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Abstract

This paper is an exploration of the nuanced realm of reference frames within the framework
of General Relativity. Our analysis exposes a violation of Earman’s SP1 principle in scenarios
involving fields that are dynamically uncoupled, a common assumption for reference frames.
Unlike other violations, we cannot foreclose it by eliminating background spacetime structure.
Our analysis also leads us to challenge the conventional notion of partial observables as quanti-
ties that are associated with a measuring instrument and expressed within a coordinate system.
Instead, we argue that a partial observable is inherently relational, even if gauge-variant, and
needs dynamical coupling with other partial observables to form a bona-fide, gauge-invariant
complete observables. This perspective allows us to distinguish between being relational and
being gauge-invariant, two properties that are often conflated.
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List of acronyms

UREF: (dynamically) Uncoupled Reference Frame

— IRF: Idealised Reference Frame

— ARF: Aucxiliary Reference Frame
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— DRF: Dynamical Reference Frame

— RREF: Real Reference Frame

KPM: Kinematically Possible Model

DPM: Dynamically Possible Model

SS: Spatiotemporal Symmetry

DS: Dynamical Symmetry
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* (DSI): Dynamical Symmetry-Invariance (i.e. invariance under DS)
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1 General Framework

1.1 Observables

When writing a physical theory in mathematical form, we must associate syntax with semantics:
that is, an interpretation of the formalism. In particular, within the realm of mathematical objects
constituting the theory’s formalism, we are interested in those objects that represent something
about the physical world we wish to describe (or represent) with our theory. These quantities are
sometimes called ‘observables’ of the theory, because they are to be associated with measurement
outcomes!]]

The distinction between a variable of a theory and an observable becomes imperative for a
theory that has mathematical redundancy or gauge freedom. In the context of Hamiltonian theories
this freedom or redundancy appears in the form of certain kinds of constraints that the variables
have to satisfy, called ‘first class constraints’.

Dirac| (2001) (see also Henneaux and Teitelboim| (1994)) formally defined observables for a
theory with first-class constraints as quantities which commuted with all of the first-class con-
straints; or alternatively which assumed a single value for each set of gauge-equivalent states. The
two characterisations coincide because in the Hamiltonian formalism the action of constraints on
quantities via the Poisson bracket generates infinitesimal gauge transformations, and so commuta-
tion implies gauge invariance.

This is the formal definition; in practice explicit local observables may be hard to find. This
is especially the case in vacuum General Relativity (GR). Given a three-dimensional foliation of
spacetime, the first-class constraints of the theory are equivalent to spatial diffeomorphisms along
the leaves of the foliation and to diffeomorphisms whose generators act in the normal directions
to the leaves (‘refoliations’). For spacetimes which satisfy the Einstein equations, there is a neat
correspondence between these Hamiltonian symmetries and the four-dimensional spacetime dif-

feomorphisms of spacetime (Lee and Wald (1990)).

I'This pragmatic characterisation of what an observable is was famously championed by Bergmann, who took up
the ideas of the young Einstein. According to Bergmann ‘‘the equations of mathematical physics cease being mere
mathematics to become honest physics only when one is able (a) to point to spatial quantities and expressions in the
formalism and designate them as ‘observable’ and (b) to prescribe operational procedures by which such quantities
may, in fact, be measured (observed), either by laboratory experiments or by astronomical measurements’’ (Bergmann
(1957)).



Since geometrical objects are dependent on the points of the manifold and the GR gauge group
is thought to be the four-dimensional diffeomorphism group which shuffles the points, objects that
are represented locally just in terms of the points are not gauge-invariant.

One way of addressing this problem was proposed by Rovelli inRovelli (1991), Rovelli (2002b)).
By arguing that gauge invariant Dirac observables are not the only quantities of physical interest in
GR, he proposes a distinction between two notions of observability in a general-relativistic context:
partial gauge-variant observables and complete gauge-invariant observables.

The main idea is to relate different sets of gauge-dependent fields (partial observables) in a
gauge-invariant manner, thus constructing a complete observable by composition. This construc-
tion implements the idea that the physical content of GR lies in the relations between dynamic
quantities represented by partial observables. The idea is that we observe relational evolution be-
tween fields and not evolution with respect to some background unobservable structure, such as
the ‘bare’ points of the manifold.

The mathematical formalism behind this idea was largely clarified by Dittrich in (Dittrich
(2006)Dittrich| (2007))). A partial observable is a physical quantity, written in some coordinate sys-
tem, for which a measurement procedure can be established and which describes the ‘phenomenol-
ogy’. A complete observable is a physical quantity whose value (or probability distribution in the
case of quantum theory) can be uniquely predicted by the relevant theory.

Since a complete observable is constructed from the relationship between two partial observ-
ables, Rovelli distinguishes between dependent partial observables and independent partial observ-
ables. Usually the role of the independent partial observables is played by the quantities giving the
temporal localisation or the spatio-temporal localisation, whereas that of the dependent ones are

given by the values that quantites, e.g. fields, take on those points.

1.2 Reference frames in GR

In what follows we largely quote a classification presented in |Bamonti| (2023) to which we refer
for omitted details. However, this paper complements the classification by adding a fourth class of
reference frames named ‘Auxiliary Reference Frames’. It further clarifies the distinction between

coordinates and ‘Idealised Reference Frames’ (see below), based on their different transformation



properties under active diffeomorphisms.
What is a reference frame in GR? Following Rovelli (1991), we define a reference frame, at
the most basic level, as a set of variables representing a material system. The four possible classes

of reference frames are:

1. The class of ‘Idealised Reference Frames’ (IRFSs), in which any dynamical interaction of the
material system represented by the reference frame is ignored. In particular, two approxima-

tions are adopted:

(a) In the EFEs, the stress-energy tensor of the matter field used as reference frame is

neglected

(b) In the system of dynamical equations, the set of equations that determine the dynamics

of the matter field is neglected

An IRF can be seen as an ‘instantiated’ coordinate system to which a physical referent can be
assigned, but this referent is represented in an extremely approximated wayE] The notion is
distinct from that of a coordinate system, which assumes no instantiation. We will elaborate
later (Section [3)) that IRFs behave differently from a coordinate system under the action of
active diffeomorphism: differently from IRFSs, coordinates are not necessarily affected by
reshufflings of manifold points. Furthermore, while coordinate systems are ‘definitionally’
dynamically uncoupled from the fields of the theory, satisfying no equations of motions

(EOMs), IRF's obtain such a property via an approximation procedureﬂ

2We are using the conceptual and semantic distinction between approximations and idealisations found in Norton
(2012). In short, in the case of an approximation we do not introduce a novel system, as we do in the case of an
idealisation of a target system. Thus, we see coordinates as idealisations, while IRFs are approximations (see also
Bamonti| (2023)).

3Since we will use this terminology often throughout the paper, let us specify what we mean by ‘dynamically
coupled fields’. In general, it is common to define the dynamical coupling relation between two fields as a relation
meaning that: ‘one field influences the dynamics of the other, and viceversa’. For example, this is how Bamonti|(2023))
understands the term coupling, which is also the way commonly used in physics: in terms of fields interacting with
other fields. However, as we will elaborate in Section 2] we will use the term ‘coupling’ in a different way. According
to our use of the term, in every spatiotemporal theory any field is coupled with any other, via the common metric.
Hence, our notion is distinguished from that of influence (see Brown| (2005); [Brown and Lehmkuhl| (2013);(James
Read, |2023|, p.43) and the so-called ‘dynamical approach to spacetime theories’ on some subtleties of the concept of
influence regarding the role of the Minkowski metric in SR). If helpful, the term dynamical coupling used in this paper
can also be referred to in terms of correlation, as distinct from influence.



2. We identify ‘Auxiliary Reference Frames’ (ARFS) as a class of reference fields that extends
over the spacetime manifold and thus they, like IRFs, are assumed to covary with reshuf-
flings of points under an active diffeomorphism (a property also called equivariance). How-
ever, differently from an IRF, an ARF has EOMs describing its dynamics, but these EOMs
are uncoupled from those of the object written with respect to the chosen ARF. Consider
the case of four scalar fields (;5(1 ) I=1,--- 4, satisfying, e.g., a Klein-Gordon dynamics, to
be used as a reference frame for a Lorentzian metric gabﬁ Suppose, for instance, that the
Klein-Gordon fields do not backreact on g,;, and their dynamics is written in terms of an
auxiliary Lorentzian metric 4,5, dynamically uncoupled from the ‘main’ metric g,5. Such a
reference frame will be dynamically uncoupled from the metric g,;. This is because we need
to choose 1nitial data for the four scalar fields, and their evolution will depend on the specific
form of the auxiliary metric 4, and not on the metric g,5, which we are assuming is the only
dynamically relevant one for the theory. To be clear, the difference between IRFs and ARF's
is that while the former are treated as purely kinematical fields, the latter have a well-defined
(and not neglected) dynamics, but that dynamics is uncoupled from the dynamically relevant

metric.

3. The class of ‘Dynamical Reference Frames’ (DRFS) is one in which only approximation (a)
above holds. In brief, the DRF is affected by the metric field (it is acted upon), but the met-
ric field is not affected by the DRF (it does not act), so we are neglecting the backreaction
of the frame on spacetime. A realistic example of a DRF is represented by the set of the
so-called GPS coordinates, introduced in Rovellil (2002a). The idea is to consider the sys-
tem formed by GR coupled with four test bodies, referred to as satellites, which are deemed
point particles following timelike geodesics, meeting at some (starting) point O. Each parti-
cle is associated with its own proper time ¢. Using light signals from the satellites, we can
uniquely associate four numbers q)(’ ). 1 =1,2,3,4 to each spacetime point P in the appro-
priate region. These four numbers represent the four physical variables that constitute the
DREF. Physically they constitute the lightlike distance between the intersection points with

the past lightcone of P and the starting point O. See Fig. [I}

4Here, we are using the abstract index notation (see |Penrose and Rindler| (1987)) to stress that it is a geometrical
object independent from the choice of a coordinate representation.



\ Past light cone of P

Figure 1: Construction of the set of GPS reference frames 4)(1 ),I =1,2,3,4.

4. Finally, the class of ‘Real Reference Frames’ (RRFSs) is one in which both the dynamics of
the chosen material system and its energy-momentum tensor are taken into account. Exam-
ple of RRFs are pressureless dust fields (Brown and Kuchar|(1995); Giesel et al.| (2010)) and
massless scalar field (Rovelli and Smolin| (1994); Domagata et al.| (2010)).

For the sake of simplicity, we will group IRFs and ARFs under the label of ‘Uncoupled Refer-
ence Frames’ (URFSs), since they share the property of being fields defined in the manifold, but do
not interact dynamically with the dynamical system under examination (such as the metric field).

DRFs and RRFs will be grouped under the label of ‘Coupled Reference Frames’ (CRFs).

1.3 Earman’s SP principles

For the aim of this paper, which deals only with general-relativistic theories, we articulate Earman’s

SP principles in terms of internal and external parameters (cf. [Earman| (1992)) or Gomes| (2023a)).

External parameters are the independent variables and, in our main case study, correspond to the
points of the smooth manifold .# . Internal parameters are the value spaces, described by functions
F (or dependent variables) of the independent variables. We assume all our models will share the
same kind of description as (., F,,), where n denotes a generic index listing the functions. Given

some domain of the functions F,,, and before the imposition of the dynamical, differential equations

8



of motion, we define models of the form (.# , F;)) as ‘Kinematically Possible Models’ (KPMs). The
only constraint that we will assume any definition of KPMs satisfy is that the F,, and their domain
are only constrained algebraically: i.e. they are not (implicit) solutions of differential equationsﬂ
Among the models of the KPM’s, there are the models that satisfy the equations of motion of the
theory, a subset of KPMs known as ‘Dynamically Possible Models’ (DPMS)EI

In characterising symmetries of spatiotemporal theories, we need to distinguish between dy-
namical and background structures[] In the case of GR, we take this background structure to be
the smooth manifold .#, or more precisely the smooth structure induced by the maximal atlas of
compatible charts composing .# (for such a ‘chart-nominalist’ way to define ., see Lang (1999);
a different viewpoint can be found in [Kobayashi and Nomizu| (1963), where .# has an intrinsic

smooth structure: see Wallace (2019) for a comprehensive discussion)ﬂ In more detail:

Spacetime Symmetries are a group of transformations that preserve the background structure of
the base set of independent variables. In GR these are the automorphisms of the manifold
A . They form the group Gs = Dif f(.#') of (active) smooth diffeomorphisms, which are

smooth reshufflings of points.

Dynamical Symmetries are a group of transformations that act on all the DPMs and preserve
solutionhood of the dynamical equations. That is, they take solutions to solutions, and a

non-solution to a non-solution. We assume that they form a group, Gp. For the Einstein field

>This generally implies that such models can be represented locally as sections of some appropriate vector bundle.

%These two spaces can also be made more precise in terms of |Anderson| (1967)’s ideas about ‘absolute’ and ‘dy-
namical’ objects, but we will not need this specification here. Roughly, one partitions the structures of the models into
a background, or fixed structure, which all of the models share, and into another, dynamical structure, which, for the
DPMs, satisfies further constraints given by the equations of motion.

7 Again, the definition is often given in terms of absolute objects, even if the notion of an absolute object is am-
biguous (Anderson|(1967); Friedman| (1983); Pooley| (2017)).

8We should point out that there is no common agreement on what to define as spacetime; whether it is: (i) the man-
ifold .#; (ii) the pair (., g) of the manifold and the metric field, representing gravitational field; (iii) the gravitational
field g alone. In cases (i) and (ii), the difference is whether ., seen as a stage on which the dynamical variables play
out their roles, has independent ontological standing from the fields or not. The case (iii) sees .# as a non-ontological
mathematical tool and not as a non-dynamical stage with dynamical fields living over it: spacetime itself is a field
(Rovelli and Gaul| (2000); [Rovelli| (2006); Rovelli and Vidotto|(2015); [Einstein et al.|(2015))).



equations, it is the case that Gp = Dif f(.# )ﬂ
Using these notions, Earman| (1992) defines two principles about symmetries:
(SP1) Any dynamical symmetry is a spacetime symmetry
(SP2) Any spacetime symmetry is a dynamical symmetry

Jointly, the two principles require the dynamical symmetries to be just those induced by auto-
morphisms of .Z. As can be inferred from the above, in GR it is expected that the two principles
are fulfilled. However, as we shall see in Section [2] if we drop some implicit assumption about

GR, this can fail to be the case.

2 Breaking Earman’s SP1 Principle

As will become apparent, at least two fields will be necessary to illustrate some of our claims about,
or inspired by, URFs. So we introduce two generic dynamical fields ®(p) and ¥(p) defined on
. They may be two sets of scalar fields; or a metric field and a scalar field; or a generic tensorial
field and a vector field, and so on. Their nature is irrelevant to the discussion, as long as they are
sections of natural bundles meaning they admit a unique action of the diffeomorphisms.

In what follows, we propose a redefinition of dynamical symmetries (section that will be
used to violate Earman’s (SP1) in section The whole discussion will find a natural application
in the case of URFs.

9We draw attention to the distinction between symmetries of equations and symmetries of specific solutions. As
we shall see below, dynamical symmetries preserve the solutionhood, but do not leave individual DPM’s invariant.
For example in GR, for each solution g, of the EFEs, any diffeomorphism d preserves solutionhood, but generically
it is such that [d*g|.» # gap- The subgroup of Dif f(.#') of the symmetries of g, that is connected to the identity is
the Killing Group of transformations, and is generated by Killing vector fields, which for generic metrics is trivial, i.e.
vanishing. (Pooley} [2022| p.121) argues that a dynamical symmetry ‘‘preserves the form of the dynamical equations’’.
This could be misleading. Preserving the form is not sufficient for a transformation to define a dynamical symmetry.
For example, we can write the general covariant form of Klein-Gordon dynamics in Special Relativity n%V,V,¢ =
0 and any d € Dif f(.#) will preserve its form, but will not preserve its solutionhood as [Pooley| (2022) himself
sustains later (ivi, p. 250). This is because, in a strict understanding of Special Relativity, if (.#, 1, ¢) is a DPM,
then (A, [d*N)wp,d*¢) is a DPM only for those d such that [d*N],, = Nap, which define the Poincaré subgroup of
Diff(A).
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2.1 Generalisation of Dynamical Symmetries

As far as we are aware, the redefinition of dynamical symmetries that we propose below may
generalise the familiar ones in the literature (starting in [Earman| (1992), but encompassing the
already mentioned |Pooley| (2022), Belot (2013), or the more recent Jacobs| (2023)). (Earman,
1992| p.45) distinguishes between non-dynamical (A) and dynamical (P) objects. But only the
latter would correspond to our ® or ¥; we are already assuming that the only background structure
(A) is the smooth structure of the set .#. Earman (ibid.) then defines a dynamical symmetry as

follows:

Consider a model M = (# ,A|,A3, -+ ,P,P>,---) and let @ be a diffeomorphism that
maps .# onto .#. Define My = (M ,A1,As, - ,®*P|,®*Py,---). Now P will be
said to be a dynamical symmetry just in case for any M € My, it is also the case that

Mg € M7 [here Mt represents the set of all DPMs].
So in our notation:

(Standard) Dynamical Symmetry: d € Gp C Dif f(.#) such that (iff): (.#,0,¥) is a DPM,
iff (M ,d"O,d"P) is.

Thus, a dynamical symmetry is given by a single element d € Gp C Dif f(.#) acting on every
dynamical field of the theory. Note, for future reference, that the definition allows (.#,d*®,¥)
or (M ,0,d*¥V) as DPMs; but in that case d € Dif f(.#) cannot be classified as a dynamical
symmetry. We will attribute this restriction on what has been usually countenanced as a dynam-
ical symmetry in the literature to the presumption that all the dynamical objects are dynamically
coupled o each other. Such hidden assumption is a necessary condition to consider dynamical
symmetries only as Standard ones. We will show below in Section[2.2that it is easy to extend the
formalism once this presumption is dropped

Recall that in section[I.3] we distinguished two types of symmetries: spacetime and dynamical.

We now re-define them as follows in terms of models:

Spacetime Symmetry (SS): d € Gs C Diff(#) act as: (A ,0,¥) — (A ,d*®,d"¥), for all
KPMs.

11



Dynamical Symmetry (DS): d, f € Gp C Diff(.#) x Dif f(.#') such that (iff): (#,0,¥) is a
DPM, iff (.#,d*®, f*'P) is.

DS is still defined in the broad spirit of section it is any transformation that preserves
solutionhood for ® and W and here, for convenience, we also require it to preserve the smooth
background of .#. In order to recover DS, the passage in [Earman/s definition of (Standard) Dy-
namical Symmetries that would have to be modified lies in restricting Gp to be a subgroup of
Diff(.#). In fact, this excludes the case in which e.g. Gp = Dif f(.#) x Dif f(.#') and different
elements of the Gp group act independently on the different dynamical fields, which is allowed in
our more permissive deﬁnitionmm

At this point, we can introduce a notation that will be useful for the remainder of the paper.
Just to keep the discussion as simple as possible we consider the case in which our fields ¥ and ®
are two sets of four scalar fields, constituting .# — R* maps, which we will call ¢; and ¢ (just for
consistency of notation of the paper when referring to scalar fields). For any d € Gs C Dif f(.#),
we require that: given x € R* and (¢;)~!(x) = p € 4, then (d*¢;) ! (x) = d(p) Thus ¢;(p) =
d*¢1(d(p)) = x. Since the same is true for ¢»(p), defining ¢(¢;) := P 0 q)l_l : R* - R*, we can

conclude that:

$2(¢1) = d" $2(dst), Vd € Diff(M). (RI)

Here is a short proof:

Proof. §2(¢1)(x) = ¢2(91 ' (x)) = ¢2(p) = d*$2(d(p)) = d* 9o ((d*¢1) " (). H

10Tn the case in which d = f € Gp = Diff(.#) is a single diffeomorphic map, DS is used in the literature to
define the so-called ‘Diff-Invariance’ for a theory (Pooley| (2017); Read| (2016)). Using our definition of DS, ‘Diff-
Invariance’ can be generalised to the case in which d and f are two different elements of Gp = Dif f(.#) x Dif f ().
Our analysis suggests that|Pooley’s Diff-Invariance presumes dynamical coupling between fields of the theory, so our
generalisation on Gp is a priori blocked and a single transformation (d € Gp = Dif f(.#)) acts in the same way on
every dynamical field.

""The quoted passage would define a more encompassing view of dynamical symmetries if we interpret ‘just in
case’, not as an ‘iff’, as it is probably intended, but as an ‘if’. While one verse of the implication is correct, that is: ‘if
(M ,0,F) is a DPM iff (A ,d*©,d*P) is, then d gives a dynamical symmetry’, the other verse: ‘if d is a dynamical
symmetry, then {.# ,0,¥) is a DPM iff (.# ,d*®,d*¥) is, for d € Dif f(.# )’ excludes a range of other possible cases
characterising d as a dynamical symmetry. In fact, there may be dynamical symmetries that map DPMs to DPMs and
yet cannot be described with a single d, and so don’t fit this format. In other words, there are dynamical symmetries
that are not spacetime symmetries.

12p = (¢1)~"(x) is usually called a dressed point (Harlow and qiang Wu| (2021); Goeller et al.| (2022)), that is a
spacetime point defined through four values some physical fields.
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That is, both fields change together by the same transformation, so that the relations between
them do not changeE] Thus, invariance under SS will be referred to as ‘(point) Reshuffling-
Invariance’ (RI). That is, (RI) is the requirement that nothing physically salient varies under
smooth reshuffling of the manifold points. (RI) coincides with the demand that a quantity be
relational, that is, SS preserves spatiotemporal relations, and so a quantity which is invariant under

SS can also be called relational.

2.2 (SP1)* Principle

The validity of (SP1) principle presupposes the validity of the restriction of Gp group to a sub-
group of Dif f(.#). However, as we will show in this section, once we admit a generalisation of
dynamical symmetries as in (DS) above, (SP1) can be broken without changing the background
spatiotemporal structure.

As we already argued, the validity of such restrictions on Gp and, therefore, the validity of
(SP1) hinges on the tacit assumption, taken as a necessary (but not sufficient) condition, that all
the dynamical fields of the theory are dynamically coupled to the metric, and therefore, implicitly,
to each otherm Such assumption has also a consequence, gua sufficient condition, on the allowed

models, that is:

If all fields are dynamically coupled to each other, then:

if (.#,0,¥) is a DPM, neither (. ,d*®,¥) nor (.4 ,0,d"¥) are, Vd € Gp["|

BEven if we are not going to use it, we can also define invariance under DS, which will be referred to as ‘Dy-
namical Symmetry-Invariance (DSI) . In the case of dynamically uncoupled fields, this condition reads as: ¢,(¢1) =
i oa(d 1) (or d* o (f*¢1)),Vd, f € Gp CDif f(M) x Dif f(A ). Of course, when the quantity ¢ (1) # f*¢2(d* 1),
(DSI) is not met, but (RI) still is, just in virtue of the property of geometric fields to equivary with the action of a single
diffeomorphism.

141t should be noted that in the context of GR this assumption coincides with one of the core tenets of the theory,
namely, the universality of gravitational interaction which acts as a ‘common cause’ (we are echoing |Reichenbach
(1956)’s well-known ‘common cause argument’). This assumption, therefore, is tacit for good reason. In the following,
we are finding something strange when we foil this tacit assumption, which is the violation of SP1. This is consistent
with a violation of the universality of gravitational coupling and it shows the connection between the two arguments.
As we will see later, dropping this tenet is inspired by the possibility of URFs. Usually, reference frames’ dynamics is
approximated because, in practice, it is considered a good approximation not to include the influence of the reference
frame, which is thus ‘external’, in the system under study.

13



Consequently, in order to preserve solutionhood, a dynamical symmetry acting on dynamically
coupled fields must act equally on all fields and cannot act independently on one or the other. It is
the case that DS derives from the dropping of the condition that all fields are dynamically coupled
to each other, which results in the possibility of extending the dynamical symmetry group. That
is: according to DS not only combinations as (.#,0,d*¥), or (# ,d*®,¥) are possible models
(as in the case of (Standard) Dynamical Symmetry), but in such a case d is defined as a dynamical

symmetry for such uncoupled fields:

If all fields aren’t dynamically coupled to each other, then:

if (#,0,¥) is a DPM, both (.#,d*®,¥) and (.#,d*®,¥) are, Vd € Gp.
However, also in this case it is still valid that:

If all fields are dynamically coupled to each other, then:

if (A#,0,¥)isa DPM (A ,d* O, f*¥) is not, for d # f € Gp.

Keeping the working assumption made in the previous section to deal with two scalar fields in a
general-relativistic setting, let’s here consider the case where (@, ¢;) are dynamically uncoupled.
In that case, both models (.#, ¢1,¢,) and (A ,d* ¢y, f*¢),Vd, f € Gp = Diff(M) x Dif f (M)
are DPMs. Again without loss of generality, we restrict attention to the subset of transformations
(M, 91,02) — (M ,d*q)l,q)z)m Namely, since the fields are uncoupled, the Gp-group can act
independently on either ¢, or ¢, while preserving solutionhood.

We now show why this breaks Earman’s (SP1) symmetry principle.

In the case we introduced, both (.Z,d*¢y,d*¢,) and (.# ,d* ¢, @,) are related to (A, Py, d2)
by DS. However, only (#,d*¢,,d*¢,) is related to (.#,¢;,¢>) by SS, since spacetime sym-

SFollowing what we stated in footnote (i.e. that in every spacetime theory all fields are dynamically coupled with
each other, due to the presence of a common metric field), also in SR, if <R4, Nap, ©,¥) is a DPM, then e.g., the triple
([A*N]ap, A*©,P) is not, YA € Gp = Poin(R*). The same applies for Galilean transformations in Newtonian physics.
One possible way to break the coupling between fields is to neglect the dynamics of at least one of them. In this regard,
we would like to specify that SP1 implies that all fields appearing in KPMs are dynamically coupled, according to our
definition, not just dynamical ones.

16This case is not to be confused with the case where a dynamical symmetry d is an automorphism of ¢, acting as

<'//’¢17¢2> - <'///7d*¢lad*¢2> = <*%ad*¢17¢2>'
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metries, by smoothly reshuffling the underlying spacetime points, require that the same, single
diffeomorphism act on every internal parameter defined on .#, ‘simultaneously’. In other words,
it is only SS that necessarily preserves all spatiotemporal relations. So here we have a dynamical
symmetry which is not a spacetime symmetry, since it doesn’t preserve all spatiotemporal relations
and so it breaks (SP1), as expected. Put differently, when we have a general-relativistic theory in
which we use dynamically uncoupled fields, the dynamical symmetries are not ‘‘just a reflection
of the automorphisms of .Z”’ (Gomes (2023b)).

This allows us to advance a reformulation of the (SP1) principle:

(SP1)* Principle: every dynamical symmetry is a spacetime symmetry, only for dynamically cou-

pled fields.
Earman| (1992) sustains that:

The theory that fails (SP1) is thus using more space-time structure than is needed to

support the laws, and slicing away this superfluous structure serves to restore (SP1).

A textbook counterexample of (SP1) is given by Newtonian mechanics. For Newtonian space-
time has a standard of absolute rest, but this structure is not preserved by the boost symmetry of the
EOMs. One realigns the structure to the laws, thus regaining (SP1), by formulating an equivalent
theory in Neo-Newtonian, or Galilean spacetime (Earman| (1992)). However, in our case, .# has
very little structure: there is nothing to get rid of. The defining Gs-group of our base set of external
parameters is, apart from arbitrary point permutations, or merely continuous but not differentiable
transformations, the largest one, that is Dif f(.# ); but decreasing the structure of the manifold
to only these automorphisms (e.g. continuous but not smooth) as spacetime symmetries would
not help bridge the gap to the dynamical symmetries Consequently, Earman’s argument to save
(SP1) fails in the case we have illustrated here.

Earman’s (SP2) principle, on the other hand, is preserved. In fact, given (#,¢;, ), every
model (A ,d*¢;,d* ¢,) related by a spacetime symmetry is also related by a dynamically symme-

try.

"The approach of defining the structure of a space by the group of transformations that leave it invariant descends
from the Klein-Erlangen Program. In the Kleinian sense, .# is defined as the space structured by the group Dif f(.#).
See Wallace| (2019)).
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It goes without saying that all the above finds a natural application when dealing with URF's
in the theory. In fact, recognising the possibility of URFs motivated our redefinition of dynamical
symmetries. This is a relevant argument in favour of the need for the exploration and critical
analysis of the concept of reference frames.

In this regard, we should mention that URFs also include IRFs, which are non-dynamical
reference frames, i.e. they do not have any dynamics entering the models of the theory. This
is not a limitation to the discussion above, since given an IRF ¢ and a DPM (.7, ¢, ¢,) —
defined by taking into account only the dynamical equations of the dynamical fields ¢; — we can
obtain a DPM (.Z ,d* ¢y, ¢,) where d only acts on the dynamical field ¢; and therefore does not
represent a spatiotemporal symmetry transformation, thus violating (SP1). Conversely, given a
(SS) transformation d under which all the fields equivary, the model (.Z,d*¢,d* ¢,) will be a
DPM (in which the solutionhood to be preserved only concerns the dynamic equations of ¢; under

reshufflings of points). Thus (SP2) is still preserved.

3 Two critiques on partial observables

3.1 Partial observables must be dynamically coupled to each other to form

a complete, gauge-invariant observable

As we discussed in section [I.1] the standard way of introducing partial observables is to have
a measuring procedure that can be associated with them. This makes them ‘observables’ in the
ordinary sense. However, in the various practical examples of partial observables given in the
literature (see e.g. (Rovelli, 2004, Sec. 2.3.1) or (Rovelli, 2002b, Sec.2)), the need for partial
observables to be dynamically coupled in order to form a complete observable is never explicitly
emphasised. On the contrary, Rovelli in his analysis of the significance of coordinates in GR, takes
what we have classified as IRFs (which he calls undetermined physical coordinates) to be partial
observables, in the same way as partial observables consisting, for example, of GPS coordinates.

In fact, he states that:

The coordinates are partial observables in (i) physical coordinates, with an interpre-

tation as positions with respect to objects whose equations of motions are taken into
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account and (ii) physical coordinates with an interpretation as positions with respect to

objects whose equations of motions are ignored [Our italics]m (Rovelli, 2004} p.63)

As we will elaborate on below, the claim about (ii) is false. Not every pair of physical quantities
to which measuring instruments can be associated can play the role of partial observables. Bona
fide partial observables must be dynamically coupled to each other, in order for their relation to
constitute a complete observable.

Suppose that we have a metric field g, satisfying the EFEs, and four scalar fields {q)([ )} to be
used as a reference frame, each satisfying e.g. Klein-Gordon dynamics with distinct initial data so
that their independent values describe a (local) diffeomorphism U — R* for some U C .#. To be
clear, fields (g, ¢()) are a particular case of (®,¥) introduced in the previous section.

Let us assume that in fact .# is diffeomorphic to R*, so that we can choose U = .#. This
assumption is equivalent to the requirement that the set of scalar fields is invertible everywhere.
Though this cannot be generically upheld, it serves to illustrate our claims in the remainder of the
paper Note that, due to our assumptions, any two values for the scalar fields are related by a
diffeomorphism of .2, since (¢(!)) 10 ¢'!) € Dif f (). Given any doublet (g,;, ¢'!)), the metric
can be parametrised by the (four) values of the scalar fields, used as reference frames. Thus, we
can write: g77() := ga» 0 (¢)) . Such a quantity is commonly defined a ‘relational observable’.

Let us summarise the requirements for a quantity to be a complete observable:

(RI): It must remain invariant under reshufflings of manifold points, via active diffeomorphisms;

the quantity is relational

(DET): Its dynamical evolution must be deterministic.

8We interpret the term ‘ignored’ as meaning that objects whose coordinates are used as ‘physical coordinates’
(which we call reference frames) are dynamically uncoupled from the other dynamical objects in the theory, through
an approximation procedure. Also, but secondarily, this quote should be corrected, in light of what Rovelli| writes
on page 62: ‘‘[the physical] coordinates X* are interpreted as the spacetime location of reference objects whose
dynamics we have chosen to ignore.”’. Thus the corrected quote in the text should read as: *‘[...] physical coordinates
with an interpretation as positions of objects whose equations of motions are ignored’’, thus clarifying that we ignore
dynamical equations of the reference objects.

1t is very difficult to think of a realistic situation in which a reference frame would cover the entire manifold.
In fact, four Klein-Gordon scalars won’t generally form a bijection to a four dimensional ‘empirical manifold’. For
example, they could end up having the same values everywhere on R*, thus representing only one (physical) point.
Of course, tipically that is not going to happen, but the question is how do we know, based on initial values? Thus, in
order to indicate viable reference frames, ¢ should be at least locally invertible, i.e. in some open set U C .# and for
a given chart, det(d¢/dx*) # 0. Here, we choose to avoid stipulating a region U C ., since stipulating the region
would be like stipulating the reference of a spacetime point p.
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These requirements also define what we will call the ‘Gauge-Invariance’ (GI) property: (GI) <+
[(RI) A(DET)], where A is the logical conjunction stating that (GI) is true iff both (RI) and (DET)
are true Depending on whether (Z)([ ) is an URF or a CRF, we can conclude whether or not
g17(0) is a complete, gauge-invariant observable. It is useful to analyse the two cases in terms of
initial values and determinism, since we already showed that (RI) is always satisfied for g;;(¢) for

any frame field.

i) As in our argument against (SP1) using uncoupled fields, in the case of URFs, any ¢ ()
(whose Klein-Gordon equations of motion are now neglected) is still compatible with all
the isometric metrics, i.e. (.#,gup, o )> and (A, [d* g)ap, o )) are legitimate models for the
dynamics, for all d € Diff(//l)

Moreover, since we are dealing with reference frames, while it is true that g, o (¢(1 ))_1
is (RI), so is [d*glap 0 ((p(l))*l. And we have no reason to start with one g, rather than
with an isomorphic metric, even if we assume we have reason to start with one q)(’ ) rather
than any of its isomorphic distributions. That is, even if we are given a field ¢(!) extending
throughout spacetime, and even if we are also given initial data for the metric, we will not
find a unique evolution for the (frame representation of the) metric. Consequently, (DET)
is not met. The reason, as we mentioned above, is simply that any (p(’ ) is compatible with
any gup, including d*g,,. For each of the choices, [d*g|., © (¢)(1))_1 is (RI). But we still
have effectively an action of Dif f(.#') left, so we have the redundancy that we started off
with, before choosing a reference frame representation. Thus a set of degrees of freedom

that constitute an URF cannot be defined as partial observables, since by definition partial

20More appropriately, we could use (DSI) (see footnote , instead of (GI). Here is an important distinction: gauge
symmetry could be construed as the automorphisms of a background structure, in which case they do not depend on
the equations of motions, or they can be defined as dynamical symmetries that preserve the dynamics. For example,
(Read, [2016, §2.2) accepts that KPMs could be gauge-related, thus dynamical equations need not to be involved. But
in order to keep with the most common nomenclature on this corner of the philosophy of physics literature, we adopt
(GI) as opposed to (DSI).

2INote that the term isometry is being used here as a synonym for the induced isomorphism on the fields, through
pull-back of the diffeomorphism d (see (Belot, 2017, p.959)). A distinction is therefore being made between isometries
and automorphisms, only the latter leaving the metric invariant. This is not an obvious choice. In the physical
literature, for example in (Landsman} [2021] p.71) an isometry is defined as a metric-preserving diffeomorphism: i.e.
a diffeomorphism such that [d*g]., = ga»- Thus isometry and automorphism coincide. In other words, isometries are
understood as flows of Killing fields (ibid. p.57). Here we advance the hypothesis that this distinction reflects the
different understanding of the word isometry. In the first case one means iso-(geo)metry: ‘same geometry’, where a
geometry is an equivalence class of diff-related metrics. In the second case iso-metry: ‘same metric’.
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observables could be used to construct a uniqgue complete observable whose evolution is

deterministic.

ii) In the case of CRFs, when (.7, gu,,¢")) is a DPM, then (., [d*gla, D) is not, for a
generic d € Dif f(.#'). Here, a choice of q)(l ) (rather than any of its isomorphic distributions)
and initial data give us a unique representation for gz;(¢). Thus oD and g, are bona-fide
partial observables: not only is the composition g, © ((I)U ))*1 (RI), but generically only
the diagonal action of the active diffeomorphism, relating (gup, ¢V and ([d*g]up,d*0")),
preserves solutionhood. For this reason, here a choice for ¢! fixes the gauge for g;;. At

most one of all of the distributions in the isometry class of g,, is compatible with each

distribution of (])(1 ) and (DET) is ensured.

3.2 Partial observables are relational, but gauge-variant observables

A partial observable is formally defined in Rovelli (2002b)) as a certain, measurable, gauge-variant
quantity, expressed in a given coordinate system {x*} € R*. For consistency with the previous
section, one example would be a metric field guv(xp ). However, coordinates are often understood
as mathematical artefacts, without any physical instantiation. In this understanding, how is it
possible for partial observables to be measurable? In practice, all comparisons between theory and
experiment rely on a coordinate system that is physically instantiated, that is, an URF. Thus we
claim that it would be more in line with its claims about observability to define a partial observable
as a relational quantity g;;(¢), where {q)(l)} could be a set of four scalar degrees of freedom
constituting e.g. an IRF. That way, we still save the distinction between partial and complete
observables, since g7;7(¢) is a partial, not a complete observable. But at the same time, we have
a description that is closer to that of a measurement. What we measure is not a quantity written
in an uninstantiated coordinate system, but a quantity in a certain reference frame ¢)(1 ) which is
being approximated to such an extent that it plays the exact same role as a set of coordinates x*,
as far as the gauge-variance requirement of the observable is concerned. Said differently, an IRF
is a frame approximated to such an extent that its dynamical significance has evaporated away,

leaving behind only the standard notion of coordinate patches, plus the property of equivariance
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under point reshufﬂingsF_ZI

Only by recognising that partial observables are relational, but gauge-variant quantities writ-
ten in an IRF, is it possible to understand that we can associate to them a measuring procedure
(possibly abstract, since IRFs are approximated representations of a frame: see footnote PEI

It is worth expanding here on the link between relationalism, gauge-invariance and determin-
ism.

The naive notion of a relational quantity as a spatiotemporal relation between degrees of free-

dom (here represented by physical fields) can be formalised by stipulating that a quantity is ‘re-
lational’ iff it is (RI). In fact, as shown above, a relational quantity written in terms of an IRF is
(RI), but not (GI), since requirement (DET) above, necessary for (GI) is not met.
In the other direction, there is only one way to satisfy (DET) without satisfying (RI): that is if the
theory includes time-independent local reshufflings. Such transformations don’t spoil determin-
ism (Wallace (2002)), even if the theory includes quantities that vary under them. Thus, generally,
(DET) is not sufficient for either (GI) or (RI).

Consequently, according to our definitions, the following logical relations hold:

Relational = (RI) (L1

Relational <+~ (DET) (L2)

22IRFs are just a helpful approximation, but we only measure complete observables: (RI) quantities expressed
w.r.t. some CRF. When we take measurements, we are necessarily dealing with physical quantities and all physical
quantities, given the universality of gravitational interaction, are dynamically coupled. IRFs are approximations
we adopt ‘pretending the reference frame is not there’. We use them to construct (relational) partial observables,
which model our measurement outcomes. However, strictly speaking, we should always use CRFs to model our
measurements. This is because our measurements concern real physical fields, which IRFs cannot be. See (Bamonti,
2023| sec.4).

23This, moreover, substantiates the position held by |Pooley and Read| (2021) that empirical data are relational, thus
giving rise to what they call ‘underdetermination problem’. The problem consists essentially in the impossibility
for an observer making a measurement to discriminate whether he is measuring g.»(p) or [d*gl.(p). However, if
a partial observable — to which we can associate a measuring procedure —- can be written as g, (p), as argued in
Rovelli| (2002b)), then an observer can discriminate between the two measurements, since they are different partial
observables. Nonetheless, from our point of view, the underdetermination problem is a well-posed problem, since
what is ill-posed is the definition of a partial observable, as a non-relational quantity. Thus, since empirical data are
relational (i.e. (RI)), an observer cannot empirically distinguish between g,,(p) and [d*gl.(p). Furthermore, our
redefinition of partial observables as relational quantities supports the ‘immanentist’ view of empirical (in)equivalence
((Pooley and Read, 2021}, p.10)), since the ‘immanent observer’ is in fact a reference frame.
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(GI) — (DET)

(L3)
(GI) + (DET)
(GI) — Relational
(L4)
(GI) <+ Relational

The straightforward interpretation of complete observables is aligned with our notion of (GI).
This means that it is not straightforwardly true that relational observables are complete observables,

a lesson that is not always acknowledged in the literature.

3.2.1 Point-coincidence argument: an operational stance

We now investigate two possible interpretations of what in the literature is called the point-coincidence
argument (Einstein (1916); Stachel (1989)). We will show that, by further analysing Einstein’s
statements, it is possible to give an interpretation of the term ‘relational’ that does not coincide
with ‘gauge-invariant’, as it is usually (tacitly) understood.

To a certain extent, we agree with Rovelli and others that any measurement in physics is per-

formed in a given reference frame. In Anderson’s words:

All measurements are comparisons between different physical systems. (Anderson,

1967, p.128)

But see also (Rovell1, |1991,, p.298):

Any measurement in physics is performed in a given reference system.

Or (Landau and Lifshitz, (1987, p.1):

For the description of processes taking place in nature, one must have a system of

reference.

Einstein’s early point-coincidence argument—stating that the physical content of a theory relies
in spacetime coincidences of material point particles—can be construed similarly. In particular, he

sustains that ‘‘all our spacetime verifications invariably amount to a determination of spacetime
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coincidences [Our italics]’’ |[Einstein| (1916). That is, ‘‘physical experiences [are] always assess-
ments of point coincidences [Our italics]’’ Einstein (1919). This supports our claim that we can
only measure relational quantities and not coordinate dependent quantities. So, the output of a
physical measurement of a metric will always take the relational form g; J(q))@

However, as we have illustrated here, even if we stick to ‘relational’ quantities we do not
guarantee unique evolution and determinism, which are necessary for the definition of complete
observables.

Rovelli endorses an ‘operational’ reading of the point-coincidence argument—which under-
stands observability in the sense of measurability. But Rovelli takes this reading to further support
observability in Dirac’s sense, and so to support predictability of complete observables. This is
how he realizes the connection between relationism and gauge-invariance. For instance, in Rovelli

(2004)) he states that

The GPS observables [which are complete ones] are [- - - ] precisely Einstein’s ‘‘space-

time coincidences’’ 2]

According to our reading, on the other hand, the point-coincidence argument could also be
understood as supporting the observability of partial observables written in relational terms in the
sense of measurability only. Thus, we are not compelled to embrace, to the same degree, the
connection between relationism and gauge—invariance@

Thus, we partly concur with Rovelli about the significance of Einstein’s point-coincidence

argument: namely, about the connection between verification or empirical experience and rela-

24 A spatiotemporal point-coincidence is at least a “five-party relationship’, pace (Westman and Sonego), 2009, p.25)
who claim that ‘“‘[---] in order to identify uniquely a point-coincidence [-- -] locally the values of four different quan-
tities are enough’’. What we mean is that a point P € .# can be uniquely defined using, e.g., four independent scalars:
P is the point in which the value of scalar field ¢(!) has value x, ¢2) has value y and so on. However, the point itself
thus defined is not empirically measurable. A point-coincidence, that is an empirically measurable, gua DI, quantity,
needs five quantities to be defined: four scalars that define the point P and a quantity on P. Therefore, the localisation
of an ‘event’ is defined by some relation like g,,(¢): the event E is not happening at an apriori assigned place and
time, but the place and time are defined by the ‘happening’ of the event.

25 A minor criticism of this claim is that it should be correctly stated as: ‘‘GPS observables are precisely a type of
spatiotemporal coincidences’’. The point is that GPS observables are spacetime coincidences (in Rovelli’s sense), but
not all spacetime coincidences are GPS observables.

261t is worth pointing out that to avoid a recursive prescription of the measurement concept — that is, we should
define the measurement of the IRF d)(l ), understood as a partial observable written in some other IRF (ﬁ(l ), and so on —
one possible strategy we see is to argue that partial observables are not independently measurable. Partial observables
should be intended as measurable only “simultaneously” in their definition of a spacetime coincidence of the kind

811(9).
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tionism. Consequently, we take as a necessary condition for a quantity to be empirically accessible
that it be (RI), according to However, Rovelli, takes an interpretation of observability ‘in the
sense of Dirac’, which implies (DET), to follow from this connection. And, as seen in no such
implication holds. It would hold only conditionally on the further assumption that all measurable
quantities are dynamically coupled. Agreed: it is a defensible, often tacit, assumption. But given
the fact that it is often dropped in the context of reference frames, it is one that needs to be made
nonetheless. Therefore, according to our interpretation, relationalism does not imply logically
gauge invariance; according to Rovelli’s, it does.

To sum up, we showed that Rovelli’s 2002b| definition of a partial observable as ‘‘a physical
quantity to which we can associate a (measuring) procedure leading to a number’’ (ibid.) may
contain various sources of misunderstandings that require careful analysis, given the central role
of the classification between partial and complete observables in the literature of the foundations

of GR and quantum gravity.

4 Summary

The main results of this work are as follows:

In Section (I, we extended the classification found in Bamonti (2023) on possible reference
frames in GR, identifying the class of ARFs: reference frames that are instantiated but whose dy-
namics are uncoupled to the metric, e.g. defined in terms of an auxiliary metric. Furthermore, we
have proposed a coarser yet effective classification, which identifies reference frames as dynami-

cally uncoupled from the geometry (URF's) or dynamically coupled to it (CRFSs).

In Section |2} we defined reshuffling-invariance (RI) as the invariance property under spatiotem-
poral symmetries (SS). We also introduced a more general definition of dynamical symmetry (DS)
that includes the possibility of independent actions of symmetry group elements on dynamical
objects (section [2.). This more general definition, in the case of dynamically uncoupled fields,
allowed us to highlight a violation of Earman’s 1992 (SP1) principle, identifying dynamical sym-
metries that are not spatiotemporal symmetries (section [2.2)). Moreover, this failure cannot be

remedied by eliminating some background spacetime structure. Although this failure is avoided
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by an assumption of dynamical coupling between all the fields such an assumption is not manda-
tory either for mathematical consistency nor for physical coherence. Indeed, our results were
motivated by recognising the possibility of URFs; a possibility that has been explored in the liter-
ature. In other words, the violation of SP1 by uncoupled fields may only suggest that these fields
should not be taken as physical fields in GR. Indeed, doing otherwise would violate a core princi-
ple of gravitational physics: universality. Nonethless, since in the literature dealing with quantum
reference frames (see e.g. Kabel et al. (2024)) and references therein), such uncoupled fields are
frequently employed as reference frames thus, in these contexts, it is worthwhile to establish just
which familiar principles of general relativity must be abandoned, and with which consequences.
This section highlighted the fundamental importance of a critical analysis of reference frames,
which has the potential to bring to light details of the foundations of space-time theories otherwise

taken for granted.

We then pursued two criticisms of the notion of partial observables (Section [3). The first
criticism concerns the possibility of two partial observables being combined in a relational manner
to form a complete observable. Only in the case where the two partial observables are dynamically
coupled to each other, and thus one of them is used as a CRF, is it possible to obtain a bona-fide
complete observable: i.e. a (RI) quantity whose evolution is deterministic (DET). The property of
being (RI) and (DET) was called gauge-invariance (GI). (Section [3.1).

The second criticism concerns the very formal definition of partial observables. For strictly
speaking, coordinates hold no physical significance in GR since they are are not physically in-
stantiated. Thus it is necessary to define a partial observable relationally, in terms of an IRF:
partial observables are relational, but gauge-variant quantities. In this manner, we have also clari-
fied the conceptual distinction between relationism and gauge-invariance, two terms that are often
conflated. (Section [3.2).

These reflections led us to operationally interpret the point-coincidence argument. In accor-
dance with this interpretation, the observability of spacetime coincidences refers to their relational
character, not to the fact that they constitute gauge-invariant events and, therefore, observability
does not imply predictability. The verifications of spacetime coincidences mentioned by |[Einstein

(1916) are measurements of relational observables; but relational does not imply gauge-invariant.
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(Section [3.2.1).

25



References

Anderson, J. L. (1967, May). Principles of relativity physics. San Diego, CA: Academic Press.
Bamonti, N. (2023, January). What is a reference frame in general relativity?

Belot, G. (2013). Symmetry and equivalence. In R. Batterman (Ed.), The Oxford Handbook of
Philosophy of Physics, pp. 318-339. Oxford University Press.

Belot, G. (2017, April). Fifty million elvis fans can’t be wrong. Noiis 52(4), 946-981.

Bergmann, P. G. (1957). Topics in the theory of general relativity. In W. A. Benjamin (Ed.),
Lectures in Theoretical Physics, Brandeis University Summer Institute in Theoretical Physics.

New York.
Brown, H. R. (2005, December). Physical Relativity. Oxford, England: Clarendon Press.

Brown, H. R. and D. Lehmkuhl (2013). Einstein, the reality of space, and the action-reaction

principle.

Brown, J. D. and K. V. Kuchar (1995, May). Dust as a standard of space and time in canonical

quantum gravity. Physical Review D 51(10), 5600-5629.

Dirac, P. (2001). Lectures on Quantum Mechanics. Beltfer Graduate School of Science, monograph

series. Dover Publications.

Dittrich, B. (2006, October). Partial and complete observables for canonical general relativity.

Classical and Quantum Gravity 23(22), 6155-6184.

Dittrich, B. (2007, August). Partial and complete observables for hamiltonian constrained systems.

General Relativity and Gravitation 39(11), 1891-1927.

Domagata, M. et al. (2010, Nov). Gravity quantized: Loop quantum gravity with a scalar field.
Phys. Rev. D 82, 104038.

Earman, J. (1992, April). World enough and space-time. World Enough and Space-Time. London,
England: MIT Press.

26



Einstein, A. (1916). Hamilton’s Principle and the General Theory of Relativity. Sitzungsber.
Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 1111-1116.

Einstein, A. (1919). Lecture notes for course on general relativity at the university of berlin. CPAE,

Vol 7, Doc.19.

Einstein, A., H. Gutfreund, and J. Renn (2015). Relativity: The Special & the General Theory.

Princeton University Press.

Friedman, M. (1983). Foundations of space-time theories. Princeton Legacy Library. Princeton,

NIJ: Princeton University Press.

Giesel, K. et al. (2010, February). Manifestly gauge-invariant general relativistic perturbation

theory: I. foundations. Classical and Quantum Gravity 27(5), 055005.

Goeller, C. et al. (2022). Diffeomorphism-invariant observables and dynamical frames in gravity:

reconciling bulk locality with general covariance.

Gomes, H. (2023a). Same-diff? conceptual similarities between gauge transformations and diffeo-

morphisms. forthcoming.
Gomes, H. (2023b). Understanding the symmetries of physics. forthcoming.

Harlow, D. and J. giang Wu (2021). Algebra of diffeomorphism-invariant observables in jackiw-

teitelboim gravity. Journal of High Energy Physics 2022.

Henneaux, M. and C. Teitelboim (1994, August). Quantization of gauge systems. Princeton, NJ:

Princeton University Press.

Jacobs, C. (2023). Are dynamic shifts dynamical symmetries? Philosophy of Science 90(5),
1352-1362.

James Read (2023, November). Background independence in classical and quantum gravity. Lon-

don, England: Oxford University Press.

27



Kabel, V., A.-C. de la Hamette, L. Apadula, C. Cepollaro, H. Gomes, J. Butterfield, and C. Brukner
(2024). Identification is pointless: Quantum reference frames, localisation of events, and the

quantum hole argument.

Kobayashi, S. and K. Nomizu (1963). Foundations of Differential Geometry. Number v. 1 in Foun-
dations of Differential Geometry [by] Shoshichi Kobayashi and Katsumi Nomizu. Interscience

Publishers.

Landau, L. D. and E. M. Lifshitz (1987, January). The classical theory of fields (4 ed.). Oxford,

England: Butterworth-Heinemann.

Landsman, K. (2021). Foundations of General Relativity: From Einstein to Black Holes. Radboud

University Press.
Lang, S. (1999). Fundamentals of Differential Geometry. Springer New York.

Lee, J. and R. M. Wald (1990, March). Local symmetries and constraints. Journal of Mathematical
Physics 31(3), 725-743.

Norton, J. D. (2012, April). Approximation and idealization: Why the difference matters. Philos-
ophy of Science 79(2), 207-232.

Penrose, R. and W. Rindler (1987, February). Cambridge monographs on mathematical physics
spinors and space-time: Two-spinor calculus and relativistic fields volume 1. Cambridge, Eng-

land: Cambridge University Press.

Pooley, O. (2017). Background independence, diffeomorphism invariance and the meaning of

coordinates. In Towards a Theory of Spacetime Theories, pp. 105-143. Springer New York.
Pooley, O. (2022). The Reality of Spacetime. University of Oxford.

Pooley, O. and J. A. M. Read (2021). On the mathematics and metaphysics of the hole argument.
The British Journal for the Philosophy of Science 0(ja), null.

Read, J. (2016). Background independence in classical and quantum gravity.

Reichenbach, H. (1956). The Direction of Time. Mineola, N.Y.: Dover Publications.

28



Rovelli, C. (1991, February). What is observable in classical and quantum gravity? Classical and

Quantum Gravity 8(2), 297-316.
Rovelli, C. (2002a, Jan). Gps observables in general relativity. Phys. Rev. D 65, 044017.
Rovelli, C. (2002b, jun). Partial observables. Physical Review D 65(12).
Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.
Rovelli, C. (2006). Chapter 2: The Disappearance of Space and Time, pp. 25-36. Elsevier.

Rovelli, C. and M. Gaul (2000). Loop quantum gravity and the meaning of diffeomorphism invari-

ance. In Lecture Notes in Physics, pp. 277-324. Springer Berlin Heidelberg.

Rovelli, C. and L. Smolin (1994, January). The physical hamiltonian in nonperturbative quantum

gravity. Physical Review Letters 72(4), 446—449.

Rovelli, C. and F. Vidotto (2015). Covariant Loop Quantum Gravity: An Elementary Introduction

to Quantum Gravity and Spinfoam Theory. Cambridge University Press.

Stachel, J. (1989). Einstein’s search for general covariance, 1912-1915. In D. Howard and
J. Stachel (Eds.), Einstein and the History of General Relativity, pp. 1-63. Birkhiuser.

Wallace, D. (2002). Time-dependent symmetries: The link between gauge symmetries and in-
determinism. In K. Brading and E. Castellani (Eds.), Symmetries in Physics: Philosophical

Reflections, pp. 163—173. Cambridge University Press.

Wallace, D. (2019, August). Who’s afraid of coordinate systems? an essay on representation of
spacetime structure. Studies in History and Philosophy of Science Part B: Studies in History and
Philosophy of Modern Physics 67, 125—136.

Westman, H. and S. Sonego (2009). Coordinates, observables and symmetry in relativity. Annals

Phys. 324, 1585-1611.

29



	General Framework
	Observables
	Reference frames in GR
	Earman's SP principles

	Breaking Earman's SP1 Principle
	Generalisation of Dynamical Symmetries
	(SP1)* Principle

	Two critiques on partial observables
	Partial observables must be dynamically coupled to each other to form a complete, gauge-invariant observable
	Partial observables are relational, but gauge-variant observables
	Point-coincidence argument: an operational stance


	Summary

