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Abstract

This paper examines the development of causal perturbation theory, a reformula-
tion of perturbative quantum field theory (QFT) starting from a causality condition
rather than a time-evolution equation. We situate this program alongside other
causality-based reformulations of relativistic quantum theory which flourished in
the post-war period, contrasting it in particular with axiomatic QFT. Whereas the
axiomatic QFT tradition tried to move beyond the perturbative expansion, causal
perturbation theory can be thought of as a foundational investigation of this ap-
proximation method itself. Unearthing this largely forgotten research program helps
clarify questions of contemporary philosophical interest, for instance about the in-
terpretative significance of the ultraviolet divergences which appear in the series
expansion, but also help us understand why causality conditions became so ubiqui-
tous in post-war high-energy theory.

1 Introduction

The 1950s and 1960s were crucial yet tumultuous decades in the development of relativistic
quantum theory. While the invention of renormalized perturbative theory in the late 40s
had been a victory of sorts, as time went on it was increasingly felt that something quite
different was needed to resolve the theoretical and empirical problems posed by nuclear
interactions. Accordingly, we see a proliferation of new ideas and research programs in this
period, some of which may be familiar today—axiomatic QFT and the renormalization
group—others perhaps less so—the theory of dispersion relations and the analytic S-
matrix. Despite this diversity, one also finds an intriguing consensus amongst many of
the programs that flourished in this period about the fundamental importance of some
notion of causality to the formulation of relativistic quantum theory, though exactly what
this meant was, as we shall see, variously conceived.
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How did causality become so central to the debate about the formulation of relativistic
quantum theory, and what does this tell us about the structure of contemporary QFTs?
This paper focuses on a lesser known strand of 1950s high energy theory, namely the de-
velopment of the so-called causal perturbation theory program, which we claim sheds light
on these questions. The central issue driving the development of causal perturbation the-
ory was the question of how the perturbative approximation scheme ought to be derived.
Freeman Dyson’s formulation of perturbative QFT had been based on the integration of
the Schwinger-Tomonaga evolution equation. Ernst Stueckelberg, Nicolay Bogoliubov and
their collaborators developed an alternative derivation of the series expansion starting not
from a differential evolution equation but from a causality condition. This would eventu-
ally lead to a novel perspective on the problem of ultraviolet divergences and perturbative
renormalization which remains relevant (and neglected) in contemporary interpretative
debates.

Notions of causality remain a central point of concern in contemporary debates about
the foundations of QFT and have been discussed extensively in the philosophy of physics
literature (see for instance, Earman and Valente (2014); Calderón (2024)). Much of this
work has focused on the various causality axioms adopted in algegraic axiomatizations of
QFT leaving aside the question of why alternative definitions of causality became so sig-
nificant in debates about the formulation of relativistic quantum theories in the first place.
The analysis of this paper highlights how concerns about causality were integral to the
reception and refinement of renormalized perturbation theory, as well as being operative
in attempts to develop other non-perturbative approximation methods capable of describ-
ing strongly interacting nuclear phenomena. The causality condition which Bogoliubov
eventually landed on as the foundation of the causal perturbation theory approach is also
quite different in character from the microcausality condition typically appealed to in non-
perturbative axiomatizations of QFT, raising questions about the relationships between
these causality notions which are yet to be explored in the philosophical literature.

The paper is structured as follows. Sections 2 and 3 cover necessary background, in-
troducing Heisenberg’s S-matrix program and Freeman Dyson’s derivation of the QFT
perturbative expansion respectively and the critiques which both of these approaches to
relativistic quantum theory faced. Sections 4-6 trace the development of the causal per-
turbation theory approach, with a particular emphasis on the struggle to articulate an
appropriate causality condition. Sections 7-9 reflect on the implications of the causal
derivation of the perturbative expansion: section 7 discusses the novel treatment of the
ultraviolet divergences problem which develops within the causal perturbative theory ap-
proach; section 8 discusses the relationship between causal perturbation theory and more
ambitious non-perturbative programs like axiomatic QFT and the theory of dispersion
relations; section 9 concludes with some general morals for philosophical engagement with
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causality concepts in relativistic quantum theory.

2 The Legacy of Heisenberg’s S-matrix Program

From the early days of quantum mechanics, it was clear that combining the new framework
with special relativity was a highly non-trivial task. Quantizing a classical field theory
and using a perturbative approximation scheme to treat the concomitant non-linear in-
teracting field equations emerged as perhaps the most promising route to a quantitatively
predictive formalism. Following this recipe, the Heisenberg and Pauli (1929) formulation
of QED was, in many respects, already very similar to the modern perturbative treatment
of that theory. At the time, however, Heisenberg-Pauli QED was widely viewed as an
impoverished (perhaps even mathematically inconsistent) stepping stone on the road to a
more complete theory. There were at least two reasons for this negative assessment.

The first was a difficulty with representing the dynamics of a QFT in a relativistically
covariant way. Heisenberg and Pauli based their formalism on the so-called equal-time
commutation relations of the field operators, which distinguished the time and space ar-
guments of the fields and was therefore not manifestly relativistic. As a result, a noto-
riously laboured argument was needed to demonstrate the covariance of the full theory.
Another way to see the difficulty with covariance is to look at the Schrödinger equation,
which was still taken to govern the Schrödinger picture state evolution in a field theoretic
context:

id/dt|ψ(t)⟩ = H|ψ(t)⟩ (1)

One issue with this equation is that the Schrödinger picture Hamiltonian is not a Lorentz
scalar. Perhaps more fundamentally, in singling out the time coordinate, the Schrödinger
equation required selecting a foliation of space-time in order to implement the dynamics.
These difficulties with covariance all seemed to stem from the role of the Hamiltonian
formalism in the canonical approach to quantization, leading many theorists in this period
to try to generalize or replace it—including Heisenberg, as we shall see.1

The second, and apparently more cataclysmic, problem with Heisenberg-Pauli QED was
the appearance of ultraviolet divergences in its perturbative expansions. As the prospects
of exactly solving an interacting QFT seemed quite hopeless Heisenberg and Pauli adopted
the now familiar strategy of expanding quantities in a series expansion in the interaction
coupling. If the interaction was weak then the leading terms of this series ought to provide
a good approximation of the relevant quantities in the fully interacting model. It quickly

1See Tomonaga (1966) for a discussion of covariance worries in the 1930s and 1940s, including the
ideas of Dirac and Yukawa that apparently stimulated his work on the Schwinger-Tomonaga equation
(discussed further in section 3).
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became evident that, from second-order, the coefficients of this expansion contained in-
tegrals which diverged at coincident space-time points, or in momentum space as the
momentum variable becomes infinitely large. There was clearly something deeply wrong
with the Heisenberg-Pauli scheme, though exactly what was unclear. Were the divergences
a manifestation of some deep inconsistency in the theoretical principles of QFT? Or could
they be circumvented by either abandoning the perturbative approximation scheme or
somehow mending it?

The divergence and covariance issues appeared to many theorists at the time to be deeply
entwined with one another. On the other hand, the difficulty with maintaining covari-
ance was seen as a major contributor to the intractability of the ultraviolet divergence
problem, a view expressed clearly by Oppenheimer in his contribution to the 1948 Solvay
conference:

“[O]ne needs a covariant way of identifying these [divergent] terms; and for
that, not merely the field equations themselves, but the whole method of ap-
proximation and solution must at all stages preserve covariance.”

From this perspective, the difficulty with maintaining covariance made it hard to assess
whether the ultraviolet divergence problem was truly fatal or could somehow be worked
around. On the other hand, naive attempts to modify the basic principles of QFT to
address the ultraviolet divergences problem seemed to make the clash with relativity con-
siderably worse. Heisenberg came to see the ultraviolet divergence problem as stemming
from the use of a differential time-evolution equation to express the theories dynamics,
since this necessitated the multiplication of field operators at the same space-time point—
the ultimate source of the divergences. He therefore came to the view that a future
theory should incorporate a minimal length scale which would cut off the divergent inte-
grals. Introducing a minimal length scale directly—for instance by discretizing the field
equations—inevitably explicitly violated Lorentz symmetry, however.2

Heisenberg’s response to this seemingly inevitable tension was to propose an entirely new
dynamical framework for relativistic quantum mechanics, which eschewed the use of a
differential time-evolution equation entirely (Heisenberg 1943a,b, 1944). To this end, he
introduced the S-matrix, an operator which maps asymptotic states at t = −∞, inter-
preted as ‘incoming’ states prior to a scattering process, to ‘outgoing’ asymptotic states
at t = ∞, thus encoding the scattering cross section observables typically measured at
scattering experiments. Heisenberg’s hope was that it might be possible to get rid of the
field operators, along with the usual method of canonical quantization with its reliance

2See Carazza and Kragh (1995) for a discussion of Heisenberg’s early attempts to formulate a discrete
quantum theory and Blum (2017) the later development of Heisenberg’s views about the presence of a
fundamental length.
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on the Hamiltonian formalism, and construct models directly by imposing conditions on
the S-matrix, the two he was able to come up with being unitarity and Lorentz invari-
ance:

Unitarity S†S = I,
Lorentz Invariance UΛSU

−1
Λ = S,

where UΛ are Lorentz transformations. It quickly became clear that these two conditions
were insufficient to extract any quantitative information on their own, however; Heisen-
berg’s bold new formalism was too austere to be practically useful.

A naive folk history of the period has it that Heisenberg’s S-matrix program was essentially
undercut by the work of Feynman, Schwinger, Tomonaga and Dyson. These authors
showed that a relativistic evolution equation could in fact be formulated for QED and
that the ultraviolet divergences could be systematically removed from the perturbative
expansion via a procedure which came to be known as renormalization, thus resolving
the two fundamental problems with Heisenberg-Pauli QED. Dyson played a key role in
synthesising these insights, and showing that the new renormalized perturbative expansion
was actually an expansion of Heisenberg’s S-matrix, now viewed as a derived rather than
fundamental object. The time-evolution equation retook its place as the core expression of
the theory’s dynamics, and Heisenberg’s S-matrix program was largely forgotten, briefly
resurfacing as an inspiration for Geoffrey Chew’s analytic S-matrix program in the 1960s,
before fading into obscurity once more.

This narrative is misleading in our view, however. In reality, Heisenberg’s S-matrix pro-
gram remained influential after the empirical success of renormalized perturbative QED
and we can see a number of theoretical approaches which appeared in the 1950s as con-
tinuations of it—including the causal perturbation theory program. The reason for this
resurgence of S-matrix ideas was that Dyson’s formulation of renormalized perturbation
theory eventually came to be seen—ironically, like Heisenberg-Pauli QED before it—as
an incomplete stepping stone to a more satisfactory formulation of relativistic quantum
theory. By the mid 1950s there was a sense that, while Heisenberg’s principles of unitarity
and Lorentz invariance were too weak, in attempting to rehabilitate the time-evolution
equation Dyson’s formalism had added back too much additional structure. This is where
causality entered the picture. Adding some form of causality condition to unitarity and
Lorentz invariance was a way to try to chart a course between Heisenberg and Dyson.
As we shall discuss further in section 8, causal perturbation theory, axiomatic QFT and
the theory of dispersion relations can all be read as pursuing variations of this general
strategy.

Before we can get back to this synoptic view of these various causality based reformulation
programs we intend to examine the historical origins of causal perturbation theory in
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detail. Our starting point, in the following section, will be a more detailed examination
of Dyson’s derivation of the renormalized perturbative expansion, with a particular focus
on how causality properties appear in that formalism.

3 Dysonian Perturbation Theory

As has often been remarked, the work of Feynman, Schwinger, Tomonaga and Dyson was
theoretically conservative, in the sense that it did not modify any of the basic theoretical
principles which had been used to formulate Pauli-Heisenberg QED. Indeed, it even main-
tained the perturbative approximation strategy which Pauli and Heisenberg had used to
try to articulate the content of their theory. What “the men who made it” really made
was an improved perturbative approximation scheme. This section presents the derivation
of the new renormalized perturbation series found in Dyson (1949a,b), which we shall refer
to as Dysonian perturbation theory for short. While Dyson’s derivation remains influen-
tial today, a dilligent student of QFT will note that contemporary textbooks often take
a different route to the series expansion of the S-matrix, starting from the path integral
expression for the partition function and proceeding via the LSZ reduction formula. Dur-
ing our period of interest, however, Dyson’s papers provided the canonical formulation of
renormalized perturbative QED and represent the foil against which causal perturbation
theory developed. Accordingly, this section will highlight the status of causality properties
in Dyson’s approach, preparing the way for our investigation of the alternative causality
condition based derivation of the expansion developed by Stueckelberg and Bogoliubov
in sections 4-6. How the path integral derivation of renormalized perturbation theory
plays into to the historical and conceptual issues examined in this paper is left as an open
question for future research.3

Dyson’s derivation of a series expansion for the S-matrix starts from the Schwinger-
Tomonaga equation—one answer to the worries about manifest covariance discussed in
section 2. A key innovation here was the so-called interaction picture. In this represen-
tation of the time-evolution, the Hamiltonian of a field theory is split into a free and
interacting part, H = H0 +HI ; roughly speaking, H0 is taken to describe the asymptotic
(presumed free particle) in and out states, whileHI is taken to describe the dynamics of the

3Here are a few preliminary comments about the path integral derivation of the perturbative expansion.
The basic form of this derivation can, in fact, be found in the appendix of Lehmann et al. (1955), so
this derivation also goes back to the 1950s. Note, however, that in contrast to the causal perturbation
theory derivation, the LSZ derivation was not conceived of as an improvement on Dysonian perturbation
theory; rather the point was to demonstrate that perturbative QFT could be recovered within their non-
perturbative formulation of QFT. The path integral formulation of perturbation theory seems only to
have become more widely known with the rise of non-abelian gauge theories and the motivation for its
adoption in this context was arguably calculational convenience rather than foundational.
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scattering process. It is thus only HI that appears in the interaction-picture Schrodinger
equation

id/dt|ψ(t)⟩ = HI |ψ(t)⟩, (2)

with the remaining (free) time evolution shifted into the operators. HI is a Lorentz scalar
so one issue with the non-covariance of the time-evolution equation is immediately ad-
dressed in the interaction picture. However, equation (2) still singles out of the time
coordinate and thus requires the adoption of a particular foliation of space-time. Tomon-
aga (1946) argued that in the interaction picture it was possible to write down a fully
relativistic analogue of the Schrödinger equation now known as the Schwinger-Tomonaga
equation, which treats space and time on an equal footing:

i
δψ(σ)

δσ(x)
= HI(x)ψ(σ). (3)

Here σ(x) is a space-like Cauchy surface containing the point x, and HI(x) is the inter-
action Hamiltonian density (the interaction Hamiltonian HI being equal to this density
integrated over all space).

Dyson’s derivation of the perturbative expansion proceeds via an integration of this
equation. We would like to highlight two aspects of the dynamical framework adopted
by Dyson: firstly, how a microcausality condition is incorporated into the covariant
Schwinger-Tomonaga framework, and secondly, how the iterative integration of the time-
evolution equation automatically leads to the time-ordering of operators appearing in the
perturbative expansion coefficients.

The property of microcausality can be viewed as a necessary precondition for the cogency
of the Schwinger-Tomonaga equation. One way to read (3) is as a system of local equations
describing the time evolution of the quantum state at each point x in space. Adopting a
particular foliation, we can split the point x into a spatial coordinate x and a time t; the
variational derivative then simply becomes a time derivative and the Schwinger-Tomonaga
equation describes the evolution of the quantum state at x. For this to work, however, the
time evolution at all points x needs to be independent, i.e., the Hamiltonian densities that
generate the local time evolutions need to commute with one another. While we had to
adopt a foliation to read the Schwinger-Tomonaga equation in this way, this should work
for an arbitrary choice of foliation, so the requirement becomes:

[HI(x),HI(y)] = 0, if (x− y)2 < 0. (4)

This is a special case of what is nowadays commonly called the microcausality condition:
the requirement that operators associated with space-like separated regions commute. As
Pauli, who first introduced this property in his original proof of the spin-statistics theorem,
wrote:
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The justification for our postulate lies in the fact that measurements at two
space points with space-like distance can never disturb each other, since no
signals can be transmitted with velocities greater than that of light. (Pauli
1940, 721)

In other words, the “non-causal” behaviour that the microcausality condition is designed
to rule out is superluminal influence. This is the first of two causality notions we will
distinguish in this section.

Following the above line of reasoning, Tomonaga (1946) takes microcausality to be a
necessary condition for the integrability of the Schwinger-Tomonaga equation. Further-
more, Dyson (1949b) appeals to the microcausality of the interaction Hamiltonian density
explicitly in order to transition from the functional equation (3) to an ordinary differen-
tial evolution equation describing infinitesimal transitions between preselected space-like
Cauchy surfaces. It is this foliated equation which Dyson actually integrates to obtain
the series expansion of the S-matrix. Indeed, in later years it was viewed as superfluous
to start from the covariant Schwinger-Tomonaga equation at all: one obtains exactly the
same expression for the S-Matrix by adopting a particular foliation and starting from an
interaction picture Schrodinger equation. Bjorken and Drell (1964) remark when present-
ing the Dysonian derivation of the perturbation series that the time evolution “may be
covariantly defined on a general space-like surface instead of at constant t, but to no great
advantage” and later textbook presentation followed their lead on this point. Maintaining
covariance in particular contexts, such as the treatment of longitudinal and transverse
components of the electromagnetic field, did prove to be crucial for the renormalization
of QED perturbation theory, but Oppenheimer’s statement about maintaining covariance
“at all stages” in order to cure the ultraviolet divergences problem quoted above, while an
accurate representation of the community sentiment in the 1940s, arguably turned out to
be overblown. We will return to the foundational significance of the Schwinger-Tomonaga
equation below, but its role in the empirical success of Dysonian perturbation theory was,
at best, extremely thin.

Putting aside the issue of covariance for the moment, the more practical motivation for the
interaction picture was its role in setting up a series expansion for the S-matrix in powers
of HI . Adopting a one-parameter family of space-like Cauchy surfaces, Dyson (1949b)
equates the interaction picture time evolution operator with an iterative integration of the
Schwinger-Tomonaga equation:

U(tf , ti) =

(
1− i

∫ tf

τ1

HI(τ)dτ

)(
1− i

∫ τ1

τ2

HI(τ)dτ

)
· · · , (5)

where τ1, τ2, ... are the time labels of the intermediate surfaces linking the final surface tf
to an initial surface ti. Performing such a multiplication is easy when the Hamiltonian is
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time-independent, as in the Schrodinger picture. One can simply take the Hamiltonian H
out of the integrals and combine them into a single integral over the entire interval:

U(tf , ti) = exp

{
−iH

∫ tf

ti

dτ

}
= e−iH(tf−ti). (6)

If, however, the Hamiltonian is time-dependent, as HI always is in the interaction picture,
one must take care to preserve the order of the operators when combining the integrals.
What we end up with instead, therefore, is a “time-ordered exponential” series, commonly
known as the Dyson series:

U(tf , ti) = Tθ

(
exp

{
−i

∫ tf

ti

HI(τ)dτ

})
=

∞∑
n=0

(−i)n

n!

∫ tf

ti

dt1...

∫ tf

ti

dtnTθ[HI(t1)...HI(tn)].

(7)
Here Tθ[...], is a compact notation for the expression:

Tθ[HI(t1)...HI(tn)] =
∑
p∈Pn

HI(tp1)HI(tp2)...HI(tpn)θ(tp1−tp2)θ(tp2−tp3)...θ(tpn−1−tpn) (8)

where the sum is over all permutations p of n variables, and θ is the Heaviside step
function.

These heaviside functions originate in the integration boundaries in equation (5). Jointly
they ensure that operators which take earlier time arguments will always be to the right of
those which take later time arguments, thus Tθ[...] is referred to as the time-ordered prod-
uct (more on the unconventional θ subscript shortly). This time-ordering of operators in
the expansion coefficients was interpreted by the architects of the causal perturbation the-
ory program as a manifestation of another causality property, distinct from microcausality.
Stueckelberg’s original intuition (discussed in detail in section 4) was that a Hamiltonian
operator associated with an earlier time must act on the quantum state first on pains of
introducing causal connections from the future to the past into one’s theory. Whereas the
microcausality condition rules out superluminal influence (and thus concerns the behaviour
of physical quantities outside of the lightcone), the causality condition which Stueckelberg
and Bogoliubov saught was designed to rule out retrocausality (and thus concerns their
behaviour inside the lightcone). Crucially, while in Dysonian perturbation theory the
time-ordering of the expansion coefficients is a derived property, following automatically
from the integration of the evolution equation, the basic idea behind causal perturbation
theory was to start from this causal ordering property and use it to derive the perturba-
tive expansion. This alternative derivation of perturbative QFT ultimately leads to an
alternative definition of the time-ordered product which is not implemented via Heaviside
functions; we have thus introduced a θ subscript to Tθ[...] above to distinguish it from the
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time-ordered product TB[...] (after Bogoliubov) which one finds in the mature version of
causal perturbation theory.

Using the relation,
S = U(∞,−∞), (9)

Dyson obtained an expression for Heisenberg’s S-matrix as a power series in HI . Since
HI is a product of free field operators in the interaction picture, if we assume free particle
in and out states each term in this expansion can be calculated, at least in principle.
Indeed, Dyson popularised the use of Feyman diagrams to conveniently carry out such
calculations. This improved formulation of perturbative QFT did not automatically solve
the ultraviolet divergence problem, however. Starting at second order, the integrals over
time-ordered products appearing in the series diverge. In the late 1940s, renormalization
techniques were developed to handle these divergences, which Dyson integrated into his
formalism. The basic idea behind the new renormalization procedure was to introduce a set
of so-called counterterms to the theories Hamiltonian which had the effect of subtracting
the divergent part of the series coefficients. This meant, in effect, introducing a new
set of (finite) renormalized masses and interaction couplings, with the original (infinite)
“bare” masses and couplings being cancelled by the (also infinite) counterterms. Once
this procedure was carried out, truncations of Dyson’s expansion for the QED S-matrix
yielded stupendously accurate empirical predictions.

Despite this breakthrough, as we move into the 1950s the community assessment of Dyso-
nian perturbation theory became increasingly negative. One reason for this rapid change
of fortune was empirical: the startling new phenomena being produced in particle accelera-
tors in the 1950s did not seem to be co-operating with the assumptions of the perturbative
approximation scheme. Attempts to model nuclear interactions along the lines of perturba-
tive QED quickly stalled, and it was felt that taming the strong interaction would require
a radically different calculational approach than perturbation theory, predicated as it is
on the weak strength of the interaction. More significantly for our story, the 1950s saw
a new round of theoretical wrangling over the consistency of QFT.4 Had Dysonian per-
turbation theory really resolved the challenges associated with the unification of quantum
theory and special relativity? As the reception of the new formalism progressed the more
foundationally orientated wing of the community came to feel that the problems facing
Heisenberg-Pauli QED had been transmutted rather than conclusively solved by the new
formalism.

The invention of perturbative renormalization did not put a stop to worries about the

4See Blum (2023) for a systematic discussion of the broader debate about the consistency of QED and
QFT in the 1950s and 1960s. Here we only touch on a few aspects these developments which are relevant
for the development of causal perturbation theory.
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ultraviolet behaviour of QFT; if anything they intensified in the 1950s. One issue was the
dubious mathematical rigour of the renormalization procedure. In Dyson’s derivation of
the expansion one had to write down and manipulate divergent integrals before replacing
them with finite expressions. This had an ad hoc character, but also seemed to hinge
on the manipulation of ill-defined quantities. The unrenormalized “bare” parameters, in
particular, were identified with series containing divergent coefficients. It was thus unclear
whether perturbative renormalization had really done anything to address the ultraviolet
problem, or simply swept it under the rug (in a mathematically illegitimate way). The
appearance of new, non-perturbative, arguments for the break down of QED on very short
length scales—most famously the Landau pole problem (Landau et al. 1956)—seemed to
favour the later interpretation.

These concerns about the ultraviolet break down of QFT also challenged the cogency of
Dyson’s derivation, since positing a differential evolution equation necessitated multiplying
field operators at the same space-time point. While the Schwinger-Tomonaga equation
pointed to the possibility of a fully covariant Hamiltonian dynamics for QFT, it was
unclear whether Dyson’s formalism delivered on this promise. Dyson himself had initially
been optimistic that the perturbative expansion might be used to establish the existence
of solutions of the field equations.5 He ended up being amongst the first to conclude that,
even after each term had been rendered finite via renormalization, the expansion as a whole
did not converge (Dyson 1952): it turned out that renormalized QED perturbation theory
was at best an asymptotic expansion, leaving the question of existence of solutions of
the Schwinger-Tomonaga equation open. The continuing ultraviolet problems with QED
suggested a negative answer. Furthermore, as we shall discuss further in section 5, Haag’s
theorem and the issue of boundary divergences suggested that the interaction picture
evolution operator U(tf , ti) did not in fact exist. While Dyson had undoubtedly provided
an efficient algorithm for calculating the asymptotic S-matrix in the tf → ∞, ti → −∞
limit, there was reason to question the coherence of his assumptions about finite time
dynamics.

This all led to the return of Heisenberg’s original project of seeking a formulation of the dy-
namics of relativistic quantum theories which is not based on a differential evolution equa-
tion; and this is where causality enters the picture. We have seen that causality properties
naturally arise within Dyson’s derivation of the perturbative expansion—microcausality,
as a kind of necessary condition for making the switch to a fully covariant Schwinger-
Tomonaga equation, and time-ordering of operators as a derived property which follows
automatically from the formal integration of the differential evolution equation. The key
idea of causal perturbation theory is that it is possible to derive the perturbative expan-

5See Blum (2023) chapter 2 for a detailed discussion of Dyson’s thinking during this period.
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sion of the S-matrix by starting from a time-ordering causality property. As we shall see,
this alternative derivation would eventual lead to both a solution of some of Dysonian
perturbation theories foundational problems and a clarification of its limitations.

4 Stueckelberg’s Causality Condition

To tell the full story of the origins of causal perturbation theory we need to backtrack a
little, as this alternative derivation of the perturbative expansion for the S-matrix origi-
nates in work by Ernst Stueckelberg which in fact preceeds that of Feynman, Schwinger,
Tomonaga and Dyson. While Bogoliubov would eventually repackage the causal approach
as a rigorous reconstruction of Dysonian perturbation theory, Stueckelberg conceived it as
a novel solution to the problems facing relativistic quantum theory in the 1940s. Indeed,
Stueckelberg explicitly styled his approach as a development of Heisenberg’s S-matrix
program.6 He added two new elements to Heisenberg’s original picture, however: firstly,
he focused on the construction of a perturbative approximation (which Heisenberg had
hoped to move beyond) and secondly, he introduced a causality condition as a further
non-redundant constraint on the S-matrix. Stueckelberg’s key insight in the early 1940s
was that one could construct a unitary, Lorentz-invariant S-matrix that would be, in some
presumed problematic sense, retrocausal. As we will see, the formulation of an appropriate
causality condition evolved as the causal perturbation theory approach progressed, but let
us start with Stueckelberg’s original intuition.

In Heisenberg’s scheme, the unitarity and Lorentz invariance of the S-matrix was ensured
by writing it as the complex exponential of some hermitian Lorentz scalar η. An obvious
ansatz suggested by Heisenberg is to identify η with the time integral of the interaction
Hamiltonian

∫
dtHI(t). This is a hermitian Lorentz scalar and thus fulfils all of Heisen-

berg’s criteria. However, when expanding this S-Matrix perturbatively to second order,
one obtains:

eiη ≈ 1− iη − 1

2
η2 = 1−

∫ ∞

−∞
dtHI(t)−

1

2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′HI(t)HI(t

′) (10)

The second-order term can be split in two, one term for t > t′, another for t < t′, i.e.:∫ ∞

−∞
dt

∫ ∞

−∞
dt′HI(t)HI(t

′) =

∫ ∞

−∞
dt

∫ t

−∞
dt′HI(t)HI(t

′)+

∫ ∞

−∞
dt

∫ t

−∞
dt′HI(t

′)HI(t) (11)

We thus get a term where the operator that corresponds to the later time acts first on the
initial state. Expressing HI in terms of creation and annihilation operators, this would

6A more detailed presentation of Stueckelberg’s early work on the causal perturbation theory approach,
and its relationship to Heisenberg’s S-matrix program, can be found in Blum (2017).
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correspond to the creation of a particle at a later time t and its annihilation at an earlier
time t′. It was this circumstance that Stueckelberg identified as a violation of causality
(Stueckelberg 1944). One might justifiably interject at this point that this analysis rests
on a questionable reading of the physical content of the perturbation series. After all, we
are talking about the time ordering of virtual events (if that term is even appropriate) in
a single term of an expansion which really need not (and perhaps cannot) be interpreted
separately from the series to which it belongs.

Putting aside the question of motivation for the moment, the central problem for Stueck-
elberg became how to systematically identify and eliminate these putatively problematic
acausal contributions to the perturbation series. After some searching, Stueckelberg gave
a first formulation of the causality condition in a short note in the Physical Review (Rivier
and Stuecklberg 1948). When written explicitly as a volume integral over some product
of field operators, all the terms in the perturbation expansion will contain some field op-
erators that annihilate the particles in the initial state or create the particles in the final
state with all other field operators being pairwise contracted, giving singular two-point
functions—the propagators. Stueckelberg’s causality condition amounted to the demand
that all singular two-point functions that actually appear in the perturbation expansion
of the S-matrix take the form of the “causal propagator” (also known as the “Feynman
propagator”) commonly written:

Dc(x, y) =
i

16π3

∫
d3k

ω(k)
e−ik(x−y)[θ(x0 − y0)e

iω(k)(x0−y0) + θ(y0 − x0)e
−iω(k)(y0−x0)] (12)

Here ω(k) is the positive energy
√
m2 + k2 belonging to the momentum vector k and θ is

the Heaviside function. Dc was read, by Stueckelberg, as describing the emission of plane
waves of positive energy moving forwards in time and plane waves of negative energy
moving backwards in time.

Given an interaction potential as an input, it turns out that this requirement fixes the form
of the integrands that appear in the series coefficients and it was quickly shown that what
one gets agrees with the first few terms of the Dyson series (Stueckelberg and Green 1951).
On the face of it then, Stueckelberg’s causal derivation of the perturbative expansion of the
S-matrix was successful, and could, in principle, have provided an alternative basis for the
development of renormalized QED in the post-war period. It was, however, largely ignored.
The most important reason for this was likely bad timing; by the time Stueckelberg was
capable of delivering concrete calculations, the famous second-order QED calculations of
Schwinger and Feynman were widely known, and Dysonian perturbation theory had stolen
his thunder. Stueckelberg’s idiosyncratic notation and difficult-to-follow prose did not help
matters.
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Even putting these contingencies aside, however, it is fair to say that Stueckelberg’s for-
malism had its fair share of deficiencies at this point. From a calculational perspective,
his formalism compared unfavourably to the compact, user-friendly, Feynman rules. The
conceptual foundations of this earliest version of causal perturbation theory were also
rather murky. His causality condition was more of a recipe than a precise mathematical
statement and, as we flagged above, its motivation hung on a dubious interpretation of the
virtual processes represented by integrands appearing in the series coefficients. Further-
more, Stueckelberg’s non-standard take on the problem of ultraviolet divergences, which
we will discuss further in section 7, was not, at this early stage, well worked out.

If this had been the end of causal perturbation theory, it would rightfully have remained
a curious footnote in the history of QFT. As it happened, however, the program did not
peter out at this point but entered a new phase of development. In this second stage, the
causal approach would be self-consciously styled as a way around some of the lingering
problems with Dysonian perturbation theory, ultimately being conceived by Bogoluibov as
a foundationally motivated reconstruction project rather than a novel theory. Bogoluibov
introduced a clearer and better-motivated causality condition and worked out its conse-
quences more systematically. Before we get to Bogoliubov’s causality condition, however,
we will first take a detour via another Stueckelbergian idea which turned out to have a
crucial influence on its development: the appearance of another class of divergent integrals
in the perturbative coefficients for finite (non-asymptotic) times.

5 Boundary Divergences

In September 1949, Stueckelberg attended the International Congress on Nuclear Physics
and Quantum Electrodynamics, where Dyson first presented his formulation of pertur-
bative QED to a European audience. From this point on the nature of Stueckelberg’s
rhetoric changes. Now that the basic goal of constructing predictively powerful pertur-
bative approximations of scattering amplitudes had been achieved, he started to defend
the superiority of his own framework along more foundational lines. Contrasting his own
S-matrix first “integral” method with Dyson’s differential approach, he asserted:

The procedure of the integral method differs essentially from the differential
method employed by Tomonaga, Schwinger, Feynman and Dyson in that the
two sorts of diverging terms occurring in the formal solution of a Schrödinger
equation are avoided. These two divergences are: 1) the well-known “self-
energy” divergencies [sic] which have been since corrected by methods of regu-
larization (Rivier, Pauli and Villars);7 2) the more serious boundary divergen-

7On the connection between the work of Stueckelberg’s student Dominique Rivier and the more well-
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cies (Stueckelberg) due to the sharp spatio-temporal of the space-time region
of evolution V in which the collisions occur. (Stueckelberg and Green 1951,
153)

The first type of divergence Stueckelberg gestures at here are the familiar ultraviolet
divergences—we discuss how he proposed to address these within the causal perturbation
theory approach in section 7. The second type of divergence, however, is likely unfamiliar
even to QFT aficionados. We will discuss these “boundary divergences” in some detail
here as in addition to posing yet another largely forgotten foundational problem with
perturbative QFT, their analysis actually led (in a rather convoluted way) to Bogoluibov’s
improved causality condition.

Stueckelberg announces his discovery of these new divergences in a paper submitted to
the Physical Review in the summer of 1950 (Stueckelberg 1951).8 In Dyson’s derivation,
as we saw, the S-Matrix appeared as the infinite-time limit of the interaction picture time
evolution operator U(tf , ti), which was taken to describe the dynamical evolution linking
the asymptotic scattering states. Stueckelberg had, in his earlier work, also toyed with the
idea that his causal approach might also be applied to finite-time evolution by limiting time
integrations to the region between an initial time ti and a final time tf . But no one, until
now, had explicitly calculated such a finite-time evolution operator within perturbation
theory. In his paper, Stueckelberg now argued that if one actually used Dyson’s time
evolution operator to “evaluate transition probabilities for processes which are localized
in space-time by a sharply defined boundary (for example two time-like surfaces specifying
an initial and final observation), one obtains divergent results.” The paper is short and
elliptical, but we will attempt, to reconstruct how Stueckelberg most likely arrived at this
conclusion.

Stueckelberg approached the description of finite-time scattering in the following way.
In the absence of interactions, the interaction representation wave function is constant.
One could thus also obtain the finite-time evolution operator U(tf , ti) by calculating the
S-Matrix of a modified theory in which the interaction is “switched on” at time ti and
“switched off” at time tf , i.e., where the interaction Hamiltonian is multiplied by a box
function g(t), which is equal to 1 when tf > t > ti and zero otherwise. One could then take
over a usual expression for the asymptotic S-Matrix (be it causal or Dysonian) and simply
modify the form of the interaction term in order to describe finite-time dynamics.

Following this approach, Stueckelberg calculated the S-Matrix element for the propagation

known Pauli-Villars regularization method, cf. Schweber, QED.
8It seems plausible that Stueckelberg chose to publish this paper in the Physical Review – rather than

in his usual journal, the Helvetica Physica Acta – because he conceived it as a direct response to Dyson’s
formulation of perturbative QFT.
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of a single electron interacting with the electromagnetic field to second order in pertur-
bation theory, with the QED interaction Hamiltonian being multiplied by the switching
function g(t):

⟨kf |S(g)|ki⟩ = δ(3)(kf − ki) +

∫
dx

∫
dyg(x0)g(y0)e

−ikfyu(kf )Σ(x− y)u(ki)e
ikix, (13)

where ki and kf are the initial and final four-momentum of the electron, respectively, ki

and kf the initial and final three-momentum, and u are the corresponding wave functions
(all spin indices have been suppressed and the normalization conventions of Weinberg
(1995) have been adopted). Σ(x − y) is the self-energy of the electron at second order
in perturbation theory, resulting from the emission and re-absorption of a virtual pho-
ton.

Transitioning to momentum space and introducing the Fourier transform of the switching
function, g̃(ω), this becomes

⟨kf |S[g]|ki⟩ = δ(3)(kf − ki)

[
1 +

∫
dωu(kf )Σ(ω,ki)u(ki)g̃(ωf − ω)g̃(ω − ωi)

]
. (14)

Now, in standard calculations of the asymptotic S-matrix, one sets g(t) = 1, and thus
g̃(ω) = δ(ω), effectively imposing the on-shell condition, so that the self-energy contribu-
tion exactly cancels with the mass counterterm and the probability of an electron con-
tinuing with final momentum kf = ki is simply 1. The introduction of a time-dependent
switching function, however, leads to an integral over off-shell momenta. After a change
of integration variables, one finds that the integral in equation (14) will converge only if
the following expression converges:∫

dωΣ(ω + ωi,ki)|g̃(ω)|2. (15)

For the simple, instantaneous switching on and off of the interaction at times ti and tf
respectively, where g(x) is a box function, one has

|g̃(ω)|2 =
4 sin2 [ω

(tf−ti)

2
]

ω2
. (16)

Therefore, to obtain a convergent expression one would need Σ(ω,ki) to approach a con-
stant value as ω → ∞ (while ki remains fixed). Within perturbation theory, however, it
grows linearly with ω leading to a divergent expression for the matrix element.9

9If one takes the renormalized expression for Σ at second order in perturbation theory from, e.g.,
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What is to be made of this result? From a conceptual, and indeed purely formal, point of
view this issue remains undertheorized to this day. Scattered references to Stueckelberg’s
boundary divergences do exist in later literature, but attitudes concerning the seriousness
of the problem and how it should be resolved are quite varied.10 There is a potential con-
nection with Haag’s theorem here. Haag (1955) put forward a non-perturbative argument
for the impossibility of relating the states of a free and interacting QFT via a unitary trans-
formation, indicating that Dyson’s U(tf , ti) interaction picture operator could not in fact
exist;11 Stueckelberg’s boundary divergences likewise indicated a problem with U(tf , ti),
or at least its perturbative expansion. Note, however, that while Haag’s theorem is often
connected to infrared perturbative divergences, these boundary effects, in fact, lead to
momentum space integrals which blow up in the region of arbitrarily large momentum—
they are thus ultraviolet divergences, of a novel sort. Crucially, though, the conventional
renormalization procedure which cures the usual ultraviolet divergences does nothing to
alleviate these new infinities. Bogoluibov would later point out that even in the presence
of a Pauli-Villars regulator divergences occur if one sharply switches on and off an inter-
action in some finite space-time region (Bogoliubov and Shirkov 1959).12 Whatever the
exact connection to Haag’s theorem may be, the conclusion that Stueckelberg drew from
the boundary divergences was that Dyson’s U(tf , ti) operator was ill-defined and thus his
derivation of the perturbative expansion starting from the interaction picture evolution
equation was mathematically faulty.

Stueckelberg thus used the boundary divergences as a new argument for the superiority of
his causality condition-based derivation of the perturbative expansion (Stueckelberg and
Green 1951). The new divergences could only be eliminated, he argued, by switching the

Weinberg (2002) Eq. 11.4.14, and takes the limit of large ω (with k fixed), one gets,

Σ(ω) = −2iπe2

(2π)4
ωγ0

∫ 1

0

dx

{
(1− x) ln

(
m2

e

ω2x

)
−

[
(1− x) ln

(
1− x

x2

)
− 2(1− x2)

x

]}
, (17)

which, when plugged into equation (14) yields a non-convergent integral.
10See, for instance, Fredenhagen and Lindner (2014) and Baacke et al. (2001).
11As it happens, Bogoluibov (1951) contains statements which seem to anticipate Haag’s theorem,

though it is unclear how Bogoliubov reached these conclusions.
12There is a puzzling discrepancy between Bogoliubov’s and Stueckelberg’s discussions of boundary

divergences. The Bogoluibov school refer only to the existence of boundary divergences in the self-energy
of a boson (Sukhanov 1963), while the Stueckelberg (1951) calculation, reconstructed above, concerns
the electron self-energy. Furthermore, neither Bogoliubov and Shirkov or Sukhanov explicitly derive
integrals containing boundary divergences, instead employing rather indirect arguments to the effect
that divergences must occur in the limit where the switching on (and off) of the interaction becomes
instantaneous. We have thus not been able to pinpoint the origin of this discrepancy, which in any case
did not seem to have impacted the conclusions that Stueckelberg and Bogoliubov each drew from the
existence of the boundary divergences.
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interaction on with a smooth rather than discontinuous function; this has the effect of sup-
pressing the high-frequency components in g̃ leading to the convergence of the integral in
equation (14). Finite time evolution was thus to be represented in the following way. One
must first envision an initial state vector as depending not on a sharp time, but on a thin
“time-like layer”, represented by a smoothed out Heaviside function Fi(t). Evolution to a
later smoothed “layer”, Ff (t) could then be described by the generalized S-matrix:

ψ(Ff ) = S(Fi − Ff )ψ(Fi), (18)

g(t) = Fi(t)−Ff (t) is now a smoothed-out box function (see figure 1) and the generalised
S-matrix S(g) is free from boundary divergences. Stueckelberg claimed that this new
S-matrix could not be related back to a differential description of the time evolution;
recovering a differential description would require taking the limit of g(t) tending to a
discontinuous function, spelling the return of boundary divergences. Stueckelberg thus
contrasted a differential formulation of the dynamics of relativistic quantum theories with
his own integral approach.

As before, Stueckelberg’s latest offering received little attention in the West. It did find one
receptive reader in the Soviet Union, however. In the late 1940s, Nicolay Bogoliubov was
reading the latest Physical Review papers on renormalized QED with the mathematical-
physics group at the Steklov Institute of Mathematics in Moscow (Medvedev 1994). In-
deed, Bogoliubov’s group appears to have been the first to engage with this subject in
the Soviet Union (Kirzhnits 1994). Among the papers read was Stueckelberg’s (1951) pa-
per on boundary divergences, and he took it more seriously than most. It was Bogoliubov
who would take causal perturbation theory to its next stage of development, formulating a
precise causality condition and rebranding the program as a mathematical reconstruction
project, as we shall see in the next section.
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6 Bogoliubov’s Causality Condition

In the fall of 1951, Bogoliubov (1952a,b,c) published a series of three short papers with
the Russian Academy of Sciences which represent his first stab at the question of how
the dynamics of a relativistic quantum theory ought to be formulated.13 He embraced
Stueckelberg’s claim that, due to the boundary divergences, a smooth switching function
would have to be built into the theory. Initially, he was somewhat critical of Stueckelberg’s
specific proposals about how this ought to be done, however.

First of all, he pointed out a puzzle with Stueckelberg’s ‘integral’ representation of finite
time evolution—equation (18). Suppose that we decompose the finite time evolution
between the smoothed layers Fi and Ff into two parts; an initial period between Fi and
some intermediate layer F , and a remaining period between F and Ff . Bogoliubov pointed
out that applying Stueckelberg’s prescription for generating a generalised S-matrix to the
whole evolution and to the two sub-periods yielded different answers—that is S(F −
Ff )S(Fi − F ) ̸= S(Fi − Ff ), due to the overlap between the smoothed box functions (see
figure 2). Stueckelberg’s brief discussion had thus left crucial questions about how his S(g)
matrices could be decomposed into products unanswered. Bogoliubov would ultimately
realize that the factorization properties of the generalized S-matrix are intimately related
to time-ordering causality, as we shall see.

Bogoliubov also questioned the claim that the adoption of a smooth switching function
necessitated abandoning a differential evolution equation; indeed, his primary goal in this
early trilogy of papers was to develop a generalization of the Schwinger-Tomonaga equation
which incorporated the switching function. In order to achieve this Bogoliubov argued
that, given certain assumptions, one could construct an analogue of the Hamiltonian
corresponding to an S(g) evolution operator. Now, as we saw in section 3, the functional
dependence of the time-evolution operator and Hamiltonian is very complicated in the
interaction picture. If the Hamiltonian were time independent, however, one could simply
rearrange the relation U = e−iHt to obtain:

H = i
∂U

∂t
U †. (19)

Bogoliubov (1952b) argued that this prescription actually worked more generally for time-
dependent Hamiltonians, at least in the context of perturbation theory; if one inserts the
Dyson series for U(tf , ti) into the above equation, one gets the correct time-dependent
interaction picture Hamiltonian due to the cancellation of higher-order terms in this ex-

13Translations of all three papers can be found in (Bogolubov Jr. 1995). We would like to thank Kseniia
Mohelsky for providing translations of all other Russian-language sources used in this paper.
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pansion.14

He therefore proposed defining a generalized Hamiltonian density H(x, g) corresponding
to the evolution operator S(g) (with the switching function g(x) now understood as a
function of space as well as time) as follows:

H(x, g) = i
δS(g)

δg(x)
S†(g). (20)

One could then conceive of a functional differential equation which describes the variation
of the state under variations of the switching function g(x):

i
δψ(g)

δg(x)
= H(x, g)ψ(g). (21)

Taking g(x) to be Heaviside functions centred on space-like hypersurfaces takes us back
to the usual Schwinger-Tomonaga equation. This would be accompanied by boundary
divergences, however, indicating that an evolution equation linking infinitely thin surfaces
is not well-defined.15 Nevertheless, in these early papers Bogoliubov seemed to suggest that
one could still view the generalized functional equation (21), describing the advancement of
smoothed ‘layers’ rather than Cauchy surfaces, as the core statement of a QFTs dynamics,
contra Stueckelberg.

By the time Bogoliubov wrote on QFT again in 1955, however, his perspective had changed
(Bogoliubov 1955). In the interim, he had delved deeper into Stueckelberg’s early work
and now explicitly advocated the priority of a causality condition over a Hamiltonian
evolution equation, though for his own distinctive reasons.16 He writes:

[I]t is desirable to have a representation of quantum field theory that would
allow us to see the basic physical assumptions on which it is built in its modern
form, in order to be able to understand in which directions it is acceptable
to generalize them. In the usual representation of the quantum field theory,
based on the Hamiltonian formalism, those assumptions do not receive the
proper attention. In our opinion, it is much more useful to proceed from

14Bogoliubov (1952b) claims that this cancellation of higher-order terms holds if one assumes a micro-
causality property, representing the first appearance of causality considerations in his work on QFT.

15Since boundary divergences had only been shown to appear in the perturbative expansion coefficients
one could question whether this problem also occurred in a non-perturbative formulation. Bogoliubov,
in any case, consistently took the boundary divergences to problematize the conventional Schwinger-
Tomonaga equation; see discussions in Bogoliubov and Shirkov (1959) chapter 6.

16It is likely that when Bogoliubov wrote his trilogy of papers on the dynamical equations of QFT he had
only read Stueckelberg (1951), and was therefore unaware of Stueckelberg’s broader causal perturbation
theory project, which is not described in that short paper.
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the scheme suggested by Stueckelberg [. . . ], where he introduces a generalized
S-matrix without referring to the Hamiltonian formalism. The role of the
Hamiltonian formalism in specifying the form of the S-matrix is taken by clearly
formulated physical conditions, among which a causality condition is the basic
one. (Bogoliubov 1955, pp. 237)

Notice that, unlike Stueckelberg, Bogoliubov does not claim that a Hamiltonian descrip-
tion of the dynamics is impossible. Rather, his mature view is that causality is more
fundamental; while it may be possible to obtain an evolution equation like (21) this has a
derived status, since in Bogoliubov’s new causal perturbation theory formalism the S(g)
operator is constructed first using only his causality condition. Where Stueckelberg had
conceived of causal perturbation theory as a rival formalism, Bogoliubov now presented his
version of causal perturbation theory as a more conceptually and mathematically rigorous
reconstruction of Dysonian perturbation theory.

It is instructive to compare Bogoliubov’s incarnation of the causal perturbation theory
program with the axiomatic QFT program pursued by figures like Arthur Wightman and
Rudolf Haag in the same period. By the mid-1950s any initial optimism generated by
the empirical success of renormalized QED had largely evaporated and worries about the
consistency of QFT once again loomed large. In this context, a number of theorists ad-
vocated a clean-up operation, in which a higher standard of mathematical rigour would
be brought to bear and the theory’s basic assumptions would be made explicit. We can
see Bogoliubov, Wightman and Haag as key figures in this broad trend. Furthermore,
Bogoliubov’s project was also ‘axiomatic’ in the sense that it aimed to identify a fun-
damental set of principles underlying an area of physics, and both causal perturbation
theory and axiomatic QFT would both give pride of place to a causality condition in their
reformulation efforts.

There was a crucial difference regarding their attitude to Dysonian perturbation theory,
however. The axiomatizations of QFT developed by Wightman and Haag were explicitly
non-perturbative in character, eschewing all appeals to a perturbative expansion. As we
mentioned at the end of section 3, there were strong empirical and foundational moti-
vations for trying to move beyond perturbation theory in the 1950s and 1960s, so this
approach was not unreasonable. Bogoliubov’s methodological stance was quite different
on this point, however. He opted to start from the conventional perturbative formalism,
which he claimed “best corresponds to the actual modern state of field theory, where up
to the present various formal expansions in powers of the smallness of the interaction can-
not be removed and where all fundamental results were obtained with the help of these
expansions” (Bogoliubov 1955, pp. 237). To use a political analogy, Wightman and Haag
were more revolutionary in their attempts to develop a new non-perturbative language
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for relativistic quantum theory, whereas Bogoliubov played the role of a reformer, incre-
mentally improving the rigour of the tried and tested perturbative approximation scheme.
This meant that the goals of Bogoliubov’s causal perturbation theory were more modest
—causal perturbation theory could not resolve the non-perturbative foundational issues
that were coming to the fore in the 1950s, for instance (we return to this theme in section
8).

This difference in orientation towards perturbation theory had important implications for
the formalizations of relativistic causality which these programs adopted. Following LSZ,
Wightman adopted microcausality into his system of axioms, requiring that space-like
separated field operators commutators to vanish, and this was eventually incorporated
into the later algebraic axiomatizations of QFT. As Stueckelberg had urged, however, it
was really the time-ordering property of the S-matrix which mattered in the perturbative
context. While Bogoliubov embraced the idea of using causality to construct the S-Matrix,
he found Stueckelberg’s attempts to formulate a causality condition for that purpose to
not be “sufficiently clear and general”, explaining why his “ideas did not receive wide
recognition” (Bogoliubov 1955, 237). As we saw in section 4, Stueckelberg’s condition was
rather vague mathematically and never led to a systematic account of the structure of
the expansion to all orders. One of Bogoliubov’s key contributions, therefore, was to put
forward a new formulation of the causality condition which could be imposed directly on
the S-matrix.

In order to formulate his causality condition, Bogoliubov repurposed the smooth switching
functions he had worked with in his earlier papers. Though originally introduced to tame
the boundary divergences, these functions now took on a life of their own, providing a
language for describing dependencies between localized events within a pure S-matrix
formalism. This required some further generalizations of Stueckelberg’s ideas. Rather
than restricting oneself to smoothed box functions in the time variable, as Stueckelberg
had done, Bogoliubov worked with arbitrary smooth functions of space-time, g(x), taking
values between 0 and 1; one could understand these functions as smoothly turning the
interaction on-and-off in different regions of space-time.

Bogoliubov, in fact, put forward two versions of his new causality condition: a differen-
tial and integral form. The differential form seems to have come first historically, likely
evolving from his earlier ideas about generalizing the Hamiltonian formalism; we briefly
sketch its motivation here. Consider how making an infinitesimal change to the switching
function at a point x will affect the outgoing state that results from the S(g) operator.
In order to enforce time-ordering causality, and rule out retrocausal influence, Bogoliubov
reasoned that the infinitesimal change in the wave function caused by an infinitesimal
change in the switching function at point x should be independent of the shape of the
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switching function at points earlier than x. One can imagine the change in the switching
function as a ripple that propagates forward in time to affect the final-state wave func-
tion, its propagation being affected by the future shape of the switching function, but
not by its past. Mathematically, Bogoliubov expressed this requirement in the following
form:17

δ

δg(y)

(
δS(g)

δg(x)
S(g)†

)
= 0, x ≳ y (22)

where the ≲ symbol indicates that the point y at which a variation in the switching
function is being made is either in the past with respect to x or is space-like separated
(i.e. it is not in the future light cone of x).

In his textbook with his student Dimitri Shirkov, Bogoliubov introduced an equivalent in-
tegral version of his causality condition which we shall use to sketch the causal derivation
of the series expansion (Bogoliubov and Shirkov 1959). In our view, this version of the
causality condition has a more intuitive physical interpretation and more directly connects
to the perturbative time-ordering property discussed in section 3. It is also this version
of the causality condition which has been adopted in contemporary mathematical physics
developments of causal perturbation theory.18 To motivate this version of the causality
condition it is useful to return to the question Bogoliubov had originally raised about
Stueckelberg’s generalised S(g) matrix: under what conditions can we decompose such
an S-matrix into a product of operators associated with sub-sections of the full scattering
process? Essentially, Bogoluibov’s integral causality condition asserts that Stueckelberg’s
composition of two S-matrices S(g1) and S(g2) holds only when the two smoothed switch-
ing functions g1 and g2 do not have overlapping support. Suppose that g1 and g2 have
support in two non-overlapping regions G1 and G2, where none of the points in G1 are
in the future light cone of any of the points in G2, then the causality condition states
that:

S(g1 + g2) = S(g2)S(g1), G2 ≳ G1 (23)

This can be read as stating that the effect of an earlier period of scattering, in region G1,
on the outgoing states is independent of that of a later period of scattering, in G2, ruling
out retrocausal influence. By the same token, it requires that, if the S-matrix can be
decomposed into a product it takes the form of a time-ordered product, with the operator
associated with the earlier period of scattering acting on the state first.

17Notice that, using the generalized Hamiltonian which Bogoliubov had introduced in his trilogy this
condition can be written δ

δg(y)H(x, g) = 0, for y ≲ x. This supports the conjecture that Bogoliubov’s ear-

lier tampering with a generalized Schwinger-Tomonaga equation led directly to the differential formulation
of his causality condition.

18As one sees in Epstein and Glaser (1973).
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One advantage of Bogoliubov’s new causality condition (in both its differential and integral
form) is that it does not rest on a physical interpretation of individual terms in the series
expansion as Stueckelberg’s had.19 Indeed, thus far these conditions have been formulated
as fully non-perturbative properties. Bogoliubov’s other key advance over Stueckelberg’s
formalism was to demonstrate that one could derive the form of the Dyson series to all
orders from his causality condition. Since this is really the key result of causal perturbation
theory we sketch a version of this derivation here.20

With the introduction of the switching function, the general form of an expansion for the
S-matrix can be written:

S(g) =
∑
n=0

1

n!

∫
Sn(x1, ..., xn)g(x1)...g(xn)dx1...dxn, (24)

where Sn(x1, ..., xn) are required to be Lorentz scalars but are otherwise left unspecified
(S0 = 1). If we plug this expansion into either side of Bogoluibov’s integral causality
condition and rearrange the resulting terms one can obtain two equivalent series:21

S(g1 + g2) =
∞∑
n=0

∞∑
m=0

1

m!(n−m)!

∫
d4x1...d

4xnSn(x1, ..., xn)

× g2(x1)...g2(xm)g1(xm+1)...g1(xn)

S(g1)S(g2) =
∞∑
n=0

∞∑
m=0

1

m!(n−m)!

∫
d4x1...d

4xnSm(x1, ..., xm)Sn−m(xm+1, ..., xn)

× g2(x1)...g2(xm)g1(xm+1)...g1(xn).

Where the time components of {x1, ..., xm} are all later than {xm+1, ..., xn} in some refer-
ence frame. It follows that,

Sn(x1, ..., xn) = Sm(x1, ..., xm)Sn−m(xm+1, ..., xn). (25)

Using this relation we can determine higher-order terms in the series inductively from the
lower-order terms. Making the identification S1(x) = iHI(x), which amounts to a choice

19As a curious aside, Stueckelberg and Petermann (1953) try to give a non-perturbative statement of
causality; we have been unable to decipher the meaning of the complicated condition they write down,
however, and they do not try to use it to justify Stueckelberg’s perturbative causality condition.

20Our discussion here follows the modern presentation of Scharf (2014), but a similar derivation is found
in Bogoliubov and Shirkov (1959).

21The derivation given here follows the presentation of Scharf (2014). Bogoluibov proceeded by first
obtaining a differential version of his causality condition.
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of interaction term for one’s perturbative model, one obtains higher-order terms of the
form:

Sn(x1, ..., xn) = (i)nTB[HI(x1)...HI(xn)], (26)

where TB[...] indicates that the product of Hamiltonian operators is time-ordered (more on
the B subscript shortly). As in Dyson’s derivation, therefore, what one ends up with is a
series consisting of time-ordered products of the interaction Hamiltonian. If one takes the
limit g(x) → 1, returning to the usual asymptotic S-matrix operator, one indeed obtains
the standard expression for the Dyson series. Bogoliubov was thus able to demonstrate
that starting from the assumptions of Lorentz invariance, unitarity and his causality con-
dition, one could derive the usual perturbative expansion of the S-matrix without making
any use of a Hamiltonian evolution equation.

7 Causality and Renormalization

Bogoliubov’s reformulation project was not intended to furnish new predictions or more
efficient techniques for computing series coefficients; the goal was to illuminate the con-
ceptual structure of perturbative QFT. One immediate conceptual result established by
what we have seen thus far is that Dyson’s expansion for the S-matrix can be obtained
from a more minimal set of assumptions. Where time-ordering causality followed from
the integration of the Schwinger-Tomonaga equation in Dyson’s derivation, Bogoliubov
showed that one could treat this property as primitive and avoid making any appeal to
an evolution equation. This was significant because, by the mid-1950s, the status of the
Schwinger-Tomonaga equation was in question. While the boundary divergences which
concerned Stueckelberg and Bogoliubov were never widely discussed, non-perturbative
problems, such as the Landau pole, were taken more seriously, and pointed to the po-
tential non-existence of solutions of such an equation. We can see Bogoliubov’s work on
causal perturbation theory as attempting to disentangle perturbation theory from these
non-perturbative problems, allowing the internal issues with the perturbative formalism
to be addressed separately. Ultimately, this modest strategy would lead to a major vic-
tory; while these results remain surprisingly little known today, causal perturbation theory
would form the basis of a mathematically rigorous treatment of the perturbative ultraviolet
divergences problem, as we shall discuss in this section.

Recall that in Dysonian perturbation theory the ultraviolet divergences appearing in the
expansion coefficients are ‘subtracted’ via the introduction of counterterms. In order for
this to work the counterterm parameters and the original so-called ‘bare’ masses and
coupling constants have to be equated with divergent expressions. While perturbative
renormalization was certainly empirically successful it seemed to many to be both ad hoc
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and mathematically dubious. There was still a latent sense that the ultraviolet divergences
in QED perturbation theory pointed to the pathological short-distance behaviour of the
theory, an impression which was bolstered by the Landau pole problem.

From the beginning in Stueckelberg’s early work, causal perturbation theory had been
tied to a very different approach to the ultraviolet divergence problem. Staying in po-
sition space, ultraviolet divergence can be viewed as stemming from the integration of
products of propagators over short distances, or more precisely over the points at which
their space-time arguments coincide. Intuitively, since considerations of causality concern
the temporal ordering of events they tell us nothing about how quantities in one’s theory
ought to behave at these coincident points. This led Stueckelberg and Rivier (1950), in
their first systematic presentation of the causal perturbation theory approach, to state
that the causal propagator ought to be regarded as ambiguously defined at the origin.
Bogoluibov would likewise argue that his causality condition does not uniquely fix the
form of the series coefficients. Returning to the derivation of the series expansion given
in the previous section, Bogoliubov pointed out that (25) is not actually the most general
form for Sn(x1, .., xn) which satisfies his causality condition. Starting at second order,
we can add what Bogoluibov called ‘quasi-local operators’, Λn, to each term: products
of Dirac delta functions δ(x1 − x2), ..., δ(x1 − xn) and their derivatives (Bogoliubov and
Shirkov 1959, chapter 4); since these operators only modify the behaviour of Sn(x1, ..., xn)
at x1 = ... = xn there is no conflict with causality. Deriving the series expansion from
a causality condition already suggested a different interpretation of the issue with the
higher-order coefficients of expansion then; the novel feature of these terms was not so
much that they contained infinities but that they contained ambiguities.

Why then do ultraviolet divergent integrals appear in the conventional Dysonian treat-
ment? Answering this question, and developing this alternative ambiguity-based interpre-
tation of perturbative renormalization, would require the importation of new mathematical
concepts into the causal perturbation theory program. As it happened, the necessary re-
sources had just been developed in pure mathematics, with Laurent Schwartz’s influential
books on distribution theory appearing in 1950 and 1951.22 Distributions are objects
which generalize the standard notion of a function. It is possible to uniquely associate a
locally integrable function, f(x), with a functional that takes test functions, g(x), to the
numbers:

Tf : g(x) →
∫ ∞

−∞
f(x)g(x)dx; (27)

The basic idea of distribution theory is to consider a larger class of functionals that includes

22Schwartz’s work on distributions in fact ran neatly parallel with the development of renormalized
perturbation theory—see Barany et al. (2017) for a historical account. Note that Bogoliubov was likely
also drawing on the older work of Sobolev—see footnote 23.
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more singular objects, such as the Dirac delta ‘function’,

Tδ : g(x) →
∫ ∞

−∞
δ(x)g(x)dx = g(0), (28)

the archetypal example of a singular distribution. Crucially, whereas operations like dif-
ferentiation and the Fourier transform generalize to this larger set of objects, pointwise
multiplication does not. Indeed, the product of singular distributions is not generally
well-defined. Note that using g(x) to represent the test functions is deliberately sugges-
tive notation, as the switching functions would, once again, be repurposed to act as test
functions in causal perturbation theory.

When it came to relating these mathematical innovations to perturbative QFT the key
realization was that the time-ordered products appearing in the expansions coefficient are
in fact products of singular distributions and therefore stand in need of an additional
definition. Somewhat remarkably, Bogoliubov and Stueckelberg seem to have made this
connection independently.23 Bogoliubov already wrote in 1952 that the perturbative co-
efficients contained “product of singular functions” which required a “special definition”,
the absence of which being the cause of the “ultraviolet catastrophe” (Bogoliubov 1952c).
A year later, Stueckelberg, in the final and most ambitious incarnation of his version of
causal perturbation theory, explicitly integrated Schwartz’s notions into his analysis of the
series coefficients, writing:

Unlike recent formalisms (Dyson and others) in which the divergences are ac-
cepted as such and “renormalized” by means of an algebra of infinite quantities
[...] we consider that the multiplicative products of distributions T of A,B...
that is to say T = AB... are in general not defined. (Stueckelberg and Peter-
mann 1953, 509)

For both Stueckelberg and Bogoliubov, the causal derivation of the expansion was seen as
a better starting point for providing a mathematically precise definition for the products of
distributions appearing in the coefficients than the conventional Dysonian derivation.

23Bogoliubov (1952) already introduces the connection between renormalization and distributions,
though he does not use that term. It is likely that Bogoliubov was drawing on knowledge of the Russian
mathematician Sobolev’s earlier concept of generalized functions which predated and influenced Schwartz’s
theory of distributions. Stueckelberg seems to have encountered distribution theory through interactions
with Georges de Rham, a prominent Swiss mathematician who, like Stueckelberg, held positions at the
universities of Lausanne and Geneva. De Rham was also an early adopter of Schwartz’s ideas about
distributions, and apparently recommended one of his mathematics students, André Petermann, to work
with Stueckelberg in applying these concepts to QFT, leading to the Stueckelberg and Petermann (1953)
paper (thanks to Gérard Wanders for conveying these detail to us).
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Connections between distribution theory and QFT seem to have been in the air in the
1950s. Wightman’s non-perturbative axiomatization of QFT, in particular, would also
make use of the new notions, treating quantum fields as operator-valued distributions.24

Note, however, that recognizing that the perturbative coefficients contain products of
distributions does not require one to buy into Wightman’s formalism, or indeed to causal
perturbation theory. In fact, one can see by looking at the textbook formula for the
causal/Feynman propagator that it is a distribution with a singularity at x − y = 0.25

This follows simply from the fact that,

Dc(x, y) =
i

16π3

∫
d3k

ω(k)
e−ik(x−y)[θ(x0 − y0)e

iω(k)(x0−y0) + θ(y0 − x0)e
−iω(k)(y0−x0)] (29)

contains Heaviside step ‘functions’, which are themselves singular distributions. As we
highlighted in section 3, the Heaviside functions in the conventional time-ordered prod-
uct, Tθ[...], arise automatically from the formal integration of the Schwinger-Tomonaga
equation performed by Dyson. One can view the divergent integrals in the coefficients as
arising due to this implementation of the time-ordered product, which then needs to be
corrected by an infinite subtraction procedure. By treating time-ordering causality as an
axiom rather than a derived property, however, Bogoliubov was able to treat the defini-
tion of the time-ordered products more carefully. This is why we used the notation TB[...]
in the previous section to highlight that Bogoliubov’s derivation of the expansion does
not immediately lead to products of Heaviside functions; rather, Bogoliubov’s character-
ization of the time-ordering property leaves the behaviour of the product at coincident
points unspecified.

With Bogoliubov’s rebranding of causal perturbation theory as a mathematical recon-
struction project, the goal was to show that one could carry out a distribution theoretic
construction of the products appearing in perturbation theory, reproducing the results of
conventional renormalization without invoking an infinite subtraction. Bogoliubov sug-
gested the following construction procedure:

First of all, we need to define the indicated functionals for the special class of
test functions which, together with all derivatives to some order, go to zero if
any two points x1, . . . , xn match. After that, we need to extend those linear
functionals to a class of arbitrary regular test functions. (Bogoliubov 1952b)

The causality condition fixes the behaviour of Sn everywhere except at coincident space-
time points; it thus allows us to construct a time-ordered product on a space of test

24See Wightman (1996) for a retrospective discussion.
25See Helling (2012) for an illuminating contemporary discussion of the application of distribution

theory to products of QFT propagators.
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functions (i.e. switching functions g(x)) which vanish at those points. This is perfectly
well-defined since the switching functions vanish at the singularities. Renormalization was
now mathematically recast as a problem of determining the extension of this product to
the full space of test functions, i.e. to switching functions which are non-zero at coincident
space-time points.

Bogoliubov and Stueckelberg both claimed that this extension exists but is not unique:
the presence of products of singular distributions in the coefficients leads to delta function
type ambiguities of the type left open by the causality condition.26 In order to address
the worry that these ambiguities render the resulting series meaningless or non-predictive
Stueckelberg and Petermann (1953) introduced the notion of the renormalization group—a
set of transformations between different ways of fixing the ambiguities which correspond to
different, but empirically equivalent, definition of the expansion parameter. Furthermore,
Bogoliubov pointed out that the ambiguities one gets from extending the distributional
products correspond exactly to ambiguities which also appear in the conventional subtrac-
tion procedure, since when counterterms are added to cancel the divergences one also has
to fix an arbitrary finite contribution (Bogoliubov and Parasiuk 1957). In modern par-
lance, this corresponds to the freedom to select different renormalization schemes. Thus,
Fraser (2021) argues that causal perturbation theory’s focus on renormalization ambigui-
ties in fact had an important, but largely forgotten, influence on the development of key
concepts like the renormalization group and the renormalization scheme which inform how
perturbative QFT is understood in contemporary high energy theory.

While Stueckelberg and Bogoliubov set out a clear vision for a distribution theoretic re-
formulation of the perturbative renormalization procedure it is fair to say that they did
not bring this project to fruition with a high standard of mathematical rigour. This was
done later, however, by later mathematical physicists, most notably Epstein and Glaser
(1973), who adopted the causal derivation of the series expansion and used it as the ba-
sis for a fully explicit distribution theoretic analysis of the higher-order coefficients of
the expansion. While these results remain relatively unknown in mainstream high-energy
physics, the causal perturbation theory tradition actually produced a mathematically rig-
orous resolution of the ultraviolet divergences problem. From the perspective of this later
mathematically mature articulation of causal perturbation theory, ultraviolet divergences

26One can also construct perturbation series in quantum mechanics using a version of Bogoliubov’s
causality condition rather than the Schrodinger equation—see Scharf (2014). In this case, however, the
perturbative coefficients are uniquely fixed by the information the causality condition provides about non-
coincident points. It is the singular nature of the propagators in QFT which makes possible the addition
of quasi-local operators which are genuinely unfixed by the causality condition. Furthermore, it is the
strength of the singularity of the factors which determines the form of the ambiguity which arises in the
product—see Helling (2012) for a discussion of this.
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arise in the conventional approach due to a naive treatment of products of singular dis-
tributions appearing in the series expansion, which is forced upon one in the standard
Dysonian derivation. Proceeding via the causal derivation it is possible to instead con-
struct each term in the series without ever writing down or manipulating a divergent
expression.

Somewhat ironically, Heisenberg’s original intuition that adopting a more minimal dy-
namical framework would help resolve the ultraviolet divergence problem was vindicated,
but in a completely different way from how he imagined. Heisenberg understood per-
turbative ultraviolet divergences to indicate a physical breakdown of QFT, necessitating
the introduction of a fundamental length. The mathematization of the ultraviolet diver-
gences problem found in contemporary developments of causal perturbation theory points
to the opposite conclusion, however. From this perspective, ultraviolet divergences do
not indicate the physical breakdown of QFT as short-length scales, they are rather un-
masked as mathematical artefacts stemming from an incorrect treatment of the relevant
distributional products. The interpretative implications of all this deserve more careful
philosophical analysis than we can provide here, but it is clear that the treatment of
renormalization found in causal perturbation theory makes a major contribution which
philosophers working on the foundations of QFT need to engage with.

8 Causality and the Formulation of Relativistic Quan-

tum Theory

Having now examined the causal perturbation theory program in some detail, we return
in this section to the broader context of the 1950s and 1960s high energy theory and
compare causal perturbation theory to other causality-based reformulation projects such
as the axiomatic QFT and dispersion relations traditions. In section 2, we suggested that
the influence of Heisenberg’s S-matrix program in the 1950s was greater than has often
been appreciated. One way to frame this continued relevance is to see many theorists in
this period as attempting to plot a course between Heisenberg’s original S-matrix theory
and Dyson’s formulation of perturbative QFT. It was clear that Heisenberg’s principles of
unitarity and Lorentz invariance were too minimal a starting point for relativistic quantum
theory. They appeared to be too permissive; Stueckelberg was not the only author arguing
already in the 1940s that models with a Lorentz invariant S-matrix could still be non-causal
in some problematic sense (see the discussion of Kramers and Kronig and the dispersion
relations tradition below). But they were also incapable of delivering concrete quantitative
results; one could not conceivably formulate a method for calculating S-matrix elements
starting from unitarity and Lorentz invariance alone.
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Dysonian perturbation theory responded to both of these deficiencies, positing a much
richer dynamical structure and using it to derive a powerful approximation scheme. In
the course of the critical reception of this new formalism that took place in the following
decades, however, it came to be felt that rather too much had been added to Heisenberg’s
original principles. The Schwinger-Tomonaga equation seemed to play an ephemeral, and
purely formal, role in the derivation of the expansion and doubts about the possibility of
constructing solutions to such an equation remained, and indeed intensified in the 1950s.
Furthermore, it was increasingly suspected that the long-sought theory of the strong nu-
clear interaction would lie outside the scope of the Hamiltonian quantization scheme that
Dyson worked to rehabilitate. As we stressed in section 3, the Schwinger-Tomonaga frame-
work incorporated causal properties such as microcausality and perturbative time-ordering
that did not follow from Heisenberg’s principles of Lorentz invariance and unitarity. The
question was whether these properties could somehow be abstracted from the more prob-
lematic aspects of the Dysonian framework and worked with directly. This would amount
to articulating a middle ground between Heisenberg S-matrix theory and Dyson’s pertur-
bative formalism.

It should already be clear that causal perturbation theory (especially as developed by
Bogoliubov) can be understood as a manifestation of this impulse. We want to high-
light, however, that the methodological path taken by causal perturbation theory was a
relatively modest and conservative one in comparison to other attempts to use causality
properties to articulate a mid-point between Heisenberg and Dyson that flourished in this
period. What Bogoliubov essentially did was start with the conventional perturbative ap-
proximation scheme and ask whether the same results could be derived from a weaker set
of assumptions. In his hands, the causal perturbation theory approach became a recon-
struction project rather than an exercise in novel theory building. Many theorists of the
period were hoping for something much grander from a causality-condition-based refor-
mulation of relativistic quantum theory, however. There was a dream that finding a stable
middle ground between Heisenberg and Dyson would also lead to new non-perturbative
calculational resources.

As we saw in section 7, the most important foundational upshot of the causal perturbation
theory program was a new analysis of the ultraviolet divergences problem and the nature
of perturbative renormalization. This was not as big news in the 1950s as it might have
been in the 1930s, as the problem of ultraviolet divergences was now one foundational
problem among many facing QFT. Causal perturbation theory did nothing to address
the large-order behaviour of the Dyson series, for instance, it simply reproduced it; the
series expansion obtained from the causal derivation was presumably also asymptotic.
The distribution theoretic approach to perturbative ultraviolet divergences suggested that
they do not in fact spell the doom of the theory, but it also left the Landau pole problem
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untouched, suggesting that QED breaks down anyway for different (non-perturbative)
reasons. Thus, while causal perturbation theory helped improve the internal coherence of
the perturbative treatment of interactions, it was clear that it could not bring a resolution
to all of the foundational issues plaguing QFT. The need to go beyond perturbation theory
in order to finally slay QFT’s demons was one of the key motivations for axiomatic QFT,
which also put causality conditions centre stage but unlike Bogoliubov attempted to use
them to formulate a new non-perturbative language for relativistic quantum theory.

While it might initially seem surprising to view Heisenberg’s S-matrix theory and ax-
iomatic QFT as allied programs, there are in fact clear continuities between them. The
famous LSZ formalism of Lehmann et al. (1955), which represents a crucial origin point
for the axiomatic tradition, follows Heisenberg in proposing a formulation of relativistic
quantum theory based on globally imposed conditions. LSZ added back the field oper-
ators, which Heisenberg had hoped to eliminate, but they eschewed appeals to a local
evolution equation. In fact, the main role played by the field operators in the LSZ for-
malism is to implement a principle of microcausality—the vanishing of the commutator of
space-like separated field operators—which together with an asymptotic condition needed
to establish the connection with the S-matrix was supposed to underwrite a formulation of
relativistic scattering theory that does not invoke the perturbative expansion. As Arthur
Wightman would say when discussing the importance of the LSZ formalism:

Initially, I believe that LSZ took the view that it was a considerable advantage
to work with their formalism because you didn’t have to go down to the dis-
gusting problems of Lagrangian field theory. To some extent when you have a
new formulation of things you can celebrate that and contrast it with the old.
(Wightman interview with Mehra)

Wightman goes onto say that the aspiration in the early days of axiomatic QFT was to
“try and extract completely the content of the axiom as opposed to the content of specific
dynamics” and thus avoid engaging with the problematic Hamiltonian based quantization
proceedures which Dysonian perturbation theory remained tied to.

This optimism about the possibility of extracting non-perturbative information from causal-
ity properties was, we conjecture, bolstered by the emergence of dispersion relations as a
potential calculational alternative to perturbation theory. Building on the work of Kramers
and Konig in the 1920s, a connection was drawn in the 1950s between causality and the
behaviour of S-matrix elements on the complex plane (see Cushing (1990) for a discussion
of this early work). Dispersion relations—formula relating the real and imaginary part of
scattering amplitudes—were seen as encoding causal structure, but by the same token as
derivable from causality principles, thus presenting a new route from causal assumptions
to non-perturbative quantitative results. Notably, Goldberger (1955) argued that the ana-

32



lyticity properties needed to derive dispersion relations followed from microcausality. The
absence of singularities in the complex plane thus came to be seen as yet another way of
imposing relativistic causality on one’s theory. Chew’s S-matrix program was the most
ambitious implementation of this dispersion relations approach, proposing to derive the
S-matrix of strongly interacting systems from assumptions about its analyticity properties.
It is worth pointing out, however, that in this period there were substantial interactions
between axiomatic QFT and this more phenomenologically orientated wing of high en-
ergy theory, with many of the pioneers of axiomatic QFT also working on the derivation
of dispersion relations (see papers in Klein (1961)). These connections remain underex-
plored but do suggest that, while there are certainly important differences between early
axiomatic QFT and Chew’s bootstrap theory, we ought to see them as part of a more
ambitious theory-building project based on causality properties.

In the end, the idea that causality-based reformulations of QFT would lead to a sweeping
non-perturbative approach of the theory proved to be utopian. While both the axiomatic
QFT and dispersion relations traditions developed tools which remain relevant today, they
did not achieve the full-scale displacement of perturbative approximation methods that
some theorists were hoping for. Causal perturbation theory was thus, in a sense, more
successful in articulating a middle ground between Heisenberg and Dyson, if only because
its ambitions were more modest.

9 Conclusion

While the drive towards causality-based reformulations of relativistic quantum theory was
ultimately not as revolutionary as some might have hoped, it undoubtedly left its mark
on the way that QFT is understood today. We close by highlighting two morals for
contemporary work on these themes in philosophy of physics.

Firstly, our historical analysis shows that the projects of determining the fundamen-
tal theoretical principles underlying an area of physics—a paradigmatically foundational
problem—and constructing approximation methods capable of elaborating quantitative
results—often maligned as a purely “pragmatic” problem—are deeply intertwined with
each other. This is clearly manifested in the story of causal perturbation theory, which
essentially became a foundational interrogation of the perturbative approximation scheme
itself and is further evidenced by our more impressionistic comments about dispersion
relations and the search for non-perturbative approximation schemes in the previous sec-
tion. Causality conditions did not rise to prominence in high-energy physics through a
process of dispassionate conceptual analysis, rather they arose through the struggle to
construct calculational methods capable of delivering concrete quantitative results. This
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chimes with de Olano et al. (2022)’s claims about the need to integrate engagement with
approximation methods into interpretative and foundational debates.

Secondly, the discussion of this paper indicates the need to broaden the range of causal-
ity properties in need of philosophical attention. The Bogoliubov causality condition is
distinct from the notion of microcausality, since it constrains the behaviour of the theory
inside the light cone. The relationship between this S-matrix-based causality condition
and the more typical causal properties employed to contemporary axiomatic QFT thus
cries out for further philosophical analysis. This is further motivated by contemporary
approaches like perturbative algebraic QFT, which bring together elements of the causal
perturbation theory and axiomatic QFT traditions—for some discussion of the relation-
ship between the microcausality and Bogoliubov causality within this framework see Fraser
and Rejzner (2024). Something similar could also be said about the analyticity conditions
appealed to the dispersion relations tradition, which remain poorly understood from both
a foundational and historical perspective. According to Hasok Chang, one way that histor-
ical research can contribute to our current understanding of science is via the “recovery”
of forgotten knowledge (Chang 2017). The results of this paper can be understood as
illustrating this idea, though we should perhaps emphasise the recovery of theoretical
questions rather than knowledge in this context. We suspect that there are many more
important insights waiting to be recovered from a historical investigation of 1950s-1960s
relativistic quantum theory.
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Bogoliubov, N. and O. Parasiuk (1957). Über die Multiplikation der Kausalfunktionen in
der Quantentheorie der Felder. Acta Mathematica 97 (1), 227–266.

Bogoliubov, N. and D. Shirkov (1959). Introduction to the Theory of Quantized Fields.
New York: Interscience.

Bogoliubov, N. N. (1952a). On the Basic Equations of Quantum Field Theory. Dokl.
Akad. Nauk SSSR 81, 757–760.

Bogoliubov, N. N. (1952b). On a Class of Basic Equations of Relativistic Quantum Field
Theory. Dokl. Akad. Nauk SSSR 81, 1015–1018.

Bogoliubov, N. N. (1952c). Variational equations in quantum field theory. Dokl. Akad.
Nauk SSSR 82, 217–220.

Bogoliubov, N. N. (1955). The causality condition in quantum field theory. Izv. Akad.
Nauk SSSR, Ser. Fiz 19, 237.

Bogolubov Jr., N. N. (Ed.) (1995). N.N. Bogolubov: Selected Works, Volume Part IV:
Quantum Field Theory. Gordon and Breach Publishers, New York.

Calderón, F. (2024). The causal axioms of algebraic quantum field theory: A diagnostic.
Studies in the History and Philosophy of Science.

Carazza, B. and H. Kragh (1995). Heisenberg’s lattice world: the 1930 theory sketch.
American Journal of Physics 63 (7), 595–605.

Chang, H. (2017). Who cares about the history of science? Notes and Records: The Royal
Society Journal of the History of Science 71 (1), 91–107.

Cushing, J. T. (1990). Theory construction and selection in modern physics: The S-matrix.
Cambridge University Press.

de Olano, P. R., J. D. Fraser, R. Gaudenzi, and A. S. Blum (2022). Taking approximations
seriously: The cases of the chew and nambu-jona-lasinio models. Studies in History and
Philosophy of Science 93, 82–95.

Dyson, F. J. (1949a). The radiation theories of Tomonaga, Schwinger, and Feynman.
Physical Review 75 (3), 486.

Dyson, F. J. (1949b). The S-matrix in quantum electrodynamics. Physical Review 75 (11),
1736.

35



Dyson, F. J. (1952). Divergence of perturbation theory in quantum electrodynamics.
Physical Review 85 (4), 631.

Earman, J. and G. Valente (2014). Relativistic causality in algebraic quantum field theory.
International Studies in the Philosophy of Science 28 (1), 1–48.

Epstein, H. and V. Glaser (1973). The role of locality in perturbation theory. AHP 19 (3),
211–295.

Fraser, J. D. (2021). The twin origins of renormalization group concepts. Studies in
History and Philosophy of Science Part A 89, 114–128.

Fraser, J. D. and K. Rejzner (2024). Perturbative expansions and the foundations of
quantum field theory. Forthcoming in European Physics Journal H .

Fredenhagen, K. and F. Lindner (2014). Construction of KMS states in perturbative qft
and renormalized hamiltonian dynamics. Communications in Mathematical Physics 332,
895–932.

Goldberger, M. L. (1955). Use of causality conditions in quantum theory. Physical Re-
view 97 (2), 508.

Haag, R. (1955). On quantum field theories. Dan. Mat. Fys. Medd 29 (12), 1–37.

Heisenberg, W. (1943a). Die beobachtbaren grössen in der theorie der elementarteilchen.
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