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Abstract

In general relativity, the strong equivalence principle is underpinned by a geo-

metrical account of fields on spacetime, by which all fields and bodies probe the

same geometry. This geometric account implies that the parallel transport of all

spacetime tensors and spinors is dictated by a single affine connection. No similar

account of gauge theory is put forward by standard textbooks, which use princi-

pal bundles to coordinate the parallel transport of different, interacting particles.

Nonetheless, here I argue that gauge theory does afford such a geometric account,

obviating the need for principal bundles.

1 Introduction

All quarks and gluons interact via one and the same strong nuclear force. And although these

particles all carry charges for this same force, they are described by fields that take values

in a variety of internal vector spaces co-existing over each spacetime point. In spite of this

variety, these internal spaces don’t just coexist over each spacetime point: they are intimately

connected, which is what allows the different particles to interact. For instance, were we to

take particular values for quarks and gluons at spacetime point p and carry them to point q

along a certain spacetime curve γ, these values would perform a ‘synchronised rotation’ in their

respective internal spaces: their evolution is coordinated or ‘marches in step’.

The usual mathematical explanation for the variety is that the the fields exist as sections

of distinct vector bundles over spacetime, and they march in step because those vector bundles

are associated vector bundles, by fiat associated to a single principal G-bundle, P , where G is

the symmetry group regimenting a particular interaction, e.g. SU(3) in the case of the strong

force. In turn, each principal bundle is endowed with a single Ehresmann affine connection ω,

which defines parallel transport for fields that are charged under the corresponding force.

Thus, in the standard model of particle physics (SM henceforth), all fields charged under

the same gauge group get their parallel transport from the same mathematical object, ω. Since
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ω exists on the more abstract principal fiber bundle P , it does not co-habit the space of the

physical matter fields. Nonetheless, from ‘afar’, it coordinates the parallel transport of the

different physical fields in their respective internal vector spaces. In the words of Weatherall

(2016, p. 2401):

Principal bundles are auxiliary [in the sense that only] vector bundles represent

possible local states of matter; principal bundles coordinate between these vector

bundles ... [they are auxiliary] in the sense in which a coach is auxiliary to the

players on the field.

This is a beguiling metaphor, but is it explanatory? It certainly falls short of the familiar

geometric explanation for parallel transport that we get in general relativity.

In the case of general relativity, in order to describe parallel transport of tensor fields on

the spacetime manifold M we need not invoke principal bundles at all. Recall how general

relativity textbooks expound tensor analysis, by having the metric determine the notion of

parallel transport (i.e. the Levi-Civita connection), with never a mention of a principal fibre

bundle. There, sections of different tensor and spinor bundles march in step under parallel

transport because they are all constructed from the same geometric structures: namely, the

tangent bundle TM , with each tangent space TpM being endowed with a Lorentzian inner

product and an orientation (necessary in the case of spinors). The parallel transport of all

tensor fields is coordinated because they are sections of vector bundles built from the same

tangent bundle. It is the tangent bundle that underpins a unified account of parallel transport

for tensor fields.1

In the gauge case, the textbook tradition—indeed, so far as I know, the extant litera-

ture2—reveals no similarly powerful explanation for why the fields that couple through non-

gravitational forces march in step under parallel transport. This I will call the coordination

problem of gauge theory: it constitutes the main disanalogy between spacetime and gauge

theories that this paper is focussed on dispeling.

One might at first think that the obstacle to a resolution of the coordination problem in

gauge theory, that similarly to the gravitational case does not mention principal fiber bundles,

is that we can’t define a covariant derivative directly for vector bundles. This is not the case:

1It is true: ‘you won’t go to jail’ for describing parallel transport of tensor fields using principal bundles also

in the spacetime case. That description employs an orthonormal basis of vectors at each spacetime point and a

connection-form that describes their parallel transport. The different orthonormal bases are related by elements

of the Lie group O(3, 1) (or SO(3, 1), if spacetime orientation is important), and so the space of orthonormal

bases over spacetime forms a principal fiber bundle with O(3, 1) as its structure group (cf. Appendix A). This

is the group that leaves the Minkowski metric on a 3 + 1 space invariant (and its subgroup of orientation

preserving transformations). Thus the structure group of the principal bundle is tied to the preservation of the

structure of a ‘typical fiber’: which is a vector space over each spacetime point—viz. the tangent space, which

is isomorphic to R4—endowed with a semi-definite inner product. Indeed, this description is often involved

in the treatment of spinors. But the point is that we don’t need to invoke this bundle to describe parallel

transport of tensor fields or even spinors.
2I thank Lathan Boyle and David Tong for helpful discussions of this curious lacuna in the literature.
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such a definition of covariant derivative is straightforward, and it is given, for an arbitrary

vector bundle, in Equation (A.7) of the Appendix.3 The obstacle to resolving the coordination

problem with such a definition is that it offers us no relation between the derivatives of two

vector bundles (if one bundle is not obtained (e.g. tensorially) from the other). In other words,

given two different but interacting particles, seen as sections of two different vector bundles,

there may be no natural way for an intrinsic derivative in the first bundle to induce one on the

second. Thus using this intrinsic covariant derivative leaves the ‘marching-in-step’ of sections

of any two different vector bundles under parallel transport completely mysterious.

Principal and associated bundles are uniquely important for gauge theories because they

allow us to partially solve this first coordination problem. We do so by defining the covariant

derivative not intrinsically on the vector bundle, but as I described above: via the action of

the Ehresmann connection ω on sections of associated vector bundles (see Definition 4 and

Equation A.5). Nonetheless, this is only a halfway house towards a satisfactory resolution

of the coordination problem because we still need to stipulate that particles whose parallel

transport should march in step are all associated to the same principal fiber bundle, with

the same structure group and Ehresmann connection. This (partial) resolution places the

symmetry group first, and then goes on to define all the objects and structures that are well-

behaved under (some action of) this group. In the terminology of (Jacobs, 2021, Ch. 4.1), it

is a symmetry-first approach to gauge theory. He describes the situation as follows (Jacobs,

2023, p. 40):

But it is a problem for this approach that [...] two fields survey the same connection

as a matter of brute fact. There really are two connections: one defined over the

first associated bundle, and one defined over the second. These connections are the

same only in the sense that we can represent both with the same connection on

a single principal bundle. But [...] there is no independent Yang-Mills field that

the associated bundle connections supervene on. This makes it seem somewhat

mysterious that these connections are equivalent. On [this] approach, it is a brute

fact that all matter fields have the same symmetries.

In sum, in general relativity there is no coordination problem for parallel transport: since

tensors are constructed from the tangent bundle their marching-in-step under parallel transport

is guaranteed, and there is no need to introduce principal and associated bundles. In contrast,

gauge theory needs principal and associated bundles because, in the textbook tradition, it lacks

a structure analogous to the tangent bundle, which can underpin a unified account of parallel

transport for a variety of fields that interact, not gravitationally, but via the other forces of

nature.

Here I will show that, contrary to the textbook tradition, gauge theory has a structure

analogous to the tangent bundle, which can be used to the same effect. This structure suffices,

3That definition specialises, when the vector bundle is the tangent bundle, to the usual definition of covariant

spacetime derivatives.
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for example, to account for the content of the standard model of particle physics. Thus, while

there can be a practical reason for introducing principal and associated bundles—as there

often is in general relativity (cf. footnote 1)—there is no mathematical necessity for doing so.

For we can see all the constituents of both the chromodynamics and the electroweak sector

of the standard model as sections of vector bundles that are tensorially constructed from a

single, underpinning vector bundle. This underpinning vector bundle has fibers isomorphic to

C
3×C2×C, endowed with the canonical inner product of the complex planes and an orientation,

and so has an automorphism group which at each point is isomorphic to SU(3)×SU(2)×U(1).
In this picture, the invariant structure comes first, and the symmetry group that preserves

this structure comes second. That is, the gauge group is no longer postulated as fundamental:

it acquires meaning as the invariance group of the typical fiber of E. So we can think of parallel

transport in a frame-independent way as being a structure preserving map, carrying the fiber’s

structure from one point of spacetime to another along a spacetime path. The different particle

types are represented by different types of tensors over the same vector bundles.

Here is this paper’s content, in slogan form: gauge transformations can be understood nat-

urally as automorphisms of an internal geometric structure, to which the theory is ontologically

committed; and an affine connection defines parallel transport in these spaces, with never a

principal bundle in sight.

2 How to dispel the disanalogy: the internal spaces

This Section will dispel the putative disanalogy between parallel transport of spacetime and

internal quantities expounded in Section 1. But before diving in, I want to clear the ground.

The label ‘geometrical’ might be taken to connote properties related to distance relations,

and to geodesics extremizing such distances. That is not how I mean it. Although there is one

interpretation of gauge theories and gauge transformations that is geometric in this sense—

called Kaluza-Klein theory (cf. (Kaluza, 1921) and (O’Raifertaigh, 1997) for the history)—that

is not the sense I will focus on here. Here I want to assess whether gauge transformations can

be understood naturally as automorphisms of an internal geometric structure; and whether

parallel transport of internal quantities can be understood similarly to that of tensor fields

over spacetime.

Next, let us set aside all questions about the ‘external’ spacetime geometry. A matter

field can be described as the tensor product of some interior space on which gauge fields take

values—e.g. a complex scalar or Yang-Mills field, ϕ—- and a spinor field ψ; or tensor fields in

the case of gauge bosons. In the standard account, gauge fields use a connection and gauge

frame which are independent of the spacetime manifold frame, while spinor and tensor fields

mirror the connection and changes in the frame of the spacetime manifold. So gauge fields are

acted on by representations of the gauge group and its Lie algebra, while spinor fields are acted

on by representations of the Spin group and its Lie algebra (so(3, 1)). The gauge component

then responds to gauge transformations, while the spinor component responds to changes of
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frame. Here, I will focus only on the gauge, or, as I will argue, the internal part.

We will see that interacting fields can be seen as sections of bundles built up from the same

internal spaces, or typical fibers. For instance, in the same way that a symmetric, covariant

tensor of rank two is built from two copies of TM , (the internal part of) quarks will have

components in a typical fiber isomorphic to C3, and gluons will be certain (traceless) tensor

bundles, involving C3 and C∗3. Thus we will have a geometric reason for the parallel transport

of the different quarks and leptons marching in step.

This will of course require a brief description of the particle content of the SM, which I will

provide in Section 2.1. In Section 2.2 I will interpret the results in terms of sections of vector

bundles for certain typical fibers. In Section 2.3, I will present five possible objections to my

intepretation.

2.1 A closer look at the SM

In particle physics jargon, connections are the ‘force-carriers’, and are represented by gauge

bosons. But I will first set the bosons aside and focus on the fermionic content of the SM; we

will get back to bosons later.

The SM is represented in terms of Weyl fermions, which are two-component spacetime

spinors. But I am only interested in the structure of the internal spaces; the spaces where the

gauge connections act. So here I am basically ignoring the spacetime spinor structure of the

SM (though they are somewhat implicit in the notation of left or right handed particles to be

used below). When representing the full fermionic content of the SM, this spinor part would

be included as factors in a tensor product with the internal part that I am interested in and

aim to describe in this Section. I will get back to this point below.

The part of the (minimal) SM that I am interested in consists of 45 complex numbers,

organised into three generations, which means it has the same structure repeated three times.

We can understand this repetition in terms of direct sums:

C
45 = C

15 ⊕ C
15 ⊕ C

15 (2.1)

The table below tells us how these components transform, and it is organised into blocks whose

elements can transform into each other (elements from different generations, or blocks, cannot).

So each C15 breaks down into the five rows of the table below (I will here only focus on the

first generation):4

Now let us unpack Table 1. First, the columns are labeled with the groups that are associ-

ated to the types of interaction: strong (SU(3)), weak (SU(2)), and hyperweak (U(1)).

� The quarks: are represented by the first three rows of the table. As to the first column:

quarks clearly feel the strong forces, and they transform under the standard, or funda-

4The three generations differ mostly with respect to their Yukawa couplings to the Higgs, which I am ignoring

here. These are non-gauge interactions that lead to different masses of the three generations. Also note that

here I am describing the minimal SM, and so I am not including the right-handed neutrinos, which have not

yet been directly observed, but, after the discovery of neutrino oscillations, are generally assumed to exist.
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SU(3) SU(2) U(1)

qL 3 2 1
6

uR 3 1 2
3

dR 3 1 −1
3

ℓL 1 2 −1
2

eR 1 1 -1

Table 1: The representation of the SM groups on fermions.

mental, representation of SU(3), labelled ‘3’, which just means SU(3) acts on elements

of C3 via matrices which preserve the volume element and complex inner product of C3.

So the components of quarks corresponding to the first row can be seen as vectors in

internal spaces isomorphic to (a structured) C3. Now, qL is a left-handed quark doublet,

which is a doublet of the form qL = (uL, dL). In the first generation this would be called

up-left and down-left, respectively; in the second generation it would be charm-left and

strange-left, and in the third generation it would be top-left and bottom left. The reason

qL is called a doublet—unlike the two rows beneath it, representing the up-right and the

down-right quarks, uR and dR which are singlets—is that the components of qL, namely

uL and dL, are charged under the weak nuclear force, and transform into each other un-

der the action of SU(2). In the entry corresponding to qL × SU(2) this transformation

property is represented by the number 2, which means that qL transforms as an element

of C2 under the fundamental representation of SU(2). The number 1 for the entries

uR × SU(2) and dR × SU(2) means that uR and dR are neutral under the weak forces,

so cannot transform into each other (because, being singlets, they don’t transform at all

under SU(2)). Finally, the left-handed quark has a ‘weak hypercharge’ of −1/6 under

U(1), which means that it is a complex number (an element of C) which under the action

of a given U(1) phase shift generator ξ, has its phase rotate at the rate of −ξ/6 (or eiξ/6);

mutatis mutandis for the down-right and up-right quarks.5

� The leptons: are represented by the remaining two rows in the table and have a kind

of parallel structure to the quarks, but of course they are all neutral under SU(3) (they

are not charged under strong interactions). ℓL is the left-handed lepton doublet, which is

of the form ℓL = (eL, νL). In the first generation these are the left-handed electron and

neutrino (in the second and third they get ‘muon’ and ‘tau’ prefixes). Again, we put eL

and νL in the same row because they are charged under SU(2) (they are charged under

the weak forces), and transform into each other, unlike the particle of the remaining

row—the right-handed electron eR which is neutral under SU(2). The hypercharge of ℓL

is −1/2 (which does not coincide with its electric charge; see footnote 5). The electric

5Note that for U(1) it is a 0 entry—and not a 1, as it is for SU(3) and SU(2)—that tells us a particle does

not transform, or is neutral with respect to this interaction.
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charge of the right-handed electron, is, as expected, 1.

With the basic ingredients in place, I will now defend my intepretation of Table 1, arguing

that it dispels the (putative) disanalogy to gravity described in Section 1.

2.2 Interpretation

The first two columns of Table 1 contain only one kind of non-trivial representation: the

fundamental. So, in these columns, elements of SU(3) and SU(2) are 3× 3 and 2× 2 matrices,

respectively, acting on elements of C3 and C
2, preserving their canonical inner product and

oriented volume.6 The third column, under U(1) is, in one sense, the most familiar from

classical electromagnetism: it represents an overall phase, where different charges transform

with different rotation speeds under U(1).7

So we clearly have C3,C2,C1 over each spacetime point, where particles take their val-

ues. These are the typical fibers of three different fundamental vector bundles, call them

(E3,M,C3), (E2,M,C2), (E1,M,C1), or E3, E2, E1 for short, where, for each, a fiber at a point

is isomorphic to a complex vector space with inner product and orientation: for πn : En →M ,

π−1
n (x) ≃ C

n (but recall: there is no canonical isomorphism). Each of these vector bundles

is analogous to TM in the spacetime case, and we also naturally have the dual bundles (of

linear functionals): E3∗, E2∗, E1∗, that are necessary in order to represent the corresponding

anti-particles. The group of automorphisms of these fibers are, again, (non-canonically) iso-

morphic to SU(3), SU(2), and U(1). These are structures that should be preserved by an affine

connection on the corresponding vector bundles.

Now, as usual, we can join these vector bundles in different ways, using different kinds of

products; and as for tensor fields over spacetime, here too, the most important for our purposes

is the tensor product.8 Of course, a group action or representation on a vector space V induces

a representation on arbitrary tensor products of V and V ∗; and so it is here: the structure

6A special unitary matrix is a unitary transformation with determinant 1. We can interpret the restriction

to determinant 1 as preserving the oriented volume because the signed n-dimensional volume of a n-dimensional

parallelepiped is expressed by a determinant, and the determinant of a linear endomorphism determines how

the orientation and the n-dimensional volume are transformed under the endomorphism. Alternatively, U(n)

is the n-fold cover of SU(n)× U(1).
7I should also note that weak hypercharge, denoted YW , is not the same as electric charge, Q. The relation

between the two types of charge emerges only after symmetry breaking, which requires an interaction between

the Higgs and weak isospin: it is given by the equation (in our convention) Q = 2T3 + YW , where T is the

SU(2) charge, and we have assumed the Higgs potential selects the third component of isospin. It coincides

with electric charge only for the rows that transform trivially under SU(2), namely, for all the right-handed

particles in the table. Thus the electric charge of the down-right quark is −1/3, for an up-right quark it is 2/3,

etc. The way these charges combine after symmetry-breaking gives a mnemonic device for the numbers of the

last column: the entry for the left-handed particles is the average of the two entries below, for right-handed

particles.
8Given two vector bundles E,E′ over the same spacetime M , the tensor bundle is a bundle over M whose

fiber over x ∈ M is Ex ⊗ E′
x.
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of the typical fiber defines a group that acts on that typical fiber, and that action naturally

extends to all tensor products of the space and its dual.9

In the first row the left handed quark doublet has components lying along C3,C2 and C1:

we must locate it within a space of three colours, and of two isospin charges, and of one

hypercharge. The internal part of the left-handed quark doublet is a section of the bundle

qL ∈ Γ(E3 ⊗ E2 ⊗ E1). (2.2)

Unlike the first row of Table 1, the particles in the following two rows have no component

along C2, which is why they are not charged under SU(2). In contrast, the left-handed lepton

doublet has no components along C3, but has components along C2; and the right-handed

electron has no components along either C3 or C2 (that is why it is not charged under either

the strong or the weak interactions) it only has components along C1 (cf. footnote 5).

As I said above, the odd man out in Table 1 is the third column, corresponding to the U(1)

weak hypercharges, since there we have multiple non-neutral values. How should we interpret

the different weak hypercharges as properties of sections of vector bundles? One immediate

answer comes from a rather trivial technical point. Since C1 has complex dimension 1, arbitrary

tensor products of C1 will also have complex dimension 1.10 But if a particle is, formally, a

section of a vector bundle E1⊗E1 := E1
2 , under a rotation of E1’s typical fiber C by θ, because

of the multilinearity of the tensor product, that section of E1
2 picks up a phase of 2θ. Thus,

formally, taking the lowest charge as the unit, we can think of a weak hypercharge of N
6
as being

due to the N -th tensor product of E1, which we call E1
N , and negative charges are sections of

tensor products of (E1)∗. But, precisely because these tensor products are still 1-dimensional,

not much changes in terms of the representation of these sections: there are no added degrees

of freedom.11

In the first two columns, the representations 3 and 2, describe the number of degrees of

freedom of the particle in these spaces: vectors in C3 have three and in C2 have two. Indeed,

for the same reason, we label with an ‘8’ the representation of the gluon, whose internal

component, as described in Equation (A.9), would, in our geometric treatment, be a section of

Γ(E3 ⊗T E
∗3), where T stands for traceless (which is necessary for parallel transport to be not

only linear, but compatible with the inner product). So ‘8’ is the number of internal degrees

of freedom that such a field would have and its tensor structure implies it is acted on by the

9For instance, if ρ(g) is a representation of G on V , then G acts on the dual space V ∗ via the inverse of the

transpose, ρ(g−1)T .
10Here, it is important to distinguish the dimensions of a vector space qua complex space, i.e. in which

addition is linear under complex scalar multiplication, from dimensions of a vector space qua real vector

space. For V and W complex vector spaces of dimension p and q respectively, dimC(V ⊗C W ) = pq, while

dimR(V ⊗R W ) = 4pq.
11In the standard presentation, the fact that all representations of U(1) are one-dimensional is a consequence

of Schur’s lemma. Namely, an irreducible unitary complex U(1) representation must be 1-dimensional by

Schur’s lemma, since all U(1) elements commute with each other and so are multiples of the identity, and each

one-dimensional subspace is an invariant subspace of multiples of the identity. I find the proof in terms of

tensor spaces that I mention in the main text much more transparent.
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adjoint representation of the group action on E3.

So, even though the gluon distinguishes itself for determining parallel transport for itself

and for the other particles, here, unlike the standard picture, the gluon is of a piece with

other matter fields in that they are all sections of (different) tensor bundles over the same

underpinning vector bundle. But the gluon does not fit Table 1 because it is not a fermion,

and does not decompose into a tensor product with Weyl spinors as the rest of the table does;

it is a boson, and its spacetime part is a 1-form. Indeed, this is the case for all the affine

connections, which, in particle physics terminology, are called the gluon, the W and the Z-

bosons. These are the degrees of freedom dictating the parallel transport of colour, isospin,

and (hyper)charge, which, along a given spacetime curve γ : [0, 1] →M take, respectively, the

fibers of E3, E2, and E1 over γ(0) ∈ M to the fibers of E3, E2, and E1 over γ(1) ∈ M , as a

linear, structure-preserving transformation (cf. Equation (A.12)).12

Summing up, apart from (2.2), we get:

uR ∈ Γ(E3 ⊗ E1
4), dR ∈ Γ(E3 ⊗ E1

−2), ℓL ∈ Γ(E2 ⊗ E1
−3), eR ∈ Γ(E1

−6), (2.3)

and adding the vector bosons (one for each SU(n)), for which we include its 1-form component

in spacetime:

ωn ∈ Γ(T ∗M ⊗ En ⊗T E
n∗), (2.4)

We can conceive of each generation as having the following decomposition into five factors:

C
15 = (C3 ⊗ C

2 ⊗ C
1
1)⊕ (C3 ⊗ C

1
4)⊕ (C3 ⊗ C

1
−2)⊕ (C2 ⊗ C

1
−3)⊕ C

1
−6. (2.5)

And we can finally answer the main question of this Section: why do the parallel transports of

different, mutually interacting particles, as sections of different vector bundles, march in step?

Recall that in the textbook tradition (see e.g. (Nakahara, 2003, Ch. 9)), the answer is

postulated. The gauge symmetry group is not derived as preserving some physical structure, it

is postulated in the definition of the principal bundle. But here I’ve argued that, just as tensor

bundles are constructed from the underpinning geometry of TM and tensors have components

in the spaces thus constructed, particle fields have components in internal spaces corresponding

to colour, isospin, and (hyper)charge, that are constructed from the underpinning geometry

isomorphic to that of C3,C2 and C1, endowed with an inner product and, except in the case

of C1, an orientation. Parallel transport marches in step because it concerns the underpinning

internal geometry. The structure groups SU(3) × SU(2) × U(1) are the symmetries that

preserve the internal geometry. In this picture, the structure groups are not postulated. They

are isomorphism-invariant automorphism groups that moreover can emerge explicitly upon

comparisons of parallel transported tensors, as the (isomorphism-invariant) holonomy group

Hol(D), described in Appendix A.2 (cf. Equation (A.12)).

12As with the fermions, we can of course have different sections of vector bosons. According to (A.9), given

any fixed Do (e.g. over a trivialisation E|U ≃ U × V , we can set Do = d ⊗ Id), any such vector boson defines

an affine connection D that is compatible with the fiber structure.
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In this tensorial representation of the fields of gauge theory, there is no need for indices,

except to denote the type of tensor under consideration: in the analogous spacetime case, this

is called the abstract index notation for spacetime tensors.13 Just as in the case of spacetime

tensors, these gauge tensors are invariant under passive transformations. It is only upon intro-

ducing a trivialisation of the vector bundle—i.e. a local isomorphism between E and U × F ,

where U ⊂M is some patch of spacetime—that we can talk about a tensor’s components trans-

forming under a change of trivialisation. But, again, just as spacetime tensors are not invariant

under active diffeomorphisms, here the gauge tensors are not invariant under a fibre-wise lin-

ear isomorphism of tangent bundles. The transformation between these tensors corresponds

to the active view of gauge transformations (cf. Equation (A.17) for the transformation of the

connection).

2.3 Possible objections

Here I will address five possible objections about the geometric viewpoint: the first is more

technical, the second is conceptual; the third is metaphysical, the fourth is about completeness;

and the fifth is about applications beyond the SM. All but the first two lead to concessions

about my framework.

First the technical possible objection: I said above that the spinor structure of the fields

comes in as a factor in a tensor product with the internal tensorial structure. But that is not

exactly right for the table as I presented it: it would require me to represent the SM solely in

terms of one chirality, which is certainly possible. Instead of having both right and left handed

spinors, one can include in the table only left-handed ones; I preferred not to mix particles and

anti-particles in the table, which is why I instead used both chiralities. Using a single chirality

would have the advantage of being rigorous about the tensor product between internal spaces

and spinors but would have the disadvantage of having to introduce complex conjugates of the

representations, e.g. use 3 instead of 3 for the first and fourth row of the table below, and also

having to introduce qcL, the anti-left-handed quark doublet, and ℓcL, the anti-left-handed lepton

doublet. But of course doing this would not offend my main thesis, since complex conjugation

of C3 is an operation that requires no more structure than I have posited; it is analogous to

taking T ∗M to be defined by TM (as linear functionals thereof).

Now I’ll address the second, conceptual objection: given the Lagrangian of the SM written in

a local coordinate system, I could extract all of the invariances and symmetry transformations

directly. Invariance of the Lagrangian would constrain the internal values of the different

particle fields to appropriately march in step. This is a true statement, but I don’t think

it is explanatory. For the same could of course be said about general covariance in general

relativity. There, it is the geometric interpretation that underpins the universal coupling of

all of the fields to a single spacetime geometry. But this universality could fail; for instance,

13This notation uses indices to indicate the types of tensors or spinors, rather than their components in

a particular basis. The indices are mere placeholders, not related to any basis and, in particular, are non-

numerical.
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if ‘bi-metric’ Lagrangians for gravity were adopted, we could have more than one Levi-Civita

connection, which could dictate parallel transpot differently for different fields. Reversing the

explanatory arrow, the fact that such bi-metric theories have little empirical support can be

explained by the more parsimonious, familiar geometric interpretation of general relativity.

Similarly, my argument here shows that the most parsimonious explanation for the current

form of the standard model (without the analogous ‘bi-metrics’), is that it concerns an internal

structured space, isomorphic to C3 × C
2 × C

1.

The third objection is very similar in spirit to the second one, but it plays out in one level

lower in the hierarchy of mathematical structures. Whereas the second was about the basic

geometric objects describing parallel transport, the third concerns the underpinning spaces in

which the fields in question live. For the interior complex spaces I have presented are not

analogous to tangent spaces with Lorentzian inner-product in all relevant senses: there is a

privilege afforded to the tangent space which isn’t similarly afforded to complex internal spaces,

since each element of the tangent space is identified with an infinitesimal path through the base

manifold: the tangent space is ‘soldered’ onto spacetime. Thus the particular vector bundle

E has to be postulated and, we must assume, shared by interacting fields.14 Nonetheless, I

maintain that the explanation afforded here distinguishes itself by putting structure, rather

than symmetry, first. In contrast, as alluded to in the passage from (Jacobs, 2023) quoted in

Section 1, the standard principal fiber bundle formalism posits both the symmetry group G

and the vector bundles, and demands their compatibility, which goes unexplained.15

Fourthly, my description of the SM here was not complete. The attentive reader will have

noticed a glaring omission: the Higgs particle is nowhere to be found in Table 1. There are,

at bottom, two reasons for this omission. The first is that the Higgs would not fit in Table

1: it is a scalar field on M , not a spin 1/2 fermion, and so does not fit the required (but

implicit) tensor product structure. The second, more relevant reason, is that the Higgs and

spontaneous symmetry breaking (SSB) make things rather more complicated, with added non-

gauge interactions between the Higgs and other particles through Yukawa couplings. It is

mostly differences in these couplings that distinguish the three generations of the SM. The up,

charm and top quarks have the same electric charge, along with the same weak and strong

interactions—they primarily differ in their mass, which comes from the Higgs field. The same

thing holds for the down, strange and bottom quarks, along with the electron, muon and tau

leptons. And yet there is a single generation of bosons, meaning that they are all parallel

14There is a second distinction, that is due to soldering. We could still act on E with a fibre-wise linear

isomorphism, with a corresponding action on the matter fields and connection-forms. This is the global, or

active view of gauge transformations, on a par with the active view of smooth diffeomorphisms on a spacetime

manifold. Thus, in the same way that tensors over spacetime are not invariant under active diffeomorphisms,

here the gauge fields are not invariant under active linear isomorphisms. The difference between the spacetime

and the gauge case is again solely due to soldering: we cannot act with a linear isomorphism over the tangent

spaces without moving the spacetime points as well.
15See (Jacobs, 2021, Ch. 4.1)) and references therein, for a defense of the advantages of structure-first

explanations of symmetry.
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transported by the same connections. The striking similarity and apparent redundancy of the

three generations is one of the great mysteries of the SM, even within the standard approach.

In order to address this issue in this formalism, one would need to better understand gauge-

invariant construals of the Higgs mechanism and Yukawa couplings (see e.g. (Struyve, 2011)

and (Berghofer et al., 2023, Ch. 5)), in terms of invariant geometric structures along the lines

that I have proposed here. I leave a full treatment of Yukawa couplings, the Higgs, and SSB

for further work.

Here is the fifth possible objection, about applications beyond the SM: the interpretation

of the SM that I have proposed here was very straightforward because different non-neutral

charges appear only in the C1 sector.16 In that one-dimensional sector, the different charges

arise from tensor products (by multi-linearity) at no additional ontological price, since these

products imply no additional degrees of freedom for the particles in question. So a worry

might emerge that we could not account for arbitrarily different charges for the other forces,

and that the scope of the geometric interpretation is narrower than the scope of the standard

interpretation in terms of principal fiber bundles and their associated bundles.

However, at least for SU(n), the geometric interpretation pursued here can recover all the

different representations (representing different kinds of particles) by using tensor products

and the internal geometric structures of the fibers Cn (see e.g. (Coleman, 1965) and (Zee,

2016, Ch. IV.4)). Indeed, we saw one such construction for the gauge boson, that lives in the

adjoint representation, in equation (2.4). That representation corresponds to a traceless tensor

product between an internal space and its adjoint. And although for n > 1, the number of

degrees of freedom of such internal tensor fields is different for different valences, this is as it

should be: the number of degrees of freedom of sections of tensor fields of valence (j, k) depends

on j and k even for spacetime, after all. However, I believe that my interpretation might fail,

or would at least become less natural, for some of the exceptional Lie groups, whose geometric

interpretation is much more involved (cf. (Adams, 1996)). I also leave this for further study.

3 Conclusions and outlook

In particle physics, fundamental forces are uniquely associated to structure groups. I have

argued here that those structure groups merely reflect the geometric structure of vector spaces

that are internal along spacetime. Gauge invariance is then described as an ontological com-

mitment to this structure.

The standard model cleanly illustrates this idea. In just the same way that a Lorentzian

inner product on the tangent bundle TM leads directly to the local symmetry group SO(3, 1),

the geometric structure of the internal spaces in which the fundamental particles take their

values—C
3 × C

2 × C
1 endowed with an inner product and orientation—leads directly to the

16In the higher dimensional C2 and C3, corresponding to SU(2) and SU(3), non-neutral charged matter fields

of the SM appear only in the (anti-)fundamental representation, which allowed my straightforward interpreta-

tion as vectors in the internal (dual) vector space.
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familiar local symmetry group SU(3) × SU(2) × U(1) representing the fundamental forces.

Any particle field that interacts with a fundamental force has components in the corresponding

internal space; as we move from one point of spacetime to another, the standard of constancy

for that internal space will dictate the parallel transport of those components.

Thus I conclude that gauge theory as applied to physics is geometrical in a very strong

sense, but its geometry is that of internal vector spaces, not of principal fiber bundles. In light

of this conclusion, one could replace Weatherall (2016, p. 2401)’s metaphor, that “Principal

bundles are auxiliary [...] in the sense in which a coach is auxiliary to the players on the field”17

with another metaphor, drawn not from sports but from music. Just as all agree that, in their

public performances, after arduous preparation, a top-quality orchestra such as the Vienna or

Berlin Philharmonic hardly needs the conductor, who is by then almost an epiphenomenon, so

also in gauge theories, the vector bundles play all the music and the principal fibre bundle is

almost an epiphenomenon.18

Indeed, the new viewpoint achieved in this paper opens up a novel interpretative project

for gauge theory as a whole.

To close, here I showed that the geometric interpretation is available for gauge theory as it

appears in the (minimal) SM. without the Higgs (and thus applying only to one generation of

particles). Can it be extended to other applications of gauge theory? Not only to encompass

the Higgs and right-handed neutrinos, but also supersymmetry and Chern-Simons theories?

What about exceptional Lie groups, whose geometric interpretation are much more daunting?

Those are questions for another day.

A A primer in fiber bundles

A.1 Vector, principal, and associated fiber bundles

Definition 1 (Vector Bundle) A vector bundle (E,M, V ) consists of: E a smooth manifold

that admits the action of a surjective projection πE : E → M so that any point of M has

a neighborhood, U ⊂ M , such that, for all proper subsets of U , E is locally of the form

π−1(U) ≃ U × V , where V is a vector space (e.g. Rk, or Ck) which is linearly isomorphic to

17Because, as he says: “vector bundles represent possible local states of matter; principal bundles coordinate

between these vector bundles”.
18There is a close analog here to the debate between the dynamical and the geometric views on Lorentz-

invariance (cf. (H. Brown, 2006) for an extended defence of the dynamical approach, and (H. R. Brown &

Read, 2022) for a recent survey). Roughly, that debate focuses on an order of explanation: are dynamical laws

(locally) Lorentz invariant because they at most survey a geometric landscape that is Lorentz-invariant, or is

such a geometry just a convenient way to codify Lorentz-invariant dynamical laws? Transposing that debate

to gauge theory: since thus far it lacked a comprehensive geometric framework that was on a par with its

relativistic cousin, gauge theory might have been more favorable to the dynamical view of symmetries. Now

gauge theory finds a natural home within (at least a very close analog of!) the geometric view. And, on the

same grain, if either the Higgs mechanism or future developments of the SM cannot be incorporated into the

geometric framework, this would count in favor of the dynamical approach.
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π−1(x), for any x ∈M .

Note that the isomorphism between π−1(U) and U × V is not unique, which is why there is no

canonical identification of elements of fibers over different points of spacetime. Each choice of

isomorphism is called ‘a trivialization’ of the bundle.

Definition 2 (A section of E) A section of E is a map κ :M → E such that πE ◦κ = IdM .

We denote the space of smooth sections by κ ∈ Γ(E).

Definition 3 (Principal Fiber Bundle) (P,M,G) consists of a smooth manifold P that ad-

mits a smooth free action of a (path-connected, semi-simple) Lie group, G: i.e. there is a map

G × P → P with (g, p) 7→ g · p for some left action · and such that for each p ∈ P , the

isotropy group is the identity (i.e. Gp := {g ∈ G | g · p = p} = {e}). P has a canonical,

differentiable, surjective map, called a projection, under the equivalence relation p ∼ g · p, such
that π : P → P/G ≃M , where here ≃ stands for a diffeomorphism.

It follows from the definition that π−1(x) = {G · p} for π(p) = x. And so there is a diffeomor-

phism between G and π−1(x), fixed by a choice of p ∈ π−1(x). It also follows (more subtly)

from the definition, that local sections of P exist. Similarly to a section of E, a local section of

P over U ⊂M is a map, σ : U → P such that π ◦ σ = IdU . Unlike sections of vector bundles,

sections of principal bundles are generally only local.

Definition 4 (Associated Vector Bundle) A vector bundle over M with typical fiber V , is

associated to P with structure group G, is defined as:

P ×ρ V = P × V/ ∼ where (p, v) ∼ (gp, ρ(g−1)v), (A.1)

where ρ : G→ GL(V ) is a representation of G on V .

Given any vector bundle (E,M, V ), the bundle of frames for E, called L(E), is itself a

principal fiber bundle (L(E),M,GL(V )): here elements of π−1(x) are linear frames of Ex, and

G ≃ GL(F ) acts via ρ on the typical fibers. By construction, E ≃ L(E)×ρ V . If V has more

than just the structure of a linear vector space, e.g. if it is endowed with an inner product,

then we have bundle of admissible frames, e.g. orthonormal frames. This is also a principal

fiber bundle, (L′(E),M,G), whose structure group is a proper subgroup of the general linear

group, G ⊂ GL(V ), taken to be the group that preserves the structure of V .

A.2 Connections and parallel transport

Given the tangent bundle to a principal fiber bundle TP , the vertical linear subspace at a

given point Vp ⊂ TpP is the canonical subspace tangent to the orbits of the group, i.e. Vp =

Tp(π
−1(x)). Thus the group action on P gives a canonical linear isomorphism between the
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vertical subspace at a point p and the Lie-algebra, ♯p : g → Vp ⊂ TpP . A vertical projection V̂

on TP , is a linear operator V̂ : TP → TP such that, for every p ∈ P

V̂p ◦ V̂p = V̂p ; Im(V̂p) = Vp. (A.2)

The kernel of this projection defines a horizontal distribution of linear subspaces: H ⊂ TP ,

such that, for each p:

Hp ⊕ Vp = TpP ; Hg·p = g∗Hp (A.3)

for g∗ : TP → TP the induced (push-forward) of the diffeomorphism given by g : P →
P ; p 7→ g ·p. An Ehresmann connection is sometimes taken to be simply the vertical projector,

and sometimes taken to be the Lie-algebra valued map resulting from composing the vertical

projection with the canonical isomorphism between vertical spaces and the Lie-algebra,

ω := ♯−1 ◦ V̂ . (A.4)

A horizontal lift γh through p ∈ P of a curve in in M through π(p) = x ∈M is the unique

curve through p whose tangent is everywhere horizontal and such that π(γh) = γ. Taking

P = L(E), we interpret the horizontal lift of a curve as the parallel transport of a frame at x

along γ. Thus one defines the covariant derivative of of a section of E as the rate of change of

the section’s components in this basis. That is, for γ′ ∈ TxM :

Dγ′κ(x) := [γh(0),
d

dt

∣∣∣∣
t=0

vκ(γ
h(t))], (A.5)

where vκ(p) are the components of κ(π(p)) in the basis p and d
dt

∣∣
t=0

vκ acts component-by-

component.

We can also describe covariant derivatives directly in terms of a vector bundle. Given a

vector bundle (E,M, V ) a covariant derivative D is an operator:

D : Γ(E) → Γ(T ∗M ⊗ E) (A.6)

such that the product rule

D(fκ) = df ⊗ κ+ fDκ (A.7)

is satisfied for all smooth, real (or complex)-valued functions f ∈ Γ(M). Call C(E) the space

of covariant derivatives for E. Now let the space of connections over E be defined as:

∆(E) := Γ(T ∗M ⊗ End(E)), (A.8)

where End(E) are the linear, fiber-preserving endomorphisms of E, isomorphic to Γ(E∗ ⊗ E).

Given any Do,D ∈ C(E), it is possible to show that there exists a ωD ∈ ∆(E) such that

Do−D = ωD (here, I will abuse notation and use the same ω used for an Ehresmann connection

on P for a connection on E). Therefore the map:

∆(E) → C(E)

ω 7→ Do − ω (A.9)
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is a bijection, for any choice of Do: that is, the space of covariant derivatives is an affine space

over the vector space of connections. This is why, in any trivialisation of E, we can take

Do → d, and take connections to parametrise the space of covariant derivatives; it is why the

covariant derivatives are described as vector bosons: 1-forms valued on End(E).

If E is endowed with further structure, say, an inner product, I will require the connection

to preserve that structure, so that parallel transport is well-defined within the bundle. This

preservation is guaranteed if we characterise covariant derivatives via the principal fiber bundle

of admissible frames as described above.

Given a covariant derivative (A.7) and a curve γ ∈ M such that γ(0) = x, where E is the

vector bundle and Ex is the fiber over x ∈ M , we define the parallel transport along γ as a

unique linear isomorphism:

τγ(t) : Ex → Eγ(t) (A.10)

such that given any Xx ∈ Ex,

Dγ′(τγ(t)(Xx)) = 0, (A.11)

where τγ(t)(Xx) ∈ Γ(E|γ). or γ, γ′ : [0, 1] →M , with γ(0) = γ′(0) and γ(1) = γ′(1) = y:

g · τγ = τγ′ , !g ∈ End(Ey), (A.12)

If the covariant derivative preserves the structure on the typical fiber (so would correspond

to an Ehresmann connection on the bundle of admissible frames, as described below), then in

(A.12) we have g ∈ Aut(Ey) ⊂ End(Ey), where Aut(Ey) is the group of linear automorphisms

that are not only linear (so not only in End(Ey)) but that preserve the added structure on Ey.

Alternatively, by the composition properties of parallel transport, we can see parallel trans-

port around a closed curve starting at x ∈ M as an element g ∈ Aut(Ex). If we take all the

closed curves, this generates a subgroup of Aut(Ex) called Hol(x)(D). It can be shown that,

on a simply-connected region, the holonomy depends on x only up to conjugation by a group

element. Thus it is customary to refer to the path-independent Hol(D) as the the holonomy

group Hol(D). It can also be shown that, given a connection D that is compatible with the

typical fiber structure on V , one can find principal bundle (P,M,G), with a connection ω, such

that the holonomy group is isomorphic (as a G-torsor) to the structure group G, and E is an

associated bundle to P with D being the induced connection from ω (cf. (Michor, 2008, Theo.

17.11)).

To relate a covariant derivative given in (A.7) explicitly to the definition in (A.5), take a

local section σ for L(E), call it {ei} and represent the covariant derivative directly in terms of

this frame. A linear transformation of Ex is an element of E∗
x ⊗ Ex, and we can describe the

extent to which the chosen basis is non-parallel along a certain direction by a 1-form valued

on E ⊗ E∗, which we write as:

ωσ = ωσj
i ⊗ ei ⊗ ej (A.13)

where ωj
i ∈ Γ(T ∗U) as one-forms on the space of vectors of M . Thus, for X ∈ (TxM),

DXej = ωσi
j(X)ei. (A.14)
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Now for some section of the real (or complex) vector bundle κ ∈ Γ(E), we locally write κ = κiei,

and the covariant derivative of κ becomes:

Dκ = dκj ⊗ ej + κiωσj
i ⊗ ej. (A.15)

Of course, under a change of frame, ωσ given in (A.13) will transform in the familiar,

inhomogeneous form (see (A.17) below). This change of frame gives a passive interpretation of

gauge transformations. But we can formulate the corresponding active interpretation in terms

of ∆(E) by considering two fibre-wise linearly isomorphic vector bundles, E,E ′, over M .

Two connections in two linearly isomorphic vector bundles are equivalent if they are related

by the conjugation by the linear isomorphism (here a diffeomorphism f : E → E ′ such that

πE◦f = πE′ , where f takes π−1
E (x) → π−1

E′ (x) by a linear isomorphism). This relation guarantees

that the following diagram commutes (for all X ∈ Γ(TM)):

Γ(E)
DX−−→ Γ(E)

f ↓ ↓ f

Γ(E ′) −−→
D̃X

Γ(E ′)

Thus we can represent the connection D under a bundle isomorphism obtaining a new connec-

tion

D̃X(s) = fDX(f
−1s) ⇒ D̃X = fDXf

−1 (A.16)

or equivalently, fDX = D̃Xf . And of course, if D is related to ω and D̃ is related to ω̃ then

the relationship between ω and ω̃ is the familiar inhomogeneous one, as I will now show.

Over π−1
E (U) = π−1

E′ (U), the domain of a trivialization, we can set D̃o = d, obtaining

fDX = D̃Xf . For any fixed choice of frame of E and E ′:

fDXei = fωk
i (X)ek = ωk

i (X)f j
kej = (ωl

i(X)fk
l )ek

D̃X(fei) = D̃X(f
j
i ej) = (dfk

i + f j
i ω̃

k
j (X))ek

∴ dfk
i + f j

i ω̃
k
j (X) = ωl

i(X)fk
l .

Valid for all X ∈ Γ(TM|U). We then obtain:

ω̃ = (df)f−1 + fωf−1 (A.17)
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