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Abstract 

We propose an explication of conceptual coherence in terms of the covariational structure of 

concepts or how clusters of properties systematically co-occur across category 

exemplars. Using the theory of conceptual spaces combined with ideas from Principal 

Component Analysis, we show that a concept’s perceived coherence relates to how easily its 

attribute structure can be reduced to simpler representations. Our approach contrasts with 

previous accounts that ground coherence in similarity or intuitive theories. We discuss the 

relationship between coherence, uncertainty, and induction and apply our framework to the 

conjunction fallacy. 

 

1. Introduction 

One fundamental aspect of concepts is that they are general. That is, they group different 

representations under one common representation (Kant 1997, B93 = A68). The generality of 

concepts promotes cognitive efficiency by allowing non-identical stimuli to be treated as 

equivalent for specific purposes. However, the generality of a concept must be weighed against 

its informational function. The concept must capture shared information among its instances 

while remaining broad enough to cover a range of them. 
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 Our conceptual system includes a variety of concepts that exhibit different levels of 

generality. For example, broad concepts such as LIVING BEING encompass a wide array of 

instances but provide relatively little specific information. In contrast, narrower concepts like 

PUFFIN include fewer instances but offer more precise details. This leads to two questions: How 

can we account for the trade-off between generality and specificity within a concept? How does 

the diversity of a concept’s exemplars influence its application? 

 These problems are seldom addressed in theories of concepts in psychology, with the 

notable exception of Rosch’s work. They underpin a notion that is becoming increasingly 

important in the field and is the central concern of this paper: conceptual (or category) 

coherence. Conceptual coherence refers to the extent to which properties associated with a 

particular concept are perceived as belonging together or, in other words, to the perceived unity 

among instances of a concept based on shared features, functions, or other underlying 

characteristics (Smith & Medin 1981). From this perspective, coherence can be considered a 

“global” or “configural” property of concepts, which concerns the concept when taken as a 

whole and consequently requires some form of ‘holistic’ processing.1  

 The coherence of concepts is often reflected in the confidence they are used across 

cognitive tasks, especially in inductive tasks (e.g., Lassaline and Murphy 1996). A key example 

is the “preferred level of induction” phenomenon (Sloman and Lagnado 2005, p. 106), which 

 

1 Here, we follow a common distinction from gestalt psychology between local and holistic processing, two ways 

of understanding perceptual phenomena. Local processing involves focusing on individual elements of a visual 

scene, such as specific shapes, colors, or objects, often without regard to the overall structure. In contrast, holistic 

processing interprets the scene as a whole, recognizing patterns or configurations that emerge from the interaction 

of its elements (see Wagemans et al. 2012). 
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refers to the tendency to favor basic-level categories (e.g., CHAIR or DOG) over more general 

ones (e.g., FURNITURE or MAMMAL) during categorization and inference.  

 There is strong evidence that natural concepts (e.g., CAT or GRASS) are perceived as more 

coherent than artificial ones (e.g., BIKE or GROCERIES) and even more so than ad-hoc concepts 

(e.g., THINGS TO BRING CAMPING or THINGS TO SAVE FROM A FIRE). Barsalou (1983) suggested 

that because ad hoc concepts are highly context-dependent and less frequently encountered than 

natural ones, they are not only used with more resistance in inductive tasks, but they are also 

more difficult to retain in memory. 

 The primary focus of this paper is to explore what is computed when estimating the 

coherence of a concept, an aspect we believe has not previously been clearly articulated in the 

cognitive psychology literature.2 

1.1 Coherence and Similarity 

In addressing the question of what underlies conceptual coherence, cognitive psychologists 

have posited two different responses. The first asserts that conceptual coherence is grounded in 

semantic similarity. Simply put, we perceive a concept as coherent when its instances share 

sufficient similarities, forming a ‘natural grouping’. Rosch and Mervis (1975) provided 

evidence that members of basic-level concepts tend to have many features in common, 

surpassing those of their corresponding superordinate concepts and closely mirroring those of 

 

2 In this article, we focus solely on the problem of coherence within what we call “object concepts.” These are 

concepts that represent collections of entities denoted by a noun or phrasal nominal (e.g., "dog,” “old lawyer," 

"things to take to the beach"). They differ from properties or attributes, typically linked to adjectives in natural 

languages, and from abstract concepts (e.g., "freedom," "dignity," "inflation") that cannot be easily analyzed in 

terms of dimensions. As a notational criterion for the remainder of this article, we will use small caps for concepts 

and italics for their properties or attributes. 
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their subordinate concepts. They concluded that basic-level concepts optimize intra-category 

similarity while concurrently minimizing inter-category similarity, distinguishing them from 

others in the taxonomic hierarchy. Consequently, they posited that the inherent coherence of 

basic-level concepts underpins their preferential status in induction and categorization tasks. 

 However, the similarity-based view of coherence faces several challenges. The most 

pressing of these is establishing a criterion for identifying which attributes should be considered 

relevant in similarity judgments. Prima facie, shared attributes can be identified between any 

pair of objects (e.g., a zebra and a crosswalk), and this issue becomes even more complex when 

including negative predicates as shared features. For instance, when Lewis Carroll asked why 

a raven is like a writing desk, part of his whimsical answer was that “it is never put with the 

wrong end in front.” While this negative property is common to many objects, it is unhelpful 

for categorization and reasoning. Furthermore, even if we find a method for determining which 

attributes are relevant to a concept, we still need a way to assign the relative importance (or 

‘weights’) of each attribute for similarity comparisons—a task that has proven challenging (see 

Gelman and Williams 1988). Given these difficulties, several psychologists have suggested that 

similarity may be a by-product of conceptual coherence rather than its foundational principle 

(e.g., Medin and Wattenmaker 1987, p. 28). 

1.2 The Theory-theory 

The second approach to the coherence problem addresses the limitations of similarity by 

positing that concepts are embedded in intuitive theories (e.g., Gopnik and Meltzoff 1997, 

Murphy and Medin 1985). An intuitive theory is defined as “a system of interrelated concepts 

that generate explanations and predictions in a specific domain of experience” (Slaughter and 

Gopnik 1996, p. 2967). Such theories determine the parameters, like relevance and weight of 

attributes, that constrain semantic similarity and guide concept formation. Moreover, intuitive 
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theories provide concepts with causal structure by building causal links between the features. 

For example, attributes such as gills, fins, and streamlined bodies may be particularly important 

for the concept FISH because they are causally related to one another in a person’s naive theory 

of how fish swim. Endowing categories with a causal structure enhances their coherence by 

explaining why certain attribute groups are perceived as “holding together.” 

 This approach, commonly known as “Theory-Theory”, is not without its challenges. One 

major issue is that the most basic definition of a theory is a logically structured set of 

propositions encompassing both theoretical and observational language (Giere, 2000) —

definitions in the psychological literature tend to be more intricate (see Gopnik and Meltzoff 

1997, pp. 32-41). However, since propositions are composed of concepts, the definition of 

propositions inherently relies on a prior understanding of concepts. As a result, defining 

‘concept’ in terms of ‘theory’ appears to reverse the logical explanatory order, creating a risk 

of circularity. 

 Moreover, even if we concede that concepts are rooted in intuitive theories, the genesis 

of these theories remains a mystery (Sloutsky 2003). Finally, akin to the possibility of having 

multiple criteria for assessing similarity between two objects, different theories can be 

consistent with the same dataset (see Turnbull 2018). Scientists rely on meta-theoretical criteria 

to choose the most suitable theories from available alternatives. However, the reason we have 

a particular intuitive biology for our biological categories rather than another framework 

highlighting distinct causal structures remains unclear. 

1.3 Outline 

In this paper, we will defend an alternative approach that eschews the notion of theory to 

explain coherence. Our central argument is that a concept’s perceived coherence hinges on 

identifying attribute clusters that exhibit systematic covariation across its diverse exemplars. 
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For example, in the concept BIRD, the consistent relationship between beak shape and feeding 

habits across various species illustrates this kind of systematic covariation. The greater the 

covariance observed within a concept’s feature space, the stronger its perceived coherence. We 

will then demonstrate how these ideas can be implemented and systematized within the 

framework of the theory of conceptual spaces. Then, we will introduce a method to measure 

the coherence of a concept using ideas from Principal Component Analysis (PCA).  

 The remainder of this article is as follows: The subsequent section offers a concise review 

of prior attempts to explicate the notion of conceptual coherence. Section 3 introduces the 

theory of conceptual spaces, laying the groundwork for our formal approach to coherence. In 

Section 4, we delve into the interplay between the heterogeneity of a concept and its coherence, 

and we introduce a method based on principal components to measure the latter within the 

realm of concept spaces. Section 5 explores the relation between coherence and induction and 

uses the developed ideas to explain the conjunction fallacy. 

 

2. Previous attempts to model coherence 

While the primary aim of this article is to provide a precise definition of a notion frequently 

employed in an unclear manner in psychology, we ultimately view the problem of coherence 

as another facet of the general puzzle of induction (see Kornblith 1995). In this regard, our 

perspective aligns with Nelson Goodman’s ideas on how the ‘quality’ of a predicate influences 

its inductive power. Goodman (1983) was likely the first to observe that induction isn’t merely 

a formal mechanism but hinges on the content of the predicate being projected and its position 

within a broader system of predicates. Rather than discussing the coherence of a concept, 

Goodman talked about ‘well’ and ‘ill-behaved’ predicates. A well-behaved predicate is easily 
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projectable and deeply entrenched within the overarching system of predicates. Clear examples 

include animal categories. 

 Conversely, an ill-behaved predicate is weakly entrenched, possessing few or no ‘parent 

predicates’, directly impacting its inductive power or projectability. Clear examples of this are 

ad-hoc concepts. Items falling under this concept might be vastly dissimilar, correlations 

between features are limited, and it lacks clear superordinate concepts, i.e., it doesn’t fit neatly 

into a conceptual taxonomy. The result is that the inductive power of such concepts is markedly 

low. 

 Goodman’s distinction aligns with our characterization of high and low-coherence 

concepts. However, although he introduced insightful notions, such as ‘entrenchment,’ he did 

not fully elaborate on these ideas, nor did he provide a formal articulation of his concepts. To 

our knowledge, the first — and only — formal model of conceptual coherence was proposed 

by Paul Thagard (2002). This model is a specific application of his broader framework, 

designed to accommodate various types of inputs, not just concepts, including beliefs, 

hypotheses, percepts, and propositions.3  

 The central premise of Thagard’s model is that evaluating coherence can be seen as a 

constraint satisfaction problem. We start with a set of elements 𝐸 that can be related to each 

other based on coherence or incoherence relationships. Coherence relations between elements 

(𝑒! , 𝑒") in	 𝐸 are mapped into a set of positive constraints, while incoherence relations are 

mapped into a set of negative constraints𝐶#. The elements in sets 𝐶$ and 	𝐶# have assigned 

 

3 Numerous probabilistic models of coherence have been developed within the realm of formal epistemology (see, 

for instance, Douven and Meijs 2007 or Hartmann and Trpin 2023). However, these models address a phenomenon 

distinct from our primary interest here. Specifically, they aim to measure the coherence between sets of 

propositions, rather than the coherence of the internal structure of categories. 
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weights 𝑤!" 	corresponding to their relative importance for the problem. The objective is to 

identify a subset of elements from 𝐸 that satisfy the maximum number of constraints, that is, 

to find a subset that makes more sense than any other subset of 𝐸. We then partition 𝐸 into a 

set 𝐴 of accepted elements and a set 𝑅 of rejected elements, and we compute the weight of the 

partition 𝑤(𝐴, 𝑅) as the sums of the weights of the satisfied constraints, where a constraint is 

satisfied if for any element(𝑒! , 𝑒") in 𝐶$or 	𝐶# , 𝑒! ∈ 	𝐴 iff 𝑒" ∈ 	𝐴 or , 𝑒! ∈ 	𝑅 iff 𝑒" ∈ 	𝑅. The 

coherence problem is resolved when the partition with the maximum weight is identified. 

 Thagard’s model has been implemented in connectionist networks and has found various 

applications (e.g., Thagard et al. 2002). However, it falls short of explaining the nature of 

conceptual coherence. The reason is straightforward: explaining conceptual coherence requires 

clarifying the nature of the relationships between a concept’s components that determine its 

overall coherence. In Thagard’s model, this would be equivalent to describing the constraints 

in sets 𝐶$or 	𝐶#, an issue that Thagard intentionally avoids. Additionally, Thagard’s model is 

unclear on which entities can engage in coherence relations. The elements of E can represent a 

single concept and its internal features (as in the model we propose) or a set of thematically 

related concepts like dog-leash-veterinarian. The type of conceptual coherence we analyze, 

which is the one commonly used in cognitive psychology, is restricted to cases of the former 

type. 

 

3. Conceptual spaces as a framework  

Conceptual spaces (Gärdenfors 2000, 2014) have been developed as a research program in 

cognitive semantics, studying the structure of concepts and their interrelations through 

geometrical methods. This approach builds on two key ideas regarding the composition and 

structure of concepts and properties: (i) they are composed of clusters of quality dimensions, 
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many of which are generated by sensory inputs such as color, size, and temperature, and (ii) 

they possess a geometric or topological structure, resulting from the integration of the specific 

structures of these dimensions. 

 Quality dimensions can be either integral or separable. Dimensions are integral when 

assigning a value to an object on one dimension necessarily entails assigning a value on another 

dimension (Maddox, 1992). For example, it is not possible to attribute a value to the pitch of a 

tone without also attributing one to its loudness.  

 A domain is defined as a set of integral dimensions that are separable from all other 

dimensions. For instance, color properties are composed of three fundamental parameters of 

color perception: hue, saturation, and brightness (Gärdenfors 2000, 2014). Any perceived color 

can be mapped to specific values along these dimensions. More generally, different colors can 

be described as regions of possible values across these three parameters. 

 A central idea of this theory is that natural properties (like colors) correspond to convex 

regions of a single domain (Gärdenfors 2000, p. 71). A region is convex when, for every pair 

of points x and y in the region, all points between them are also in the region. 

 A conceptual space consists of a collection of one or more domains, equipped with a 

distance function (or metric).	The choice of distance function can vary; the most common is 

the Euclidean metric, though Manhattan and polar metrics may also be appropriate in different 

contexts (see Shepard 1964; Johannesson 2002; Gärdenfors 2014). 

 Similarity among concepts and objects is defined as a monotonically decreasing function 

of their distance within the space (Shepard 1987). This contrasts with Tversky’s (1977) 

approach, which compares the number of properties two objects share with the number of 

properties where they differ.  

 Many predicates in natural language, particularly those expressed by nouns, cannot be 

defined within a single domain but instead as clusters of properties. This distinction leads us to 
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categorize predicates as either properties or concepts. Properties are convex regions within 

single domains, whereas concepts are convex regions spanning a set of interconnected domains 

(Gärdenfors 2000, Sec. 4.2.1). For most concepts, the domains that compose them are 

correlated in various ways. For instance, in the case of the concept FRUIT, properties such as 

size and weight, or ripeness, color, and taste, tend to covary. These covariations generate 

expectations crucial for inferential processes that build on the structure of semantic 

representation.  

 As an example, consider a simplified conceptual space for FRUIT, defined by five 

dimensions representing key properties of fruits: color, taste, ripeness, texture, size, and shape. 

The “fruit space” is the Cartesian product of these six dimensions. The concept APPLE occupies 

specific subregions within this space, corresponding to the range of possible properties for 

instances of apples, as well as correlations between these dimensions (see Figure 2). 

 

 

 FIGURE 1. The concept of an apple as a subregion of ‘fruit space’. The dotted lines represent 

correlations between properties of the concept APPLE  

 

 An important advantage of representing concepts this way is that it naturally accounts for 

the prototypical structure of categories (Rosch 1975, 1983; Gärdenfors 2000, Lakoff 2008). 

When concepts are defined as convex regions within n-dimensional spaces, a specific point in 

each region can be interpreted as the prototype for the corresponding property or concept. 
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Conversely, given a set of prototypes 𝑝%, 𝑝&, … , 𝑝' and a Euclidean metric, a set of n concepts 

can be delineated by partitioning the space into convex regions such that for each point 𝑥 ∈ 𝐶! ,

𝑑(𝑥, 𝑝!) < 𝑑(𝑥, 𝑝") when 𝑖 ≠ 𝑗. This partitioning corresponds to the Voronoi tessellation, an 

example of which is illustrated in Figure 2. Thus, assuming a metric is defined on the subspace 

under categorization, a set of prototypes will generate a unique partitioning of the subspace into 

convex regions by this method. 

 

 
FIGURE 2. Voronoi partitioning in a 2-dimensional space. 

 

 Within this framework, objects are viewed as instances of concepts and are mapped to 

points in the space, while concepts are represented as regions (convex sets of points). This 

representation accommodates graded membership and degrees of typicality (Rosch et al. 1976; 

Hampton 2007), meaning that objects can be represented as more or less typical instances of 

categories depending on their position relative to the prototype. 

 

4. Measuring coherence 

4.1 Heterogeneity and Uncertainty   

Before introducing our measure of coherence, it’s important first to discuss a closely related 

concept: concept (or category) heterogeneity. Psychologists often describe this as the balance 
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between variability and similarity among exemplars within a concept or category (see Gelman 

2003; Brandone 2017). Concept heterogeneity refers to the volume of the feature space spanned 

by a concept, indicating the degree of diversity among its members. For instance, PIPE WRENCH 

is a highly homogeneous concept, with exemplars showing minimal variation in key 

dimensions like function, shape, and material. As a result, these exemplars are highly similar, 

making the concept compact. In contrast, a concept like HANDBAG is more heterogeneous, 

including objects that vary in shape, size, material, and function, yet are all recognized as 

handbags. 

 The heterogeneity of a concept is influenced by its position within a concept hierarchy. 

A superordinate concept like MAMMAL is more heterogeneous than any of its subordinates (e.g., 

DOG, TIGER, COW) because it encompasses them all along with their diverse properties. This has 

significant implications for the inferential use of concepts, particularly in contexts involving 

prediction and inductive reasoning. Specifically, the greater the variability within a concept, 

the weaker its predictive power. For example, from the statement “x is a mammal,” we can 

infer that x likely has fur or hair, is warm-blooded, and produces milk. However, we cannot 

predict its size (which could range from a tiny shrew to a massive blue whale), diet (herbivore, 

carnivore, or omnivore), or habitat (land, water, or air). In contrast, from “x is a dog,” we can 

make more specific predictions: x has four legs, a tail, barks, is primarily carnivorous, is 

domesticated, and likely lives close to humans. This illustrates how the more specific concepts 

allow for stronger, more detailed predictions than the broader, more heterogeneous ones (for a 

more detailed explanation of this phenomenon, see Thagard and Nisbett 1982, Sloman and 

Lagnado 2005, Brandone 2017). 

 To better understand the relationship between heterogeneity and inference, consider the 

link between categorization and uncertainty. Categorization acts as a mechanism that maps an 

input to a categorical output (a concept). However, as the heterogeneity of the matched concept 
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increases, this hypothesis space expands, influencing both the quality and quantity of 

predictions we can make about the input. 

 This idea fits naturally within the framework of conceptual spaces. The volume of a 

concept in a conceptual space —defined as the size of the region representing the concept— is 

directly proportional to the variability of properties and the number of relevant dimensions it 

contains. When we categorize an input, we essentially represent it as a potential point within 

this conceptual space. Hence, the volume (and, by extension, the heterogeneity) of the concept 

influences the number of possible points the input could occupy within that space. Gathering 

more information about the input, whether by pinpointing specific properties or by 

recategorizing it into a more specific concept, narrows down the volume of potential points, 

thereby reducing our uncertainty about the input. 

 How do heterogeneity and coherence interact within a concept? In our perspective, the 

coherence of a concept pertains to the level of interconnectedness or covariation among its 

properties. We use the term “covariational structure” to denote the aggregate of all covarying 

dimensions known to an agent familiar with the concept. Conversely, heterogeneity reflects the 

diversity and range of properties within that concept. This diversity not only characterizes the 

concept but also defines the potential range of its coherence —it establishes the boundaries for 

coherence. Essentially, the greater the diversity of a concept, the broader the potential scope 

for its coherence. This spectrum ranges from a loosely connected concept to one of maximal 

coherence, where knowledge of one property allows prediction of the rest. 

4.3 Measuring Coherence 

In coherent concepts, clusters of properties’ hang together,’ indicating that they covary. Within 

the semantic domain of animals, for instance, a creature’s size might covary with specific 

attributes like lifespan, diet, or habitat. Noticing that larger mammals often have longer 
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lifespans than smaller insects is a simplistic illustration of this covariation. Similarly, a bird’s 

beak shape can often hint at multiple correlated attributes like its diet, habitat, nesting behavior, 

and even mating calls. For instance, observing a bird with a long, slender beak might suggest 

that it primarily feeds on nectar. This could further correlate with living in colorful, flower-rich 

habitats, crafting intricate hanging nests, and producing melodious calls to communicate. 

Research by Younger (1990), Billman and Knutson (1996), and Hayes et al. (1996) 

shows that humans excel at detecting covariations across various domains. This ability likely 

stems from our evolutionary history, where recognizing patterns in nature was crucial for 

survival, enabling better predictions of hazards, food sources, and suitable habitats. Through 

natural selection, humans have developed an innate ability to recognize such grouped 

relationships. This evolutionary context helps explain the basic-level concepts described as 

distinctive clusters of covarying properties in Rosch’s (1975) prototype theory (Holland et al. 

1986, pp. 183–4). 

From this perspective, measuring coherence depends on assessing the covariational 

structure of a concept, which is not straightforward. Our proposal is to address this challenge 

using ideas from Principal Component Analysis (PCA). Specifically, we assert that the 

coherence of a concept depends on how much the first principal component of the set of objects 

under that concept reduces overall variation within the set.  To elaborate on this proposal, we 

must first explain what principal components are. 

If a concept is represented in a conceptual space, its instances form a set of points (a 

“dataset”) within that space. This set can be more or less ‘organized.’ To analyze this 

organization, we can use PCA, which helps identify the underlying structure of the dataset. 

Specifically, PCA identifies principal components—directions in the space along which the 

data varies the most. 
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The first principal component is the line in the space that, when the data points are 

projected onto it, maximizes the reduction in overall variance. In other words, this component 

represents the dimension that provides the most comprehensive ‘explanation’ of the data (see 

Jolliffe 2002). The second principal component, orthogonal to the first, accounts for the 

remaining variation, and further components follow in a similar manner. However, each 

additional component typically explains progressively less variance unless the dataset is nearly 

random. 

The relevance of this to conceptual coherence is that the length of a principal component 

reflects how much variance in the dataset it explains. A longer first principal component 

indicates a more organized or coherent concept because more of the variance is captured by 

that component. In contrast, if the variance is spread across many components, the concept is 

less structured or coherent. 

As an illustrative example, assume that the concept STRAWBERRY can be represented by 

merely three dimensions: color, taste, and size. Suppose a number of observations of 

strawberries result in the dataset depicted in Figure 3. The first principal component of the set 

is the long vector that extends diagonally upwards to the right from the mean of the dataset. 

Orthogonal to that vector, we find a shorter vector representing the second principal component 

and an even shorter vector representing the third principal component. In this example, the first 

principal component captures considerably more variance than the other two combined and can 

be used to re-express the data in an efficient manner — without significant loss of information. 

The dimension identified by the first principal component can be interpreted as a representation 

of the ‘ripeness’ of the strawberries. 
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FIGURE 3. An illustration of the first principal components of a data set. 

 

Note that the very fact that we can consistently talk about the ‘ripeness’ of fruits 

suggests that we identify underlying multivariate structures. These structures reveal the 

presence of interrelated properties that, when analyzed collectively, enable dimensionality 

reduction by encapsulating the variance of individual properties into a singular, cohesive 

descriptor. Essentially, the use of multifaceted descriptors in language, such as ‘ripeness,’ 

serves as a mechanism for achieving both communicative and cognitive efficiency. By 

compressing diverse information into a single term, language users can convey and understand 

intricate ideas without becoming bogged down in details. This aligns with the principle of 

information economy, which aims to transmit the most information with the least effort. 

Our main hypothesis is that the principal component (or the first components) of a 

concept can be used to characterize coherence. We propose using the proportion of the variance 

explained by the first principal component as our measure. When all points in the dataset are 

positioned on a straight line, that line will represent the principal component, yielding a 

maximal coherence value of 1. Conversely, in a scenario where the data points are scattered 
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randomly, any line might be considered the principal component. However, such a line will not 

significantly reduce the variance, resulting in a coherence value of 0. 

In the example above, only three dimensions/domains were involved. For most natural 

concepts, the number of domains is very large. These domains are more or less salient for the 

concept, with many being only marginally relevant or not relevant at all. For example, even 

though all dogs have a temperature, the variation of this variable is typically so small that this 

domain has no influence on the principal component of the concept of dogs. In order to make 

our central hypothesis more precise, we need to get into a little bit of technicalities. The standard 

method for principal component analysis proceeds as follows (Jolliffe, 2002): 

(i) Standardize the range of continuous initial variables. This step ensures that all 

variables are on the same scale and that no variable dominates the analysis due to its scale.4 

(ii) Compute the covariance matrix to identify correlations. This matrix provides a 

measure of how much each pair of variables varies together. 

(iii) Compute the eigenvectors and eigenvalues of the covariance matrix to identify the 

principal components. The eigenvectors represent the directions of maximum variance in the 

data, and the eigenvalues represent the magnitude of these variances. The principal components 

are the eigenvectors of the covariance matrix, ordered by their corresponding eigenvalues. 

Now, the first step would imply that all dimensions relevant to a concept are given equal 

weight. This essentially involves calculating correlations rather than covariations. In the 

conceptual space representation of a concept, dimensions exhibit varying salience, and these 

salience values should be utilized when calculating the principal component of the associated 

 

4 In its standard form, PCA is applied to data described in continuous variables. However, most of our concepts 

combine continuous variables with categorical variables. There are variations of PCA, like Multivariate 

Analysis (Chavent et al. 2014), that apply the same principles to mixed data sets. 
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data set. This also indicates that the ranges of the variables are not standardized. For instance, 

in the earlier example, the range of the color dimension is slightly larger than that of the 

sweetness dimension, yet it may be more intuitive to assign a higher salience value to sweetness 

than to color when comparing the dimensions. Consequently, our proposed method for 

determining principal components focuses on calculating covariations using specified salience 

weights rather than relying on correlations based on standardized ranges of the data set 

dimensions. 

Considering that objects in conceptual spaces are represented as points, these points can 

be interpreted as vectors extending from a defined ‘origin’. We refer to this origin as the 

‘universal prototype’—the prototype of THING. This prototype may be elusive, so when 

calculating covariance, the origin could be considered the mean of the positions of all the 

objects against which variance is measured. 

The role of the origin as a way of calculating the covariance is evident in concepts that 

exhibit little or no variation in most of their dimensions. Many animal concepts, for example 

TIGER, would be of this kind. For such categories, there will be little or no correlations between 

the dimensions. However, because covariance is assessed in relation to the entire conceptual 

space, it remains strong. This is the reason why we use covariance rather than correlation to 

determine the coherence of a concept.  

There are several aspects of this coherence measure that should be noted. First, the 

measure is dependent on the salience values of the domains. If a domain has low salience, then 

all volume related to it will be small, and, consequently, its contribution to the total coherence 

of the concept will be small. For example, when WHALE was reclassified from FISH to MAMMAL, 

more salience was given to biological domains and less to ecological domains (Gärdenfors 

2000, Section 6.4). As a consequence, WHALE became a more coherent concept. 
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Second, the measure is independent of any probabilities of the properties — only the 

volume of the intersection of the regions matters. We see that as an advantage of the conceptual 

spaces framework, as it allows us to assess coherence without needing to consider probabilities. 

Third, for a concept with several salient domains, the coherence value will, in general 

be higher than for a concept with a few salient domains. This explains why concepts for natural 

categories such as BIRD will have a high coherence value since it has several salient domains 

that covary, while concepts for artifacts such as CHAIR or CLOCK will have low coherence 

values. For artifacts, physical properties are often non-salient and it is only properties related 

to function that matter. 

Fourth, if a concept has clusters of covarying properties, for example flying, feathers, 

wings, beak for the concept BIRD, then the coherence value will be high. Again, such clusters 

are typically not found for artifacts. Clusters of correlated properties will also be helpful in 

learning the meaning of a concept, which may be an explanation of why coherent concepts are 

easier to learn than non-coherent ones (Billman and Knutson 1996, Kornblith 1993, Shipley 

1993).  

 

5 Coherence, Causality, and Induction 

5.1 Coherence and Causality 

Some authors challenge the idea that coherence is solely grounded in covariational learning, 

arguing instead that causal knowledge plays a primary role. In a series of experiments, Malt 

and Smith (1984) and Ahn et al. (2002) showed that typicality judgments about exemplars of a 

concept were stronger for those that included pairs of casually correlated properties. In their 

experiments, they provided descriptive exemplars of the concept BIRD. Besides sharing general 

properties like has wings, some exemplars had the properties lives near the ocean and eats fish, 
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while others is white and eats fish. Although both property pairs exhibited a similar degree of 

covariation, subjects judged as more typical the exemplars that had the pair lives near the ocean 

and eats fish because they saw these properties as causally related. They concluded that 

semantic judgments depend not only on pairwise covariations but also on causality judgments, 

which is consistent with theory-theory and has implications for the notion of coherence. 

There is, however, an alternative explanation (see also Rogers and McClelland 2004). 

Participants might give more weight to properties they perceive as causally linked because they 

coherently covary with multiple other properties. For instance, lives near the ocean and eats 

fish apply to many shorebirds sharing other common traits like dives and can swim. Conversely, 

is white and eats fish could apply to various birds, for example, herons, making this 

combination less coherent. The implication is that causality might not be essential to explain 

coherence. Instead, the coherence of two properties may stem from their covariation with other 

properties, contributing to the principal components and thereby enhancing coherence. This 

aligns with the measure we propose. 

 Moreover, our perception of the connections between property pairs within a concept 

may be influenced not only by their covariation but also by the relationships among properties 

across similar concepts within the same domain. For instance, individuals might perceive the 

pair is white and eats fish as less correlated because they recognize that color and feeding habits 

are not consistently related across different animal concepts. In contrast, the pair lives near the 

ocean and eats fish may be viewed as more correlated, as habitat and feeding habits often 

exhibit a strong relationship across various animal concepts. This broader perspective suggests 

that concept coherence is shaped by the statistical structure of the environment, not just within 

a single concept but across related concepts.  

 In a similar line of argumentation that takes causality as the central factor behind 

coherence, Rehder (2017) and Rehder and Kim (2006, 2010) explored and discussed a 
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‘coherence effect’ in people’s judgments of the coherence of instances of concepts: people are 

more likely to judge an exemplar of a concept as good if it does not violate the patterns of 

causal relationships between its features that were previously learned —the ‘causal laws’ of the 

concept (Rehder and Hastie 2001).  

 As an example, consider the concept TROPICAL FROG: Suppose people have learned that 

being poisonous (feature A) causes brightly colored skin (feature B) in these frogs. Given this 

causal relationship, people judge exemplars of frogs that are not poisonous and not brightly 

colored (¬A¬B) as better category members than exemplars that are either not poisonous but 

brightly colored or poisonous but not brightly colored (¬AB or A¬B). This occurs because the 

¬A¬B exemplars preserve the learned causal structure (no poison, therefore no bright color). 

In contrast, exemplars ¬AB and A¬B violate this structure, as their features don’t align with 

the expected causal relationship. 

 Our approach can explain this effect if we look at the role of loadings and scores in the 

PCA analysis of the concepts. In PCA, the loadings are the elements of the eigenvectors 

obtained from the covariance matrix of the original variables. Each variable has its own loading 

on some principal component. This loading indicates how much that variable contributes to the 

component and how well the component explains the variability in that variable. The scores, 

on the other hand, are the transformed value of a data point along a principal component. In 

other words, it represents the projection of an original data point onto the principal component 

space. 

When people learn that feature A causes feature B in a concept, it reinforces their 

expectation that these features will co-occur, either both present (AB) or both absent (¬A¬B). 

This learned causal knowledge shapes the correlational structure of the concept, with A and B 

becoming strongly correlated across exemplars. In a PCA of the concept, A and B would load 

heavily on the same principal component, likely the first component if they are central or typical 
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features. Exemplars (i.e., data points) with features AB will score high in the principal 

component where A and B have high loadings.  

The high absolute value of the score indicates that the exemplar strongly aligns with the 

causal-correlational structure captured by the component. Conversely, an exemplar that lacks 

both features A and B (¬A¬B) will also score high on the same component but with the opposite 

sign compared to the AB exemplar. This is because the absence of both causally related features 

is also consistent with the causal-correlational structure of the category. Finally, exemplars that 

have only one of the features (A¬B or ¬AB) will have scores closer to zero on that component, 

indicating that they do not align well with the causal correlational structure of the concept. 

These exemplars will be considered less coherent because they violate the expected co-

occurrence of features A and B.  

To be clear, we do not claim that causality is irrelevant to conceptual coherence. But 

we believe that, if we set aside expert knowledge, most of our causal knowledge about inter-

feature relations is probably ‘shallow’. For example, we know that the curved shape of a 

boomerang or the size of a bird’s wings play a causal role in (or are enabling conditions of) the 

respective flight patterns, but few competent really grasp the underlying physical mechanisms 

that govern these causal relationships. 

We believe that much of our knowledge of the causal structure of concepts has been 

learned from causal generics (for example, “birds can fly because they have wings”) that do 

not include explanations of underlying causal mechanisms but that still determine our 

expectations about the patterns of correlations between the properties of a concept (see 

Gärdenfors and Osta-Vélez 2024). The causal generic “A causes B in concept X” is a shortcut 

to a type of statistical knowledge that should have been learned by observing a large volume of 

exemplars of a concept, something that is often difficult. 
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In summary, we believe that causal knowledge is certainly crucial for the perception of 

conceptual coherence but that this is a phenomenon limited to expert knowledge, whereas, in 

our everyday knowledge, that is, for “folk” concepts, the perception of coherence is based on 

statistical mechanisms that identify sets of candidate causes or enabling conditions for different 

attributes. 

5.2 Coherence and Induction 

Empirical studies consistently demonstrate a positive correlation between coherence and the 

confidence with which concepts are utilized in inductive tasks. In an influential study, Gelman 

(1988) demonstrated that children exhibit greater sensitivity to conceptual coherence, making 

more inductive inferences about natural kinds as opposed to artifact concepts. For example, 

TIGER allows for a wealth of inductive inferences, while CLOCK does not, since different kinds 

of clocks have few properties in common except for keeping time. The latter often exhibit fewer 

correlations; thus, their principal component would account for less variance.  

 Rehder and Hastie (2004) further noted that inductive generalizations are stronger when 

based on coherent concepts. They proposed that the typicality effect observed in category-based 

induction can be interpreted as a coherence effect: atypical concept members support weaker 

generalizations than more typical members because they violate expected correlations 

associated with that concept. For instance, penguins are considered atypical birds; while they 

possess feathers and wings, they do not fly, contributing to their weaker inductive 

generalizations. 

Our approach to coherence facilitates a more direct and intuitive explanation of its 

relationship to induction. Consider, for instance, the phenomenon of within-category induction, 

where we predict new properties of a categorical input from some already known property (for 

example, “x is a red apple; thus, x is sweet”). This type of induction clearly relies on our 
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understanding of correlations. The more coherent our categories are —meaning the richer their 

correlational structure—the better they enable us to make such inductive inferences, thereby 

helping us manage the uncertainty inherent in basic conceptual information (cf. Osta-Vélez and 

Gärdenfors, 2022). 

Coherence seems to be important for between-categories induction too. For example, in 

category-based induction, people rely heavily on the overall perceived similarity between two 

concepts to project a property of one to the other (Douven et al., 2023). However, it is not 

always about overall similarities. Sometimes, specific clusters of correlated properties take 

precedence. Heit and Rubinstein (1994) found that while drawing inferences about behavioral 

patterns of animals, such as nocturnal feeding habits, subjects found the pairing of tiger and 

hawk more compelling than chicken and hawk, even if the overall category similarities might 

suggest otherwise. 

 

6. Coherence, social concepts, and the conjunction fallacy 

So far, we have sought to explain why our cognitive system strives to construct and prioritize 

coherent concepts, using natural kind concepts as the primary example. However, we also claim 

that social concepts (for example, BANKER, GUITARIST, CONSERVATIVE, FEMINIST) and their use 

in categorization are especially influenced by coherence and, consequently, by correlations 

(Patalano et al. 2006). Experimental evidence supports this idea. For instance, Nguyen and 

Chevalier (2015) discovered that 5-year-olds favor coherent concepts when making inductive 

decisions about social concepts. In one of their experiment, participants were told the following: 

“Baseball players like apples, and board game players like bananas. This is Pat. Pat is both a 

baseball player (coherent concept) and a board game player (incoherent concept).” When asked 
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whether they believed Pat would prefer an apple or a banana, most chose the fruit linked to the 

coherent concept. 

Social and natural concepts diverge significantly in their basis of categorization. Natural 

concepts are typically defined by observable features, both behavioral and physical, and remain 

relatively consistent across various cultural and social contexts. Conversely, social concepts are 

defined by socially constructed characteristics or roles; they greatly vary regarding the types of 

features they denote —from patterns of observable behavior to doxastic and ideological 

dispositions— and they show less stability over time and across cultural contexts compared to 

natural concepts. More importantly, natural and social concepts have quite different 

informational profiles. A natural concept provides rather precise information on the distribution 

of properties of exemplars and prevents cross-classification with any other concept at the same 

hierarchical level. Social concepts, on the other hand, allow for a great deal of cross-

classification. Individuals can belong to multiple social concepts simultaneously, and even if 

stereotypes exist to navigate the great diversity that we face during social categorization, there 

is generally no social concept that exhaustively determines the other properties that the 

categorized person might have. 

This leads us to speculate that when we learn and reason about people, we do something 

that resembles “inference learning”5 (Jones and Ross 2011, Yamauchi et al. 2002); that is, we 

try to predict the new concepts into which an individual might be classified, drawing from our 

general knowledge about correlations and selecting those that best match our prior 

understanding of the person. In essence, if we have certain prior knowledge about a person x, 

 

5 Inference learning is often contrasted to “classification learning,” which consists of predicting a concept label by 

identifying diagnostic features of exemplars. 
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we expect x to possess properties that align positively with this knowledge and lack properties 

that are negatively correlated with it. 

This idea offers a straightforward explanation of the conjunction fallacy from a 

‘coherentist’ perspective. In the famous experiment by Tversky and Kahneman (1983), 

participants were presented with a description of Linda, a 31-year-old woman who was single, 

outspoken, and highly intelligent. She majored in philosophy and, as a student, she was deeply 

engaged with issues of discrimination and social justice, also participating in anti-nuclear 

demonstrations. Participants were then asked to assess the likelihood of two scenarios: Linda 

being a bank teller or Linda being both a bank teller and a feminist. Despite the statistical 

principle that the probability of two events occurring together is always less than or equal to 

the probability of either event occurring alone, most participants selected the latter scenario, 

thereby exhibiting the conjunction fallacy. 

From our perspective, the fallacy arises because the property of being a feminist is 

strongly correlated with the set of attributes previously described about Linda. The scenario of 

Linda being a feminist bank teller enhances the coherence of our concept of Linda compared 

to her being merely a bank teller. In other words, if our aim (or the initial presupposition) is to 

maintain relative coherence in our concepts about individuals, then it seems more reasonable 

to predict that Linda is a feminist bank teller. Predicting her as only a bank teller increases the 

uncertainty regarding potential attributes Linda might possess that are positively correlated to 

being a bank teller (e.g., not being a feminist) but negatively correlated to our prior knowledge 

about Linda. In other words, individuals, driven by an inclination for conceptual coherence that 

relies on finding clusters of covarying attributes, may violate statistical principles to form a 

more coherent image of Linda based on the provided description. 

A similar approach to the one we are proposing was developed by Siebel (2002), 

although he relies on Thagard’s coherence model (see also, Trpin and Hartmann 2024). An 
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interesting aspect of Siebel’s analysis is that it connects coherence (from the perspective of 

classical epistemology6)  with inference and then with explanation. For Siebel, subjects are 

inclined to say that Linda is a feminist bank teller because this piece of information allows us 

to establish more ‘inferential connections’ with the previous information we have about her, 

something that positively impacts our ability to generate explanations of Linda’s features. From 

our perspective, the link to explanation emerges naturally as inferential connections are reduced 

to (and explained in terms of) our knowledge of covariations embedded in the structure of the 

concepts we use. 

Interestingly enough, there is experimental evidence on the cross-classification of 

people and induction that supports the previous ideas (Patalano et al. 2003, Patalano et al. 

2006). We seem to have a clear preference for the use of high-coherence categories as a basis 

for the explanation of people’s features, even if our reasoning apparently violates the laws of 

probability. 

7. Conclusion  

The article presents a novel analysis of the nature of conceptual coherence and the methods 

for measuring it. The central idea is that intuitions about coherence arise from identifying 

clusters of covarying properties within concepts (understood as sets of points in a conceptual 

space). These clusters can be synthesized into new summary dimensions that capture the 

intrinsic variability of those properties. Identifying these covariations can reduce the uncertainty 

associated with a concept’s inherent variability. In other words, the perception of a concept as 

 

6 Siebel follows Bonjour in this regard: The coherence of a system of beliefs is diminished to the extent to which 

it is divided into subsystems of beliefs which are relatively unconnected to each other by inferential connections 

(Bonjour 1985, p. 98). 
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coherent or incoherent depends on how effectively our cognitive system compresses the 

information contained in it. 

Our analysis also explores the relationship between coherence and induction, a connection 

consistently highlighted by experimental studies. This relationship is important because it 

underscores the fundamental role of coherence in shaping inductive reasoning, guiding 

predictions and generalizations based on category memberships across different concepts 

(natural, artifacts, and social). 

Another connection worth exploring is that between coherence and the essences that people 

attribute to the categories that our concepts represent. In Gärdenfors and Osta Vélez (to appear), 

we analyze the notion of essence in terms of principal components. The basic idea is that the 

stronger the first principal component(s) are, the more willing subjects are to ascribe an essence 

to the concept (Gelman 2003). The essence of a concept is also seen as the cause of the cause 

of the inductive inferences drawn about it.  

We demonstrate that the theory of conceptual spaces provides a robust framework for 

understanding conceptual coherence. While PCA highlights its potential as a measure of 

coherence, other methods, such as Mixed-Variable Factor Analysis and Multiple 

Correspondence Analysis, may be more suitable for concepts involving continuous and discrete 

variables. Future work could explore these methods to further refine our understanding of 

coherence across diverse conceptual structures, ensuring that the chosen approach fits the 

complexity and diversity of our conceptual thinking. 
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