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Abstract
Some authors have defended the claim that one needs to be able to define ‘physical
coordinate systems’ and ‘observables’ in order to make sense of general relativity.
Moreover, in Rovelli (Physical Review D, 65(4), 044017 2002), Rovelli proposes a
way of implementing these ideas by making use of a system of satellites that allows
defining a set of ‘physical coordinates’, the GPS coordinates. In this article I oppose
these views in four ways. First, I defend an alternative way of understanding general
relativity which implies that we have a perfectly fine interpretation of the models of
the theory even in the absence of ‘physical coordinate systems’. Second, I analyze
and challenge the motivations behind the ‘observable’ view. Third, I analyze Rovelli’s
proposal and I conclude that it does not allow extracting any physical information from
our models that wasn’t available before. Fourth, I draw an analogy between general
relativistic spacetimes and Newtonian spacetimes, which allows me to argue that as
‘physical observables’ are not needed in Newtonian spacetime, then neither are they
in general relativity. In this sense, I conclude that the ‘observable’ view of general
relativity is unmotivated.

Keywords Philosophy of time · Relationalism · General relativity · Observables ·
Reference systems

1 Introduction

In Rovelli (2002) Carlo Rovelli proposes an ingenious construction that would allow
the construction of a ‘physical coordinate system’ and therefore a definition of ‘phys-
ical observables’ in general relativity. Physical observables are thought to be needed
in order to have a complete interpretation of general relativistic models and in order
to extract all their gauge invariant content. In this article I will challenge this view and
argue that we have a perfectly fine interpretation of general relativistic models and
that we are able to extract all of their physical content.
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The core of my disagreement with Rovelli and other authors like Rickles and Ear-
man lies in whether the diffeomorphism invariance or general covariance1 of general
relativity is just a formal feature or whether it has some physical meaning and deeper
implications. This debate is an old one, starting right after the formulation of general
relativity, whenKretschman objected (Kretschmann, 1917) that since any physical the-
ory can be formulated in a generally covariant manner, then general covariance must
be void of any physical meaning. Authors like Rovelli reject Kretschmann’s objection
and argue that general covariance has deep implications that make it the case that the
nature of physical magnitudes in general relativity is fundamentally different from the
nature of physical magnitudes in other theories such as Newtonian mechanics. I will
argue against this view and argue that the nature of physical magnitudes is the same
in both theories.

The position of these authors about the nature of physical magnitudes is motivated
by the difficulty of expressing the physical content of general relativity in a way that
is independent of representational choices such as coordinate systems and in a way
that identifies the same physical content in diffeomorphism-related models.2 These
authors defend that one needs to define ‘observables’, which are thought to be these
invariant quantities that capture the physical content of general relativity. In order to
do so, one needs to define ‘physical coordinate systems’, which are thought to be
internal reference systems that allow describing the evolution of other variables not
in terms of arbitrary coordinates or points on a manifold, but with respect to these
internal degrees of freedom.

In this article I will take the ‘physical observable’ view to consist of the following
three claims3:

1. The construction of ‘physical observables’ and ‘physical coordinate systems’ is
necessary for having a complete interpretation of general relativity and for being
able to extract the physical content of a general relativistic model.

2. General covariance forces us to abandon the idea of external or idealized reference
systems. Therefore, it forces us to explicitly introduce internal reference systems.

3. General covariance implies that there are deep ontological differences between
general relativity and other spacetime theories.

Themain goal of this article is to argue against these three claims. I start in Section 2 by
offering a positive account of my view. That is, by outlining the ways in which I think
that one can interpret general relativity and extract all its physical content in a way that
does not need to explicitly define ‘physical observables’. Then, in Section 3 I expand on
the ‘physical observable’ view and the motivations behind it. In the rest of the article I
further argue against the three claims in twoways. First, in Section 4 I analyze the GPS
construction proposed by Rovelli and I argue that all the physical content it allows us
to extract was already available in the original model that didn’t include the ‘physical
observables’ he defines. Second, in Section 5 I establish an analogy with Newtonian

1 Later on I will comment on the different ways these terms are used and distinguished.
2 An historical predecessor of these views is Bergmann (1961).
3 The discussion below will show how the different authors endorse these claims to different degrees. In
particular, while Rovelli (1991, 2002, 2004) clearly argues for the two first claims, he is more ambiguous
about the third. Meanwhile Earman (2002, 2006); Rickles (2008) clearly argue for claim 3.
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physics which weakens the case for observables, and then in Section 6 I analyze the
possible replies of the defender of observables to my arguments. Other authors have
argued against some of these claims in some different ways (Maudlin, 2002; Pitts,
2017, 2018; Pons et al., 2010; Pooley, 2017; Read, 2023) and my arguments can be
seen as complementary to theirs.

2 General relativity and its interpretation

The diffeomorphism invariance or general covariance of general relativity is a formal
feature of the theory that has motivated important conceptual discussions about its
physical content and how to define it. While authors like Rovelli have argued that
we need to find ‘observables’, i.e., diffeomorphism invariant quantities, in order to
extract all the physical information of a general-relativistic model and have a complete
understanding of it, in this section I will argue that this is not the case. That is, I will
argue that we have a perfectly fine grasp of the physical content of general-relativistic
models which consists of a causal structure, a geometry, and an inertial structure.
We are able to read this from our models with no need to introduce ‘observables’ or
‘physical coordinate systems.’

2.1 A brief discussion of how to interpret general relativity

Let me start this section by giving a definition of a general relativistic model. It is
given by a 4-dimensional manifoldM, a Lorentzian metric gμν defined on it, and by
(possibly) somematter and force fields, here represented by φ. In somemore technical
definitions of spacetime models4 one also includes the affine connection ∇ as one of
the ingredients of the model, but here I will just assume that the connection for general
relativistic models is the Levi-Civita connection and I won’t be paying much more
attention to it. Note also that my discussion is compatible with other choices for the
connection. In this sense, a model will be given by the triple 〈M, gμν, φ〉. For it to be
a valid general relativistic model, it has to satisfy the Einstein equations that relate the
curvature of the metric tensor with the stress-energy tensor of the fields, which satisfy
their own equations of motion.

The basic physical interpretation of a general relativistic model has three basic
tenets. First, the metric tensor gμν defines the causal structure of spacetime. At every
point the metric tensor distinguishes three types of vectors: spacelike, timelike, and
null. Causal curves in spacetime are the ones that have timelike or null tangent vectors,
and material bodies are only allowed to follow such curves. Similarly, the equations
of motion of matter and force fields are built in a way that respects the causal structure
of spacetime.

The second aspect of the physical interpretation of themodel is the chronogeometric
or chronometricmeaningof themetric tensor and its relationwithwhat clocksmeasure.

4 See for instance the definitions in Knox (2014); Kuchař (1980); Malament (2012) of Newtonian models
or the recent comparison in Meskhidze and Weatherall (2023) of general relativistic models and models of
teleparallel gravity, which essentially differ in the connections employed in each of these models.
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The metric tensor defines a geometry for spacetime, and, in particular, it defines a
proper time T along any timelike curve Xμ(τ):

T =
∫

dτ

√
−gμν Ẋμ Ẋμ , (1)

where I am adopting the sign convention {−,+,+,+} for the metric and Ẋμ repre-
sents the derivative of the coordinate Xμ with respect to τ , the (arbitrary) parameter
parametrizing the curve. This proper time is interpreted as the time that a physical
system moving along this trajectory would experience. When the system is a clock,
this implies that the reading of the clock will be proportional to its proper time. This is
known as the clock hypothesis, and it has the status of an assumption or of a postulate
because at this level of discussion we are not giving an account of how the dynamics
of any physical system or of any clock picks up the proper time. In this sense, it is an
assumption about how physical systems behave in spacetime.

At this point it is relevant for our discussion to emphasize that general relativity is
a theory that defines possible geometries of spacetime and that it is not a theory about
howwe get to know about this geometry, that is, it is not a theory about how our clocks
work. In this sense, it makes predictions about what clocks would measure without
needing to explicitly include them in our models. That is, the model does not care
about the details of our clocks to make the right predictions for them, as long as they
remain close to ideal clocks, i.e., clocks which always ‘measure’ their proper time.5

To insist on this point, let me compare a general relativistic model with a world map.
By reading a map and knowing the scale (that is different at different points on the
map) we can learn about the geometry of our planet, e.g., about the distance between
two points or about the shortest path between London and Paris. The map is just a
description of the geometry and doesn’t tell us how to measure distances and in this
sense it also comes with an analog of the clock hypothesis: we are assuming that our
distance measurements, no matter howwe perform them, will agree with the distances
predicted by the map. General relativistic models, just as maps, define geometries but
do not tell us how to measure them.

There are different views on how to understand the clock hypothesis and the relation
between the geometry of spacetime and the dynamics of physical systems, including
clocks. Some authors (Maudlin, 2012) take geometry to be fundamental and to explain
the behavior of physical systems and clocks. Some other authors (Brown, 2006) take
an opposing view: it is the dynamics of physical systems and fields that explains why
the field gμν can be interpreted in a geometric way. For the discussion in this article
the distinction between the geometric and dynamical approaches to general relativity
won’t be very relevant, as both seem to agree on the interpretation of the models in

5 Point-particles could act as ideal clocks, and indeed experiments with muons have been used for testing
the hypothesis. Extended material objects can only act as ideal clocks in as far as we can approximate
the physical processes happening in them as point-like and occurring along a time-like trajectory. Fletcher
(2013) shows how it is possible in principle to build a light clock that approximates ideal clocks to a desired
accuracy.
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that gμν defines a geometry and a notion of proper time and in that physical systems
and clocks dynamically correlate with this proper time. These two shared pieces of
interpretation will be enough to establish the main claims in this article.

A consequence of this is that I intend to remain neutral in this article with respect
to the debate between the geometric and dynamical views of general relativity. Even
if the presentation in this article is in geometric terms, I believe that the vast majority
of my claims will remain true if expressed or interpreted in the dynamic view.

Before moving on to the next point, let me note that in discussions of spacetime
theories besides discussing the role of clocks in measuring time, it is common to
discuss the role of rods in measuring distances. Following other authors6, I won’t
be introducing any ‘rod hypothesis’ or paying much attention to spatial distances, as
they are not naturally defined in general relativity and they are not necessary for our
analysis.

Finally, the third aspect of the interpretation of general relativity has to do with
the way it defines inertial motion, i.e., the trajectories that free bodies would follow,
which in the case of general relativity are timelike geodesics for bodies with non-zero
mass and null geodesics for bodies with zero mass, such as photons. This is just a
generalization of Newton’s second law to curved spacetimes. That is, if we want to
predict how a body will move in a general relativistic spacetime, we do just as in
Newtonian mechanics: we study to which forces it is subject and this tells us how
much it will deviate from inertial motion. There are two main differences between
the inertial structure of general relativity and Newtonian mechanics. One is that in
Newtonian mechanics a body moving under gravitational influence is a body subject
to force and hence deviates from inertial motion, while in general relativity gravity is
not a force, and its effect is encoded in the inertial structure of spacetime. That is, in
general relativity free-falling bodies follow inertial trajectories and are not subject to
any force. The second difference with the Newtonian case is that the inertial structure
of spacetime is dynamical, that is, different spacetimes will have different inertial
structures and in different regions of spacetime inertial behavior may be different.

2.2 Diffeomorphism invariance

Having briefly introduced general relativisticmodels and thewaywe interpret them for
extractingwhat they say about theworldwe are in a position to discuss diffeomorphism
invariance. Ifwe have a general relativisticmodel 〈M, gμν, φ〉 satisfyingEinstein field
equations, we can build an equivalent model by applying a diffeomorphism, i.e., an
invertible, differentiable map from M to itself. This maps any point P to another
one P ′, and one can transform appropriately7 gμν and the matter fields φ so that the
properties at P ′ are the same as they originally were at P . For instance, if a timelike
curve γ on M is mapped to another one γ ′

μν , the proper time along the new curve as
computed using Eq. 1 but with the transformedmetric g′ is the same as the proper time
along the original curve computed using the original metric gμν . In this sense, the two
models 〈M, gμν, φ〉 and 〈M, g′

μν, φ
′〉 describe the same physics but just changing the

6 See for instance (Maudlin, 2012).
7 This transformation is known as a pull-back.
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points in themanifold that represent a given physical event.We can again comparewith
the case of world maps, the two models 〈M, gμν, φ〉 and 〈M, g′

μν, φ
′〉 are just like

two different maps, possibly using different projections for describing the geometry
of the Earth.

At this point let me mention that a diffeomorphism is conceptually different from
a change of coordinates, but that this distinction is subtle and can be ignored in many
discussions of general relativity. The reason for this is that the distinction between
a point and the coordinates we use for referring to it won’t be very relevant and in
practice it won’t make a difference to claim that an event E originally represented by
point P with coordinates xμ is now represented by the same point but with different
coordinates yμ or that it is now represented by a point P ′ that has coordinates yμ.
For this reason, one may use the terms diffeomorphism and change of coordinates
indistinctively, and loosely say that two diffeomorphism-related models are related by
a change of coordinates in the context of general relativity.8

Diffeomorphisms define equivalence classes ofmodels 〈M, gμν, φ〉 in which every
two models are related by a diffeomorphism. In this sense, every triple 〈M, gμν, φ〉
in the equivalence class represents the same physical situation. For instance, if a triple
〈M, gμν, φ〉 contains a timelike curve connecting a point P0 with a point Pf in a
proper time T which could represent the trajectory of the Earth around the Sun during
one year, in any other triple 〈M, g′

μν, φ
′〉 in the equivalence class there will also be

a timelike geodesic connecting a pair of points P ′
0 and P ′

f in the same proper time
T and with the same physical properties as described by φ′ along the trajectory. To
insist on the analogy, the equivalence class of models 〈M, gμν, φ〉 is analogous to
the collection of all the maps that represent the geometry of our planet. In the same
way that reading any world map one can learn about the distance between Paris and
London, taking any triple in the equivalence class one can learn about the geometry
of a possible general relativistic spacetime.

Diffeomorphism invariance and the fact that we have to deal with equivalence
classes of models have given rise to a number of conceptual debates, and in particular
to the debate I am focusing on this paper. The position I am defending here is that the
diffeomorphism invariance of general relativity does notmean that the physical content
of this theory is fundamentally different from the physical content of other spacetime
theories, such as Newtonian spacetime. Indeed, I will argue that the way Newtonian
spacetime models and general relativistic models are to be interpreted in analogous
ways,which are theways I have outlined in this section andwhich Iwill comeback to in
Section 5. In this sense, I will disagreewith authors likeRovelli who claim thatwe need
to introduce ‘physical’ coordinate systems in order to understand general relativity.
That is, I will argue that general relativistic models get a clear physical interpretation
by means of what has been discussed in this section and that their physical content is
perfectly well-defined even in the absence of ‘physical’ coordinate systems.9 In the
next section I will introduce and analyze the arguments for positions contrary to mine.

8 We will later see that in other contexts one can define diffeomorphism transformations slightly differently
so that with this definition diffeomorphisms are not equivalent to changes of coordinates. For a discussion
of all these subtleties I refer the reader to Pooley (2017).
9 An alternative way of putting my claim is that any coordinate system in general relativity is equally
physical.
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Before this, let me clarify that I will take this debate to be mostly independent of
other debates in the foundations of general relativity. As I have already mentioned,
there is a debate between two views of how to understand the relationship between
dynamics and geometry which I take to be somewhat orthogonal to this debate. That
is, I believe that when I claim that the physical content of a general relativistic model is
clear, this holds independently of whether one takes geometry to be more fundamental
than dynamics or not. Similarly, the authors I will be opposing do not necessarily take
a stance in these debates.

The debate between spacetime substantivalism and relationalism will be more rele-
vant for the discussion in this article. The reason for this is that some of the arguments
for the ‘physical observables’ view have a clear relationalist motivation. However, I
want tomake clear that one can reject that viewwithout committing to substantivalism.
That is, I will argue that one can claim that the physical content of general relativity is
clear with no need to introduce ‘physical observables’ both from substantivalist and
relationalist positions.

The diffeomorphism invariance of general relativity has been used as an argument
against spacetime substantivalism. The fact that two diffeomorphism-related models
describe different states of affairs for a point P in the manifold, or for a coordi-
nate point xμ, has been argued to signal a failure of determinism or as an argument
against spacetime substantivalism. This is the famous hole argument that was first
formulated by Einstein in 1913 and which didn’t receive much attention until it was
put forward again in Earman and Norton (1987). However, the consensus in the phi-
losophy of physics community seems to be that the diffeomorphism invariance of
general relativity still leaves room for a substantivalist position known as sophisti-
cated substantivalism, which is able to combine substantivalist intuitions with the
fact that diffeomorphism-related models are equivalent in a way that does not imply
indeterminism.10

Wewill see how the arguments by Rovelli are connected to the hole argument, as he
mentions (Rovelli, 2004, Sect. 2.2, 2.3) it as a motivation for his own view. However,
while I will argue against Rovelli’s view, the discussion in this article won’t reanalyze
this particular argument in detail. In this sense, I will be aligning with the consensus
in the community and claim that the diffeomorphism invariance of general relativity
supports either a relationalist or a sophisticated substantivalist view, but I won’t agree
with Rovelli in that it further implies the need for introducing ‘physical observables’.

3 The need for physical observables?

In the introduction, I described the ‘physical observables view’ as consisting of three
claims:

1. The construction of ‘physical observables’ and ‘physical coordinate systems’ is
necessary for having a complete interpretation of general relativity and for being
able to extract the physical content of a general relativistic model.

10 See Hoefer (1996); Pooley (2006); Norton and Zalta (2019).
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2. General covariance forces us to abandon the idea of external or idealized reference
systems. Therefore, it forces us to explicitly introduce internal reference systems.

3. General covariance implies that there are deep ontological differences between
general relativity and other spacetime theories.

In this section, I will explain the two main motivations behind the view.

3.1 Gauge and ‘observables’

The analysis of general relativity using the structures of gauge theory introduced the
notion of ‘observable’ in the debates on the foundations of general relativity. However,
this term is used with different meanings. In the first meaning of the term, observables
are the ‘physical quantities that we can predict and measure in real experiments’
(Rovelli, 2002, p. 1). Then, there is a technical sense of observable which is any
quantity, in the canonical formulation of general relativity, that has vanishing Poisson
brackets with the constraints of the theory. There is yet another technical meaning,
which is any quantity that can be used for characterizing equivalence classes under
diffeomorphisms of general relativistic models.

For general gauge theories like electromagnetism, there is a correspondence
between the first and second meaning: physical quantities like the electromagnetic
field are represented by phase-space functions that have vanishing Poisson brackets
with the constraints.11 The argument then is that in order to determine the physical
content of a theory (its observables in the intuitive sense), one needs to find these phase
space functions (its observables in the technical sense). As in the case of general rel-
ativity there is no general construction that allows defining the observables in this
technical sense, Rovelli, Rickles, and Earman conclude that we have a problem also
with observables in the intuitive sense.12 In this way they derive claim 1. Add to this
that they believe that explicitly adding reference systems can solve the problem and
you have claim 2. Finally, when you consider that general relativity can be formulated
as a gauge theory and other spacetime theories cannot (in principle), then you can
conclude something similar to claim 3.

From my point of view, this line of argument is mistaken, as I believe that we do
have a good understanding of general relativity even if we do not have well-defined
observables in the technical sense. As I have discussed in the previous section, we are
able to give a sensible interpretation of equivalence classes of models 〈M, gμν, φ〉 and
we are able to extract all of their physical content. To insist, this content includes the
geometry of spacetime, which can be used to derive the behavior of clocks and bodies
moving in spacetime. Contrary to what Rovelli claims, we are able to extract all of
the physical content of our models, and we are not ‘far from capturing all the physics’
(Rovelli, 2002). In this sense, one is applying a formal recipe beyond its domain of
applicability to arrive at a mistaken conclusion.

11 Some authors (Pitts, 2017) have questioned this technical definition of observable and formulated an
alternative one in which observables are required to have vanishing Poisson brackets with a function known
as the generator. Taking this alternative view wouldn’t affect the discussion in this article.
12 See the following: (Rovelli, 2002, p. 1), (Rovelli, 1991, pp. 299, 315), (Rovelli, 2004, Sect. 2.4.3),
(Earman, 2002, 2006; Rickles, 2008).
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Several authors have argued against this gauge analysis of general relativity13,
given that the structure of gauge transformations like the ones in electromagnetism
and the diffeomorphism invariance of general relativity are very different. In particular,
gauge transformations in electromagnetism can be thought of locally: we can apply
a transformation at a spacetime point xμ which transforms the 4-potential but which
leaves the electromagnetic field at that point unchanged. In this sense, it makes sense
to claim that the value of the field at the point xμ remains invariant under such a local
transformation. In the case of general relativity, such a local view is not available.
Under a diffeomorphism the fields at a coordinate point xμ become the pullback of
the fields that were originally at some other coordinate point x ′μ. Now it doesn’t really
make sense to claim that what is invariant at the point xμ is the value of the physical
fields at that point as one could do in the electromagnetic case. The reason for this is
that the coordinate point xμ represents two different spacetime points before and after
the diffeomorphism and it does not make sense to compare two different points in
order to look for what is invariant or the physical content of the theory at a spacetime
point.

Moreover, for some simple toy models it is easy to see14 that no non-trivial ‘observ-
ables’ in this technical sense can be defined,while one has a perfectly fine interpretation
of these models. One could expect the same conclusion to be true for the case of gen-
eral relativity. For these reasons, I agree with the authors cited that such ‘observables’
aren’t needed for understanding general relativity and that it is likely that they are not
even well-defined. As I have already stated, the goal of this article is not to analyze
the technical details of the phase-space structure of general relativity and its relation
with gauge transformations but to argue that we do have a clear interpretation of this
theory and that we are able to extract all of its physical content.

Finally, notice that if one accepts this sort of argument, one is also led to accept
that there is a distinction between general relativity and other spacetime theories
such as Newtonian mechanics. As mentioned above, this distinction can be taken to
imply just that we need to explicitly introduce reference objects as part of our general
relativistic models, or something stronger such as that the nature of spacetime models
is fundamentally different in the case of general relativity. I will come back to the
issue of the gauge interpretation of general relativity in Section 6.

3.2 Relationalism and ‘observables’

The second motivation that Rovelli and other authors have for introducing ‘physical
observables’ or ‘physical coordinate systems’ is a strong version of relationalism
and a deep skepticism with respect to spacetime talk. More precisely, Rovelli rejects
that coordinates in a manifold or in spacetime have physical meaning unless there is a
physical system thatmeasures them. In this sense,Rovelli believes that it does notmake
sense to describe the trajectory of a body in terms of coordinates in a manifold and that

13 See Maudlin (2002) for a clear conceptual discussion and Gryb (2010); Gryb and Thébault (2016);
Mozota Frauca (2023); Pitts (2017, 2018); Pons et al. (2010); Thébault (2012) for some complementary
discussions.
14 See the discussion of the double harmonic oscillator model in Mozota Frauca (2023).
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one should describe it in relation to some physical reference fields or objects. Similarly,
one cannot speak about the value of a field at a coordinate point, but should instead
speak about the value of the field when some other fields take given values. Rovelli
concludes that the physical content of general relativity is contained in correlations
between physical magnitudes which would be the observables we can empirically
observe.

It is beyond the scope of this paper to precisely characterize Rovelli’s version of
relationalism.15 For our discussion here it will be enough to notice that it is of a radical
sort that requires that reference objects are explicitly included in our modeling, which
implies that if there isn’t any reference object we wouldn’t be able to extract physical
predictions from our models. The concept of reference object is understood widely
here, as any field could act as a reference object.

It is straightforward to see how this sort of radical relationalism fits well with claims
1 and 2 above. The construction of observables in the technical sense of the term is for
Rovelli the way to define the correlations between physical fields and objects in which
they believe the physical content of general relativity lies. For this reason, in order to
extract all these correlations, and hence the physical content of the model, they argue
that one needs to define these physical observables. As this content lies in relations
including reference objects, one needs to explicitly introduce them in our models.

As one can infer from my discussion in Section 2, I reject this sort of relationalism
and its consequences, or, at least, I argue that there are ways of understanding general
relativity that do not need to commit to this view and that they allow us to have a
sensible interpretation of the models and to extract all their physical content. In the
first place, relationalist views do not need to be as radical as Rovelli’s relationalism.
Even if one agrees that spacetime models encode the relations between different fields
or bodies, or in between them and some reference objects, this does not mean that
one needs to explicitly introduce these objects in our models to be able to extract
predictions about them.

Consider one of the examples discussed by Rovelli (2004, p. 72). In this example
one has a clock on the surface of the Earth and another one orbiting in a circular orbit
around the planet. These two clocks would be interchanging light signals with their
readings and therefore they would be recording the correlations T1(T2) and T2(T1),
that is, the time measured by clock 1 as received by clock 2 when its proper time was
T2 and the other way around. These correlations are part of the physical content of
the model as anyone in this debate agrees. Now, one can be a relationalist and think
that these correlations are part of this physical content while some other parts of the
model (those regarding spacetime geometry for instance) are meaningless unless more
reference objects are present. Even in this case, one can reject claims 1 and 2 for this
example. That is, one can extract the predictions T1(T2) and T2(T1) without defining
‘observables’ and without explicitly introducing the clocks in the model. One just
needs to specify the two time-like trajectories and the model will determine the proper
times the clocks will measure, the null trajectories followed by the signals, and finally
the correlations T1(T2) and T2(T1). At no moment is it necessary to add explicitly the

15 I refer the interested reader to Rovelli’s discussion in Rovelli (2004, Chap. 2, 3) and to Thebault’s
characterization of this sort of relationalism in Thébault (2012, 2021).
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dynamics of the clocks, as the clock hypothesis and the assumption that light signals
travel along null geodesics suffice for extracting the predictions of the model.

For this reason, even if one believes that a spacetime model is a way of encoding
relations like T1(T2) and T2(T1)between actual systems in theworld, one can still claim
that one does not need to explicitly include these physical systems in our models in
order to extract predictions about them.

Relationalists can also take a view about spacetime models in which they are taken
to encode not only relations between actual physical systems but between possible ones
that do not need to be actually there. That is, predictions like T1(T2) and T2(T1) count
as part of the physical content of the model also in a counterfactual way: they represent
the recordings that the two clocks would register if they were there in spacetime. All
these counterfactual predictions that can be extracted from a spacetime model are
very intuitively part of their physical content. In this sense, someone with relationalist
intuitions does not need to commit to the same kind of relationalism as Rovelli and
accept claims 1 and 2.

In the case of substantivalist views, the situation is similar. Clearly, the substan-
tivalist agrees that counterfactual predictions are part of the physical content of a
general relativistic model. That is, predictions like the time a clock would register or
the trajectory a free body would travel are part of the physical content of a general
relativistic model for the substantivalist. Moreover, the substantivalist will claim that
the physical content of the model includes geometrical properties of spacetime that the
relationalist would only accept as encoding the relations (actual or potential) between
material bodies. In this sense, the standard substantivalist position is to reject Rovelli’s
radical relationalism and claims 1 and 2.

In this sense, I believe one can reasonably reject Rovelli’s radical relationalist
perspective, and take some other well-established alternatives. For this reason, the
radical relationalist motivation for the position I am opposing in this article can be
rightly challenged.

Finally, I want to note that nothing in the radical relationalist motivation is specific
about general relativity. Indeed, in some passages by Rovelli in which he discusses
the interpretation of Newtonian mechanics, he seems to adopt a radical relationalist
perspective, as I will further discuss in Section 6. This creates some tension between
the two motivations for his view, as the gauge perspective pulls in the direction of
interpreting Newtonian mechanics and general relativity differently, while his rela-
tionalist view pulls in the opposite direction. I will exploit this tension in this article
to argue against the three claims above and I will come back to this issue in Section 6.

4 GPS observables in general relativity

In this section I want to move from the general discussion in the previous section
to consider a concrete implementation of Rovelli’s ideas. In his 2002 article (Rovelli,
2002), Rovelli introduces GPS observables as an example of how to define observables
(in both the technical and intuitive senses) whichwould allow us to extract the physical
content of general relativistic models. In this section I will introduce this construction
and I will argue that, against Rovelli’s view, it is not needed to make a sensible
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interpretation of general relativistic models, as even without it we are able to make
predictions following what I discussed in Section 2.

In Rovelli’s construction there are four satellites sending signals into space. He
proposes that each of the four satellites would be starting at the same spacetime point
and that they would carry a clock that would be measuring their proper time sα , where
α = 1, 2, 3, 4 is an index that identifies the satellite. Each satellite, at each moment in
its trajectory would send a signal into space indicating the reading of its clock at the
time it emits the signal. From each spacetime point in a region R one would receive
four signals corresponding to the four satellites, and these can be used to identify each
spacetime point in the region. In this sense, the signals sent by the satellites define a
coordinate system and we can express all physical facts about the regionR using this
coordinate system. For instance, we can express the metric tensor in this coordinate
system gμν(sα) and the same holds for the value of any matter field φ(sα). This idea
is represented in Fig. 1 in a two-dimensional version.

The coordinate system sα has the virtue that it is precisely defined and that agreeing
to use it allows identifying spacetime points unambiguously. That is, it does not matter
if one is using a model 〈M, gμν, φ〉 or a diffeomorphism-related one 〈M, g′

μν, φ
′〉,

Fig. 1 Representation of how GPS coordinates are assigned to spacetime points for a 2-dimensional space-
time. Each satellite (in red and blue) carries its own clock and at each moment of time it sends a signal
(dotted lines) into space with the reading of its clock. For a region of spacetime R, the signals sα can
individuate spacetime points, i.e., to each set of coordinates, to each set of signals, there corresponds a
unique spacetime point. This construction works both in Newtonian and relativistic spacetimes, even if the
rules describing the evolution of clocks and light signals are different in different spacetimes

123



European Journal for Philosophy of Science            (2024) 14:51 Page 13 of 30    51 

that the predictions, such as the value of a field ϕ, for a spacetime point identified by
sα will be the same. This is in contrast with the case in which one doesn’t specify
the way coordinates individuate spacetime points: if I use the model 〈M, gμν, φ〉 I
could make the claim that at the spacetime point with coordinate xμ the field ϕ takes
a value ϕ(xμ) = ϕ1, while if I use the model 〈M, g′

μν, φ
′〉, the coordinate xμ will

identify a different spacetime point16 and the value of the field ϕ at that coordinate
point will be a different one ϕ(xμ) = ϕ2. In this sense one can claim that while ϕ(sα)

is independent of the choice of representative in the equivalence class17, ϕ(xμ), with
unspecified xμ, isn’t.

It is for this kind of reasoning that Rovelli claims that sα are physical coordinates
while some other xμ wouldn’t be, and that quantities likeϕ(sα)would be ‘observables’
of the theory and ϕ(xμ)wouldn’t. Indeed, the ‘observables’ of general relativity, those
quantities one would need to find to understand the theory, would just be the metric
and matter fields expressed in this coordinate system.

I agreewithRovelli in that bymaking use of this construction and coordinate system
one is able to extract the physical content of a general relativistic model, at least for
a region of spacetime. The disagreement is about whether it is necessary or not. The
question we should ask ourselves is therefore whether we are gaining anything beyond
a practical way of assigning coordinates to spacetime points at the time of interpreting
the theory. My answer is that we are not, as, leaving aside the prediction that there
will be signals traveling through the region, there is no prediction in the model that
includes the satellites and signals that wasn’t there in the model without the satellites
and signals.

For instance, the model with the satellites and a field ϕ predicts a distribution of
values of the field ϕ(sα), while themodel with no satellites predicts a diffeomorphism-
related distribution ϕ(xμ). My claim is that these two predictions are perfectly
equivalent in what concerns the field distribution. Imagine that the field distribu-
tion is such that in a region R the field takes n extremal values, i.e., maxima and
minima. Two diffeomorphism-related distributions will assign different coordinates
to these n points, but it will agree that there are n. Furthermore, if we connect these
points using geodesics (for simplicity) the spacetime model determines the distance18

between them along this geodesics. In this sense, any diffeomorphism-related model
describes the same distribution of field values and the same geometry. Similarly, these
diffeomorphism-related models predict the trajectories that free bodies would follow.
Even if in arbitrary coordinates, the prediction is completely equivalent to the predic-
tion done using the coordinates sα . For instance, for a given trajectory the value of

16 Assuming of course that we keep fixed the coordinate system. That is, if the point P in the manifold
gets a coordinate xμ in the first model, in the second model the manifold point P is still labeled with the
same coordinate xμ.
17 In the literature one finds claims that ϕ(sα) is diffeomorphism invariant, but one has to be careful with
the way this idea is phrased as it may refer to slightly different notions in different contexts and I prefer to
stick to the way I am phrasing it here. In particular, in the Hamiltonian context ‘diffeomorphism invariance’
may refer to functionals that are independent of the leaf and foliation in which they are evaluated, and this
meaning is not the one I have in mind here.
18 Distance understood as space-like, time-like, or null depending on the type of geodesic. In certain
spacetimes there may be more than one geodesic joining two points, but let me leave these technicalities
aside for the sake of the discussion.
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the field along the trajectory as a function of the proper time ϕ(τ) is the same for any
diffeomorphism-related model. Similarly, if we have different trajectories that meet
at different points the proper time elapsed in between each of these meeting points,
according to any of the trajectories, is also obtained independently of the coordinate
system used.

We could go on and add light signals between trajectories, other fields, bodies
moving under the influence of forces, and so on. The point is that the physical content
of general relativistic models is perfectly clear in any arbitrary coordinate system and
with no need to define ‘physical coordinate systems’. To insist, for any member of an
equivalence class of models under diffeomorphisms, we are able to define a geometry
of spacetime, predict what clocks would read along time-like trajectories, and deduce
how free bodies would move. Adding operational ways of assigning coordinates to
spacetime points doesn’t add much to the picture, and does not allow us to deduce
some physical content from our models that we could not deduce before assigning
these coordinates.

There is a sense in which adding the satellites and signals adds new predictions to
our model. Of course, if there is no satellite sending signals, the coordinate system
sα wouldn’t correlate with what physical detectors in the region would detect. In this
sense, the correlation ϕ(sα) is a new prediction of the model, as with no satellites and
signals there is no correlation that we could measure. However, there is a strong sense
in which ϕ(sα) was already a prediction of the original model. The reason for this
is that the model allows computing the proper time that any body would experience
along any time-like trajectory, and also the trajectory of any light signal. In this sense,
we can use the coordinate system sα even without explicitly adding the satellites and
signals to our model, and indeed, even in the case in which these satellites aren’t there
in the actual world.

This connects with my discussion of radical relationalism in the previous section.
Rovelli argues that the clocks, the satellites, and the signals need to be explicitly
included in the model and he seems to imply that if these clocks weren’t there or if
we didn’t introduce them in our model, the coordinates sα would be meaningless. As
I argued in the previous section, one can argue against this claim, as counterfactual
reasoning allows us to connect them with the behavior of satellites and signals if they
happened to be in the world. While Rovelli would reject the claim that spacetime
coordinates could acquire meaning in this way, it seems to me that one can reasonably
disagree with him on this point. And to insist, the interpretation of general relativistic
models remains the same and complete, independently of the coordinate system used
for describing it.

Let me clarify that of course there is a sense in which physical clocks and reference
systems have to be included in a general relativistic setting: as material bodies they
curve spacetime, and, strictly speaking, spacetime would be different if they weren’t
there.However, inmanyphysical situations and to a very gooddegree of approximation
one can reasonably neglect the effects that the gravitational influence of clocks, rods,
or satellite signals may have. Granting that clocks and rods will have a gravitational
effect, there is no reason not to treat themexternally and ignore the effects they produce,
just as we introduce other, and far cruder, approximations in our models.
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Implicit in the claim that we need GPS coordinates or some other set of ‘physical’
coordinates is that other coordinate systems are meaningless. However, that claim is
also too strong. For simple and symmetric spacetimes it is clear that one can connect
coordinate systems with what ideal clocks and rods would read. For instance, the
standard time coordinate in Minkowski spacetime can be associated with the proper
times of stationary clocks, and the spatial coordinates can be associatedwith the proper
times that a series of light signals take to travel between certain clocks. Similarly, the
standard t, r coordinates in a Schwarzschild spacetime outside the horizon can also be
connected with the proper time of stationary clocks and with the redshift in a family of
light signals. For more generic spacetimes, the physical meaning of coordinates is not
that straightforward, but it seems that the clock hypothesis of general relativity allows
us to connect any coordinate system with the way in which we would expect that ideal
clocks, possibly exchanging signals, would behave in such spacetimes. Notice also
that the physical meaning of coordinates in any spacetime is given by the behavior
that ideal clocks would show, but that we do not need to have actual, physical clocks
in spacetime in order to claim that these coordinates are meaningful. In this sense, all
the coordinate systems are equally physical, as we are able to connect them with the
geometry of spacetime and the behavior of reference objects.

Finally, notice that Rovelli provides an argument for showing that GPS observables
are observables in the intuitive sense of the term, but not in the technical one. To prove
that the GPS observables are observables in this sense would amount to building
functions in the phase space of general relativity (plus satellites and signals) which
correspond to gμν(sα) and which have vanishing Poisson brackets with the constraints
of general relativity. Indeed, given that the GPS coordinate system is generically just
valid for some region of spacetime, it seems unlikely that one can build such phase
space functions with all the desired properties.

In any case, even if we granted that the GPS observables could be constructed as
invariant phase space functions, do we really want to claim that we need to construct
them in order to have an understanding of general relativity? In particular, do we
really need to explicitly add clocks (and satellites, and light signals) in our models
to understand them? As far as I can see, we do not need GPS observables, phase
space invariant functions, or ‘physical’ coordinates in order to make sense of general
relativistic models. The discussion of general relativity in the language of Hamiltonian
mechanics can be technically involved and the comparison with gauge theory may be
tempting, but at the end of the day I sidewith the philosophers of physics and physicists
who have argued that we have a perfectly fine understanding of general relativity in
terms of equivalence classes of models under diffeomorphisms. That is, we do not
have any trouble in reading out of a general relativistic model the causal structure of
spacetime, the way clocks would behave, and the way free bodies would move in such
a spacetime. When we add matter, there is no trouble in reading predictions about the
distribution of matter or about the configuration of fields from our models.

The discussion in this section should have made clear that constructions like the
GPS observables do not show that there is some problem with the ways of understand-
ing general relativity I have described in Section 2, i.e., the ways of understanding
general relativity which do not require of ‘physical coordinate systems’ or of ‘physi-
cal observables’. Similarly, one can resist the claim that reference objects should be
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treated internally to the theory. In the next section I will further argue for these claims
by introducing an analogy with Newtonian spacetime and by expressing it in the lan-
guage of differential geometry. The analogy will help establish that claim 3 is wrong,
in that it is very plausible to argue that spacetime models, general relativistic or not,
are interpreted in analogous ways for every kind of spacetime theory. Furthermore,
it will allow me to argue against claims 1 and 2, as I will argue that the demand to
build ‘physical coordinate systems’ does not really make sense in either case, given
that in both cases we are able to understand our models by making use of coordinate
systems, arbitrary or not, and some sort of clock hypothesis that links them with what
our clocks measure.

5 Newtonian spacetime in the language of general relativity

General relativity and its coordinates are usually compared with the case of Newtonian
physics and its absolute space and time. In this sense, while in Newtonian physics time
and space coordinates are physical and meaningful, in general relativity this wouldn’t
be the case and one would need constructions like the GPS coordinates expressed
above to make sense of the physics encoded in the generally covariant models. In
this section I will be arguing against this view by pointing to the fact that Newtonian
physics can be expressed in the language of general relativity and that coordinates
in this case also get physical meaning by means of a clock hypothesis and similar
hypotheses about how light signals travel through spacetime or about how ideal rods
behave. In this sense, our understanding and interpretation of Newtonian models is the
same as in general relativity: coordinates are as physical and meaningful in the one
case as in the other, as in both cases the way they acquire physical meaning is by some
assumption linking them and the metric structures of the models with the behavior of
ideal systems.

Furthermore, I will note that to understand Newtonian physics we do not need to
introduce ideal clocks (nor actual ones), and it is enough to know how they would
behave. In this sense, even if in a Newtonian setting one could rehearse arguments
that are similar to Rovelli’s to argue for the construction of GPS observables or some
similar set of coordinates, it is clearly not the way physicists think about Newtonian
models, and they are able to make sense of the models without explicitly introducing
any clocks and rods in them. The analogy therefore shows that if one does not need
to explicitly introduce reference objects in our models in Newtonian physics, one
shouldn’t expect to need them in the case of general relativity.

My argument in this paper could have been based on some other spacetime, such
as Galilean spacetime19, but I have chosen Newtonian spacetime for convenience,
given that it will later allow me to easily define an analog of the GPS observables.
In Newtonian spacetime there are absolute time and absolute space, and this can be
modeled in the language of differential geometry by a triple 〈M, tμ, hμν〉. M is a 4-
dimensional manifold, and the forms tμ and hμν encode the spatiotemporal structure,

19 See Knox (2014); Malament (2012) for differential-geometrical descriptions of Galilean spacetime.
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in a slightly different way to the way gμν encodes spacetime geometry for relativistic
spacetimes.20

The form tμ is associated with time21 and it describes the temporal structure of
spacetime. First, it determines whether a vector is spacelike or timelike. If a vector
vμ satisfies tμvμ �= 0 then it is timelike, otherwise it is spacelike. This is analo-
gous to the causal structure of general relativistic models, as we are able to define a
causal trajectory in spacetime as one that follows a timelike curve, i.e., one with an
everywhere-timelike tangent vector. This causal structure is just the causal structure
of Newtonian spacetime, as we are able to define simultaneity surfaces, i.e., to foliate
spacetime into a sequence of spaces, defined to be surfaces (3-dimensional regions of
M) in which any two points can be connected by spacelike curves. Second, tμ also
defines a metric for time, i.e., it defines absolute time. To compute the time along a
trajectory in spacetime Xμ(τ) we find an expression analogous to Eq. 1:

T =
∫

dτ tμ Ẋ
μ . (2)

By postulating that clocks measure this time, we have the analog of the clock
hypothesis for Newtonian spacetime. However, contrary to the case of general relativ-
ity, one can show that this ‘proper’ time is independent of the trajectory in spacetime
chosen. That is, if instead of choosing a timelike trajectory Xμ in between initial and
final spacetime points we chose another one X ′μ and computed the ‘proper’ time along
that trajectory using Eq. 2 we would obtain the same result. Moreover, this ‘proper’
time is independent of where in a simultaneity surface a trajectory starts or ends, it
only depends on the initial and final simultaneity surfaces. In this sense, we see how tμ
contains the information of absolute Newtonian time: it defines simultaneity surfaces
and an absolute measure of time between them that is independent of any spacetime
trajectory. Ideal clocks are objects that no matter their trajectory in spacetime, their
readings are proportional to their proper time Eq. 2, which is nothing but absolute
time.

hμν completes the geometrical information about spacetime by providing a geom-
etry for space. We are defining space to be absolute, and the degenerate metric hμν

encodes the structure of absolute space. hμν defines a spatial geometry for space,
which allows defining lengths, areas, angles, and so on and it also defines a notion of
absolute rest.

tμ and hμν together codify the geometry of Newtonian spacetime in any arbitrary
coordinate system using the language of differential geometry. Together with this
geometry and causal structure, we can define inertial motion in Newtonian spacetime

20 As commented above, I won’t be discussing the role that an affine connection could be playing in these
geometrical models. I refer the reader to Malament (2012) and references therein for an introduction to
Newton-Cartan theory, a way of codifying Newtonian gravity in the affine connection of a spacetimemodel.
21 There are alternative differential-geometrical formulations of Newtonian spacetime that use a temporal
metric tensor tμν instead of a one form tμ. For consistency, there are some conditions that tμ needs to
satisfy, such as being non-vanishing and continuous.
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Table 1 Comparison between general relativistic and Newtonian spacetimes

General Relativity Newtonian spacetime

Model 〈M, gμν, φ〉 〈M, tμ, hμν, φ〉
Causal structure Spacelike gμν ẋμ ẋν > 0 Spacelike/Simultaneous tμ ẋμ = 0

Timelike gμν ẋμ ẋν < 0 Timelike tμ ẋμ �= 0

Null gμν ẋμ ẋν = 0

Clocks
∫
dτ(−gμν Ẋμ Ẋμ)1/2

∫
dτ tμ Ẋμ (or t)

Rods
∫
dτ(hμν Ẋμ Ẋν)1/2 (or x, y, z)

Free body Timelike geodesic Straight line, uniform velocity

Light Null geodesic Straight line, velocity = c

Dynamical geometry? Yes No

by postulating that free bodies move in straight lines in space at uniform velocities.22

By adding matter and force fields φ we would have a complete model of Newtonian
physics. Such a model has an invariance under diffeomorphisms similar to general
relativity. That is, given a model 〈M, tμ, hμν, φ〉 we can build an equivalent one
by means of a diffeomorphism that transforms tμ, hμν , and φ.23 Just as in general
relativity, the physical content of the model is represented equally well by anymember
of the equivalence class of models under diffeomorphisms.

The interpretation of Newtonian models is similar to the interpretation of general
relativistic models. For the latter, in Section 2.1 I have discussed how the metric tensor
encodes three features of spacetime: causal structure, metric structure, and inertial
structure. Similarly, in Newtonian models these three features are encoded by tμ and
hμν , as I have just discussed. In this sense, we read from 〈M, tμ, hμν, φ〉 the same
three pieces of geometric and physical information as we did from 〈M, gμν, φ〉. In
Table 1 I compare both theories in a way that highlights the analogies.

An important similarity in the interpretation of Newtonian models is that we also
need a clock hypothesis to connect coordinates and geometric tensors (tμ) with what
clocks measure. Similarly, we could formulate a rod hypothesis that connects the
coordinates and the tensor hμν withwhat rodsmeasure. Alternatively, if one introduces
assumptions about how light signals behave one can make operational constructions
similar to the ones employed in special relativity. That is, if one assumes that light
moves at uniform velocity c with respect to absolute space, one can just operationally
define the distance between two static clocks to be half the time it takes for a light signal
to travel from one clock to the other and back divided by c. In this way, the operational

22 In particular, one can postulate that the trajectories of free bodies minimize the action S =∫
dτ

hμν Ẋμ Ẋν

tμ Ẋμ . These trajectories are straight lines at uniform velocities for the most natural definitions of

the connection.
23 Some authors choose not to call this transformation ‘diffeomorphism’, and prefer to use the term for
transformations that affect only dynamical variables and not fixed variables. However, I prefer sticking to
a terminology that can be applied to kinematical models independently of their dynamical interpretation.
For a discussion of the different notions of diffeomorphism transformation and diffeomorphism invariance
and their relation with the differences in the interpretation of general relativity and other models I refer the
reader to Pooley (2017).
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notions of time and space in Newtonian spacetime become clearly analogous to those
in special relativity, as in both cases we would be relying on a clock hypothesis and
some assumptions about how light signals behave.

Formulating the geometry of Newtonian spacetime in the language of general rel-
ativity helps highlight the similarities between our spacetime theories and puts some
pressure on the idea that coordinates or ‘observables’ are radically different in the
case of general relativity. To this kind of argument one expects authors like Rovelli to
reply24 that the difference in the case of Newtonian spacetime is that in this spacetime
there is a privileged set of coordinates, t, x, y, z, which would correspond to absolute
time and absolute distance along three orthogonal axes from some reference point. In
this coordinate system one can directly read physical intervals and distances from the
coordinates and everything takes its familiar form. Moreover, it is expected that one
would be allowed to define ‘observables’ using this preferred coordinate system.

There are several objections that I want to raise against this line of reasoning. First,
a clock hypothesis and a rod hypothesis are still in play, even if we are choosing a
simple coordinate system. That is, we still need to postulate that t correlates with the
readings of clocks and that x, y, z correlate with distance measurements along the
x, y, z directions. In this sense, the way coordinates acquire physical meaning is still
by means of an assumption that links them with the behavior of reference objects, just
as in general relativity. The meaning of the coordinates t, x, y, z is therefore just the
same as the meaning of an arbitrary coordinate system xμ once the tensors tμ and hμν

are specified.
Second, the fact that the coordinate system is particularly simple and convenient

implies that it is easy to give a physical interpretation to it, but for other coordinate
systems there will also be some physical interpretation available, even if more compli-
cated. For instance, we could build a coordinate system that corresponds to the times
that a family of clocks, in some complicated state of motion, measure and with the
times that some signals they exchange in between them take to travel. This coordinate
system is not as straightforward to interpret as the standard one, but seems to be just as
physical or meaningful, as we are still able to connect coordinates with measurements
of some set of bodies. In other words, all coordinate systems get physical meaning
by means of the clock hypothesis, and the fact that some may be more simple or
convenient doesn’t seem to make them physically privileged.

Third, in general relativity, at least for certain spacetimes, one could also choose
a preferred system of coordinates by appealing to some simplicity or to their easy
interpretability. Above I have commented on how some coordinates in Minkowski
spacetime or in Schwarzschild spacetimes get an easy and straightforward interpreta-
tion. This would seem to imply that at least for some simple or symmetric spacetimes

24 Take for instance Rovelli and Vidotto’s claim that: ‘the theory [general relativity] is written in terms
of spacetime coordinates x and t , but the physical meaning of these is totally different from the physical
meaning of the spacetime coordinates with the same name used in special relativity and in non-relativistic
physics. The spacetime coordinates X and T in non-relativistic and special relativistic physics have metric
meaning: the spacetime coordinates x and t in general relativistic physics do not have metric meaning’
(Rovelli & Vidotto, 2022, p. 7).
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in general relativity, we can find physically meaningful spacetime coordinates25 in the
same way we found them for Newtonian spacetimes. However, following what I have
argued above, the claim that we can find physical meaning to coordinates in general
relativity is extendable for arbitrary spacetimes, as the clock hypothesis will allow us
to connect them, probably in a complicated manner, with the readings of some set
of clocks, with signals sent from them, or some similar, presumably not trivial, and
perhaps only locally valid construction.

Fourth, a different kind of argument for the position that there is something special
about the case of Newtonian spacetime is that the set of coordinates t, x, y, z is unique
in that it is the only one (up to a temporal and spatial translation and a rotation) which
‘matches’ the structures of spacetime. It is true that this coordinate system is unique
in that the time coordinate is directly Newtonian absolute time and that the dynamical
equations of motion take the familiar form of Newton’s second law ( �F = m d2 �x

dt2
). For

general relativistic spacetimes there is no absolute time, no privileged foliation, and
coordinates systems inwhich force laws take the simple form �F = m d2 �x

dt2
can be defined

only locally in general. However, this difference is a difference about the structures of
spacetime and not about the meaning of the coordinates. The ‘privileged’ Newtonian
coordinates t, x, y, z, describe the same spacetime and contain the same information as
any other coordinate system xμ and the tensors tμ and hμν . This spacetime is different
from a general relativistic spacetime, but the role of coordinates remains analogous.

To complete the analogy let me comment that the GPS observables construction
could also be implemented in the Newtonian spacetime case. Similarly to the case of
general relativity, this construction allows defining a system of coordinates in relation
to a system of satellites sending signals in spacetime, and authors like Rovelli would
consider this coordinate system to be a legitimate and physical coordinate system.

Figure 1 which represented the idea for general relativity works also fine for repre-
senting how it could be implemented in a Newtonian spacetime. Just as in the case of
general relativity, we would have four satellites traveling from a spacetime point P at
uniform speeds in four directions of space, each of them carrying their own clock and
each of them sending signals with the reading of their clock at the time of emitting the
signal. At every point in a region of spacetime the four signals sα are received and they
can be used for identifying the spacetime point. Taking into account the velocities of
the satellites, that now the clocks measure absolute time, and that light signals now
travel just at velocity c with respect to absolute space, one is able to infer the relation
between the coordinates sα and the standard coordinates t, x, y, z. In this sense, we
are able to express the geometry of Newtonian spacetime in terms of this system of
‘physical’ coordinates.

Now one could ask, is this system of coordinates more ‘physical’ than the t, x, y, z
coordinate system? Is it so in the case that there is no actual system of clocks of
rods measuring t, x, y, z? Would it be so if the satellites hadn’t been there? Is it more
physical than an arbitrary system? As I have been arguing above, I take it that all

25 Marchetti and Oriti (2021) defend the position that for symmetric spacetimes one is able to make sense
of general relativity by exploiting these symmetries, but that for generic spacetimes one has to deal with
deep conceptual difficulties. Here I am arguing that for any spacetime, symmetric or not, we are able to
give physical meaning to our coordinates.
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coordinate systems are equally physical or meaningful, and that all get their physical
meaning by means of the clock hypothesis that connects them with what clocks would
measure, even if no such system existed in the world. The GPS coordinate system is
a clever coordinate system with a straightforward implementation, but even without
it, we are able to make sense of our spacetime theories, both Newtonian and general
relativistic.

The analogy between Newtonian and general relativistic models shows that the
claim by Rovelli that there is a difference between general relativity and Newtonian
models in that reference objects need to be explicitly introduced in the case of general
relativity and not in the case of Newtonian spacetime is mistaken. That is, in the
same way we can treat clocks and rods externally and deduce their behavior from the
coordinates t, x, y, z, from sα, tα, and hαβ , or from xμ, tμ, and hμν in a Newtonian
spacetime, we can do the same in the case of a general relativistic spacetime and treat
clocks and reference objects externally. In the next section I will comment on the
possible reactions from someone holding positions similar to Rovelli’s, but for now
let me take this to be a strong argument against claim 2.

In Sections 2 and 3.2 I argued that there are substantivalist and relationalist inter-
pretations of general relativity that allowed denying claim 1, i.e., the claim that we
need to build physical observables in order to extract all the physical content of general
relativity. In the Newtonian spacetimemodel case, the same two families of interpreta-
tions can be held and one can equally claim that there is no need to introduce physical
observables or physical coordinate systems in order to have a sensible interpretation of
such a model. The analogy shows that there is nothing in a general relativistic model
which makes it the case that the interpretations of spacetime models that are valid
in the Newtonian case are also valid in the general relativistic case. In this sense, if
we have a complete interpretation of Newtonian models, we also have a complete
interpretation of relativistic ones, and claim 1 is false.

Similarly, the claim 3 that there are deep ontological differences between different
spacetime models is clearly question-begging given the analogy between both types
of models. We have seen how the different models have different causal, geometric,
and inertial structures, but at this level there is no difference that would support the
claims that one finds in the work of Rovelli, Rickles, and Earman cited above.

All in all, the analysis of Newtonian spacetime models and their formulation in
the language of differential geometry has made clear that the way we understand
spacetime models is not different, or at least that it does not need to be, in the cases of
general relativity and of Newtonian physics. This realization represents a challenge to
the views I am opposing in this article and to the claims 1-3. In the next section I will
analyze the ways my argument could be responded to.

6 Possible replies by the defenders of ‘observables’

The previous sections have illustrated how at a kinematical level I find that the diffeo-
morphism invariance of differential geometrical models does not represent an obstacle
at the time of giving a physical interpretation of such a model. In particular, some sort
of clock hypothesis allows us to make a connection between coordinates and geomet-

123



   51 Page 22 of 30 European Journal for Philosophy of Science            (2024) 14:51 

rical objects and what clocks and rods would measure. For this, there is no need to
introduce any preferred or ‘physical’ coordinate system or to define ‘observables’. In
this section I will analyze two possible responses that a defender of ‘observables’ may
take in order to save part of the claims 1-3.

As I mentioned in Section 3, the two motivations of the defenders of the need for
‘observables’ pull in different directions when confronted with the analogy between
the different types of spacetime models. While the arguments from the gauge analysis
of general relativity can still be seen as pulling for the claim that there is a fundamental
distinction between general relativistic andNewtonian spacetimes, the arguments from
the radical relationalist perspective invite us to drop the claim that there is a difference.
I will analyze both possible positions in turn.

6.1 Does gauge symmetry make a difference?

The defender of the need for physical observables whomotivates their position on their
analysis of the diffeomorphism invariance of general relativity as a gauge symmetry
could complain that my discussion in Sections 4 and 5 does not address their argu-
ments. Moreover, they could accept the analogy proposed in the previous section, and
even acknowledge that if we left aside the gauge aspect, the interpretation of general
relativistic models and Newtonian models could be the same. However, from their
point of view, analyzing general relativity as a gauge theory completely changes the
picture and forces one to adopt a different interpretation. For instance, Earman claims
that:

Physicists commonly take the substantive requirement of general covariance to
mean that the laws exhibit diffeomorphism invariance and that this invariance is
a gauge symmetry. This latter requirement does place restrictions on the content
of a spacetime theory (Earman, 2006, p. 1, his emphasis).

Earman (as well as Rickles and Rovelli in certain passages) introduces a distinction
between theories that are expressed in the language of differential geometry and that
therefore show some sort of diffeomorphism invariance and theories that show this
invariance and for which this invariance is considered a gauge symmetry. In this
sense, he distinguishes between formal general covariance (FGC) and substantive
general covariance (SGC). Earman thinks there is a difference between a theory like
Newtonian mechanics expressed in the language of differential geometry and general
relativity, as the former would show FGC and the latter SGC. Given this supposed
difference, Earman concludes that:

(C1) Since typical pre-general relativistic theories satisfy FGC, but not SGC, the
general covariance of these theories does not rule out naive realism that takes
the theory at face value as characterizing a world in terms of a manifold on
which live various geometric object fields. (C2) For GTR and other spacetime
theories that satisfy SGC, there are two immediate negative implications: (i) the
so-called metrical essentialism is ruled out from the start since it is incompatible
with diffeomorphism invariance as a gauge symmetry. (ii) Naive realism is also
ruled out (Earman, 2006, p. 13).
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As we see, the difference between FGC and SGC is supposed to be such that the
interpretation of the models that have them would be radically different, despite all
the apparent similarities. If that is right, then my argument in Section 5 would be
blocked.

The key ingredient in Earman’s argument is to claim that when the diffeomorphism
invariance is considered a gauge symmetry this has important consequences for its
interpretation. To be considered a gauge symmetry, according to Earman, it is not
enough for it to be a transformation that maps a kinematical possible model to another
one, as this would imply that models with an FGC would be misclassified as mod-
els with a gauge symmetry. Earman introduces the requirement that for a symmetry
transformation to be considered a gauge transformation it needs to be a transforma-
tion that affects dynamical fields and variables and not fixed ones.26 According to this
definition, diffeomorphisms are gauge transformations in general relativity as they
are symmetry transformations of dynamical variables (gμν, φ), but not in Newtonian
mechanics, as the transformation affects dynamical variables (φ), but also fixed vari-
ables (hμν, tμ).27 If in the Newtonian case one works in a coordinate system like
t, x, y, z the possibility of defining a symmetry transformation mapping from this
formulation to a formulation in terms of hμν and tμ is not even explicit.

Earman’s definition is made in terms of local symmetries of an action principle,
requiring that these local symmetries are transformations involving only dynamical
variables and not fixed structures. Action principles with these symmetries have sin-
gular Lagrangians, and need to be treated as constrained systems in the Hamiltonian
formalism. According to Earman’s analysis, symmetries with these properties need
to be interpreted in radically different ways from the way they are treated when the
symmetries affect fixed structures.

Does this difference between the formalization of the dynamics of different space-
time theories mean that there is some important difference at the time of interpreting
their models? In my opinion, it does not. As I have just discussed, the reason why
there is a formal difference between these models is just that while some models take
spatiotemporal structures to be dynamical, others take them to be fixed. That is, the
fact that in Newtonian mechanics one always has the same spacetime, while in gen-
eral relativity one can have different models with different spacetimes is ultimately
responsible for the different interpretations that authors like Earman propose for the
two kinds of models. In the literature the term ‘background independence’ is used to
refer to the fact that spacetime is dynamical in general relativity and that there is no
fixed structure in the theory. While I agree that this is a fact of the theory that makes

26 Note that the sense of ‘dynamical’ that these authors have in mind here is different from another possible
sense, which is to define dynamical as changing in (space)time. The sense in which Earman is using
dynamical is of interacting or dependent on other degrees of freedom. That is, spacetime is dynamical in
this sense when it is true that if the matter distribution had been different, the properties of spacetime would
have been different. This sense of ‘dynamical’ implies the possibility of temporally changing spacetimes,
but notice that the two senses are independent. That is, we can have spacetimes that are dynamical in both
senses, only in one or in none.
27 There are some subtleties regardingwhether one can express theories like Newtonianmechanics in terms
of action principles showing invariance under local diffeomorphisms, but I will leave them aside for the
sake of the argument and refer the reader to Pooley (2017) for a complete discussion of these details.
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it special and distinguishes it from other theories, I disagree with the conclusion that
spacetime structures should be interpreted differently just because they are dynamical.

An argument supporting my claim is that for other physical variables we wouldn’t
change our interpretation of them depending on whether we consider them to be fixed
or dynamical. Imagine a theory that describes the possible trajectories of a charged
particle in an external electromagnetic field.Kinematicalmodels of this theory are pairs
〈Aμ(x), xμ〉. These models have what one intuitively would call a gauge symmetry,
given that, as is well-known, different Aμs can represent the same electromagnetic
field. Now, according to Earman’s notion of gauge we need to distinguish between
two situations. First, we can consider the electromagnetic field to be fixed as it is an
external electromagnetic field that we can take to be given. In this sense, even if Aμ

would appear in our models and in the action, it wouldn’t be a dynamical field and
the transformation that relates kinematically equivalent models would not count as a
gauge transformation. Alternatively, we can consider the electromagnetic field to be
a dynamical field and include in the action principle the terms that would give rise to
Maxwell equations. In this case, according to Earman the transformation would count
as a gauge transformation and this would have an impact on the way we interpret the
theory. From the technical point of view, it is true that the electromagnetic field would
satisfy the definition of ‘observable’ as a phase space function which has vanishing
Poisson brackets with the gauge generators only in the case that we treat it as a
dynamical field. But do we want to claim that it is observable in the intuitive sense
only in this case?Dowe reallywant to further claim that its nature and thewaywewant
to interpret it changes depending on whether we take it to be fixed or not? My position
is that there is really no good reason for doing so and that we should in both cases
interpret the field as a field that deviates charged particles from inertial movement.
Similarly, I believe that spacetime models should be given the same interpretation
independently of whether one takes the spacetime structure to be fixed or whether one
allows for it to change from model to model. That is, dynamical or not, spacetime
structure defines a causal and inertial structure and a geometry we can measure with
physical objects.

In this sense, I find thatwhether afield is fixedor not does not affect thewayweought
to interpret it. The only difference is of course that a dynamical field ‘reacts’ or can react
to the influences of other fields, and this is one of the key insights of general relativity.
But then, if fixity or dynamicity shouldn’t affect the way we interpret a structure, do
we really want to claim that a formal property such as having a singular Lagrangian
(or being formulated as a constrained Hamiltonian theory) can have as substantive
implications as Earman and Rickles argue? In my opinion, this is an unattractive
position.

As I mentioned in Section 3.1, there are important formal and conceptual differ-
ences between the gauge transformations of electromagnetism and the diffeomorphism
invariance of general relativity which make it the case that applying blindly recipes
and definitions that make sense in the former case to the latter is completely question-
begging. I refer the reader again to my discussion in that section and to the references
therein for further arguments against analysis like Earman’s. In this sense, I believe
that one can very reasonably resist the arguments from the gauge analysis and argue
that claims 1-3 are false.
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6.2 Accepting the analogy

Alternatively, a defender of physical observables can take a perspective more inspired
by the radical relationalist motivation and accept my claim that the formal analogy
between spacetime models should also be accompanied by an analogy in the way
they are to be interpreted. However, the radical relationalist could turn my argument
around and use it to argue that physical observables are necessary not only in general
relativity but also in Newtonian physics and in other spacetime theories.

There are some passages in which Rovelli seems to go in this direction:

For Newton, the coordinates �x that enter his main equation [Newton’s second
law] are the coordinates of absolute space. However, since we cannot directly
observe space, the onlywaywe can coordinatize space points is by using physical
objects. [...] coordinates �x [...] are therefore defined as distances from a chosen
system O of objects.[...]
In other words, the physical content of [Newton’s second law] is actually quite
subtle: There exist reference objects O with respect to which the motion of any
other object A is correctly described by [Newton’s second law].
This is a statement that begins to be meaningful only when a sufficiently large
number of moving objects is involved. Notice also that for this construction
to work it is important that the objects O forming the reference frame are not
affected by the motion of the object A. There shouldn’t be any dynamical inter-
action between A and O (Rovelli, 2004, pp. 87-88).

In this passage we see how Rovelli holds a relationalist position also for the case
of Newtonian physics. As a relationalist, he rejects defining distances with respect to
absolute space and he defines only distances between physical objects and a set of
privileged reference objects which makes the equations of motion look simple. What
makes Rovelli’s position in this passage singular is that it requires the reference objects
to exist, to follow inertial trajectories, and not to interact with the rest of the bodies. In
this sense, we see that Rovelli claims that Newtonian coordinates are physical because
they encode the distances with respect to this privileged set of physical objects. This is
different not only from what a substantivalist would claim, but also from what many
relationalists would claim. Standard relationalism does not need to postulate that there
exist reference objects that are inertial and non-interacting, and it is able to accommo-
date the predictions of Newtonian physics for a set of n bodies. That is, relationalism
can hold that in order to predict the evolution of the distances between the n bodies
one can embed them in a Newtonian space-time, apply Newton’s equations, extract the
predictions, and forget about spacetime. In this sense, for this kind of relationalist, the
position in space is only a tool that encodes the distances with respect to other bodies
and allows computing their evolution, but does not represent a position in absolute
space or the distance with respect to some privileged, existing body. The relationalist
can interpret coordinates in a counterfactual way: if there existed privileged reference
objects, coordinates x, y, z would represent the distances of the rest of the bodies with
respect to them.
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We see that there is a parallelism again with the case of general relativity: I argued
that spacetime models encode the distances with respect to reference objects (the
satellites) even if they weren’t explicitly there in the model. That is, according to
plausible substantivalist and relationalist positions one could claim that coordinates
encode distances with reference objects, but in both cases these coordinates can be
understood in a counterfactual fashion. Meanwhile, Rovelli claims that in order for
them to be physical, the reference objects need to be there in both situations. As I have
argued, this is a possible position to hold, but not a very attractive one from my point
of view.

We can also notice that in this passage Rovelli is implying that even if we want to
claim that coordinates represent distances with respect to reference objects, one does
not need to include these reference objects in the Newtonian model. That is, one takes
the Newtonian model written in terms of the coordinate system x, y, z to imply that
there exist reference objects with respect to which the distances are x, y, z. But in the
case of general relativity we saw how Rovelli rejected interpreting the coordinates sα

as encoding the relations with the satellites unless one explicitly included the satellites
in the model. According to Rovelli, it was only when one included the satellites that
one was able to extract all the predictions of the general relativistic model. To me, this
difference in the way of treating the different spacetime models is not justified.

In the above quote by Rovelli we see that he demands that reference objects do
not interact with the rest of the bodies we are studying. This seems to be a difference
with the way he treats reference objects in general relativity, as is clear from the GPS
example. But one can question this different way of treating reference objects in both
cases. Having reference objects in Newtonian spacetime that do not interact at all with
the rest of the bodies is clearly an idealization, as all the bodies inNewtonianmechanics
interact gravitationally. In this sense, we never have an ideal set of bodies such that we
can define coordinates with respect to them in a way that exactly matches Newtonian
coordinates t, x, y, z. If we admit a degree of idealization regarding reference objects
and their effect on other bodies in Newtonian physics, why not accept the same in the
case of general relativity? In the example of the satellites it is true that the satellites
and signals will interact gravitationally with the rest of matter and with the geometry
of spacetime, but for light satellites and far away from them this effect will be small.
It is therefore a very reasonable idealization to exclude their effect from our model,
and in any case it is just analogous to the idealization made in Newtonian physics.

As I have been arguing in this article, I take it that this kind of analogy urges
us to reject Rovelli’s view about spacetime theories. However, Rovelli could take the
tension just mentioned and take it to imply that his description of Newtonian spacetime
in terms of a relationalism with respect to some idealized reference objects is inferior
to an account in which no such idealized object is introduced. Indeed, in some other
discussions of Newtonian mechanics, he seems to be arguing precisely for this claim:

According to Newton, we never directly measure the true time variable t . Rather,
we always construct devises, the “clocks” indeed, that have observable quantities
(say, the angle β between the clock’s hand and the direction of the digit “12”),
that move proportionally to the true time, within an approximation good enough
for our purposes. In other words, we can say, following Newton, that what we
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can observe are the system’s quantities ai and the clock’s quantity β, and their
relative evolution, namely the functions ai (β); but we describe this in our theory
by assuming the existence of a “true” time variable t .We can thenwrite evolution
equations ai (t) and β(t), and compare these with the observed change of ai with
the clock’s hand ai (β).
Thus, it is true also in non-relativistic mechanics that what we measure is only
relative evolution between variables. But it turns out to be convenient to assume,
with Newton, that there exist a background variable t , such that all observables
quantities evolve with respect to it, and equations are simple when written with
respect to it.
What I propose to do in the following is simply to drop this assumption (Rovelli,
2011, p. 1479, his emphasis).

In this passage it is clear that Rovelli intends to apply to Newtonian spacetime the
same interpretation that he makes of general relativity. In this sense, from Rovelli’s
perspective what we observe are relations between physical quantities, and hence
one should avoid making reference to coordinate systems, time variables, or similar
constructions. However, adopting such an interpretation does not make the stronger
claims I have been discussing in this article true.

Let me start with claim 2. The quotation above undermines the claim that we need
to explicitly introduce internal reference systems. Rovelli claims that it is correlations
between the clock and the other system in his model that we observe, but then he
discusses how one can introduce a variable t that is convenient and makes equations
simple. In this sense, what Rovelli is implying is that one can use the evolution of
physical variables ai with respect to t to predict what for him is truly physical and
observable, ai (β). However, this allows treating clocks externally and it is precisely
thewaywe usually treat them inNewtonian physics. In the case of general relativity the
same applies, as the predictions like ϕ(sα) in the example of the satellites are written
in terms of coordinates, but we are able to connect them with ‘physical correlations’,
even if we didn’t include the clocks in our model.

Similarly, I find that claim1 is not supported by this relationalist analysis.AsRovelli
admits that the variable t can encode the behavior of clocks in Newtonian spacetime, it
seems that there is no obstacle to making a similar interpretation in general relativity.
In this sense, even if one accepted Rovelli’s claim that it is only correlations that are
physical, one can reject the claim that we need to introduce them in ourmodels in order
to be able to extract the physical content of a general relativistic model. Moreover,
the claim that we are far from capturing all the gauge invariant content of a general
relativistic model is still question-begging.

Finally, even if Rovelli could formulate a consistent relationalist position, it seems
clear to me that the claim that we are forced to adopt this interpretation in general
relativity or in Newtonian physics is false. As I have been arguing in this article, there
are attractive and consistent positions one can hold about space and time, for any
spacetime theory, which give a perfectly fine and complete interpretation of spacetime
theories. In this sense, positions like Rovelli’s or Earman’s are not forced into us as
the only way of understanding spacetime theories, they are just one particular option,
which I find is not as compelling as others.
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7 Conclusions

In this article I have argued against the view that we need ‘physical coordinate systems’
or ‘observables’ in order to have a complete interpretation of general relativity or to
extract the physical content of a general relativistic model. I have argued that there is
an analogy between general relativistic spacetimes and other spacetimes and that this
shouldmake us give the same interpretation to the different spacetimes appearing in our
physical theories. That is, spacetime defines a causal structure, a geometric structure
that we measure with clocks and rods, and an inertial structure that describes how
free bodies move. In different theories we find different spatiotemporal structures,
but these three basic interpretative tenets hold for the different spacetimes. In this
sense, I have argued that we have perfectly fine interpretations of spacetime models,
including general relativity, with no need to introduce this notion of physical obser-
vable.

I have also analyzed the two motivations for adopting the ‘physical observables’
view, and I have found that there are seriousworries associatedwith them thatmake the
‘physical observables’ view not attractive and certainly not the only way of interpret-
ing spacetime models. First, I have found that the gauge analysis of general relativity
is based on an analogy with gauge theories like electromagnetism which can be chal-
lenged given the disanalogies between the two types of transformation. Moreover, I
have argued that this view seems to be too formalistic in that it follows blindly some
formal recipes to deduce what for me are quite absurd conclusions such as that a
physical structure should receive a different interpretation depending on whether we
take it to be fixed or dynamical. Second, the kind of relationalism defended by Rov-
elli can be questioned and is certainly not forced into us by the structure of general
relativity or other spacetime theories, but even from that perspective I have found that
the claim that we do not have a complete interpretation of spacetime models if we do
not explicitly introduce reference objects is false.
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