disaster, in the case of electromagnetism this 
is not the case. The reason for this is that the physical content of electromagnetism is 
captured by variables that are not affected by the de-Ockhamization. In the quantum case 
this means that there exist operators associated with 


π and 

 
× A, and their quantum 

dynamics give rise to a meaningful quantum theory.

In this sense, we see how the quantization of electromagnetism using Dirac’s extended 
formalism supports the extended view of gauge and distinguishes it from general de-
Ockhamizations. While Pitts was right that the transformations generated by 1C  and 2C  in 
the classical case are associated with artificial de-Ockhamizations, in the quantum case 
they are part of the machinery that is used for defining the theory in a way that trivial de-
Ockhamizations are not. For this reason, we can see how the extended view of gauge 
transformations makes the most sense in light of how quantum theories are customarily built.

In the case of more general theories, it seems that the same conclusion will obtain. For 
classical theories in which we can express the physical content of the theory as a set of 
phase space variables invariant under the extended set of gauge transformations, then 
Dirac’s quantization procedure will preserve them, and from the quantum perspective the 
extended sense of gauge transformation will be natural. For reparametrization invariant 
theories, Dirac’s quantization procedure is problematic for other reasons,35 and hence the 
extended sense of gauge transformation cannot be supported by the quantum theory.

This section has shown how, even if from a classical point of view, the “genuine” sense 
of gauges is more natural, when we move to the quantum version of gauge theories the 
“extended” view of gauge transformations appears to fit very naturally with the way these 
quantum theories are defined.

6 CONCLUSIONS
In this article I have built on the controversy between Pitts and Pooley and Wallace to 
distinguish between three possible notions of gauge transformation. Pitts argued that there 
exist “genuine” gauge transformations, which are usually represented by symmetries of 
minimal, not artificially expanded Lagrangian actions, and then symmetries of artificial de-
Ockhamizations or expansions of any theory. Given this classification, Pitts argued that Pooley 
and Wallace were forced to accept that the constraints in electromagnetism can only be said to 
be gauge transformations in the trivial sense, and that this further implied that the orthodox 
view couldn’t be saved, as accepting the trivial sense of gauge transformation would entail that 
second-class constraints also generate gauge transformations. However, I have argued that 
there is room for a third sense of gauge transformation that allows escaping Pitts’s dilemma.

This sense of gauge transformation is the “extended sense.” This notion of gauge 
transformation accepts a departure from the original action and the introduction of 
compensating functions. However, these functions do not affect the physical variables, 
contrary to what happens in the case of a de-Ockhamization. To argue that this is the 
case, one needs to adopt a position in which momentum variables may be considered 
physical and configuration variables are considered accessory, which goes against many 

35 I have argued for this claim in Mozota Frauca (2023).
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shared intuitions about classical theories. However, this is a consistent position that allows 
maintaining the orthodoxy. Furthermore, this extended view of gauge transformations fits 
nicely with the way gauge transformations are defined in quantum theories, and from that 
point of view it may not be such an unnatural definition.

Finally, I have also made some general claims, such as that any phase space function in any 
theory can be said to generate a trivial gauge transformation or that Dirac’s conjecture may 
be true for generic gauge theories in the extended sense.
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	The dynamics defined by the Hamilton equations, together with the two constraint equations, are equivalent to the dynamics defined by the Euler-Lagrange equations for the action 4 together with the equation . The Euler-Lagrange equations, as well as the original Maxwell equations, do not imply any dynamical equation for , and this is explicit in the total Hamiltonian formalism where  is allowed to vary according to the arbitrary function . In this sense, the original gauge symmetry is explicit in the total 
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	Brian Pitts suggests that, besides genuine gauge transformations, we find other transformations that can be argued to leave the physical content of the theories unaffected. However, these transformations lack any physical motivation and correspond to just an artificial overcomplication of our formalism. In this sense, one goes from a (relatively) simple physical theory to an unnecessarily complicated one, contrary to Ockham’s razor, and hence the name. The well-discussed example he gives is the substitution
	Glymour 1977
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	13 This is not necessarily the same as saying that the observables of the theory are the phase space functions that remain invariant under a transformation, as the discussion of reparametrization invariant shows us that this is more subtle. I refer the reader to Mozota Frauca (), Pitts (; , and Pons, Salisbury, and Sundermeyer () for discussions of this point and for the distinction between global and instantaneous types of gauge transformations.
	13 This is not necessarily the same as saying that the observables of the theory are the phase space functions that remain invariant under a transformation, as the discussion of reparametrization invariant shows us that this is more subtle. I refer the reader to Mozota Frauca (), Pitts (; , and Pons, Salisbury, and Sundermeyer () for discussions of this point and for the distinction between global and instantaneous types of gauge transformations.
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	function, no matter how wild. To this, the proponent of the transformation tells us that 
	function, no matter how wild. To this, the proponent of the transformation tells us that 
	we are right, but that after the transformation we cannot interpret 
	()qt
	 as describing the 
	trajectory of a free particle, and that we should take 
	–qμ
	 to represent the position of the 
	new particle. Furthermore, they propose that we should also replace the original action 
	with a new one:

	  (9)
	ò2[]=(–).2mSqdtqμ

	One can see that this new action has an explicit symmetry under the transformation . The equations of motion for this Lagrangian are:
	+,+qqμμ

	  (10)
	(–)=0.ddtqμ

	That is,  describes particles moving at uniform velocities, as we were expecting. This, of course, works in order to keep the empirical content of the theory but, as Pitts argues, if this is to be considered a gauge transformation, it is only in a very trivial way, which does not have anything to do with any possible, preexisting genuine gauge symmetry.
	–qμ

	In this sense, for any theory one can choose any arbitrary transformation and say it is a symmetry transformation or even a gauge transformation, as one only needs to introduce enough compensating functions to undo the transformation and to redefine or change the way the variables in the formalism correspond to physical quantities in the real world.
	It is in this sense that Pitts emphasizes that, in his opinion, the claim that first-class constraints generate gauge transformations is either trivial or false. For the simple example I have introduced, this seems to be the case, as the transformation doesn’t keep the physical content of the theory intact unless we reinterpret  as describing the trajectory of the particle, and this is trivial in the sense that we have just introduced.
	–qμ

	We can express this in the Hamiltonian language. The momentum conjugate to  in the de-Ockhamized action 9 is:
	q

	  (11)
	¶¶==(–).Lpmqμq

	This is just the physical linear momentum expressed in the de-Ockhamized variables. The Hamiltonian is:
	  (12)
	2=+.2pHpμm

	Making use of the symplectic structure of the phase space, we can identify momentum  as the “gauge” generator which generates the transformation , as long as we accompany this with the transformation , just as in the case of “genuine” gauge transformations the gauge transformations needed of the combined action of the gauge generator and a change in the arbitrary functions accompanying the primary constraints, e.g.,  in the case of electromagnetism. The most striking difference with the case of 
	p
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	14 There is an alternative description of de-Ockhamizations in the language of phase spaces and constrained systems which consists of taking the compensating functions to be phase space variables. If one chooses that formalism, de-Ockhamizations correspond to transformations generated by , where  is the momentum conjugate to  and  the arbitrary phase space function that defines the de-Ockhamization. Despite this, I will stick to the formulation that takes compensating functions to be arbitrary functions and
	14 There is an alternative description of de-Ockhamizations in the language of phase spaces and constrained systems which consists of taking the compensating functions to be phase space variables. If one chooses that formalism, de-Ockhamizations correspond to transformations generated by , where  is the momentum conjugate to  and  the arbitrary phase space function that defines the de-Ockhamization. Despite this, I will stick to the formulation that takes compensating functions to be arbitrary functions and
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	‘genuine’ gauge transformations is that the symmetry transformations do not need to be 
	‘genuine’ gauge transformations is that the symmetry transformations do not need to be 
	generated by constraints or combinations of constraints, any phase space function can 
	generate a symmetry transformation if one just adds the pertinent compensating functions.

	It is in this sense that one can argue that any phase space function, including any constraint, generates a “gauge” transformation. However, in general they won’t correspond to any “genuine” gauge transformation, and one needs to change the physical interpretation one gives to the variables in the formalism and to change the equations of motion to include the effect of the compensating functions. All of this has an ad hoc feeling that justifies the claim that it is false or just trivially true that any phas
	15
	15
	15



	2.3 MOMENTUM DE-OCKHAMIZATION
	The example in this subsection aims to capture the intuition behind the “extended” sense of gauge transformation, despite not being related to an extended formalism of gauge theories and drawing intuition from different sources. However, it aims to illustrate how a de-Ockhamization can be considered not to fit in either the trivial or the genuine gauge transformation categories. The trick for this is that, while the transformation is formally a de-Ockhamization (and hence not a genuine gauge transformation)
	In the example of a non-relativistic particle, let me adopt the following perspective, which is natural in the context of classical mechanics. We start with a theory, Newtonian mechanics, which states that free bodies move in straight lines with uniform velocities. In this sense, the physical content of the theory is given by the set of physically allowed trajectories , where  represents the position of a particle or body in space. Now we can express this theory in the Hamiltonian formalism, where a variabl
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	()qt
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	If one accepts this perspective, then one may have different intuitions about de-Ockhamizations depending on which variables are affected by them. In the previous example, the de-Ockhamization affected , and we were forced to accept a redefinition in order to keep the physical content of the model. In the following example,  is affected, but  is not, and hence one can claim that the physical content is not affected by this transformation and that this kind of transformation is different. Something similar w
	()qt
	p
	()qt
	π
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	15 Let me make clear the difference between Pitts’s position and mine: While Pitts argues that some constraints generate trivial gauge transformations, I am arguing for the more general claim that any phase space function generates a trivial gauge transformation, provided that the appropriate compensating functions are in place and that the new identifications and redefinitions are performed.
	15 Let me make clear the difference between Pitts’s position and mine: While Pitts argues that some constraints generate trivial gauge transformations, I am arguing for the more general claim that any phase space function generates a trivial gauge transformation, provided that the appropriate compensating functions are in place and that the new identifications and redefinitions are performed.

	Having said this, let me introduce the example. Consider the following action for the Newtonian particle:
	  (13)
	æö÷ç÷ç÷ç÷çèøò2[]=+(+),2mSqdtqμqμq

	where  is an arbitrary function. From the Lagrangian perspective, not much has changed, as we have just added a total derivative term to the action 8. The equations of motion for  are independent of , and they describe particles moving uniformly in straight lines, as one could have expected. However, when we move to the Hamiltonian formalism we find that a de-Ockhamization has taken place, as momentum is now:
	μ
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	  (14)
	¶¶==+.Lpmqμq

	This is, we find that the momentum for this action has been shifted by an arbitrary function. The Hamiltonian becomes:
	  (15)
	2(–)=–.2pμHqμm

	The equations of motion for this Hamiltonian are equivalent to the ones of the free particle in the sense that solutions for  still represent uniformly moving particles, although the equation for  now has changed and depends on .  has lost its interpretation as the linear momentum, but this is a loss we may accept, as the physical meaning of canonical momentum variables, for standard, classical, non-gauge theories, is defined by means of the Lagrangian or, equivalently, of the Hamiltonian of the theory. Tha
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	Indeed, if one works on the Hamilton equations of motion of this model, at the end of the day one is left with:
	  (16)
	=0,mq

	that is, the equations of motion have not been affected by the de-Ockhamization and we find no trace of the compensating function  in them, nor of the “accessory” momentum . This is in contrast with the equations of motion of the model in the previous example 10, in which the compensating function appeared. This feature allows us to claim that the two de-Ockhamizations are fundamentally different: While one affects just accessory structures and leaves the physical quantities and equations of motion unaffect
	μ
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	This model has a symmetry transformation which consists of replacing  with  and  with . This transformation leaves the action invariant, and its phase space part is generated by . Calling this symmetry a “gauge” transformation goes against the conventional wisdom that there is no gauge symmetry in the dynamics of a free Newtonian particle, and it is certainly artificial in that we have introduced an arbitrary function. On the other hand, it is a transformation that leaves  (and its equations of motion) unto
	p
	+p
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	16 For theories like electromagnetism this will be controversial, but I take it to be a reasonable position that for a theory describing the movement of bodies, the position of these bodies can be assumed to be physical and other variables acquire their meaning from their relations with them.
	16 For theories like electromagnetism this will be controversial, but I take it to be a reasonable position that for a theory describing the movement of bodies, the position of these bodies can be assumed to be physical and other variables acquire their meaning from their relations with them.

	with no need to introduce a redefinition of the physical meaning of the configuration space 
	with no need to introduce a redefinition of the physical meaning of the configuration space 
	variables of our model. There is a de-Ockhamization that only affects 
	p
	, and hence it does 
	not represent linear momentum anymore. However, as 
	mq
	 isn’t affected, one can claim that 
	the de-Ockhamization affects the accessory representation of linear momentum but not the 
	linear momentum itself. In the case of electromagnetism, we will find a similar situation: 
	We will find two expressions (
	π
	 and 
	0–AA
	), which represent the same physical quantity 
	and the argument for considering that a de-Ockhamization is a gauge transformation will 
	rely on the fact that only one of the two, which is considered accessory, is affected by the 
	de-Ockhamization, while the other and the empirical content are arguably preserved.

	From this point of view, the claim that de-Ockhamizations represent bad physical changes or trivial transformations can be challenged in the case of momentum de-Ockhamization by adopting the position I have been taking in this section. As the transformation leaves  and its equations of motion intact, it is not a bad physical change. As one can ignore the effect of the transformation and one does not need to introduce compensating functions to extract the physical content of the theory, it is not a trivial t
	()qt

	This kind of argument is the same that we will find in the case of electromagnetism for arguing that first-class constraints generate gauge transformations. To insist, the idea is that we have a family of transformations that are not of the original, Lagrangian, or “genuine” kind, as they carry with them a de-Ockhamization and the introduction of new variables. However, while for general de-Ockhamizations one needs to take care of these new variables and perform new identifications in order to keep the empi
	3 TRANSFORMATIONS IN ELECTROMAGNETISM AND PROCA THEORY
	Having introduced the three different kinds of transformations that one can consider to be gauge transformations, now we are in a position to analyze the two relevant cases for the controversy between Pitts and Pooley and Wallace in some detail. I will first analyze the case of Proca theory, and I will agree with Pitts in that the primary constraint of the theory generates a trivial de-Ockhamization. However, I will extend his claim and argue that the secondary constraint also generates a transformation tha
	Then, I will move to the case of electromagnetism in the extended formalism and argue that one can see the transformations generated by the constraints in this case as pertaining to the third category of transformations. I will notice that for this, one needs to claim that momentum variables are physical while configuration variables are accessory (in this case), which implies an important departure from Lagrangian intuitions. Despite this, I will conclude that it is a consistent position and that it allows
	3.1 THE ACTION OF THE CONSTRAINTS IN PROCA THEORY
	Proca theory is defined by the action:
	  (17)
	æö÷ç÷ç⋅÷ç÷ç÷÷çèøò23220011[]=(–)–(×)––(+).222μProcaμμmSAdtdxAAAAAAρjA

	This Lagrangian is just the electromagnetic Lagrangian with the addition of the term , where the parameter  is the “photon mass.” This term spoils the local symmetry of the Lagrangian, so there is no “genuine” gauge transformation now. If one derives the equations of motion for , one can check that the electric and magnetic fields have not only charged matter as sources, but also that the very same  plays this role. This means that, if we take two 4-potential configurations like  and  and their velocities, 
	2222022–=(–)μmmμAAAA
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	t
	μA

	Nevertheless, Proca theory also has some properties of its close relative Maxwell electromagnetism. Its Lagrangian is also singular, it is also a theory with constraints, indeed with very similar constraints, and needs to be treated in the Hamiltonian formalism as a constrained system. Its total Hamiltonian density is:
	  (18)
	⋅⋅20022000001(,,,)=(,,)+=(+)–()++(+)+.22μTcμmHAπAπHAπAλππBAπAAAρjAλπ

	Its primary constraint is just the same as in Maxwell electromagnetism, , and imposing its constancy leads to the secondary constraint , which is the same constraint as in electromagnetism but with the addition of an extra term . This extra term makes the constraints second-class, as now we have . This implies that when we impose constancy of the secondary constraint what we obtain is the condition . This reflects the fact that Proca electromagnetism is not a gauge theory and that there is no room for arbit
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	¹2312{(),()}=–(–)0CxCymδxy
	⋅=λA

	For this reason, it reflects the “conventional wisdom” that second-class constraints do not generate gauge transformations, as they appear in non-gauge theories. Pitts () argues that, if one applies the reasoning of Pooley and Wallace () to the case of Proca, one would have to claim that the constraint  generates a gauge transformation. This is contrary to the “conventional wisdom” that Pooley and Wallace wanted to defend, and hence Pitts argues that, by trying to save the “first-class constraints generate 
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	17 For both of them to be acceptable initial conditions to Proca equations,  has to satisfy .
	17 For both of them to be acceptable initial conditions to Proca equations,  has to satisfy .
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	18 This is a version of Gauss law that takes  to act as a source of the electric field.
	18 This is a version of Gauss law that takes  to act as a source of the electric field.
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	Pitts shows that the action of  is to shift the 0th component of the 4-potential, , and that, in Proca theory, this can be considered a symmetry transformation only if one introduces a de-Ockhamization and a compensating function , such that it is  that ends up playing the role that  was playing before. That is, the physically meaningful  has been replaced by the now unphysical  and , just as in section 2.2 the physically meaningful  was replaced by . I completely agree with his analysis on this point:  onl
	01=Cπ
	0A
	1μ
	01–Aμ
	0A
	0A
	0A
	1μ
	q
	–qμ
	1C

	However, Pitts also claims that “only the primary (second-class) constraint, not the secondary (second-class) constraint, generates a gauge transformation (by the standards at hand)” (), where he is referring to gauge transformations of the trivial kind. This claim is true if one is referring to the de-Ockhamized model he is discussing, but I will argue that it is false if one refers to other de-Ockhamized versions of Proca theory. In particular, the secondary constraint  also generates a trivial gauge tran
	2022, 19
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	Let me now give the expression of the doubly de-Ockhamized Lagrangian for Proca theory, which has as trivial gauge symmetries the symmetries generated by  and . This is an extension of the Lagrangian given by Pitts in () to include the de-Ockhamization associated with . The doubly de-Ockhamized Lagrangian is:
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	 (19)
	.2000101222020(,,,)=(–,–,–,–)+(+),ProcaLAAAALAμAμAμAμmμAμA

	where  is the Lagrangian in the Proca action 17, and  and  are the compensating functions introduced to compensate the effects of the transformations generated by  and . There are two effects of the de-Ockhamization. First, when the de-Ockhamization affects configuration variables, the Lagrangian is modified to depend on the de-Ockhamized variables. That is, in the same way that in the example in section 2.2 the Lagrangian went from depending on  to depending on , in this case the Lagrangian depends on the 
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	By performing the Legendre transform to this Lagrangian one can find the Hamiltonian associated with this action:
	 (20)
	002202012112221(,,,)=(–,,–,–)+––(+),THAπAπHAμπAμπmμμCμCμmμρ

	where  is the total Hamiltonian of the Proca theory (18) but for the de-Ockhamized variables, that is, in this extended version  plays the role of  in the original Proca theory,  plays the role of , and  plays the role of  (and  stays the 
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	19 As discussed above,  is not a free function but fixed to be . In the de-Ockhamized version it becomes .
	19 As discussed above,  is not a free function but fixed to be . In the de-Ockhamized version it becomes .
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	same). 
	same). 
	0212=–Cπmμ
	 and 
	⋅2201=–+(–)CπρmAμ
	 are the constraints expressed in 
	the de-Ockhamized variables. This is the Proca version of the extended Hamiltonian, 
	which requires the introduction of two arbitrary functions (one per constraint), and 
	requires reinterpreting the variables in the formalism according to the de-Ockhamization 
	performed. The terms 
	221–(+)μmμρ
	 do not play any role in the Hamiltonian dynamics.

	One can check that the dynamics defined by the Hamiltonian 20 or by the action built using the Lagrangian 19 is invariant under transformations generated by both  and  as long as  and  change accordingly. Explicitly, there is invariance under transformations of the form:
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	 (21)
	001+AA

	 (22)
	0022+ππm

	 (23)
	2 +AA

	 (24)
	ππ

	 (25)
	111+μμ

	, (26)
	222+μμ

	where  and  are arbitrary functions associated with the transformations generated by  and , respectively.
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	In this sense, by going to this extended version of Proca theory, we have formulated a theory with two additional symmetries. Certainly, they are not genuine gauge transformations from the point of view of Pitts, as they are not there in the original Proca theory, which is not a gauge theory. But, now the relevant question is, are these transformations just trivial de-Ockhamizations, or are they something more interesting as the gauge transformations of electromagnetism, according to Pooley and Wallace? Whi
	As discussed above, the key criterion for deciding when a transformation is a gauge transformation in the extended sense or a trivial de-Ockhamization is whether it is a transformation that affects the physical, empirical content of the theory or if it is a transformation that affects accessory structures. In the case of Proca electromagnetism,  is not a gauge field but a physical field, as I have discussed above. As the transformations generated by  and  affect , they cannot be said to affect just accessor
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	  (27)
	⋅201–+(–),πρmAμ

	20 More explicitly, the form of the generator of the phase space part of this transformation is .
	20 More explicitly, the form of the generator of the phase space part of this transformation is .
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	and similar results can be found for Proca equation, the dynamic equation of the theory. In this sense, when we compare this case with the examples in sections 2.2 and 13 we find that this case is similar to the position de-Ockhamization , and hence that the transformations are gauge transformations only in the most trivial sense of the term.
	–qqμ

	However, I will show next that in the case of Maxwell electromagnetism, this won’t be the case, which allows for a consistent way of keeping the orthodoxy.
	3.2 ELECTROMAGNETISM IN THE EXTENDED FORMALISM
	Now we can finally turn to the main case of disagreement between Pitts and Pooley and Wallace, electromagnetism expressed in the extended formalism. Both parties agree that the extended formalism in the case of electromagnetism is obtained by de-Ockhamizing the electromagnetic potential, i.e., by replacing  with . The de-Ockhamized action is thus:
	0A
	0–Aμ
	21
	21
	21



	  (28)
	æö÷ç÷⋅ç÷ç÷çèøò3220011[]=(–(–))–(×)–((–)+),22emμSAdtdxAAμAAμρjA

	and the extended Hamiltonian density:
	  (29)
	¢⋅00000=(,,)++(–)=(,,–)+–.emccHHAπAλπμπρHAπAμλπμπ

	Here, the function  is related to  in the original total action 6 by means of  and it is also an arbitrary function reflecting the original gauge freedom of electromagnetism. Now we have enlarged the original symmetry group of the action and symmetry transformations are generated by the constraints  and  independently, as long as  and  change accordingly. In particular, the symmetry transformations are given by:
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	 (32)
	2+AA

	 (33)
	ππ

	 (34)
	12+–μμ

	. (35)
	¢¢1+λλ

	As before,  and  are arbitrary functions associated with the constraints  and  respectively. We can recover the original gauge symmetry by setting .
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	In this de-Ockhamized, or extended, formalism we find the same physical quantities as in the original version of electromagnetism: We have the magnetic field as represented by  and the electric field as represented by  and also by . All these 
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	21 While electromagnetism can be thought of as the  limit of the Proca theory, we have seen that their symmetry structure is very different. For this reason, in order to have symmetry transformations generated by the two constraints in Proca theory we need to de-Ockhamize the model twice, while in the case of electromagnetism with just one de-Ockhamization we obtain the desired symmetry structure. For this reason, the model discussed in this subsection is not, in a straightforward sense, the  limit of the m
	21 While electromagnetism can be thought of as the  limit of the Proca theory, we have seen that their symmetry structure is very different. For this reason, in order to have symmetry transformations generated by the two constraints in Proca theory we need to de-Ockhamize the model twice, while in the case of electromagnetism with just one de-Ockhamization we obtain the desired symmetry structure. For this reason, the model discussed in this subsection is not, in a straightforward sense, the  limit of the m
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	quantities are invariant under the transformations above and therefore “gauge” invariant. 
	quantities are invariant under the transformations above and therefore “gauge” invariant. 
	The second expression for the electric field carries a 
	μ
	-dependence and therefore is 
	de-Ockhamization dependent, while the first one remains independent of that de-
	Ockhamization, as it is just 
	π
	. Moreover, one can express the Hamilton equations for 
	π
	 
	and 
	×A
	 just in terms of 
	π
	 and 
	×A
	 (and of 
	j
	), and this, together with the constraint 
	⋅–=0πρ
	 and the identity 
	⋅(×)=0A
	, gives the four Maxwell equations with no need 
	to change the way one interprets 
	×A
	 or 
	π
	.

	This is clearly similar to the case of the momentum de-Ockhamization I discussed in section 2.3. For that example, we had that the linear momentum of the particle was represented by  but also by the de-Ockhamized . By choosing the non-de-Ockhamized version, we didn’t need to worry about how de-Ockhamization affected the physical meaning of , and indeed at the end of the day the equations of motion for the physical  were unchanged. This was straightforward in the Lagrangian formulation and required using all
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	In the case of the extended formalism for electromagnetism, one could make a similar claim: that  and  (together with  and ) are the physical variables in the formalism while , and the curl-free component of  and  are just accessory variables. This can be motivated by the observation that  and  do, indeed, behave like the electric and magnetic fields, but it is relevant to note that now we are inverting the role of momentum and configuration variables: While in the particle case we were claiming that the co
	π
	×A
	ρ
	j
	00,Aπ
	22
	22
	22


	¢,Aλ
	μ
	π
	×A

	Pooley and Wallace adopt a perspective in which  is considered physical and that the transformations generated by the constraints should be considered gauge transformations, despite the fact that there is a de-Ockhamization and an expansion of the formalism. At the same time, I think it is not necessary for them to embrace the most trivial view of gauge transformations, as Pitts’s () arguments were pushing them to embrace. There is a definition of gauge transformation, the extended view, as I presented it i
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	Pitts argued against this possibility (), as it represents an important departure from the Lagrangian understanding of classical theories. I refer the reader to Curiel () for a discussion of classical systems and for an argument for why they are Lagrangian rather than Hamiltonian, but it is the case that, for generic classical theories, momentum variables and phase space are defined starting from a Lagrangian. In this sense, the most natural reading of classical theories is from a Lagrangian point of view, 
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	22 That is, the part that does not contribute to  and which is not invariant under the transformations above.
	22 That is, the part that does not contribute to  and which is not invariant under the transformations above.
	×A


	However, we are not dealing with a generic classical theory but with a gauge theory. In the 4-potential formulation of electromagnetism, one can challenge the claim that configuration space variables have physical meaning, as it is  and  which do, and the latter lives in the tangent bundle and not in configuration space. In this sense, it is true that, in a sense,  are accessory variables used to encode the physical  and , and when one moves to phase space this is even stronger as I have commented above tha
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	One way to go would be just to postulate that  is the electric field, but Pitts rejects this on the grounds that “the electric field is what pushes on charge.” However, Pooley and Wallace argue that, on the extended formalism, once the Lagrangian or Hamiltonian for matter is added,  is what appears in the equations of motion of matter playing the role of the electric field and, hence, that it is “what pushes on charge.” This is not exactly true, as what appears playing the role of the electric field is  as 
	π
	π
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	This result is obtained independently of whether one directly uses this Lagrangian or instead one finds the Hamiltonian and then uses Hamilton equations. Similarly, Pooley and Wallace find that the same holds for an example using a matter field. The same is expected to happen for any generic matter theory: If one starts with an action depending on  and which leads to equations of motion only depending on the electric field  and magnetic field  and one de-Ockhamizes the potential , then one will find that th
	μA
	0–AA
	×A
	0A

	However, it is not immediate that one can equate the de-Ockhamized electric field with . For doing so, we need to use one of the Hamilton equations, and therefore one can argue that the meaning of  depends on  after all, or at least on the Hamiltonian. This is clearly different from the case of  in the case of a single particle, as one can wildly change the dynamics of that theory, i.e., its laws of motion, its Lagrangian or its Hamiltonian, that one can still interpret  as describing the trajectory of a si
	π
	π
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	In this sense, one can conclude that, while configuration space variables for a classical theory have physical meaning which is quite theory independent, the meaning of  is not, and would only ascribe physical meaning to it by means of the theories where it appears, just as in the case of any other momentum variable. This is, of course, valid as long as the way we couple matter to the electromagnetic field in the Lagrangians and Hamiltonians we use via the configuration variables .
	π
	μA

	This sort of worry shows that there is a difference between the de-Ockhamized electromagnetism and the example of momentum de-Ockhamization and adds up to the general Lagrangian worry of Pitts. Despite this, the “extended” view of gauge transformations remains a consistent view of gauge transformations which, no matter how natural we find it, is able to give a definition of gauge transformation that does not fall into the trivial category. Moreover, even if from a Lagrangian perspective it seems that there 
	4 CONSEQUENCES FOR THE DIRAC’S CONJECTURE AND THE EXTENDED FORMALISM
	The discussion above should have made clear the sense in which one can claim that all first-class constraints generate gauge transformations in the case of electromagnetism while still claiming that second-class constraints or arbitrary phase-space functions don’t. However, Dirac’s conjecture wasn’t concerned just with electromagnetism, but with any generic first-class gauge theory, in particular with those with secondary constraints, which are the controversial ones. What can we say about the general case 
	In this section, I will argue for three general claims. First, for any theory and phase space function, we can define a de-Ockhamization which leads to a theory with symmetry transformations generated by that phase space function. Second, when the theory is a gauge theory, this procedure leads to Hamiltonians of the extended form, at least to first order. And third, Dirac’s conjecture seems plausible when some restrictions are in play. That is, it seems that for any generic first-class system the first-clas
	In this article, I have claimed several times that any phase space function can generate a gauge transformation if the necessary compensating functions are introduced. Now, I will give a construction of how this can be achieved for a generic theory. I will call  the phase space functions prior to the de-Ockhamization, and  the phase space functions after a de-Ockhamization generated by a phase space function . The relation between these variables is:
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	where the exponential of the Poisson bracket, , is defined as a series in which the -th term implies taking the Poisson bracket with  times and  is an arbitrary function of time or spacetime. This definition is analogous to the way the exponential of an operator is defined in quantum mechanics. This expression makes it clear that in the examples in this article (in both sections 2 and 3), it was enough to keep just the first order, given that, for simple constraints like the ones considered terms like , con
	⋅exp–{,}μ
	n
	n
	μ
	{{,},}q

	23 The presentation in this section is in terms of generic Hamiltonian systems, the generalization to field theory is straightforward, and involves a spatial smearing of the constraints and functions generating de-Ockhamizations and gauge transformations, just as in the discussion in the previous section.
	23 The presentation in this section is in terms of generic Hamiltonian systems, the generalization to field theory is straightforward, and involves a spatial smearing of the constraints and functions generating de-Ockhamizations and gauge transformations, just as in the discussion in the previous section.

	This definition is such that the result is invariant under a transformation generated by , and which involves the appropriate change in , as it is easy to check. That is, under a transformation:
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	 and  do not change. This is precisely the symmetry transformation found in the examples in this article.
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	Now let me show the way in which the Hamiltonian action for  changes when one introduces the variables . We start with an action principle of the form:
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	And now, we simply replace  by their de-Ockhamized expressions , . By working on the term  one can express it in the following way, up to a total derivative term:
	,QP
	⋅(exp–{,})μq
	⋅(exp–{,})μp
	PQ
	24
	24
	24



	  (43)
	¶2=––+().tPQpqμμOμ

	This allows rearranging terms in the action so that it takes a Hamiltonian form:
	  (44)
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	where the “extended” Hamiltonian is:
	  (45)
	⋅⋅¶2(,,)=((exp–{,}),(exp–{,}))+++()exttHqpμHμqμpμμOμ

	This is the form of the “extended” Hamiltonians in sections 2 and 3.1, up to a total derivative term in the last case and taking into account that the simple form of the constraints makes it the case that no higher order term in  appears. If now one finds  such that it minimizes the action and substitutes it in the action, one finds the Lagrangian expression of the de-Ockhamized theory. This shows what I have claimed before; one can de-Ockhamize any theory using any phase space function to generate such a d
	μ
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	Now we can turn to the second general claim I want to argue for in this section. We are interested in the case in which  is a first-class constraint and not just an arbitrary phase space function. That is, we are interested in de-Ockhamizing using the constraints, so that they will generate symmetry transformations.
	

	The total Hamiltonian of a generic first-class system is:
	  (46)
	1(,)=(,)+,AcAHQPHQPλ

	24 For this result, I am building on expression 5.16 in Rothe and Rothe (), but allowing for the constraints to include an explicit time dependence, which explains the  term that doesn’t appear on that expression.
	24 For this result, I am building on expression 5.16 in Rothe and Rothe (), but allowing for the constraints to include an explicit time dependence, which explains the  term that doesn’t appear on that expression.
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	where  represent the primary constraints of the system and I am using the convention that a repeated index represents a summation. We will be allowing for the presence of secondary constraints that arise when imposing that the constraints do not evolve in time and, making use that the system is first class, i.e., that the Poisson bracket of any two constraints weakly vanishes. Secondary constraints can be thus defined as
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	Having introduced this, let me de-Ockhamize this system using as a generator the constraint . Applying expression 45 we find that the extended Hamiltonian is:
	11

	  (48)
	¶112111(,,)=(,)+(,)+++()AextcAtHqpμHQPλQPμμOμ

	To obtain an expression similar to the extended Hamiltonian of electromagnetism (29) we need to expand the total Hamiltonian, i.e., the canonical Hamiltonian and the constraints, in powers of . To first order, this gives:
	μ
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	The term  combines with the term  to give rise to a term containing the secondary constraint as defined by expression 47. This leads to the extended Hamiltonian:
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	Note that this is exactly the form of the extended Hamiltonian of electromagnetism 29, as there was only one primary constraint and there were no tertiary or higher-order constraints.
	Now, one could iterate and de-Ockhamize using some other primary constraint (if there were) such as , or using a secondary constraint, although this de-Ockhamization may be uninteresting if there are no higher-order constraints. For instance, in the case of electromagnetism, once one has de-Ockhamized using the primary constraint , further de-Ockhamizing using  just leads to the same extended Hamiltonian but with a redefinition of  and , i.e., one has still two “free” functions, one of which can be used for
	21
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	where the indices of  now include all secondary constraints and the  are now functions of the original free , linear in the de-Ockhamizing free functions  (one per secondary constraint), and possibly also functions of the phase space coordinates . One can expect the higher-order terms to be also some function of the constraints and, hence, the final form of the extended Hamiltonian is precisely the extended Hamiltonian of Dirac’s conjecture:
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	25 That is, , where  are some functions.
	25 That is, , where  are some functions.
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	26 Here I am using “secondary” to refer also to tertiary, quaternary, and any -ary constraints of the system.
	26 Here I am using “secondary” to refer also to tertiary, quaternary, and any -ary constraints of the system.
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	where the  now can be more complicated functions of the . As I said above, this isn’t any formal proof but just a plausibility argument. However, note that for cases with simple, linear constraints such as the ones in the examples considered one doesn’t need to worry about higher-order terms and it is true that de-Ockhamization of first-class systems leads to an extended Hamiltonian. In this sense, I consider that my second claim is plausible, i.e., that extended Hamiltonians of first-class systems are asso
	λ
	iμ

	If the above is true, then for any extended system one should be able to express the original  in terms of , and , and they should be invariant under transformations generated by the constraints when the  transform appropriately. As discussed in the previous section, this is enough to satisfy the most trivial definition of gauge symmetry and not a gauge symmetry from the most strict point of view. For the orthodox view to be true, as I have discussed in the previous section, what one needs is that these sym
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	Let me start the analysis of this issue by considering a first-class system with a primary, a secondary, and a tertiary constraint, and by assuming that the gauge symmetry of this system can be understood from a local point of view. That is, this system is not a reparametrization invariant model like general relativity and it makes sense to speak about what is observable at a time for this system. To simplify, let’s assume that all of the constraints have strongly vanishing Poisson brackets among themselves
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	Invariant quantities have vanishing brackets with each of the constraints or involve some time derivatives, just as was the case for  in the case of electromagnetism. But, now we can even have second temporal derivatives, which complicates the case. In the case of electromagnetism we could express  just as , but when terms involving two temporal derivatives of configuration variables, or one temporal derivative of momentum variables, are present, invariant quantities cannot be expressed just as pure phase s
	0–AA
	0–AA
	π

	This shows that some limitation needs to be imposed. In the case in which the gauge invariant content at a time (or spacetime point) of the original Lagrangian formulation can be encoded just as a combination of configuration space variables and velocities, then they can be expressed as phase space functions with no temporal derivative involved and, as they must be invariant under the action of the generator, they will then have vanishing Poisson brackets with all the constraints separately. It is just in t
	27 Again, see the discussion in Mozota Frauca () and Pitts (; ).
	27 Again, see the discussion in Mozota Frauca () and Pitts (; ).
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	28 An example of a Lagrangian with this constraint structure can be found in Castellani (). This Lagrangian does not correspond to any physically interesting model.
	28 An example of a Lagrangian with this constraint structure can be found in Castellani (). This Lagrangian does not correspond to any physically interesting model.
	1982, Sect. 4


	function that has vanishing Poisson brackets with all the first-class constraints can apply. In 
	function that has vanishing Poisson brackets with all the first-class constraints can apply. In 
	this case, one could argue on the same lines as I have discussed in the previous section that 
	these functions are the physical observables
	29
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	 of the theory and that they are preserved in the 
	extended formalism, even if their counterparts, expressed as functions of configuration space 
	variables and velocities, are de-Ockhamized. As in the case of electromagnetism, this entails 
	a departure from the Lagrangian formalism as Pitts noted, but it is a consistent definition of 
	gauge transformation that would allow to preserve the orthodoxy.

	Finally, we can also briefly comment on the case of reparametrization invariant theories like general relativity. In this case, as I have mentioned in the introduction, it has been argued that the notions of gauge transformation at a time and observable may not make sense. However, from the point of view that takes transformations to be transformations between solutions of the equations of motion it may be the case that an extended sense of gauge transformation is available. For instance, in the case of gen
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	For these reasons, I believe that Dirac’s conjecture is possibly true for the kind of theories I have discussed here and once we adopt the extended notion of gauge. As I said above, my arguments give support to this possibility but they do not provide strict proof.
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	5 QUANTIZATION
	Finally, in this last section I want to come back to the original motivation to introduce the extended Hamiltonian formalism. As I have argued above, moving to the extended formalism is probably equivalent to performing a de-Ockhamization, although rigorous 
	29 Note, however, that my argument starts from an analysis of the classical theory and its physical content (maybe even before expressing it in a Lagrangian formulation) and then studies in which conditions phase space function capture this content. This is opposite to the analysis one sometimes finds in the literature, in which it is claimed that the formal properties of phase space functions determine whether they are observable or not.
	29 Note, however, that my argument starts from an analysis of the classical theory and its physical content (maybe even before expressing it in a Lagrangian formulation) and then studies in which conditions phase space function capture this content. This is opposite to the analysis one sometimes finds in the literature, in which it is claimed that the formal properties of phase space functions determine whether they are observable or not.

	30 A formal discussion of this kind of system in the constrained Hamiltonian formalism can be found in .
	30 A formal discussion of this kind of system in the constrained Hamiltonian formalism can be found in .
	Pons et al. 1997


	31 More precisely, given the relations between  and , it seems likely that one can recover  and  from  and . This is related to the thin sandwich conjecture.
	31 More precisely, given the relations between  and , it seems likely that one can recover  and  from  and . This is related to the thin sandwich conjecture.
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	32 During the review process of this article, Pitts has published a new article () in which he analyzes the case of massive theories of gravity. These theories stand in the same relation to general relativity as Proca theory to Maxwell’s electromagnetism. For this reason, the analysis in this case is analogous. That is, Pitts argues that in the massive case a second-class constraint can be argued to generate a gauge transformation of the trivial kind. As I have argued for the case of electromagnetism, one c
	32 During the review process of this article, Pitts has published a new article () in which he analyzes the case of massive theories of gravity. These theories stand in the same relation to general relativity as Proca theory to Maxwell’s electromagnetism. For this reason, the analysis in this case is analogous. That is, Pitts argues that in the massive case a second-class constraint can be argued to generate a gauge transformation of the trivial kind. As I have argued for the case of electromagnetism, one c
	Pitts 2024


	33 There were some possible counterexamples to Dirac’s conjecture () that were argued not to be counterexamples in Rothe and Rothe (). It is beyond the scope of this article to discuss these examples, but the fact is that they are rather artificial, unphysical, and different from standard gauge theories.
	33 There were some possible counterexamples to Dirac’s conjecture () that were argued not to be counterexamples in Rothe and Rothe (). It is beyond the scope of this article to discuss these examples, but the fact is that they are rather artificial, unphysical, and different from standard gauge theories.
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	proof for this seems to be missing. From the point of view of the classical theory there do 
	proof for this seems to be missing. From the point of view of the classical theory there do 
	not seem to be many reasons for adopting this formalism, and maintaining the Lagrangian-
	Hamiltonian equivalence would be a strong reason for rejecting it. One reason for adopting 
	the extended formalism would be a preference for expressing gauge-invariant quantities 
	just as phase space functions and not as temporal derivatives of these functions. Now, 
	when we move to canonically quantizing the theory, one could argue that this preference is 
	indeed an obligation, as quantum observables in the quantum theory correspond to phase 
	space functions in the classical one. Moreover, the way constraints are imposed in the 
	quantum formalism naturally leads to the extended notion of gauge transformation. In this 
	section I will expand on these claims, showing that the way the canonical quantization of 
	gauge systems is performed is most naturally understood from the extended view of gauge.

	In Dirac’s quantization procedure for gauge theories (), constraints are imposed by requiring that physical states satisfy
	1964

	  (54)
	"ˆ()=0,αψqα

	where  are the operator counterparts of the classical constraints, both primary and secondary, and  is a wavefunction(al) defined on the configuration space of the original theory. States satisfying the constraint equation are invariant under transformations of the form:
	ˆα
	()ψq

	  (55)
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	It is in this sense that it is very natural to consider that the quantum counterparts of the first-class constraints generate gauge transformations and that physical states are just gauge-invariant states. In this sense, this way of quantizing gauge theories very naturally fits with the extended definition of gauge in the classical theory.
	As I have argued above, the extended formalism is related to a de-Ockhamization, and therefore it is interesting to study how de-Ockhamized theories could be quantized in analogous ways to Dirac’s quantization. Let me consider the quantization of the single particle example above. Before de-Ockhamization the quantum theory describes the evolution of states  under the action of the quantum counterpart of the Hamiltonian. When we introduce a position de-Ockhamization we introduce a “gauge” symmetry generated 
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	The initial and final states are different states, but the operators  and  have identical expectation values for the states  and , respectively. This shows that, for a de-Ockhamization, imposing invariance under the generating operator is too strong a requirement, as one generally needs to consider the presence of the compensating functions and the way they affect the interpretation of the variables in the formalism.
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	34 There is an alternative version of this argument in a Heisenberg-picture-like version of gauge transformations, i.e., in a version in which it is operators that are affected by transformations and not states. While  is not invariant under a transformation generated by , it is invariant once we take into account that  also transforms to .
	34 There is an alternative version of this argument in a Heisenberg-picture-like version of gauge transformations, i.e., in a version in which it is operators that are affected by transformations and not states. While  is not invariant under a transformation generated by , it is invariant once we take into account that  also transforms to .
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	In the case of electromagnetism, we could try to apply this lesson. This means that as the constraints  and  are related with de-Ockhamizations of , one shouldn’t impose invariance under the quantum transformations they generate. However, given that they are constraints, if we follow Dirac’s quantization procedure we are forced to impose such an invariance. Luckily, even if in the particle case imposing invariance under the operator generating the de-Ockhamization leads to disaster, in the case of electroma
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	π
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	In this sense, we see how the quantization of electromagnetism using Dirac’s extended formalism supports the extended view of gauge and distinguishes it from general de-Ockhamizations. While Pitts was right that the transformations generated by  and  in the classical case are associated with artificial de-Ockhamizations, in the quantum case they are part of the machinery that is used for defining the theory in a way that trivial de-Ockhamizations are not. For this reason, we can see how the extended view of
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	In the case of more general theories, it seems that the same conclusion will obtain. For classical theories in which we can express the physical content of the theory as a set of phase space variables invariant under the extended set of gauge transformations, then Dirac’s quantization procedure will preserve them, and from the quantum perspective the extended sense of gauge transformation will be natural. For reparametrization invariant theories, Dirac’s quantization procedure is problematic for other reaso
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	This section has shown how, even if from a classical point of view, the “genuine” sense of gauges is more natural, when we move to the quantum version of gauge theories the “extended” view of gauge transformations appears to fit very naturally with the way these quantum theories are defined.
	6 CONCLUSIONS
	In this article I have built on the controversy between Pitts and Pooley and Wallace to distinguish between three possible notions of gauge transformation. Pitts argued that there exist “genuine” gauge transformations, which are usually represented by symmetries of minimal, not artificially expanded Lagrangian actions, and then symmetries of artificial de-Ockhamizations or expansions of any theory. Given this classification, Pitts argued that Pooley and Wallace were forced to accept that the constraints in 
	This sense of gauge transformation is the “extended sense.” This notion of gauge transformation accepts a departure from the original action and the introduction of compensating functions. However, these functions do not affect the physical variables, contrary to what happens in the case of a de-Ockhamization. To argue that this is the case, one needs to adopt a position in which momentum variables may be considered physical and configuration variables are considered accessory, which goes against many 
	35 I have argued for this claim in Mozota Frauca ().
	35 I have argued for this claim in Mozota Frauca ().
	2023


	shared intuitions about classical theories. However, this is a consistent position that allows 
	shared intuitions about classical theories. However, this is a consistent position that allows 
	maintaining the orthodoxy. Furthermore, this extended view of gauge transformations fits 
	nicely with the way gauge transformations are defined in quantum theories, and from that 
	point of view it may not be such an unnatural definition.

	Finally, I have also made some general claims, such as that any phase space function in any theory can be said to generate a trivial gauge transformation or that Dirac’s conjecture may be true for generic gauge theories in the extended sense.
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