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Abstract

This paper is an exploration of the nuanced realm of reference frames within the framework
of General Relativity. Our analysis exposes a violation of Earman’s SP1 principle in scenarios
involving fields that are dynamically uncoupled, a common assumption for reference frames.
Unlike other violations, we cannot foreclose it by eliminating background spacetime structure.
Our analysis also leads us to challenge the conventional notion of partial observables as quanti-
ties that are associated with a measuring instrument and expressed within a coordinate system.
Instead, we argue that a partial observable is inherently relational, even if gauge-variant, and
needs dynamical coupling with other partial observables to form a bona-fide, gauge-invariant
complete observables. This perspective allows us to distinguish between being relational and
being gauge-invariant, two properties that are often conflated.
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List of acronyms

• URF: (dynamically) Uncoupled Reference Frame

– IRF: Idealised Reference Frame

– ARF: Auxiliary Reference Frame

• CRF: (dynamically) Coupled Reference Frame

– DRF: Dynamical Reference Frame

– RRF: Real Reference Frame

• KPM: Kinematically Possible Model

• DPM: Dynamically Possible Model

• SS: Spatiotemporal Symmetry

• DS: Dynamical Symmetry

• (RI): (point) Reshuffling-Invariance (i.e. relationality, or invariance under SS)

• (DSI): Dynamical Symmetry-Invariance (i.e. invariance under DS)

• (DET): Deterministic dynamical evolution

• (GI): Gauge-Invariance [(GI) ↔ (RI)∧ (DET)]
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1 General Framework

1.1 Observables

When writing a physical theory in mathematical form, we must associate syntax with semantics:

that is, an interpretation of the formalism. In particular, within the realm of mathematical objects

constituting the theory’s formalism, we are interested in those objects that represent something

about the physical world we wish to describe (or represent) with our theory. These quantities are

sometimes called ‘observables’ of the theory, because they are to be associated with measurement

outcomes.1

The distinction between a variable of a theory and an observable becomes imperative for a

theory that has mathematical redundancy or gauge freedom. In the context of Hamiltonian theories

this freedom or redundancy appears in the form of certain kinds of constraints that the variables

have to satisfy, called ‘first class constraints’.

Dirac (2001) (see also Henneaux and Teitelboim (1994)) formally defined observables for a

theory with first-class constraints as quantities which commuted with all of the first-class con-

straints; or alternatively which assumed a single value for each set of gauge-equivalent states. The

two characterisations coincide because in the Hamiltonian formalism the action of constraints on

quantities via the Poisson bracket generates infinitesimal gauge transformations, and so commuta-

tion implies gauge invariance.

This is the formal definition; in practice explicit local observables may be hard to find. This

is especially the case in vacuum General Relativity (GR). Given a three-dimensional foliation of

spacetime, the first-class constraints of the theory are equivalent to spatial diffeomorphisms along

the leaves of the foliation and to diffeomorphisms whose generators act in the normal directions

to the leaves (‘refoliations’). For spacetimes which satisfy the Einstein equations, there is a neat

correspondence between these Hamiltonian symmetries and the four-dimensional spacetime dif-

feomorphisms of spacetime (Lee and Wald (1990)).

1This pragmatic characterisation of what an observable is was famously championed by Bergmann, who took up
the ideas of the young Einstein. According to Bergmann ‘‘the equations of mathematical physics cease being mere
mathematics to become honest physics only when one is able (a) to point to spatial quantities and expressions in the
formalism and designate them as ‘observable’ and (b) to prescribe operational procedures by which such quantities
may, in fact, be measured (observed), either by laboratory experiments or by astronomical measurements’’ (Bergmann
(1957)).
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Since geometrical objects are dependent on the points of the manifold and the GR gauge group

is thought to be the four-dimensional diffeomorphism group which shuffles the points, objects that

are represented locally just in terms of the points are not gauge-invariant.

One way of addressing this problem was proposed by Rovelli in Rovelli (1991), Rovelli (2002b).

By arguing that gauge invariant Dirac observables are not the only quantities of physical interest in

GR, he proposes a distinction between two notions of observability in a general-relativistic context:

partial gauge-variant observables and complete gauge-invariant observables.

The main idea is to relate different sets of gauge-dependent fields (partial observables) in a

gauge-invariant manner, thus constructing a complete observable by composition. This construc-

tion implements the idea that the physical content of GR lies in the relations between dynamic

quantities represented by partial observables. The idea is that we observe relational evolution be-

tween fields and not evolution with respect to some background unobservable structure, such as

the ‘bare’ points of the manifold.

The mathematical formalism behind this idea was largely clarified by Dittrich in (Dittrich

(2006),Dittrich (2007)). A partial observable is a physical quantity, written in some coordinate sys-

tem, for which a measurement procedure can be established and which describes the ‘phenomenol-

ogy’. A complete observable is a physical quantity whose value (or probability distribution in the

case of quantum theory) can be uniquely predicted by the relevant theory.

Since a complete observable is constructed from the relationship between two partial observ-

ables, Rovelli distinguishes between dependent partial observables and independent partial observ-

ables. Usually the role of the independent partial observables is played by the quantities giving the

temporal localisation or the spatio-temporal localisation, whereas that of the dependent ones are

given by the values that quantites, e.g. fields, take on those points.

1.2 Reference frames in GR

In what follows we largely quote a classification presented in Bamonti (2023) to which we refer

for omitted details. However, this paper complements the classification by adding a fourth class of

reference frames named ‘Auxiliary Reference Frames’. It further clarifies the distinction between

coordinates and ‘Idealised Reference Frames’ (see below), based on their different transformation
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properties under active diffeomorphisms.

What is a reference frame in GR? Following Rovelli (1991), we define a reference frame, at

the most basic level, as a set of variables representing a material system. The four possible classes

of reference frames are:

1. The class of ‘Idealised Reference Frames’ (IRFs), in which any dynamical interaction of the

material system represented by the reference frame is ignored. In particular, two approxima-

tions are adopted:

(a) In the EFEs, the stress-energy tensor of the matter field used as reference frame is

neglected

(b) In the system of dynamical equations, the set of equations that determine the dynamics

of the matter field is neglected

An IRF can be seen as an ‘instantiated’ coordinate system to which a physical referent can be

assigned, but this referent is represented in an extremely approximated way.2 The notion is

distinct from that of a coordinate system, which assumes no instantiation. We will elaborate

later (Section 3) that IRFs behave differently from a coordinate system under the action of

active diffeomorphism: differently from IRFs, coordinates are not necessarily affected by

reshufflings of manifold points. Furthermore, while coordinate systems are ‘definitionally’

dynamically uncoupled from the fields of the theory, satisfying no equations of motions

(EOMs), IRFs obtain such a property via an approximation procedure.3

2We are using the conceptual and semantic distinction between approximations and idealisations found in Norton
(2012). In short, in the case of an approximation we do not introduce a novel system, as we do in the case of an
idealisation of a target system. Thus, we see coordinates as idealisations, while IRFs are approximations (see also
Bamonti (2023)).

3Since we will use this terminology often throughout the paper, let us specify what we mean by ‘dynamically
coupled fields’. In general, it is common to define the dynamical coupling relation between two fields as a relation
meaning that: ‘one field influences the dynamics of the other, and viceversa’. For example, this is how Bamonti (2023)
understands the term coupling, which is also the way commonly used in physics: in terms of fields interacting with
other fields. However, as we will elaborate in Section 2, we will use the term ‘coupling’ in a different way. According
to our use of the term, in every spatiotemporal theory any field is coupled with any other, via the common metric.
Hence, our notion is distinguished from that of influence (see Brown (2005); Brown and Lehmkuhl (2013);(James
Read, 2023, p.43) and the so-called ‘dynamical approach to spacetime theories’ on some subtleties of the concept of
influence regarding the role of the Minkowski metric in SR). If helpful, the term dynamical coupling used in this paper
can also be referred to in terms of correlation, as distinct from influence.
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2. We identify ‘Auxiliary Reference Frames’ (ARFs) as a class of reference fields that extends

over the spacetime manifold and thus they, like IRFs, are assumed to covary with reshuf-

flings of points under an active diffeomorphism (a property also called equivariance). How-

ever, differently from an IRF, an ARF has EOMs describing its dynamics, but these EOMs

are uncoupled from those of the object written with respect to the chosen ARF. Consider

the case of four scalar fields φ (I), I = 1, · · · ,4, satisfying, e.g., a Klein-Gordon dynamics, to

be used as a reference frame for a Lorentzian metric gab.4 Suppose, for instance, that the

Klein-Gordon fields do not backreact on gab, and their dynamics is written in terms of an

auxiliary Lorentzian metric hab, dynamically uncoupled from the ‘main’ metric gab. Such a

reference frame will be dynamically uncoupled from the metric gab. This is because we need

to choose initial data for the four scalar fields, and their evolution will depend on the specific

form of the auxiliary metric hab and not on the metric gab, which we are assuming is the only

dynamically relevant one for the theory. To be clear, the difference between IRFs and ARFs

is that while the former are treated as purely kinematical fields, the latter have a well-defined

(and not neglected) dynamics, but that dynamics is uncoupled from the dynamically relevant

metric.

3. The class of ‘Dynamical Reference Frames’ (DRFs) is one in which only approximation (a)

above holds. In brief, the DRF is affected by the metric field (it is acted upon), but the met-

ric field is not affected by the DRF (it does not act), so we are neglecting the backreaction

of the frame on spacetime. A realistic example of a DRF is represented by the set of the

so-called GPS coordinates, introduced in Rovelli (2002a). The idea is to consider the sys-

tem formed by GR coupled with four test bodies, referred to as satellites, which are deemed

point particles following timelike geodesics, meeting at some (starting) point O. Each parti-

cle is associated with its own proper time φ . Using light signals from the satellites, we can

uniquely associate four numbers φ (I), I = 1,2,3,4 to each spacetime point P in the appro-

priate region. These four numbers represent the four physical variables that constitute the

DRF. Physically they constitute the lightlike distance between the intersection points with

the past lightcone of P and the starting point O. See Fig. 1.

4Here, we are using the abstract index notation (see Penrose and Rindler (1987)) to stress that it is a geometrical
object independent from the choice of a coordinate representation.
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Figure 1: Construction of the set of GPS reference frames φ (I), I = 1,2,3,4.

4. Finally, the class of ‘Real Reference Frames’ (RRFs) is one in which both the dynamics of

the chosen material system and its energy-momentum tensor are taken into account. Exam-

ple of RRFs are pressureless dust fields (Brown and Kuchař (1995); Giesel et al. (2010)) and

massless scalar field (Rovelli and Smolin (1994); Domagała et al. (2010)).

For the sake of simplicity, we will group IRFs and ARFs under the label of ‘Uncoupled Refer-

ence Frames’ (URFs), since they share the property of being fields defined in the manifold, but do

not interact dynamically with the dynamical system under examination (such as the metric field).

DRFs and RRFs will be grouped under the label of ‘Coupled Reference Frames’ (CRFs).

1.3 Earman’s SP principles

For the aim of this paper, which deals only with general-relativistic theories, we articulate Earman’s

SP principles in terms of internal and external parameters (cf. Earman (1992) or Gomes (2023a)).

External parameters are the independent variables and, in our main case study, correspond to the

points of the smooth manifold M . Internal parameters are the value spaces, described by functions

F (or dependent variables) of the independent variables. We assume all our models will share the

same kind of description as ⟨M ,Fn⟩, where n denotes a generic index listing the functions. Given

some domain of the functions Fn, and before the imposition of the dynamical, differential equations
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of motion, we define models of the form ⟨M ,Fn⟩ as ‘Kinematically Possible Models’ (KPMs). The

only constraint that we will assume any definition of KPMs satisfy is that the Fn and their domain

are only constrained algebraically: i.e. they are not (implicit) solutions of differential equations.5

Among the models of the KPM’s, there are the models that satisfy the equations of motion of the

theory, a subset of KPMs known as ‘Dynamically Possible Models’ (DPMs).6

In characterising symmetries of spatiotemporal theories, we need to distinguish between dy-

namical and background structures.7 In the case of GR, we take this background structure to be

the smooth manifold M , or more precisely the smooth structure induced by the maximal atlas of

compatible charts composing M (for such a ‘chart-nominalist’ way to define M , see Lang (1999);

a different viewpoint can be found in Kobayashi and Nomizu (1963), where M has an intrinsic

smooth structure: see Wallace (2019) for a comprehensive discussion).8 In more detail:

Spacetime Symmetries are a group of transformations that preserve the background structure of

the base set of independent variables. In GR these are the automorphisms of the manifold

M . They form the group GS ≡ Di f f (M ) of (active) smooth diffeomorphisms, which are

smooth reshufflings of points.

Dynamical Symmetries are a group of transformations that act on all the DPMs and preserve

solutionhood of the dynamical equations. That is, they take solutions to solutions, and a

non-solution to a non-solution. We assume that they form a group, GD. For the Einstein field

5This generally implies that such models can be represented locally as sections of some appropriate vector bundle.
6These two spaces can also be made more precise in terms of Anderson (1967)’s ideas about ‘absolute’ and ‘dy-

namical’ objects, but we will not need this specification here. Roughly, one partitions the structures of the models into
a background, or fixed structure, which all of the models share, and into another, dynamical structure, which, for the
DPMs, satisfies further constraints given by the equations of motion.

7Again, the definition is often given in terms of absolute objects, even if the notion of an absolute object is am-
biguous (Anderson (1967); Friedman (1983); Pooley (2017)).

8We should point out that there is no common agreement on what to define as spacetime; whether it is: (i) the man-
ifold M ; (ii) the pair (M ,g) of the manifold and the metric field, representing gravitational field; (iii) the gravitational
field g alone. In cases (i) and (ii), the difference is whether M , seen as a stage on which the dynamical variables play
out their roles, has independent ontological standing from the fields or not. The case (iii) sees M as a non-ontological
mathematical tool and not as a non-dynamical stage with dynamical fields living over it: spacetime itself is a field
(Rovelli and Gaul (2000); Rovelli (2006); Rovelli and Vidotto (2015); Einstein et al. (2015)).
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equations, it is the case that GD ≡ Di f f (M ).9

Using these notions, Earman (1992) defines two principles about symmetries:

(SP1) Any dynamical symmetry is a spacetime symmetry

(SP2) Any spacetime symmetry is a dynamical symmetry

Jointly, the two principles require the dynamical symmetries to be just those induced by auto-

morphisms of M . As can be inferred from the above, in GR it is expected that the two principles

are fulfilled. However, as we shall see in Section 2, if we drop some implicit assumption about

GR, this can fail to be the case.

2 Breaking Earman’s SP1 Principle

As will become apparent, at least two fields will be necessary to illustrate some of our claims about,

or inspired by, URFs. So we introduce two generic dynamical fields Θ(p) and Ψ(p) defined on

M . They may be two sets of scalar fields; or a metric field and a scalar field; or a generic tensorial

field and a vector field, and so on. Their nature is irrelevant to the discussion, as long as they are

sections of natural bundles meaning they admit a unique action of the diffeomorphisms.

In what follows, we propose a redefinition of dynamical symmetries (section 2.1) that will be

used to violate Earman’s (SP1) in section 2.2. The whole discussion will find a natural application

in the case of URFs.
9We draw attention to the distinction between symmetries of equations and symmetries of specific solutions. As

we shall see below, dynamical symmetries preserve the solutionhood, but do not leave individual DPM’s invariant.
For example in GR, for each solution gab of the EFEs, any diffeomorphism d preserves solutionhood, but generically
it is such that [d∗g]ab ̸= gab. The subgroup of Di f f (M ) of the symmetries of gab that is connected to the identity is
the Killing Group of transformations, and is generated by Killing vector fields, which for generic metrics is trivial, i.e.
vanishing. (Pooley, 2022, p.121) argues that a dynamical symmetry ‘‘preserves the form of the dynamical equations’’.
This could be misleading. Preserving the form is not sufficient for a transformation to define a dynamical symmetry.
For example, we can write the general covariant form of Klein-Gordon dynamics in Special Relativity ηab∇a∇bφ =
0 and any d ∈ Di f f (M ) will preserve its form, but will not preserve its solutionhood as Pooley (2022) himself
sustains later (ivi, p. 250). This is because, in a strict understanding of Special Relativity, if (M ,ηab,φ) is a DPM,
then (M , [d∗η ]ab,d∗φ) is a DPM only for those d such that [d∗η ]ab = ηab, which define the Poincaré subgroup of
Di f f (M ).
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2.1 Generalisation of Dynamical Symmetries

As far as we are aware, the redefinition of dynamical symmetries that we propose below may

generalise the familiar ones in the literature (starting in Earman (1992), but encompassing the

already mentioned Pooley (2022), Belot (2013), or the more recent Jacobs (2023)). (Earman,

1992, p.45) distinguishes between non-dynamical (A) and dynamical (P) objects. But only the

latter would correspond to our Θ or Ψ; we are already assuming that the only background structure

(A) is the smooth structure of the set M . Earman (ibid.) then defines a dynamical symmetry as

follows:

Consider a model M = ⟨M ,A1,A2, · · · ,P1,P2, · · · ⟩ and let Φ be a diffeomorphism that

maps M onto M . Define MΦ = ⟨M ,A1,A2, · · · ,Φ∗P1,Φ
∗P2, · · · ⟩. Now Φ will be

said to be a dynamical symmetry just in case for any M ∈MT , it is also the case that

MΦ ∈MT [here MT represents the set of all DPMs].

So in our notation:

(Standard) Dynamical Symmetry: d ∈ GD ⊆ Di f f (M ) such that (iff): ⟨M ,Θ,Ψ⟩ is a DPM,

iff ⟨M ,d∗Θ,d∗Ψ⟩ is.

Thus, a dynamical symmetry is given by a single element d ∈ GD ⊆ Di f f (M ) acting on every

dynamical field of the theory. Note, for future reference, that the definition allows ⟨M ,d∗Θ,Ψ⟩

or ⟨M ,Θ,d∗Ψ⟩ as DPMs; but in that case d ∈ Di f f (M ) cannot be classified as a dynamical

symmetry. We will attribute this restriction on what has been usually countenanced as a dynam-

ical symmetry in the literature to the presumption that all the dynamical objects are dynamically

coupled to each other. Such hidden assumption is a necessary condition to consider dynamical

symmetries only as Standard ones. We will show below in Section 2.2 that it is easy to extend the

formalism once this presumption is dropped

Recall that in section 1.3, we distinguished two types of symmetries: spacetime and dynamical.

We now re-define them as follows in terms of models:

Spacetime Symmetry (SS): d ∈ GS ⊆ Di f f (M ) act as: ⟨M ,Θ,Ψ⟩ → ⟨M ,d∗Θ,d∗Ψ⟩, for all

KPMs.
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Dynamical Symmetry (DS): d, f ∈ GD ⊆ Di f f (M )×Di f f (M ) such that (iff): ⟨M ,Θ,Ψ⟩ is a

DPM, iff ⟨M ,d∗Θ, f ∗Ψ⟩ is.

DS is still defined in the broad spirit of section 1.3: it is any transformation that preserves

solutionhood for Θ and Ψ and here, for convenience, we also require it to preserve the smooth

background of M . In order to recover DS, the passage in Earman’s definition of (Standard) Dy-

namical Symmetries that would have to be modified lies in restricting GD to be a subgroup of

Di f f (M ). In fact, this excludes the case in which e.g. GD = Di f f (M )×Di f f (M ) and different

elements of the GD group act independently on the different dynamical fields, which is allowed in

our more permissive definition.10 11

At this point, we can introduce a notation that will be useful for the remainder of the paper.

Just to keep the discussion as simple as possible we consider the case in which our fields Ψ and Θ

are two sets of four scalar fields, constituting M →R4 maps, which we will call φ1 and φ2 (just for

consistency of notation of the paper when referring to scalar fields). For any d ∈ GS ⊆ Di f f (M ),

we require that: given x ∈ R4 and (φ1)
−1(x) = p ∈ M , then (d∗φ1)

−1(x) = d(p).12 Thus φ1(p)≡

d∗φ1(d(p)) = x. Since the same is true for φ2(p), defining φ2(φ1) := φ2 ◦φ
−1
1 : R4 → R4, we can

conclude that:

φ2(φ1)≡ d∗
φ2(d∗φ1), ∀d ∈ Di f f (M ). (RI)

Here is a short proof:

Proof. φ2(φ1)(x) = φ2(φ
−1
1 (x)) = φ2(p) = d∗φ2(d(p)) = d∗φ2((d∗φ1)

−1(x)).

10In the case in which d ≡ f ∈ GD ≡ Di f f (M ) is a single diffeomorphic map, DS is used in the literature to
define the so-called ‘Diff-Invariance’ for a theory (Pooley (2017); Read (2016)). Using our definition of DS, ‘Diff-
Invariance’ can be generalised to the case in which d and f are two different elements of GD =Di f f (M )×Di f f (M ).
Our analysis suggests that Pooley’s Diff-Invariance presumes dynamical coupling between fields of the theory, so our
generalisation on GD is a priori blocked and a single transformation (d ∈ GD ≡ Di f f (M )) acts in the same way on
every dynamical field.

11The quoted passage would define a more encompassing view of dynamical symmetries if we interpret ‘just in
case’, not as an ‘iff ’, as it is probably intended, but as an ‘if’. While one verse of the implication is correct, that is: ‘if
⟨M ,Θ,Ψ⟩ is a DPM iff ⟨M ,d∗Θ,d∗Ψ⟩ is, then d gives a dynamical symmetry’, the other verse: ‘if d is a dynamical
symmetry, then ⟨M ,Θ,Ψ⟩ is a DPM iff ⟨M ,d∗Θ,d∗Ψ⟩ is, for d ∈ Di f f (M )’ excludes a range of other possible cases
characterising d as a dynamical symmetry. In fact, there may be dynamical symmetries that map DPMs to DPMs and
yet cannot be described with a single d, and so don’t fit this format. In other words, there are dynamical symmetries
that are not spacetime symmetries.

12 p = (φ1)
−1(x) is usually called a dressed point (Harlow and qiang Wu (2021); Goeller et al. (2022)), that is a

spacetime point defined through four values some physical fields.
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That is, both fields change together by the same transformation, so that the relations between

them do not change.13 Thus, invariance under SS will be referred to as ‘(point) Reshuffling-

Invariance’ (RI). That is, (RI) is the requirement that nothing physically salient varies under

smooth reshuffling of the manifold points. (RI) coincides with the demand that a quantity be

relational, that is, SS preserves spatiotemporal relations, and so a quantity which is invariant under

SS can also be called relational.

2.2 (SP1)* Principle

The validity of (SP1) principle presupposes the validity of the restriction of GD group to a sub-

group of Di f f (M ). However, as we will show in this section, once we admit a generalisation of

dynamical symmetries as in (DS) above, (SP1) can be broken without changing the background

spatiotemporal structure.

As we already argued, the validity of such restrictions on GD and, therefore, the validity of

(SP1) hinges on the tacit assumption, taken as a necessary (but not sufficient) condition, that all

the dynamical fields of the theory are dynamically coupled to the metric, and therefore, implicitly,

to each other.14 Such assumption has also a consequence, qua sufficient condition, on the allowed

models, that is:

If all fields are dynamically coupled to each other, then:

if ⟨M ,Θ,Ψ⟩ is a DPM, neither ⟨M ,d∗
Θ,Ψ⟩ nor ⟨M ,Θ,d∗

Ψ⟩ are, ∀d ∈ GD.
15

13Even if we are not going to use it, we can also define invariance under DS, which will be referred to as ‘Dy-
namical Symmetry-Invariance (DSI)’. In the case of dynamically uncoupled fields, this condition reads as: φ2(φ1) ≡
f ∗φ2(d∗φ1)(or d∗φ2( f ∗φ1)),∀d, f ∈GD ⊆Di f f (M )×Di f f (M ). Of course, when the quantity φ2(φ1) ̸= f ∗φ2(d∗φ1),
(DSI) is not met, but (RI) still is, just in virtue of the property of geometric fields to equivary with the action of a single
diffeomorphism.

14It should be noted that in the context of GR this assumption coincides with one of the core tenets of the theory,
namely, the universality of gravitational interaction which acts as a ‘common cause’ (we are echoing Reichenbach
(1956)’s well-known ‘common cause argument’). This assumption, therefore, is tacit for good reason. In the following,
we are finding something strange when we foil this tacit assumption, which is the violation of SP1. This is consistent
with a violation of the universality of gravitational coupling and it shows the connection between the two arguments.
As we will see later, dropping this tenet is inspired by the possibility of URFs. Usually, reference frames’ dynamics is
approximated because, in practice, it is considered a good approximation not to include the influence of the reference
frame, which is thus ‘external’, in the system under study.

13



Consequently, in order to preserve solutionhood, a dynamical symmetry acting on dynamically

coupled fields must act equally on all fields and cannot act independently on one or the other. It is

the case that DS derives from the dropping of the condition that all fields are dynamically coupled

to each other, which results in the possibility of extending the dynamical symmetry group. That

is: according to DS not only combinations as ⟨M ,Θ,d∗Ψ⟩, or ⟨M ,d∗Θ,Ψ⟩ are possible models

(as in the case of (Standard) Dynamical Symmetry), but in such a case d is defined as a dynamical

symmetry for such uncoupled fields:

If all fields aren’t dynamically coupled to each other, then:

if ⟨M ,Θ,Ψ⟩ is a DPM, both ⟨M ,d∗
Θ,Ψ⟩ and ⟨M ,d∗

Θ,Ψ⟩ are, ∀d ∈ GD.

However, also in this case it is still valid that:

If all fields are dynamically coupled to each other, then:

if ⟨M ,Θ,Ψ⟩ is a DPM ⟨M ,d∗
Θ, f ∗Ψ⟩ is not, for d ̸= f ∈ GD.

Keeping the working assumption made in the previous section to deal with two scalar fields in a

general-relativistic setting, let’s here consider the case where (φ1,φ2) are dynamically uncoupled.

In that case, both models ⟨M ,φ1,φ2⟩ and ⟨M ,d∗φ1, f ∗φ2⟩,∀d, f ∈ GD = Di f f (M )×Di f f (M )

are DPMs. Again without loss of generality, we restrict attention to the subset of transformations

⟨M ,φ1,φ2⟩ → ⟨M ,d∗φ1,φ2⟩.16 Namely, since the fields are uncoupled, the GD-group can act

independently on either φ1 or φ2, while preserving solutionhood.

We now show why this breaks Earman’s (SP1) symmetry principle.

In the case we introduced, both ⟨M ,d∗φ1,d∗φ2⟩ and ⟨M ,d∗φ1,φ2⟩ are related to ⟨M ,φ1,φ2⟩

by DS. However, only ⟨M ,d∗φ1,d∗φ2⟩ is related to ⟨M ,φ1,φ2⟩ by SS, since spacetime sym-

15Following what we stated in footnote 3 (i.e. that in every spacetime theory all fields are dynamically coupled with
each other, due to the presence of a common metric field), also in SR, if ⟨R4,ηab,Θ,Ψ⟩ is a DPM, then e.g., the triple
([Λ∗η ]ab,Λ

∗Θ,Ψ) is not, ∀Λ ∈ GD ≡ Poin(R4). The same applies for Galilean transformations in Newtonian physics.
One possible way to break the coupling between fields is to neglect the dynamics of at least one of them. In this regard,
we would like to specify that SP1 implies that all fields appearing in KPMs are dynamically coupled, according to our
definition, not just dynamical ones.

16This case is not to be confused with the case where a dynamical symmetry d is an automorphism of φ2, acting as
⟨M ,φ1,φ2⟩ → ⟨M ,d∗φ1,d∗φ2⟩ ≡ ⟨M ,d∗φ1,φ2⟩.
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metries, by smoothly reshuffling the underlying spacetime points, require that the same, single

diffeomorphism act on every internal parameter defined on M , ‘simultaneously’. In other words,

it is only SS that necessarily preserves all spatiotemporal relations. So here we have a dynamical

symmetry which is not a spacetime symmetry, since it doesn’t preserve all spatiotemporal relations

and so it breaks (SP1), as expected. Put differently, when we have a general-relativistic theory in

which we use dynamically uncoupled fields, the dynamical symmetries are not ‘‘just a reflection

of the automorphisms of M ’’ (Gomes (2023b)).

This allows us to advance a reformulation of the (SP1) principle:

(SP1)* Principle: every dynamical symmetry is a spacetime symmetry, only for dynamically cou-

pled fields.

Earman (1992) sustains that:

The theory that fails (SP1) is thus using more space-time structure than is needed to

support the laws, and slicing away this superfluous structure serves to restore (SP1).

A textbook counterexample of (SP1) is given by Newtonian mechanics. For Newtonian space-

time has a standard of absolute rest, but this structure is not preserved by the boost symmetry of the

EOMs. One realigns the structure to the laws, thus regaining (SP1), by formulating an equivalent

theory in Neo-Newtonian, or Galilean spacetime (Earman (1992)). However, in our case, M has

very little structure: there is nothing to get rid of. The defining GS-group of our base set of external

parameters is, apart from arbitrary point permutations, or merely continuous but not differentiable

transformations, the largest one, that is Di f f (M ); but decreasing the structure of the manifold

to only these automorphisms (e.g. continuous but not smooth) as spacetime symmetries would

not help bridge the gap to the dynamical symmetries.17 Consequently, Earman’s argument to save

(SP1) fails in the case we have illustrated here.

Earman’s (SP2) principle, on the other hand, is preserved. In fact, given ⟨M ,φ1,φ2⟩, every

model ⟨M ,d∗φ1,d∗φ2⟩ related by a spacetime symmetry is also related by a dynamically symme-

try.

17The approach of defining the structure of a space by the group of transformations that leave it invariant descends
from the Klein-Erlangen Program. In the Kleinian sense, M is defined as the space structured by the group Di f f (M ).
See Wallace (2019).
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It goes without saying that all the above finds a natural application when dealing with URFs

in the theory. In fact, recognising the possibility of URFs motivated our redefinition of dynamical

symmetries. This is a relevant argument in favour of the need for the exploration and critical

analysis of the concept of reference frames.

In this regard, we should mention that URFs also include IRFs, which are non-dynamical

reference frames, i.e. they do not have any dynamics entering the models of the theory. This

is not a limitation to the discussion above, since given an IRF φ2 and a DPM ⟨M ,φ1,φ2⟩ —

defined by taking into account only the dynamical equations of the dynamical fields φ1 — we can

obtain a DPM ⟨M ,d∗φ1,φ2⟩ where d only acts on the dynamical field φ1 and therefore does not

represent a spatiotemporal symmetry transformation, thus violating (SP1). Conversely, given a

(SS) transformation d under which all the fields equivary, the model ⟨M ,d∗φ1,d∗φ2⟩ will be a

DPM (in which the solutionhood to be preserved only concerns the dynamic equations of φ1 under

reshufflings of points). Thus (SP2) is still preserved.

3 Two critiques on partial observables

3.1 Partial observables must be dynamically coupled to each other to form

a complete, gauge-invariant observable

As we discussed in section 1.1, the standard way of introducing partial observables is to have

a measuring procedure that can be associated with them. This makes them ‘observables’ in the

ordinary sense. However, in the various practical examples of partial observables given in the

literature (see e.g. (Rovelli, 2004, Sec. 2.3.1) or (Rovelli, 2002b, Sec.2)), the need for partial

observables to be dynamically coupled in order to form a complete observable is never explicitly

emphasised. On the contrary, Rovelli in his analysis of the significance of coordinates in GR, takes

what we have classified as IRFs (which he calls undetermined physical coordinates) to be partial

observables, in the same way as partial observables consisting, for example, of GPS coordinates.

In fact, he states that:

The coordinates are partial observables in (i) physical coordinates, with an interpre-

tation as positions with respect to objects whose equations of motions are taken into
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account and (ii) physical coordinates with an interpretation as positions with respect to

objects whose equations of motions are ignored [Our italics].18 (Rovelli, 2004, p.63)

As we will elaborate on below, the claim about (ii) is false. Not every pair of physical quantities

to which measuring instruments can be associated can play the role of partial observables. Bona

fide partial observables must be dynamically coupled to each other, in order for their relation to

constitute a complete observable.

Suppose that we have a metric field gab, satisfying the EFEs, and four scalar fields {φ (I)} to be

used as a reference frame, each satisfying e.g. Klein-Gordon dynamics with distinct initial data so

that their independent values describe a (local) diffeomorphism U → R4 for some U ⊂ M . To be

clear, fields (gab,φ
(I)) are a particular case of (Θ,Ψ) introduced in the previous section.

Let us assume that in fact M is diffeomorphic to R4, so that we can choose U = M . This

assumption is equivalent to the requirement that the set of scalar fields is invertible everywhere.

Though this cannot be generically upheld, it serves to illustrate our claims in the remainder of the

paper.19 Note that, due to our assumptions, any two values for the scalar fields are related by a

diffeomorphism of M , since (φ (I))−1◦φ ′(I) ∈ Di f f (M ). Given any doublet (gab,φ
(I)), the metric

can be parametrised by the (four) values of the scalar fields, used as reference frames. Thus, we

can write: gIJ(φ) := gab◦(φ (I))−1. Such a quantity is commonly defined a ‘relational observable’.

Let us summarise the requirements for a quantity to be a complete observable:

(RI): It must remain invariant under reshufflings of manifold points, via active diffeomorphisms;

the quantity is relational

(DET): Its dynamical evolution must be deterministic.
18We interpret the term ‘ignored’ as meaning that objects whose coordinates are used as ‘physical coordinates’

(which we call reference frames) are dynamically uncoupled from the other dynamical objects in the theory, through
an approximation procedure. Also, but secondarily, this quote should be corrected, in light of what Rovelli writes
on page 62: ‘‘[the physical] coordinates X µ are interpreted as the spacetime location of reference objects whose
dynamics we have chosen to ignore.’’. Thus the corrected quote in the text should read as: ‘‘[...] physical coordinates
with an interpretation as positions of objects whose equations of motions are ignored’’, thus clarifying that we ignore
dynamical equations of the reference objects.

19It is very difficult to think of a realistic situation in which a reference frame would cover the entire manifold.
In fact, four Klein-Gordon scalars won’t generally form a bijection to a four dimensional ‘empirical manifold’. For
example, they could end up having the same values everywhere on R4, thus representing only one (physical) point.
Of course, tipically that is not going to happen, but the question is how do we know, based on initial values? Thus, in
order to indicate viable reference frames, φ should be at least locally invertible, i.e. in some open set U ⊂ M and for
a given chart, det(∂φ/∂xµ) ̸= 0. Here, we choose to avoid stipulating a region U ⊂ M , since stipulating the region
would be like stipulating the reference of a spacetime point p.
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These requirements also define what we will call the ‘Gauge-Invariance’ (GI) property: (GI)↔

[(RI)∧ (DET)], where ∧ is the logical conjunction stating that (GI) is true iff both (RI) and (DET)

are true.20. Depending on whether φ (I) is an URF or a CRF, we can conclude whether or not

gIJ(φ) is a complete, gauge-invariant observable. It is useful to analyse the two cases in terms of

initial values and determinism, since we already showed that (RI) is always satisfied for gIJ(φ) for

any frame field.

i) As in our argument against (SP1) using uncoupled fields, in the case of URFs, any φ (I)

(whose Klein-Gordon equations of motion are now neglected) is still compatible with all

the isometric metrics, i.e. ⟨M ,gab,φ
(I)⟩ and ⟨M , [d∗g]ab,φ

(I)⟩ are legitimate models for the

dynamics, for all d ∈ Di f f (M ).21

Moreover, since we are dealing with reference frames, while it is true that gab ◦ (φ (I))−1

is (RI), so is [d∗g]ab ◦ (φ (I))−1. And we have no reason to start with one gab rather than

with an isomorphic metric, even if we assume we have reason to start with one φ (I) rather

than any of its isomorphic distributions. That is, even if we are given a field φ (I) extending

throughout spacetime, and even if we are also given initial data for the metric, we will not

find a unique evolution for the (frame representation of the) metric. Consequently, (DET)

is not met. The reason, as we mentioned above, is simply that any φ (I) is compatible with

any gab, including d∗gab. For each of the choices, [d∗g]ab ◦ (φ (I))−1 is (RI). But we still

have effectively an action of Di f f (M ) left, so we have the redundancy that we started off

with, before choosing a reference frame representation. Thus a set of degrees of freedom

that constitute an URF cannot be defined as partial observables, since by definition partial

20More appropriately, we could use (DSI) (see footnote 13), instead of (GI). Here is an important distinction: gauge
symmetry could be construed as the automorphisms of a background structure, in which case they do not depend on
the equations of motions, or they can be defined as dynamical symmetries that preserve the dynamics. For example,
(Read, 2016, §2.2) accepts that KPMs could be gauge-related, thus dynamical equations need not to be involved. But
in order to keep with the most common nomenclature on this corner of the philosophy of physics literature, we adopt
(GI) as opposed to (DSI).

21Note that the term isometry is being used here as a synonym for the induced isomorphism on the fields, through
pull-back of the diffeomorphism d (see (Belot, 2017, p.959)). A distinction is therefore being made between isometries
and automorphisms, only the latter leaving the metric invariant. This is not an obvious choice. In the physical
literature, for example in (Landsman, 2021, p.71) an isometry is defined as a metric-preserving diffeomorphism: i.e.
a diffeomorphism such that [d∗g]ab = gab. Thus isometry and automorphism coincide. In other words, isometries are
understood as flows of Killing fields (ibid. p.57). Here we advance the hypothesis that this distinction reflects the
different understanding of the word isometry. In the first case one means iso-(geo)metry: ‘same geometry’, where a
geometry is an equivalence class of diff-related metrics. In the second case iso-metry: ‘same metric’.
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observables could be used to construct a unique complete observable whose evolution is

deterministic.

ii) In the case of CRFs, when ⟨M ,gab,φ
(I)⟩ is a DPM, then ⟨M , [d∗g]ab,φ

(I)⟩ is not, for a

generic d ∈Di f f (M ). Here, a choice of φ (I) (rather than any of its isomorphic distributions)

and initial data give us a unique representation for gIJ(φ). Thus φ (I) and gab are bona-fide

partial observables: not only is the composition gab ◦ (φ (I))−1 (RI), but generically only

the diagonal action of the active diffeomorphism, relating (gab,φ
(I)) and ([d∗g]ab,d∗φ (I)),

preserves solutionhood. For this reason, here a choice for φ (I) fixes the gauge for gIJ . At

most one of all of the distributions in the isometry class of gab is compatible with each

distribution of φ (I) and (DET) is ensured.

3.2 Partial observables are relational, but gauge-variant observables

A partial observable is formally defined in Rovelli (2002b) as a certain, measurable, gauge-variant

quantity, expressed in a given coordinate system {xµ} ∈ R4. For consistency with the previous

section, one example would be a metric field gµν(xρ). However, coordinates are often understood

as mathematical artefacts, without any physical instantiation. In this understanding, how is it

possible for partial observables to be measurable? In practice, all comparisons between theory and

experiment rely on a coordinate system that is physically instantiated, that is, an URF. Thus we

claim that it would be more in line with its claims about observability to define a partial observable

as a relational quantity gIJ(φ), where {φ (I)} could be a set of four scalar degrees of freedom

constituting e.g. an IRF. That way, we still save the distinction between partial and complete

observables, since gIJ(φ) is a partial, not a complete observable. But at the same time, we have

a description that is closer to that of a measurement. What we measure is not a quantity written

in an uninstantiated coordinate system, but a quantity in a certain reference frame φ (I) which is

being approximated to such an extent that it plays the exact same role as a set of coordinates xµ ,

as far as the gauge-variance requirement of the observable is concerned. Said differently, an IRF

is a frame approximated to such an extent that its dynamical significance has evaporated away,

leaving behind only the standard notion of coordinate patches, plus the property of equivariance
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under point reshufflings.22

Only by recognising that partial observables are relational, but gauge-variant quantities writ-

ten in an IRF, is it possible to understand that we can associate to them a measuring procedure

(possibly abstract, since IRFs are approximated representations of a frame: see footnote 2).23

It is worth expanding here on the link between relationalism, gauge-invariance and determin-

ism.

The naive notion of a relational quantity as a spatiotemporal relation between degrees of free-

dom (here represented by physical fields) can be formalised by stipulating that a quantity is ‘re-

lational’ iff it is (RI). In fact, as shown above, a relational quantity written in terms of an IRF is

(RI), but not (GI), since requirement (DET) above, necessary for (GI) is not met.

In the other direction, there is only one way to satisfy (DET) without satisfying (RI): that is if the

theory includes time-independent local reshufflings. Such transformations don’t spoil determin-

ism (Wallace (2002)), even if the theory includes quantities that vary under them. Thus, generally,

(DET) is not sufficient for either (GI) or (RI).

Consequently, according to our definitions, the following logical relations hold:

Relational ≡ (RI) (L1)

Relational ↮ (DET) (L2)
22IRFs are just a helpful approximation, but we only measure complete observables: (RI) quantities expressed

w.r.t. some CRF. When we take measurements, we are necessarily dealing with physical quantities and all physical
quantities, given the universality of gravitational interaction, are dynamically coupled. IRFs are approximations
we adopt ‘pretending the reference frame is not there’. We use them to construct (relational) partial observables,
which model our measurement outcomes. However, strictly speaking, we should always use CRFs to model our
measurements. This is because our measurements concern real physical fields, which IRFs cannot be. See (Bamonti,
2023, sec.4).

23This, moreover, substantiates the position held by Pooley and Read (2021) that empirical data are relational, thus
giving rise to what they call ‘underdetermination problem’. The problem consists essentially in the impossibility
for an observer making a measurement to discriminate whether he is measuring gab(p) or [d∗g]ab(p). However, if
a partial observable — to which we can associate a measuring procedure —- can be written as gab(p), as argued in
Rovelli (2002b), then an observer can discriminate between the two measurements, since they are different partial
observables. Nonetheless, from our point of view, the underdetermination problem is a well-posed problem, since
what is ill-posed is the definition of a partial observable, as a non-relational quantity. Thus, since empirical data are
relational (i.e. (RI)), an observer cannot empirically distinguish between gab(p) and [d∗g]ab(p). Furthermore, our
redefinition of partial observables as relational quantities supports the ‘immanentist’ view of empirical (in)equivalence
((Pooley and Read, 2021, p.10)), since the ‘immanent observer’ is in fact a reference frame.
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(GI) → (DET)

(GI) ↚ (DET)
(L3)

(GI) → Relational

(GI) ↚ Relational
(L4)

The straightforward interpretation of complete observables is aligned with our notion of (GI).

This means that it is not straightforwardly true that relational observables are complete observables,

a lesson that is not always acknowledged in the literature.

3.2.1 Point-coincidence argument: an operational stance

We now investigate two possible interpretations of what in the literature is called the point-coincidence

argument (Einstein (1916); Stachel (1989)). We will show that, by further analysing Einstein’s

statements, it is possible to give an interpretation of the term ‘relational’ that does not coincide

with ‘gauge-invariant’, as it is usually (tacitly) understood.

To a certain extent, we agree with Rovelli and others that any measurement in physics is per-

formed in a given reference frame. In Anderson’s words:

All measurements are comparisons between different physical systems. (Anderson,

1967, p.128)

But see also (Rovelli, 1991, p.298):

Any measurement in physics is performed in a given reference system.

Or (Landau and Lifshitz, 1987, p.1):

For the description of processes taking place in nature, one must have a system of

reference.

Einstein’s early point-coincidence argument—stating that the physical content of a theory relies

in spacetime coincidences of material point particles—can be construed similarly. In particular, he

sustains that ‘‘all our spacetime verifications invariably amount to a determination of spacetime
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coincidences [Our italics]’’ Einstein (1916). That is, ‘‘physical experiences [are] always assess-

ments of point coincidences [Our italics]’’ Einstein (1919). This supports our claim that we can

only measure relational quantities and not coordinate dependent quantities. So, the output of a

physical measurement of a metric will always take the relational form gIJ(φ).24

However, as we have illustrated here, even if we stick to ‘relational’ quantities we do not

guarantee unique evolution and determinism, which are necessary for the definition of complete

observables.

Rovelli endorses an ‘operational’ reading of the point-coincidence argument—which under-

stands observability in the sense of measurability. But Rovelli takes this reading to further support

observability in Dirac’s sense, and so to support predictability of complete observables. This is

how he realizes the connection between relationism and gauge-invariance. For instance, in Rovelli

(2004) he states that

The GPS observables [which are complete ones] are [· · · ] precisely Einstein’s ‘‘space-

time coincidences’’.25

According to our reading, on the other hand, the point-coincidence argument could also be

understood as supporting the observability of partial observables written in relational terms in the

sense of measurability only. Thus, we are not compelled to embrace, to the same degree, the

connection between relationism and gauge-invariance.26

Thus, we partly concur with Rovelli about the significance of Einstein’s point-coincidence

argument: namely, about the connection between verification or empirical experience and rela-

24A spatiotemporal point-coincidence is at least a ‘five-party relationship’, pace (Westman and Sonego, 2009, p.25)
who claim that ‘‘[· · · ] in order to identify uniquely a point-coincidence [· · · ] locally the values of four different quan-
tities are enough’’. What we mean is that a point P ∈M can be uniquely defined using, e.g., four independent scalars:
P is the point in which the value of scalar field φ (1) has value x, φ (2) has value y and so on. However, the point itself
thus defined is not empirically measurable. A point-coincidence, that is an empirically measurable, qua DI, quantity,
needs five quantities to be defined: four scalars that define the point P and a quantity on P. Therefore, the localisation
of an ‘event’ is defined by some relation like gab(φ): the event E is not happening at an apriori assigned place and
time, but the place and time are defined by the ‘happening’ of the event.

25A minor criticism of this claim is that it should be correctly stated as: ‘‘GPS observables are precisely a type of
spatiotemporal coincidences’’. The point is that GPS observables are spacetime coincidences (in Rovelli’s sense), but
not all spacetime coincidences are GPS observables.

26It is worth pointing out that to avoid a recursive prescription of the measurement concept – that is, we should
define the measurement of the IRF φ (I), understood as a partial observable written in some other IRF φ̄ (I), and so on –
one possible strategy we see is to argue that partial observables are not independently measurable. Partial observables
should be intended as measurable only ”simultaneously” in their definition of a spacetime coincidence of the kind
gIJ(φ).
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tionism. Consequently, we take as a necessary condition for a quantity to be empirically accessible

that it be (RI), according to L1. However, Rovelli, takes an interpretation of observability ‘in the

sense of Dirac’, which implies (DET), to follow from this connection. And, as seen in L2, no such

implication holds. It would hold only conditionally on the further assumption that all measurable

quantities are dynamically coupled. Agreed: it is a defensible, often tacit, assumption. But given

the fact that it is often dropped in the context of reference frames, it is one that needs to be made

nonetheless. Therefore, according to our interpretation, relationalism does not imply logically

gauge invariance; according to Rovelli’s, it does.

To sum up, we showed that Rovelli’s 2002b definition of a partial observable as ‘‘a physical

quantity to which we can associate a (measuring) procedure leading to a number’’ (ibid.) may

contain various sources of misunderstandings that require careful analysis, given the central role

of the classification between partial and complete observables in the literature of the foundations

of GR and quantum gravity.

4 Summary

The main results of this work are as follows:

In Section 1, we extended the classification found in Bamonti (2023) on possible reference

frames in GR, identifying the class of ARFs: reference frames that are instantiated but whose dy-

namics are uncoupled to the metric, e.g. defined in terms of an auxiliary metric. Furthermore, we

have proposed a coarser yet effective classification, which identifies reference frames as dynami-

cally uncoupled from the geometry (URFs) or dynamically coupled to it (CRFs).

In Section 2, we defined reshuffling-invariance (RI) as the invariance property under spatiotem-

poral symmetries (SS). We also introduced a more general definition of dynamical symmetry (DS)

that includes the possibility of independent actions of symmetry group elements on dynamical

objects (section 2.1). This more general definition, in the case of dynamically uncoupled fields,

allowed us to highlight a violation of Earman’s 1992 (SP1) principle, identifying dynamical sym-

metries that are not spatiotemporal symmetries (section 2.2). Moreover, this failure cannot be

remedied by eliminating some background spacetime structure. Although this failure is avoided
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by an assumption of dynamical coupling between all the fields such an assumption is not manda-

tory either for mathematical consistency nor for physical coherence. Indeed, our results were

motivated by recognising the possibility of URFs; a possibility that has been explored in the liter-

ature. In other words, the violation of SP1 by uncoupled fields may only suggest that these fields

should not be taken as physical fields in GR. Indeed, doing otherwise would violate a core princi-

ple of gravitational physics: universality. Nonethless, since in the literature dealing with quantum

reference frames (see e.g. Kabel et al. (2024) and references therein), such uncoupled fields are

frequently employed as reference frames thus, in these contexts, it is worthwhile to establish just

which familiar principles of general relativity must be abandoned, and with which consequences.

This section highlighted the fundamental importance of a critical analysis of reference frames,

which has the potential to bring to light details of the foundations of space-time theories otherwise

taken for granted.

We then pursued two criticisms of the notion of partial observables (Section 3). The first

criticism concerns the possibility of two partial observables being combined in a relational manner

to form a complete observable. Only in the case where the two partial observables are dynamically

coupled to each other, and thus one of them is used as a CRF, is it possible to obtain a bona-fide

complete observable: i.e. a (RI) quantity whose evolution is deterministic (DET). The property of

being (RI) and (DET) was called gauge-invariance (GI). (Section 3.1).

The second criticism concerns the very formal definition of partial observables. For strictly

speaking, coordinates hold no physical significance in GR since they are are not physically in-

stantiated. Thus it is necessary to define a partial observable relationally, in terms of an IRF:

partial observables are relational, but gauge-variant quantities. In this manner, we have also clari-

fied the conceptual distinction between relationism and gauge-invariance, two terms that are often

conflated. (Section 3.2).

These reflections led us to operationally interpret the point-coincidence argument. In accor-

dance with this interpretation, the observability of spacetime coincidences refers to their relational

character, not to the fact that they constitute gauge-invariant events and, therefore, observability

does not imply predictability. The verifications of spacetime coincidences mentioned by Einstein

(1916) are measurements of relational observables; but relational does not imply gauge-invariant.
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(Section 3.2.1).
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