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Abstract

The extant literature on AI (and popular culture more generally)

has a few popular slogans that seek to dismiss the cognitive capacities

of current large-language models (LLMs). Here, from a conceptual

standpoint, we assess whether two such slogans have any teeth. The

first such slogan is that “LLMs can only predict next-tokens”. The

second is that “AIs are stochastic parrots”. We will briefly explain

these two slogans, and argue that, in plausible construals, they do not

imply fundamental limitations to cognition and semantic grounding

(which of course does not imply anything positive about current AI’s

cognitive capacities). The difference between our approach and that

of the burgeoning literature reaching a similar conclusion is that we

base our arguments on the idea of ‘knowledge-first epistemology’.

1 Introduction

As artificial intelligence (AI) systems, particularly large language models

(LLMs), have advanced in recent years, they have sparked both excitement
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and skepticism regarding their cognitive capacities. In terms of practical

use, an LLM was until recently exclusive to a handful of aficcionados and

researchers. In a matter of a couple of years, it has reached the masses, being

used for administration of complex organizations, for planning different types

of activities, for writing code and non-fiction, etc. Nonetheless, many take

the tasks being automated by LLM’s as merely automatable drudgery. These

critics take current LLM’s to suffer from fundamental, structural constraints

in their cognitive capacities.

Two prominent slogans often used to dismiss the capabilities of LLMs are:

“LLMs can only predict next-tokens” and “AIs are stochastic parrots.” These

slogans suggest that LLMs lack genuine understanding or intelligence, func-

tioning merely as sophisticated statistical machines without true semantic

comprehension.

The first accusation—that LLMs can only predict next-tokens—implies

that non trivial cognitive tasks, such as ‘understanding’ language, or having

complex world-models, lies beyond what LLM’s can achieve. For instance,

Melanie Mitchell (2019,0) argues that AI systems “do not capture the rich

meanings that humans bring to bear in perception, language, and reasoning”,

and she calls this lack of understanding a ‘Meaning Barrier”.

The second, related accusation—that AIs are stochastic parrots—was no-

tably articulated by Bender et al. (2021) and suggests that LLMs merely

mimic language without any understanding, akin to parrots generating or

repeating phrases without grasping their meaning, and using a stochastic

process to determine the content of their output. This notion aligns with the

concept of semantic zombies : entities that exhibit behavior indistinguish-

able from that of sentient beings but who lack any referential mechanism (cf.

(Lyre, 2024) and references therein). The usual criticism here is phrased in

terms of the symbol grounding problem for meaning.

Mollo and Millière (2023) summarise the core criticism as follows:

if AI systems are merely designed to process linguistic inputs,

how can their outputs be grounded in a world with which they

have no direct interaction? How can those outputs possess any
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meaning beyond the interpretations that we, as intelligent beings

embedded in the world, may project onto them?

They distinguish between four kinds of grounding problem: referential, sen-

sorimotor, relational, communicative, and epistemic grounding, and go on

to argue that, once one takes into account human reinforcement feedback

learning, all of them are overcome by current LLMs.

In this paper, we also aim to deconstruct these critical slogans. In this

sense, we align ourselves with the more positive views on semantic grounding

of (Chalmers, 2023; Mollo and Millière, 2023; Pavlick, 2023; Piantadosi and

Hill, 2022; Søgaard, 2022,0).

But our reply to these slogans is different from previous ones in important

ways. We first shift focus from semantic grounding to knowledge, which we

take in the standard, Aristotelian sense of justified true beliefs. But here we

will argue that knowledge about the world does not need direct causal contact

with the primary objects of reference. As argued by Bird (2023), knowledge

is, in a sense, ‘Markowian’: previous knowledge can serve just as well as

evidence for further knowledge as ostentation, sensorimotor experience, or

any sort of direct acquaintance. And human languages and large amounts of

text data mirror the world in multiple ways and therefore contain knowledge

about the world. A more detailed prospectus is as follows.

1.1 Prospectus

We will begin in Section 2 by demystifying next-token prediction, by explain-

ing it as a kind of language parsing. Specifically, next-token is understood as

a neural sequence model trained to predict, given a context the next part of

a sentence, most commonly in units of syllables or even letters—the token.

We argue that next-token prediction serves as a method for training models

to demonstrate language membership by parsing derivatives of the training

corpus. It is not so much the famous transformer arquitecture but the next

token prediction that actually captures non-trivial structure of our body of

texts. So next-tokens can be seen simply as the method to acquire language,

and do not imply anything about its use. To end this Section, we draw par-
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allels between this procedure and how humans learn language, noting that

both involve quickly determining whether words or sentences belong to a lan-

guage. This Section will include more technical details then the arguments of

the following Section 3, since those have already been given in the literature

(cf. (Lyre, 2024; Mollo and Millière, 2023; Pavlick, 2023; Søgaard, 2022,0))

and we will merely summarise.

In Section 3, we address a common justification for the accusation of

“stochastic parroting”, which we take to be essentially the ‘symbolic ground-

ing’ claim, that AIs and LLMs lack direct acquaintance with the world, or

sensorimotor grounding and are thus condemned to be “semantic zombies.”

Our main argument here draws from modern philosophy’s dismissal of the

value of direct acquaintance. We have no ‘immaculate’, ‘direct’ access to the

world either: knowledge builds up from intricate ‘coordination problems’ at

the roots of languages towards more complicated theories about the world,

that need not mention these roots. Particular to our dismissal is Bird (2023)’s

argument that knowledge—justified true beliefs—constitutes evidence, and

that evidence is knowledge used in successful inferences towards more knowl-

edge. And there is plenty of evidence that AI more broadly, but even LLM’s,

have indeed acquired knowledge from the data that we have supplied it.

2 Next-Token Prediction as Language Pars-

ing

Tokens are words or parts of words that figure with some relative autonomy

in the texts used to train LLMs. And LLMs are primarily trained using

the objective of next-token prediction. Given a sequence of tokens (words,

subwords, or characters), the model predicts the probability distribution over

the possible next tokens. This training objective enables the model to learn

the statistical patterns and structures present in the language data it has

been trained on.

Mathematically, given a sequence of tokens (w1, w2, . . . , wn−1), the model

aims to estimate the probability P (wn|w1, w2, . . . , wn−1). By maximizing the
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likelihood of the correct next token over large corpora, the model learns to

generate coherent and contextually appropriate text.

2.1 Language Parsing by Derivatives of the Training

Corpus

Next-token prediction can be viewed as a form of language parsing, where

the model learns to recognize and generate sequences that are grammatical

and semantically coherent within the language. By predicting the next to-

ken, the model effectively demonstrates membership of a sequence within the

language, as it must understand the syntactic and semantic constraints that

govern token order. And, the process by which LLM’s acquire meaning, un-

like other questions regarding meaning and indeed unlike the neural process

by which humans acquire language, is very well understood. We now give a

quick summary.

2.1.1 Language membership through derivatives

If we take a language L to be a set of strings formed from an alphabet A, i.e.

s ∈ L ⇒ s = w1w2 · · ·wn, wi ∈ A ∀i. (1)

Brzozowski defined the derivative of a language with respect to an element

of the alphabet wk (which can be characters or tokens depending on what

alphabet we choose to form strings with) as the set of all wk-suffixes in the

language. Formally, we define the ∂wk
operator as:

∀s ∈ ∂wk
L, concat(wk, s) ∈ L. (2)

Here, concat denotes the string concatenation operator. It’s action on two

strings s1 = w1w2..wk and s2 = wk+1..wk+n reads:

concat(s1, s2) = w1w2 · · ·wkwk+1wk+2 · · ·wk+n. (3)

Parsing with derivatives is the process by which the membership of a string s

to a language L can be proved by taking subsequent derivatives with respect
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to each alphabet element of the string and seeing if we are left with the

empty set, , in which case the string does not belong to the language or

if we end up with a language containing the empty string, ϵ, meaning the

original undifferentiated string belongs to the language. The emtpy string is

the string with no characters, which is the result of taking derivatives with

respect to all characters/tokens in a string that belongs to the language. Any

derivative of the empty string results in the empty set. The empty set is a

set with no inhabitants. Formally

s = w1 · · ·wn ∈ L iff ϵ ∈ ∂wn · · · ∂w2∂w1L, (4)

The property that the empty string belongs to a language is known as nul-

lability. Note that we can choose instead to read strings right to left and

start taking derivatives from the final token onwards. We will denote these

derivatives for strings read right to left as ∂r
wi
. Now we define the derivative

of a language with respect to an alphabet element wi ∈ A as the set of all

wi prefixes; ∀ s ∈ ∂r
wi
L, concat(s, wi) ∈ L. As in (4) the requirement for

language membership can still be written as:

s = w1 · · ·wn ∈ L iff ϵ ∈ ∂r
w1
∂r
w2

· · · ∂r
wn
L. (5)

Now we will proceed to describing the connection between this parsing

method and the training of autoregressive language models.

2.1.2 From membership proofs to the objective function

Autoregressive language modeling begins by constructing a map between the

alphabet A and a vector space E = R
|A| where |A| is the cardinality of A.

This mapping is such that every element of the alphabet (which in practice

are sub-word tokens) is identified with a basis element in E . Consequently, a
string of length n is mapped to an element of En, which is the n-fold cartesian

product of E . These mappings of tokens to basis vectors are referred to as

‘one-hot’ representations. Autoregressive language models are maps:

f{θI} : En → E , (6)
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where {θI} are the neural network parameters where I is a multi-index run-

ning through indices of different components (layers) of the network as well as

intra layer components of the network parameters. Training is the procedure

by which {θI} are obtained via gradient descent on an objective function.

The objective function is a map:

L{θI} : En × E → R, (7)

i.e. a function that assigns a scalar to every input-target pair of the language

model, again parameterized by {θI}. The trained network parameters are

obtained as:

{θ∗I} = min
{θI}

L{θI}(s⃗, t̂) (8)

where s⃗ ∈ En and t̂ ∈ E are the one-hot representations of the input string

and the target token. The specific form of this objective function used most

commonly in language modeling is the so-called cross-entropy loss. Explicitly,

this function reads:

L{θI}(s⃗, t̂) = −
|A|∑
a=1

(
log

(
softmax(f{θI}(s⃗))

)a
t̂a
)
. (9)

Note that here we denote the loss for a particular input-output pair. The

total loss is a sum of such terms for every input-target pair. Here softmax is

a map from functions to normalized probabilities:

softmax(f{θI}(s⃗))
a =

exp(fa
{θI}(s⃗))∑|A|

b=1 exp(f
b
{θI}(s⃗))

. (10)

Notice that the expression for the cross-entropy is the negative log likelihood

that the distribution given by the softmax of the network function equals

the target distribution. The crucial fact to note about this function is that

it is minimized when f{θI}(s⃗) = t̂. In other words, minimizing this objective

enforces the predictions of the model to match the targets.

The question then is how to choose the inputs and targets. Here we see

the connection to parsing with derivatives. At each training step, we choose

(s⃗, t̂) s.t s ∈ ∂r
tL where L is the set of strings in the training corpus. In other
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words, the inputs for the next token prediction are elements of the derivative

of the language defined by the training corpus with respect to the targets,

which are the desired tokens to be predicted! Furthermore, during the pre-

training phase, for every string in the training corpus, we demonstrate the

parsing by derivatives (from the right) to the language model. In other words,

given a string s = w1 · · ·wn we form from it the examples:{
(s1 ∈ ∂r

wn
L,wn), (s2 ∈ ∂r

wn−1
∂r
wn
)L,wn−1, · · · , (sn−1 ∈ ∂r

w2
∂r
wn−1

∂r
wn
)L,w2)

}
.

(11)

Per string, the loss is given by:

Lper string =
1

n

(
L{θI}(ŝ1, t̂wn) + · · ·+ L{θI}(ŝn−1, t̂w2)

)
. (12)

In each tuple above, the left-hand entry is the input and the right-hand

entry is the target. Therefore, we train autoregressive language models by

enforcing a parsing by derivatives from the right of the training corpus.

For a given string s = w1 · · ·wn, the expoential of the language modeling

losses evaluated on all the next token examples the string yields is known as

the perplexity:

p = 2
1
n(L{θI}(s⃗1,t̂wn )+···+L{θI}(s⃗n−1,t̂w2 )), (13)

where (s⃗1, t̂wn), ..., (s⃗n−1, t̂w2) correspond to the vocabulary vector space rep-

resentations of the examples formed from the string. When this measure is

smaller than the exponential of the validation loss of the trained language

model, then the language model “accepts” the string as a member of the

natural language it was trained on. In this way, we can use trained lan-

guage models to determine ‘approximate’ membership of strings to natural

languages.

2.1.3 Neural scaling laws

The Neural scaling laws are an empirical relationship between the next-token

prediction loss of transformer models on unseen data and 1) the number

of parameters in the language model, 2) number of data points on which

the model is trained and 3) the amount of computation measured in terms
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of floating point operations applied to training the language model. The

relationship between the loss and the number of parameters and datapoints

takes the form:

L(N, T ) =

((
Nc

N

)αN
αD

+
Dc

D

)αD

, (14)

here N,D denote the number of (non embedding) parameters and the num-

ber of datapoints, and αN , αD, are constants that measure the effect of the

gross number of parameters and datapoints, and Nc, Dc measure the critical

thresholds around which either the model or dataset are too small for the

loss to appreciably descrease (i.e. along a power law). The specific values of

these constants depend on particulars of the model architecture, the dataset,

and the training procedure.

For the purpose of our discussion, this phenomenological relation predicts

that larger models trained on more data will get ever better at parsing natural

language. We should note however that what these relations do not predict as

well are the performance of the models on multi-choice benchmarks that test

capabilities such as reasoning. This is to say that the downstream capabilities

of language models are hard to infer directly from knowing how well they can

furnish memberhip proofs of string in natural languages.

2.2 Parallels with Human Language Acquisition

Humans learn language by being exposed to linguistic input and rapidly

developing an understanding of which words and sentences are acceptable

within their language. Although the detail is very different than how LLMs

learn language, both involve recognizing grammatical structures, syntax, and

the meanings of words in various contexts. Although it may not be central

to the learning process, humans intuitively predict how sentences should

be completed, anticipate responses in conversations, and detect anomalies in

language use. LLMs, through next-token prediction, perform analogous tasks

by generating likely continuations of text based on learned patterns. Indeed,

the psycholinguistics theory on prediction mechanism proposes a very similar

mechanism of language acquisition in humans (cf. Ryskin and Nieuwland
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(2023)). The idea here is that, during language processing, comprehenders

predict upcoming linguistic input. These predictions draw on many sources

of information including the preceding sentence context.

Chomskyan linguists claim children are born with an innate ”Universal

Grammar” to learn languages with minimal input (Chomsky, 1957). The

apparent success of large language models (LLMs) in acquiring syntax with-

out innate grammar challenges this view, as argued by Piantadosi (2023).

LLMs show that statistical learners can induce syntactic rules, although they

typically receive far more input than children and operate in distinct envi-

ronments. Recent efforts, such as the BabyLM challenge, demonstrate that

smaller models trained on child-directed data can efficiently learn grammar,

suggesting that statistical models can learn grammar more effectively than

previously thought. However, it remains an open question whether statistical

learners without innate parsers can match the efficiency of children learning

from limited input. Ongoing research aims to replicate children’s learning

environments more closely, using developmentally plausible spoken text or

egocentric audiovisual data. If these models replicate the syntactic general-

izations of children, it could further challenge the necessity of innate grammar

for language acquisition. The question has clearly become one of efficiency,

as opposed to one of principle.

One of the ‘in principle’ arguments of Chomsky (2023) is that LLMs

could have learned ‘impossible languages’ and thus are bound to be semantic

zombies. Again, recent experiments challenge this view, showing that com-

pressibility of the input for LLM’s is crucial for efficient learning, much like

in humans. For instance, Tseng et al. (2024) investigates how large language

models (LLMs) compress semantic pairs, finding that correct pairings result

in better compression. Using semantic relations from English and Chinese

Wordnet, the study shows that LLMs have an advantage in compressing

texts with accurate semantic relations, measured by the compression advan-

tages index. Larger models and those fine-tuned with structured knowledge

(e.g., Chinese Wordnet) perform better, with fine-tuning greatly enhancing

compression and semantic task performance. Notably, these improvements

generalize to new tasks, suggesting the learning of abstract semantic con-
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straints.

3 On Parrots, Octopuses, and Zombies

3.1 The Sensorimotor Grounding Argument

A common criticism of LLMs is that, lacking sensorimotor grounding, they

cannot genuinely understand language or meaning. The idea is that because

AIs do not interact with the world through senses and actions as humans

do, they are merely manipulating symbols without grasping their semantic

content; like a parrot who repeats the word ‘sword’ without it ever having

seen or wielded one. Current AI’s are, according to this criticism, “semantic

zombies.” This is one of the most common criticisms of LLM’s, often assumed

as almost a priori.

First, note that phenomenal (or qualia) zombies are logically possible only

if one assumes that the qualia have no irreplaceable functional role, i.e., that

they are functionally inert. Clearly one cannot argue for the existence of a

semantic zombie in the same way without begging the question, since mental

representations are typically postulated precisely for explaining behavior. So

more needs to be said about what constitutes a semantic zombie.

Bender and Koller (2020) present a parable that is supposed to illustrate

the kind of semantic vacuum that arises in the absence of direct acquaintance

or sensorimotor grounding. The parable involves an eavesdropping octopus

and is a close cousin of Searle (1980)’s Chinese room. It goes as follows.

Two human speakers are stranded on different desert islands, but they can

communicate with each other via an underwater cable. A hyper-intelligent

octopus, with no knowledge of the surface world, wiretaps the cable.1 By lis-

1The octopus is often used as a symbol for alien intelligence—intelligent but funda-

mentally different from human cognition. Octopuses have a distributed nervous system,

a decentralized form of intelligence that challenges our anthropocentric view of mind and

thought. In AI, the octopus can symbolize the potential for AI to evolve into a form

of intelligence that is non-human and radically different in structure and operation. It

suggests that AI may develop novel forms of reasoning or consciousness that don’t mirror

human thought processes, much like the octopus’s mind is distinct from ours.
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tening to the human conversation, the octopus learns to predict the speakers’

responses with increasing accuracy. Bender and Koller claim that no mat-

ter how accurate the prediction, the octopus will never be able to grasp the

meaning of words and sentences, since it has never been to the world in which

they find their reference. In other words, the octopus has no true knowledge

of the surface world. This thought-experiment is supposed to illustrate how,

pace a successful symbol manipulation by the octopus, the absence of direct

causal relations strips terms of reference from their intended meaning, and

so makes knowledge about the world to which the words refer impossible.

3.2 Indirect grounding: where are we now?

This dichotomy between symbol manipulation and knowledge is reflected in

much of the literature on AI today. The question is often put as follows: are

LLMs better understood as tracking the referents of the words they use and

(doing something isomorphic to) tracking and dealing with those referents, or

are they better understood as tracking relationship between words? Which

depending on how it is answered, leads to the idea that stochastic parroting

can accurately describe the outputs, but it does not predict that LLMs have

internal structure representing concepts that generalize, and do not expect

that changes to one token affect different but conceptually related tokens.

Here we will reject this dichotomy. The texts on which LLM’s have been

trained are not random, but highly structured. More importantly, we, human

beings, through centuries of writing, experimenting and researching, have en-

coded an immense amount of knowledge in these texts. The texts are tightly

tethered to the world, and indeed, as argued in the previous Section, this is

an important reason why LLM’s are able to learn languages so effectively.

And so meaning can arise with only indirect reference; indeed we often see

this in abstract concepts and terms with no concrete referents.

Thus far, the argument is not novel. Lyre (2024); Piantadosi and Hill

(2022) both argue that although LLMs do not have direct sensory or motor

interactions with the world, the text data they are trained on is produced

by humans who do. ? distinguishes between inferential semantics (relation-
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ships between expressions) and referential semantics (relationships between

expressions and referents). He then argues that while Transformers excel

in inferential semantics, they can also achieve referential semantics, precisely

because they are grounded in representations of the physical, mental, and so-

cial world. He then evinces empirical evidence showing that language model

vector spaces are near-isomorphic to brain imaging, perceptual, and physical

spaces.

Indeed, recent evidence supports the idea that LLMs are developing world

models that bear a notion of isomorphism to the trained data, and that they

rely on the world model to generate sequences. Thus far, the evidence is

for very simple concepts in an LLM’s internal representations, such as color

(Abdou et al., 2021), direction (Patel and Pavlick, 2022), etc. Nonetheless,

they found that the representations for different classes of these concepts are

easier to separate compared to those from randomly-initialized models. By

comparing probe accuracies from trained language models with the probe ac-

curacies from randomly-initialized baseline, they conclude that the language

models are at least picking up something about these properties.

Similarly, in Li et al. (2022), this is explored for an LLM trained on

the legal moves of the game Othello. Unlike reinforcement learning mod-

els like AlphaGo (Silver et al., 2016), which incorporate game rules and

board structures to predict optimal moves, this model treats game sequences

as generated text without explicit knowledge of board structure or rules.

Othello-GPT learns only from lists of moves (e.g., E3, D3, C4) to predict the

next move. Nonetheless, the trained model achieves a legal move accuracy

of 99.99%, compared to 6.71% for an untrained version. They found not

only that training induces an emergent spatial representation similar to the

Othello board, but that it is possible to directly track interventions on the

internal representation to the outputs of the model.

Here we want to propose a slightly different argument, which bypasses

the notion of semantic grounding and understanding. In particular, it avoids

the agent-centered character of so many of these concepts.2 We now turn to

2For instance, in the context of scientific understanding, a recent review (Barman et al.,
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this.

3.3 An argument based on knowledge and evidence

In Section 3.1 we equated the putative semantic hollowness of the octopus’s

propositions with a lack of knowledge, in particular about the terms used in

those propositions, but more broadly about the surface world in which they

originated.

Here, we define knowledge in the usual, minimalist, tripartite manner as

’justified true beliefs’. The definition can be understood within any theory of

truth, and whether justification is seen as external (e.g. in terms of reliabilism

or knowledge-first externalism) or internal (e.g. based on rational belief-

formation rules). ‘Beliefs’ can also be understood in several ways. They

can, for instance, be functionally characterised by consistency of responses

to the same queries: if under repeated questioning, an LLM denies that

Hilary Clinton won the 2016 election for president, we can say it believes

the proposition that ’Hilary Clinton didn’t win the 2016 US election for

president’. Beliefs can also be seen externally, in physicalist terms, as a

distribution of weights in a neural network, etc. Any such notion of ‘belief’

is sufficient for our purposes; we need not mention ‘subjective feelings in our

internal world’.

Indeed, none of what follows depends on which definitions of ‘justifica-

tion’, ‘true’, and ‘belief’ we choose among those defended in the current

literature, as long as we can agree that non-human cognizing agents are

not logically barred from having knowledge. To the sceptic, functionalist

definitions may seem more palatable, and, unlike in the case of phenome-

nal zombies, they do not beg the question against the semantic zombie (see

2024) proposes that:

Understanding is an ability to ”provide explanations within a theoretical

framework that is intelligible to the agent, which involves the ability to derive

qualitative results, answer questions, solve problems properly, and extend

knowledge to other domains or levels of abstraction”.
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Lyre (2024) for a more detailed argument for functionalist responses to the

semantic zombie).

In the context of AI, this shift from semantic grounding to knowledge is

not uncommon (see e.g. Liu (2023) and references therein). For instance, in

a paper about semantic grounding in AI, Biu (ibid) defines grounding as:

the process of connecting abstract knowledge and natural lan-

guage to the internal representations of our sensorimotor experi-

ences in the real world and our subjective feelings in our internal

world.

(We will deal with the role (or lack thereof) of subjective feelings shortly.)

And the core of the claims of Section 3.1 about the primacy of sensorimotor

experience for semantic grounding translates without loss to the context of

knowledge and evidence. The idea is that only certain kinds of knowledge can

serve as evidence. Evidence, in this critical view, must be directly grounded

on experience, usually taken to be perceptual or sensorimotor. (Maher, 1996,

p. 158) writes: “Even if a proposition is known to be true, if this knowledge

[E] is not directly based on experience then E is not evidence and hence not

evidence for anything.”

But more recently, a less agentic notion of knowledge has been defended

by Bird (2023). On Bird’s view, there is no indispensable role for human

sense-perception in the scientific process. Every role traditionally taken on by

the human senses could be taken over by a reliable automated process without

undermining the epistemic credentials of the output. ‘It requires no great leap

of imagination’, says Bird, ‘to see such robotic science becoming sufficiently

reliable and routine that it is produced, published, and even consumed with

minimal human intervention’ (p. 93).

As argued convincingly by Bird, evidence is just knowledge that is used

in successful inferences toward more knowledge. So the concept of evidence

functionally characterises propositions by their role in inference. If a success-

ful inference to further knowledge was based on some proposition E, then E

constitutes knowledge, and if an inference relies on an unjustified premise,

the conclusion will fail to count as knowledge. As illustrated by Bird (ibid,
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p. 122):

[...]intermediate propositions in the chain of inferences have the

status of evidence propositions. The picture [...] is this. A sci-

entist makes an inference that generates a conclusion. Then that

scientist or another scientist uses that first conclusion to make

another inference to some second, further conclusion. [...] if the

inference to the second conclusion is knowledge-generating then

the first conclusion is evidence. For example, Tycho Brahe made

observations of the planets. From this evidence, Kepler inferred

that planets travel in ellipses (and his other laws). Starting from

Kepler’s conclusions, Newton inferred a further conclusion, that

the planets are subject to an inverse square central force law.

[this argument] claims that Kepler’s law that planets travel in

ellipses is evidence—assuming that Newton came to know the

force law as a result of his inference. The counterproposal [...]

limits evidence propositions to non-inferential knowledge. [...] it

denies that the inferred propositions, such as Kepler’s laws, are

evidence.

In order to be terminologically neutral, let us momentarily call whatever

input AI’s have provided humans as ‘information’. And let us take as a given

that the information that AI’s have provided humans, whether in the context

of chess or of protein-folding, has decidedly informed further development in

these areas by humans. In formal jargon, that information has served as

‘evidence’ for further human knowledge formation.

It is at this point in time undeniable that current AI systems have pro-

duced ‘knowledge’ in the everyday sense of the word. Strategies for board

games, such as GO or Chess have progressed since, and due to, the inter-

vention of AI’s. Or, in the real world, knowledge about protein-folding has

undergone a similar advance. It is not unthinkable that an LLM trained on

Othello (as described above) would provide something similar.

Thus, since (some of) the information provided by AIs can be charac-

terised as a kind of belief that decidedly served as an inferential basis for
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developing more knowledge, not only by us, but by the LLMs, it is itself

knowledge.

The unique feature of this conception of knowledge is that it downplays

the ‘agentic’ connotation of ‘beliefs’ in the tripartite (JTB) definition of

knowledge. Moreover, as Bird explains, the very relational structure between

a set of beliefs is what encodes knowledge (ibid, p. 129) :

The counterfactual causal sensitivity of our beliefs to one another

can be enough to ensure [that they reflect knowledge.] it is un-

doubtedly the case that it is typically the reliability (often causal)

of the connection between the facts and a belief-like mental state

that makes that mental state one of knowing.

Here, all we need to do to avail ourselves of this argument is to replace a

human mental state, physically instantiated in a brain, by an LLM’s state,

physically instantiated by weights in a neural network. But of course, under

externalism, there is no requirement to spell out what internal state justifies

a belief. It is the external reliability of the belief-forming procedure that

makes it knowledge. And there is a reliable causal connection between facts

in the world and belief-like mental states of an LLM: we have supplied this

connection ourselves in training and post-training. The counterfactual sensi-

tivities of an LLM’s beliefs to one another will reflect knowledge just as ours

do.

The counterproposal is that only non-inferential knowledge can serve as

evidence. Again, Bird illustrates (ibid p.123)

This counterproposal still gives evidence a key epistemological

role. This role is foundational. In the chain of inferences just

considered, it is only the initial propositions that are the evi-

dence propositions. The intermediate propositions do not count

as evidence, according to the counterproposal. Evidence propo-

sitions are those propositions that form a basis of our inferences

and are not themselves inferred from anything else.

The appeal of non-inferential knowledge, usually assumed to be a type of

‘raw’ perceptual, or sensorimotor information which AI’s and LLM certainly
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lack, is that it is often construed as certain, or nearly certain. However, there

is no reason to think that non-inferential knowledge, or any knowledge, has

this kind of certainty. Indeed, optical and sensorimotor illusions abound,

and evidence from our senses often needs to be corrected by more precise

scientific instruments. Although many lines of scientific instruments begin

by aiding human perception, they quickly outgrow that function and end up

replacing human perception altogether.

As Bird (2023) successfully argues, there is no reason for the concept

of evidence to be constrained to be non-inferential. First off, we generally

do not remember the non-inferential propositions that form the basis of our

inferential knowledge. I can lose my sensorimotor or perceptual evidence

for some proposition without also losing knowledge of what was successfuly

inferred from it. Indeed, what is retained is usually the information extracted

from the original experience, not the content of the experience itself. As Bird

writes, (ibid, p 127) “I can remember the melting point of lead (327.5± C),

but not the visual or auditory experience by which I learned this fact.” We

are constantly acquiring new evidence for many of our existing beliefs. And

we don’t need to repeatedly re-confirm those beliefs through fresh inferences.

Summing up our response to Bender and Koller (2020)’s octopus’ thought-

experiment, we should ask: how is the octopus’s access to the surface world

qualitatively different from human access to the world of viruses and bacte-

ria, not to mention quarks and gluons? We certainly do not directly perceive

these with our unaided senses. More and more, what we directly perceive

are only numbers and graphs on a computer screen. Nonetheless, we claim

to have knowledge of these theoretical items. We rely on heavily theory-

laden, iterative processes to lead us to justified true beliefs. Perhaps with

enough time and assuming the stranded humans were reporting on all kinds

of occurrences and structures of their surface-world—were reporting, that is,

knowledge—the octopus just might know what is up.
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3.4 Summing up

First, it is important to issue a caveat: this argument primarily applies to

propositional, or conceptual knowledge, that can be expressed in declarative

sentences. There may be forms of non-propositional or tacit knowledge, such

as experiential or embodied understanding, that AIs do not possess. An LLM

doesn’t have the know-how to ride a bicycle, for example. While the scope

of this kind of knowledge is a hotly debated topic (cf. Stanley (2011)), we

concede that such forms of knowledge are not yet replicated in current LLMs,

but we won’t speculate on whether there are future avenues for doing so.

So, to sum up: philosophical arguments suggest that direct sensorimotor

experience is not the sole basis for knowledge. In this viewpoint, knowledge

consists of justified true beliefs, and evidence is just knowledge used in suc-

cessful inferences to acquire further knowledge. This viewpoint implies that

an entity can possess knowledge if it can process and infer information in

ways that lead to true beliefs, regardless of the origin of its initial knowledge

base.

In this section, we have challenged the notion that AIs are semantic zom-

bies by arguing that sensorimotor grounding is not a prerequisite for possess-

ing knowledge or engaging with meaning. By reframing knowledge in terms

of justified true beliefs and functional inference, we open the possibility that

AIs have cognitive capacities more akin to human understanding than critics

suggest. Thus we proposed that:

1. Inferring Justified True Beliefs: AIs are capable of processing in-

puts and, through learned patterns, producing outputs that correspond

to justified true beliefs. Their inferences, grounded in extensive data

processed during training, allow them to generate knowledge that is

coherent and applicable.

2. Linking Knowledge to Meaning: Meaning can be construed in

terms of the ability to use information to make accurate inferences

and predictions. If an AI can use linguistic inputs to generate valid

conclusions, it engages with knowledge in a functionally similar manner
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to humans.

3. Defining Beliefs in AIs: Beliefs can be considered as stored rep-

resentations or states that guide behavior and inference. In AIs, the

learned parameters and internal states serve this purpose, guiding the

generation of outputs based on inputs.

By these points, we argued that AIs possess a form of knowledge grounded

in human-provided data.
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