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Abstract

In this work we discuss the establishment of Standard Quantum Mechanics (SQM) developed through
Schrödinger’s and Dirac’s wave-vectorial reformulations of Heisenberg’s original matrix mechanics. We
will argue that while Heisenberg’s approach was consistently developed —taking as a standpoint the
intensive patterns that were observed in the lab— as an invariant-operational formalism, Dirac’s axiomatic
re-formulation was, instead, developed —taking as a standpoint Schrödinger’s wave mechanics and the
methodological guide of Bohr and logical positivists— as an essentially inconsistent “recipe” intended
(but unable) to predict (binary) measurement outcomes. Leaving SQM behind and attempting to restore
the consistent and coherent account of a real state of affairs, we will present a new tensorial proposal
which —taking as a standpoint Heisenberg’ original approach— will prove capable not only to extend the
matrix formalism to a tensorial representation but also to account for new experimental phenomena.

Keywords: matrix mechanics, tensors, quantum mechanics, realism.

Introduction

Today there is a general consensus within the contemporary physics community on what is to be considered the
“Standard” version of Quantum Mechanics (SQM). This is, in fact, what students are taught in Universities
all around the world when following a course about QM. When physicists talk about QM they actually
have in mind either Schrödinger’s wave equation from 1926 (with Born’s probabilistic interpretation) or Paul
Dirac’s vectorial re-formulation (heavily influenced by Bohrian and positivist ideas) presented in 1930 and
rendered “more rigorous” in mathematical terms by John von Neumann in 1932. Of course, there are many
different textbooks with small variations and slightly different presentations,1 but the core of what is taught
by physics Professors is always the same, a set of 8 or 9 postulates, that are common to all textbooks, which
attempt to show how these axioms are capable to predict measurement outcomes. As it is well known, within
this “standard” presentation, it is Heisenberg’s matrix mechanics which has been mostly left aside.

1It is important to remark that most physicists are not interested at all in the many “interpretations” which are heatedly
debated in philosophical journals. As Maximilian Schlosshauer [38, p. 59] has recently described: “It is no secret that a shut-
up-and-calculate mentality pervades classrooms everywhere. How many physics students will ever hear their professor mention
that there’s such a queer thing as different interpretations of the very theory they’re learning about? I have no representative
data to answer this question, but I suspect the percentage of such students would hardly exceed the single-digit range.”
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In this work we attempt to critically consider the way in which SQM was established by imposing a
series of controversial operations (originated in great part in Bohr’s work) and argue not only on the need to
return to Heisenberg’s original formulation, but also to go beyond it and advance in a tensorial formulation.
The paper is organized as follows. In section 1 we present the main ideas which allowed Heisenberg to
develop QM. Section 2 addresses the replacement of matrix mechanics by Schrödinger’s differential wave
equation. In section 3, we review the vectorial axiomatic re-formulation —already implicit in Schrödinger’s
proposal— developed by Dirac in 1930. In section 4 we argue for the need not only to return to Heisenberg’s
matrix mechanics, but also to extend the mathematical formalism in tensorial terms. In section 5 we present
Tensorial QM. In the last section we present some final remarks.

1 Heisenberg’s Matrix Quantum Mechanics

After Max Planck postulated the discreteness of the quantum of action during the first year of the 20th
Century, it took 25 more years for physicists to reach a closed mathematical formalism that would allow
them to account in a quantitative fashion for the intensive line-spectra that were observed in the lab. It was
Werner Heisenberg, a young physicist from Munich, who was finally able to create a consistent mathematical
formalism capable to capture all observed quantum phenomena in an operationally-invariant manner [26]. In
this respect, one cannot stress enough the essential subversive role played by the Machian positivist critique
of the a priori concepts of classical mechanics within Heisenberg’s work —also essential within Einstein’s
development of realitivity. It was this attitude that allowed him to approach the issue less burdened by the
presuppositions derived from classical physics. As described by Sheila Jones:

“Heisenberg was groping in the dark, taking a stab at a new approach, just as all the physicists working on

the puzzle of the quantum had been doing for years. He didn’t really know what he was doing. He hadn’t

worked out a firm foundation yet, but he was seeking to describe the behavior of the quantized atom

using only energy, intensity and frequency, and the observable experimental results from spectroscopy

that showed up in the spectral signature of heated gases.” [32]

In the previous years Heisenberg had followed the lead of Niels Bohr, focusing on the problem (created by
Bohr’s model) of describing the trajectories of electrons inside the atom. Bohr, let us recall, trying to stick to
the atomist representation familiar to physicists while incorporating the discreteness of the quantum of action,
had related his essentially inconsistent yet effective algorithmic model —capable to predict the spectral lines
of a specific experiment— to the image of a “small planetary system” with microscopic particles traveling
along discrete quantum orbits around a central nucleus. According to the Danish physicist, electrons would
change orbits through an essentially irrepresentable process, a “quantum jump”. Even though none of this
made much sense, nor could it be demonstrated or really explained, physicists were immediately captured by
the predictive capacity of Bohr’s model, they bought the whole package, and focused on trying to describe
the real trajectories of these surreal quantum corpuscles. Heisenberg followed the lead of Bohr for some
time, but the critical reaction of Arnold Sommerfeld and Wolfgang Pauli to Bohr’s ideas convinced him
in 1925 that this path lead to a dead end and that he should forget about the attempt to describe the
trajectories of particles (see for a detailed discussion [5]). Following the same Machian principle which had
helped Einstein to develop special relativity, Heisenberg would reframe the problem completely —escaping
the classical images proposed by Bohr— focusing exclusively on the intensive quantities that were actually
described by experimentalists. As explained by Jaan Hilgevoord and Joos Uffink:

“His leading idea was that only those quantities that are in principle observable should play a role in

the theory, and that all attempts to form a picture of what goes on inside the atom should be avoided.

In atomic physics the observational data were obtained from spectroscopy and associated with atomic

transitions. Thus, Heisenberg was led to consider the ‘transition quantities’ as the basic ingredients of

the theory.” [30]

That same year, emancipating himself completely from classical ideas, Heisenberg [26] would present his
groundbreaking results in the following manner: “In this paper an attempt will be made to obtain bases for
a quantum-theoretical mechanics based exclusively on relations between quantities observable in principle.”
Almost half a century later he would narrate how these events had actually unfolded:
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“In the summer term of 1925, when I resumed my research work at the University of Göttingen —since

July 1924 I had been Privatdozent at that university— I made a first attempt to guess what formulae

would enable one to express the line intensities of the hydrogen spectrum, using more or less the same

methods that had proved so fruitful in my work with Kramers in Copenhagen. This attempt lead me

to a dead end —I found myself in an impenetrable morass of complicated mathematical equations, with

no way out. But the work helped to convince me of one thing: that one ought to ignore the problem

of electron orbits inside the atom, and treat the frequencies and amplitudes associated with the line

intensities as perfectly good substitutes. In any case, these magnitudes could be observed directly, and as

my friend Otto had pointed out when expounding on Einstein’s theory during our bicycle tour round Lake

Walchensee, physicists must consider none but observable magnitudes when trying to solve the atomic

puzzle.” [29, p. 60]

Max Born [32, p. 160] would also recall his surprise when his young student gave him a paper to publish
in Zeitschrift für Physik which included a new non-commutative multiplication rule: “Heisenberg’s rule of
multiplication left me no peace, and after a week of intensive thought and trial, I suddenly remembered an
algebraic theory that I had learned from my teacher... in Breslau. Such quadratic arrays are quite familiar to
mathematicians and are called matrices, in association with a definite rule of multiplication.” As Heisenberg
would later explain:

“The equations of motion in Newtonian mechanics were replaced by similar equations between matrices;

it was a strange experience to find that many of the old results of Newtonian mechanics, like conservation

of energy, etc., could be derived also in the new scheme. Later the investigations of Born, Jordan and

Dirac showed that the matrices representing position and momentum of the electron do not commute.

This latter fact demonstrated clearly the essential difference between quantum mechanics and classical

mechanics.” [27, p. 4]

Heisenberg’s theory, which had been developed exclusively from the tables of intensive patterns observed
in the lab, was operationally grounded right from the start. Heisenberg was simply trying to provide an
invariant mathematical scheme capable to account for the empirical tables of intensive data. Was there
any consistency, any invariance to be found between these tables of (intensive) numbers collected through
experimental procedures? The answer provided by Heisenberg in terms of a new mathematical scheme was of
course a positive one. What is truly remarkable is that in finding this invariance of intensities Heisenberg had
rediscovered the theory of matrices. That same year, with the help of Born and Pascual Jordan, Quantum
Mechanics (QM) would fianlly find its final form [7, 8]. Let us stop for a minute just to note some aspects
of Heisenberg’s proposal. Firstly, that its success was the direct consequence of abandoning, at least for a
moment, the Bohrian approach of trying to describe the trajectories of presupposed corpuscles (a path he had
attempted before but had lead him nowhere). Secondly, that his formalism was in fact invariant, something
which permitted to discuss consistently the operational results found in the lab also when considering different
reference frames or bases. Thirdly, that the quantities this formalism was pointing as its invariant elements
were intensities (and not binary values); something which, of course, if taken seriously, imposed the need of a
radical innovation: to develop a new originally intensive physical concept. And finally, that this formulation
implied a mathematical theory to which physicists were not accustomed. In fact, the introduction of a
new mathematical theory implied of course a radical shift in physics which, since classical mechanics, had
been constrained to solving differential equations. Furthermore, the loss of a continuous representation
implied for classically trained physicists a supposedly “higher level of abstraction” contrary to the “intuitive
representation” provided by infinitesimal calculus. Physicists had no obvious picture they could apply in
order to make sense of this new mathematical representation. As a consequence, they would observe the
new theory with unease and discomfort. Matrix mechanics was accepted not without resentments to be the
adequate theory for quantum phenomena. However, the immediate reaction was to interpret this theory,
again, in atomistic terms, although, as Sin Itiro Tomonaga [45, p. 223] reports, as they did that, they still
had many questions they could not answer: “[i]f the location of an electron and of other particles were to
become such an abstract aggregate, or matrix, how can we explain in this theory the track of a particle
observed commonly in a Wilson chamber? It was Lorentz who said: ‘Can you imagine me to be nothing
but a matrix? It is hardly to believe that all this is real’.” Of course, in retrospect, it should have been
clear not only that the atomist representation was not suitable for this theory of intensities, but also that
the picture provided by differential calculus and Newton’s theory had also been, at the time of its creation
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—in contraposition to Aristotelian physics—, exactly the opposite of an “intuitive picture”. Physicists had
simply become accustomed to the classical representation which they now regarded as “commonsensical”
or “self-evident”. So even though Heisenberg’s formalism was capable of describing in invariant terms the
intensive values observed in the lab, this did not seem to be enough. Physicists were simply not prepared to
give up on the modern atomist spatiotemporal representation, even if the cost was as high as to accept the
existence of Bohr’s strange and irrepresentable “quantum particles” and “jumps”. It is in this context that
Schrödinger’s new differential formulation of wave mechanics would be received by the physics community
with enormous relief.

2 Schrödinger’s “Wave Like” Differential Reformulation

Heisenberg’s paper was sent in July 1925 and published in December that same year. But just one month
later, in January 1926, Erwin Schrödinger would present —following the work of Louis de Broglie— a new
“wave like” differential equation which was also able to compute the correct energies for the quantized
hydrogen atom. Schrödinger would complete his formulation in a series of four papers published in Annalen
der Physik, later on collected in a single work [39]. Of course, the choice of the physics community between
Heisenberg’s “weird” matrices and Schrödinger’s good old comfortable differential equation was not really
difficult. While Schrödinger’s proposal promised to restore a continuous space-time representation within a
well known mathematical scheme, Heisenberg’s calculus seemed to lack any picture that would explain what
was really going on with quanta, reinforcing in turn the unacceptable elements of discontinuity. In words of
Max Jammer:

“After the conceptual cataclysm evoked by the latter [matrix mechanics] it seemed as if Schrödinger’s

return to quasi-classical conceptions reinstated continuity. Those who in their yearning of continuity hated

to renounce the classical maxim natura non facit saltus acclaimed Schrödinger as the herald of the new

dawn. In fact, within a few brief months Schrödinger’s theory ‘captivated the world of physics’ because it

seemed to promise ‘a fulfillment of that long-baffled and insuppressible desire. Einstein was ‘enthusiastic’

about it, Planck reportedly declared ‘I am reading it as a child reads a puzzle’, and Sommerfeld was

exultant.” [31, p. 269]

However, this conservative attempt to restore a somewhat classical representation of physical reality within
the theory of quanta would immediately find evident limits for its consistent development. Schrödinger himself
would recognize the difficulties: the domain of the wave equation he had constructed was not 3-dimensional
but configuration space, and thus the possibility to regain a classical and intuitive spatial representation
became far from obvious.

“The true mechanical process is realized or represented in a fitting way by the wave process in q-space,

and not by the motion of image points in this space. [...] In this sense do I interpret the ‘phase waves’

which, according to de Broglie, accompany the path of the electron; in the sense, therefore, that no special

meaning is to be attached to the electronic path itself (at any rate, in the interior of the atom), and still

less to the position of the electron on its path. And in this sense I explain the conviction, increasingly

evident to-day, firstly, that real meaning has to be denied to the phase of electronic motions in the atom;

secondly, that we can never assert that the electron at a definite instant is to be found on any definite

one of the quantum paths, specialized by the quantum conditions; and thirdly, that the true laws of

quantum mechanics do not consist of definite rules for the single path, but that in these laws the elements

of the whole manifold of paths of a system are bound together by equations, so that apparently certain

reciprocal action exists between the different paths. [...] All these assertions systematically contribute to

the relinquishing of the ideas of ‘place of the electron’ and ‘path of the electron’. If these are not given

up, contradictions remain. This contradiction has been so strongly felt that it has even been doubted

whether what goes on in the atom could ever be described within the scheme of space and time.” [39, p.

25-26] (his emphasis).

Adding to the already complex situation, very soon the battle between wave and matrix mechanics would
face an essential difficulty for both parties. After his second paper, and for the surprise of everyone in the
physical community, Schrödinger demonstrated what he called “a formal, mathematical identity” between
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Heisenberg’s matrix mechanics and his own wave mechanics [40]. In the introduction he remarked that
both approaches seemed in principle fundamentally different in mathematical methods, assumptions and
presentation:

“Above all, however, the departure from classical mechanics in the two theories seem to occur in dia-

metrically opposed directions. In Heisenberg’s work the classical continuous variables are replaced by

systems of discrete numerical quantities (matrices), which depend on a pair of integral indices, and are

defined by algebraic equations. The authors themselves describe the theory as a ‘true theory of a discon-

tinuum’. On the other hand, wave mechanics shows just the reverse tendency; it is a step from classical

point-mechanics towards a continuum-theory. In place of a process described in terms of a finite number

of dependent variables occurring in a finite number of total differential equations, we have a continuous

field-like process in configuration space, which is governed by a single partial differential equation derived

from a principle of action.” [40]

What is important to notice, for our purposes, is that Schrödinger had only demonstrated that his wave
mechanics implied the matrix formulation, but the converse was still missing. The reason, as shown in [20],
was that wave mechanics was, in fact, included within Heisenberg’s matrix formulation. While Heisenberg’s
mathematical theory referred to all matrices, of any rank, Schrödinger’s formulation restricted Heisenberg’s
original operational space only to matrices of rank = 1. Unfortunately, adding to this confusion, Wolfgang
Pauli, Carl Eckart and John von Neumann would give their own independent “proofs of the equivalence”
giving rise to what Fred Muller has correctly termed “the equivalence myth” [36]. Useless to say, Heisenberg
was not delighted with the equivalence and neither was Schrödinger who declared: “I was discouraged,
if not repelled, by what appeared to me a rather difficult method of transcendental algebra, defying any
visualization”.

Short after the acceptance of the establishment of this equivalence between matrix and wave mechanics,
Born began to study the scattering of particles by a spherically symmetric potential, developing what is
now known as the ‘Born approximation’. He preferred to make the calculations by means of Schrödinger’s
formulation due to its simplicity for this specific problem. To model the collision, Born proposed “to solve
Schrödinger wave equation for the system-plus-atom subject to the boundary condition that the solution in a
preselected direction of electron space goes over asymptotically into a plane wave with exactly this direction
of propagation (the arriving electron). In a thus selected solution we are further interested principally in a
behavior of the ‘scattered’ wave at infinity, for it describes the behavior of the system after the collision”. He
solved the problem, showing that “the perturbation, analyzed at infinity, can be regarded as a superposition
of solutions of the unperturbed problem” and proposed the reading that each coefficient “Φn,m(α, β, γ) gives
the probability for the electron, arriving from the z-direction, to be thrown out into the direction designated
by the angles α, β, γ [...]”. Born corrected in the same paper, in a note added in proof, that the probability
was proportional to the square of the coefficient instead to the coefficient itself. Ever since, this has been
known as the Born Rule and his reading of the wave function as the probabilistic interpretation.

“Schrödinger’s quantum mechanics therefore gives quite a definite answer to the question of the effect
of the collision, but there is no question of any causal description. One gets no answer to the question‘,
‘what is the state after the collision’, but only to the question, ‘how probable is a specified outcome of the
collision’ [...]. Here the whole problem of determinism comes up. From the standpoint of our quantum
mechanics there is no quantity which in any individual case causally fixes the consequence of the collision;
but also experimentally we have so far no reason to believe that there are some inner properties of the
atom which condition a definite outcome for the collision. [...] I myself am inclined to give up determinism
in the world of the atoms. But that is a philosophical question for which physical arguments alone are
not decisive.” [6, p. 54]

Born’s interpretation did not seem any less problematic, since it did not account for the interaction of these
“probability waves” nor the fact that these waves were represented in configuration space and the dimen-
sion changed with the number of wave functions that could be considered in different situations. However,
more or less in the same way that Bohr had already misdirected the problems of his atomic model, Born’s
focus switched completely the attention from the intensive patterns considered by Heisenberg to a unilateral
attention on the explanation of single outcomes. This, in fact, was due to the prevalence of the atomist pre-
supposition that Bohr had successfully championed: the single outcome was taken, without any justification,
as the effect of the presence (or absence) of a particle. And, following this line of reasoning, since we are
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talking here about a theory that refers to particles, we should concentrate on explaining their natural con-
sequence as single outcomes. This, of course, since the original formalism talked about intensities, presented
a consistency problem, an essential difference between what the theory described in formal terms and what
it was supposed to deliver in terms of observation. So, in short, the probabilistic interpretation defended
by Born connected implicitly the mathematical probability of the theory with the observation of a specific
effect of a single particle. Let us add that this reference to elementary particles wan not only completely
ungrounded but had no connection whatsoever to the consistent formal-conceptual definition of ‘particle’
that could be found in classical mechanics. In this case, while mathematically a particle was represented
in terms of well defined invariant properties —through Galilean transformations—, in conceptual terms a
particle was conceived —following Aristotle’s and Kant’s categories— as an entity in the actual mode of
existence —namely, as constrained and defined by specific logical and metaphysical principles such as those
of non-contradiction and identity. In QM, on the contrary, regardless of the complete lack of a systematic
conceptual and mathematical foundation that would support the reference to particles, the atomist narrative
was inconsistently —and dogmatically— maintained. A way out of trouble has been sometimes to take this
reference perhaps not as an ontological account of “reality-in-itself”, but at least as a “useful fiction”. But
even if we thus play down the importance of the atomist presupposition by taking it as a mere “tool”, the
deductions, methodological and operational steps that are implicit in the atomist representation, continue
to function with the same force. As Faraday explained long ago: “the word atom, which can never be used
without involving much that is purely hypothetical, is often intended to be used to express a simple fact; but
good as the intention is, I have not yet found a mind that did habitually separate it from its accompanying
temptations” [34, p. 220]. Even Schrödinger rephrased this idea for the quantum case: “We have taken
over from previous theory the idea of a particle and all the technical language concerning it. This idea is
inadequate. It constantly drives our mind to ask information which has obviously no significance” [43, p.
188].

Before advancing let us note some of the conclusions of this section. Firstly, that Schrödinger’s formulation
gained the acceptance of the physics community because of its promise of restoring a somewhat classical
continuous representation. Secondly, that this preferred formulation, however, soon found some definitive
obstacles —as the fact that its differential equation had to be considered within configuration space— that
Schrödinger himself would recognize. Thirdly, that an equivalence myth between matrix mechanics and
Schrödinger’s differential equation was uncritically accepted without a rigorous mathematical justification.
And, finally, that the success of Born’s probabilistic interpretation of Schrödinger’s equation, on the one hand,
would reinforce the presupposed reference to “quantum particles”, shifting the focus from intensive patterns
(in Heisenberg’s formulation) to single outcomes, and, on the other hand, would find a crucial obstacle when
facing the difficulty to define the entirely non-classical “probability” that would unfold in this context.

3 Dirac’s Vectorial Axiomatization: Certainty and Contextuality

An essential aspect of Dirac’s 1930’s proposed axiomatization of QM is the complete replacement of matrices
by vectors in accordance with his transformation theory. This replacement is already explicit within Dirac’s
notation where a unit vector in a specific basis is written as a ket |x⟩. Of course, as it is well known, a ket can
be also seen as a rank one matrix through the following operation |x⟩⟨x|. If H is an n-dimensional complex
vector space, H = Cn, and B(H) is the space of n × n matrices, then we can relate the space of vectors H
with the space of (rank 1) matrices B(H) through the map:

ν : H → B(H), ν(|x⟩) := |x⟩⟨x|.

Let us mention two relevant properties of ν. The first one is that ν is not surjective. In fact, its image is
equal to the set of rank one matrices. The second relevant property of ν is that it is injective. Hence, we
can think of the space of vectors as a subset of the space of matrices. In other words, the vector space is
much “smaller” than the matrix space (see [20]). As a matter of fact, this jump from matrices to vectors was
already implicit in Schrödinger’s equation, which could be naturally read as a vectorial equation. Indeed,
following Dirac’s notation, the equation governed the time evolution of a vector |vt⟩ in a multi-dimensional
vectorial space reads as follows:

iℏ
d

dt
|vt⟩ = Ĥ|vt⟩.
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Dirac reformulated the mathematical content of the theory exclusively in terms of vectorial spaces. From a
mathematical perspective, since vectors can re-generate the whole space of matrices (through the convex sum
of rank 1 matrices), there seems to exist a complete equivalence with no loss of information. In fact, one can
provide a definition of Hilbert spaces and dimension using sets and functions. However, this mathematical
equivalence has led people to believe that there was also a physical equivalence, when this is not the case. This
becomes clear once we recognize that in Heisenberg’s original formulation each and every matrix, of any rank,
in each and every basis, possesses a clear operational content which can be directly linked to a particular
experimental set up and consequently to a set of definite and observable intensive measurement results (see
[20, Appendix A]). The elimination of this infinitely many number of matrices implies also the elimination of
an enormous amount of experimental data related within the theory to actual experimental situations. Why
was that enormous amount of experimental phenomena not significant enough to be considered?

There has been an unacceptable reduction of the phenomena considered as physically meaningful which,
later on, have been re-introduced within SQM in terms of the notion of mixture (i.e., rank ̸= 1 matrices)
and re-interpreted (in a mere epistemological, non-ontological manner, as not fully real) as statistical convex
sums of pure states (i.e., matrices of rank = 1 or vectors) —showing the dependency of the whole formulation
with respect to vectors represented by single kets (see [20, Appendix B]). The idea that physical situations
described by rank ̸= 1 matrices can be replaced by completely different physical situations described by
the convex sum of matrices of rank = 1 imposes an artificial discrimination which is not only alien to the
mathematical formalism but is completely unjustified from an experimental perspective (see [19]). In short,
a great multiplicity of phenomena, actually observable and captured by the formalism, was simply eliminated
to focus only on a very small subset of situations described by pure states (rank 1 matrices represented by
vectors), after which they were reintroduced as “mixed states”, as if they were in fact the effect of the sum
of those pure states previously selected. But why such an interest on reframing everything only in terms
of rank 1 matrices or vectors? The reason can be found in Dirac’s attempt to follow both Bohr’s reference
to a microscopic realm in combination with his logical positivist understanding of theories as describing
observations. Although Dirac begins with a positivist statement of principles2, it is evident from the very
start of his book that he assumes the Bohrian atomistic representation (as well as his complementarity3), and
the language of particles is present from the beggining. Thus, that supposed intention of adhering to what
is observed shifts towards a unilateral emphasis on single, unique, outcomes, as these can be interpreted as
the presence (or absence) of those presupposed particles. And it is because rank 1 matrices are those that,
when considering the diagonal basis, permit to predict single outcomes with (binary) certainty —something
completely alien to the matrix formulation which provides an intensive quantification of phenomena— that
these are taken as the representation of particles, and thus the main element of the formalism. Again, behind
this move we find the atomist presupposition made by Bohr and followed by Dirac which allows to switch
the focus from the intensive values of matrix mechanics to a unilateral attention on single outcomes, which
are then interpreted as the effects of “particles”. And this operation is done even at the price of an enormous
loss of empirical (non-binary) information —which is later on understood as “uncertain” with respect to
pure states. Even worse is the fact that this operational restriction to a binary representation is —unlike the
reference to intensities— dependent on the choice of the reference frame, and consequently it is not invariant
(see [18]). As demonstrated by the Kochen-Specker theorem, when we advance with a binary valuation, the
possibility of a globally consistent representation becomes precluded and contextuality enters the scene. This
goes in line with Dirac’s —also inconsistent— redefinition of the notion of (quantum) state in terms of a
preferred basis which destroys the possibility of discussing about a state of affairs which remains the same
independently of reference frames. Even worse is the fact that due to the incompatibility between superposed
states intensively defined and single measurement outcomes Dirac would impose the existence of “collapses”,
creating a new non-linear evolution triggered by measurement and incompatible with the already existent
linear motion of the theory —encapsulated in Schrödinger’s wave equation.

2Indeed, Dirac [22, p. 3] himself emphasized, already in the first chapter of his famous book, that “science is concerned only
with observable things” and that “the main object of physical science is not the provision of pictures, but the formulation of
laws governing phenomena and the application of these laws to the discovery of phenomena. If a picture exists, so much the
better; but whether a picture exists or not is a matter of only secondary importance.”

3According to the English mathematician: “quantum mechanics is able to effect a reconciliation of the wave and corpuscular
properties of light” such that “[a]ll kinds of particles are associated with waves in this way and conversely all wave motion is
associated with particles. Thus all particles can be made to exhibit interference effects and all wave motion has its energy in
the form of quanta.”
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4 Back to Heisenberg and Beyond

As we have shown, immediately after matrix mechanics, there was first an attempt to return to a spatiotem-
poral wave representation through the construction of a differential wave equation, followed by a vectorial
re-formulation grounded on the atomistic reference to corpuscles, which also made us replace the focus on in-
tensities —which had allowed Heisenberg to produce an invariant formalism in the first place— by a unilateral
attention to single (bianry) outcomes. The result: an extreme impoverishment of the empirical phenomena
captured by the theory, the ad hoc introduction of a “collapse” that would turn the evolution of the theory
inconsistent, the contextual redefinition of the notion of (quantum) state that would preclude the invariant
—basis independent— reference to a state of affairs, the reintroduction of matrices of rank ̸= 1 but now
inconsistently understood as “statistical mixtures” and the imposition of a microscopic narrative only main-
tained due to the desire to remain attached to a familiar representation (see for a detailed analysis [20]). In
contradistinction, our proposal is to go against these successive steps which have taken us away from matrix
mechanics, to escape the enthronement of pure states [19], the unilateral focus on single outcomes, the need
of unjustified “collapses”, the atomist picture, and thus return to the richness of intensive phenomena and
the operational-invariance already captured by Heisenberg’s matrix formulation itself.

In the history of physics it has been invariance what has always allowed to determine, in formal terms,
a moment of unity consistent throughout the different reference frames and experimental situations, thus
allowing for an intelligible representation detached from particular, individual perspectives. This has always
been seen, by physicists such as Galileo, Newton, Maxwell, and of course by Einstein when developing
relativity theory, as an obligation, as a necessary condition in order to construct a consistent physical theory.
In fact, Einstein, when developing his special theory of relativity, was faced with the incompatibility among
three different conditions if they were maintained simultaneously: between the principle of relativity (the
requirement to consistently translate the experiments in one reference frame to another equivalent one), the
experimental finding of the constant speed of light, and Galilean transformations [23]. In order to maintain
the principle of relativity (and thus invariance) as well as the experimental evidence of the constant speed of
light, Einstein decided to abandon the “commonsensical” spatiotemporal classical representation, producing
a conceptual innovation completely alien to classical physics. Fidelity to the irreducible conditions of a
physical theory seemed rightly more important to him than fidelity to the picture that had been created by
classical mechanics just a few centuries before. As a consequence, while in classical mechanics the spatial and
temporal values were considered absolute (independent of reference frames) and speed and position as relative
(to reference frames), in relativity theory it is the speed of light that would become absolute (independent of
reference frames) and spatial and temporal intervals relative (to each reference frame). Of course, it should
be stressed that the relative aspects involved in both theories did not imply any inconsistency, since in each
case the relative values of properties would be consistently considered in terms of a global transformation,
namely, the Galilean transformation in the case of classical mechanics and the Lorentz transformation in the
case of special relativity. And it is this global aspect provided by invariance that would allow in both cases
to retain a consistent representation where all reference frames remain of course completely equivalent, this
is, related consistently to the same objective state of affairs. In the case of QM, a similar situation appears,
and the price to pay to maintain invariance is to remain close to the (intensive) experimental evidence
while abandoning the reference to binary outcomes and the classical atomist representation. This entails,
as in the case of Einstein, to produce a radical conceptual innovation, namely, the need to develop a new
concept of an intensive nature which becomes the natural referent of the theory. This path has already been
followed in several papers [17, 18, 21], resulting in the development of a conceptual representation centered
around the notion of power of action. The power of action is an originally intensive physical concept which
cannot be understood as depending on supposedly more fundamental constituents. Departing completely
from the classical representation, QM is about the relation between intensive quantities of action. These
are the basic element of the theory. And the specific intensive value of each power is given by its intensity
or potentia. In this case, an intensive valuation remains consistent when considered from different reference
frames. Furthermore, these intensive physical elements can be perfectly measured in the lab without the
need to break the causal evolution of the represented state of affairs. There are no “quantum jumps” or
“collapses” required in order to make sense of measurements which, in this scheme, become once again —like
in the rest of pre-Bohrian-positivist physics— completely detached from the theoretical representation of the
state of affairs. In this case, single outcomes are not the main thing to explain, but are rather understood
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as just partial, incomplete expressions of intensive values —and thus require repetition. Like in all physical
theories the repetition of an experimental procedure which keeps referring to the same state of affairs remains
a pre-condition for physical representation itself. Contrary to SQM, the state of affairs represented in terms
of a specific set of powers of action with a definite potentia does not change when being measured. As
we have shown, this path, which goes back to the invariance of intensities already present in Heisenberg’s
formulation and develops it further, permits to restore a global (intensive) valuation, escaping contextuality,
and reinstating an invariant physical theory where there is no need for any “preferred basis” nor for a
“projection postulate”.

In any case, in this context we want to advance another argument for the return to matrix mechanics, an
argument this time related to the impoverishment of the theory caused by the radical restriction, imposed
by the vectorial proposal of Dirac, of the matrices that can be considered as physically meaningful. As we
have shown, an enormous amount of empirical information, of phenomena that can be observed, captured
and predicted by the theory, was left aside or taken as secondary simply because it did not comply to the
expectations of an atomist binary representation. The physical situations captured by the original matrix
mechanics are enormously superior than what can be considered in a vectorial formulation that focuses on
“pure states” —a notion which is in itself inconsistently defined [19, 20]. This, we believe, is an argument
in favor of matrix mechanics that cannot be left aside. However, what we propose is not just a return
to Heisenberg’s matrix mechanics but to produce a natural extension of it to a tensorial formulation. A
formulation where the proposed mathematical formalism is also supplemented with a system of well defined
operational physical concepts.

5 Tensorial Quantum Mechanics

Following the thread of invariance in QM means to realize that the invariant elements of the theory, the
moments of unity, are of an intensive nature, that invariance is only destroyed by imposing a completely
alien binary valuation, and that it is thus necessary to produce a conceptual representation centered around
an intensive notion. For this purpose the concept of power of action has been proposed, along with other
notions, such as the intensity or potentia and that of an Intensive State of Affairs. But equally essential is to
develop the notions that allow to precisely relate these concepts to what is experienced, to exactly show how
powers of actions can be in fact observed in the lab. As Einstein emphasized, this operational aspect, the
necessity to relate the concepts to their corresponding observable phenomena, is an essential precondition
when defining meaningful physical concepts. Following this line of reasoning, the concepts of quantum lab,
screen, detector and experimental arrangement have been introduced in [14]. Furthermore, there are two
important theorems which also allow to secure the invariant relation between bases and factorizations within
the matrix formalism [21]. It is from this standpoint that we are now ready to extend the mathematical
formulation of QM beyond matrices.

An essential point of the tensorial formulation we are now ready to present is its capability not only to take
into account the phenomena captured by the matrix formulation but to extend even further the consideration
of quantum phenomena in the lab. As we will see in the following, while the situation represented by a vector
(or a rank 1 matrix) is limited to an experimental arrangement with only one screen and a matrix to an
experimental arrangement with two screens, a tensor is capable to describe the general case of an experimental
arrangement with n screens (and multiple detectors). Such a tensorial formulation could allow, for instance
—as we will show in a coming article [16]—, among other things, for a simple and natural understanding of
the phenomena of quantum entanglement when considering multiple screens, something that has remained
an open problem within the orthodox literature —referred to as ‘multi-partite entanglement” [47].

Let us begin with the definition of a (simple) graph as a pair G = (V,E), where V is a set whose
elements are called vertices (or nodes), and E is a set of unordered pairs {v, w} of vertices, whose elements
are called edges. While each vertex is related to the mathematical notion of projector operator and to the
physical concept of power of action, each edge is linked to the mathematical concept of commutation and the
experimental compatibility of powers within a particular measurement set up.

Definition 5.1. Graph of powers: Given a Hilbert space H, the graph of powers G(H) is defined such
that the vertices are the projectors on H (called powers), and an edge exists between projectors P1 and P2 if
they commute.
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It is these powers, in their multiplicity and their relationships, that allow us to define an Intensive State
of Affairs (ISA) —that contrasts to the binary Actual State of Affairs (ASA) that represents situations in
classical physics and relativity theory. But first, we need to formalize the notion of intensity (or potentia).
In general, the assignment of intensities is called Global Intensive Valuation (GIV).

Definition 5.2. Global Intensive Valuation: A Global Intensive Valuation is a map from G(H) to the
interval [0, 1].

Clearly, not all GIVs are compatible or consistent with the relations between powers. Thus, we will focus on
those that define an ISA as follows:

Definition 5.3. Intensive State of Affairs: Let H be a Hilbert space of infinite dimension. An Intensive
State of Affairs is a GIV Ψ : G(H) → [0, 1] from the graph of powers G(H) such that Ψ(I) = 1 and

Ψ(

∞∑
i=1

Pi) =

∞∑
i=1

Ψ(Pi)

for any piecewise orthogonal operator {Pi}∞i=1. The numbers Ψ(P ) ∈ [0, 1] are called intensities or potentia
and the vertices P are called powers of action. Taking into consideration the ISAs, it is then possible
to advance towards a consistent GIV which can bypass the contextuality expressed by the Kochen-Specker
Theorem [19, 33].

Definition 5.4. Quantum Laboratory: We use the term quantum laboratory (or quantum lab or Q-Lab)
as the operational concept of an ISA.

Within a Q-Lab, we have the concepts of screen, detector with which we can define more explicitly the notions
of power of action, potentia and also specify what is an experimental arrangement:

Definition 5.5. Screen and Detector: A screen with n places for n detectors corresponds to the vector
space Cn. Choosing a basis, say {|1⟩, . . . , |n⟩}, is the same as choosing a specific set of n detectors. A
factorization Ci1 ⊗ · · · ⊗Cin is the specific number n of screens, where the screen number k has ik places for
detectors, k = 1, . . . , n. Choosing a basis in each factor corresponds to choosing the specific detectors; for
instance | ↑⟩, | ↓⟩. After choosing a basis in each factor, we get a basis of the factorization Ci1 ⊗ · · · ⊗ Cin

that we denote as
{|k1 . . . kn⟩}1≤kj≤ij .

Definition 5.6. Power of action: The basis element |k1 . . . kn⟩ determines the projector |k1 . . . kn⟩⟨k1 . . . kn|
which is the formal-invariant counterpart of the objective physical concept called power of action (or simply
power) that produces a global effect in the k1 detector of the screen 1, in the k2 detector of the screen 2 and
so on until the kn detector of the screen n. Let us stress the fact that this effectuation does not allow an
explanation in terms of particles within classical space and time. Instead, this is explained as a characteristic
feature of powers. In general, any given power will produce an intensive multi-screen non-local effect.

Definition 5.7. Experimental Arrangement: Given an ISA, Ψ, a factorization Ci1⊗· · ·⊗Cin and a basis
B = {|k1 . . . kn⟩} of cardinality N = i1 . . . in, we define an experimental arrangement denoted EAN,i1...in

Ψ,B ,
as a specific choice of screens with detectors together with the potentia of each power, that is,

EAN,i1...in
Ψ,B =

i1∑
k1,k′

1=1

· · ·
in∑

kn,k′
n=1

α
k′
1,...,k

′
n

k1,...,kn
|k1 . . . kn⟩⟨k′1 . . . k′n|.

Where the number N is the cardinal of B and is called the degree of complexity (or simply degree) of the
experimental arrangement.

Definition 5.8. Potentia: The number that accompanies the power |k1 . . . kn⟩⟨k1 . . . kn| is its potentia (or
intensity) and the basis B determines the powers defined by the specific choice of screens and detectors.
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Now, assume that in a Q-Lab we want to change or modify an experimental setup. We also have two
theorems that allow us to predict the possible outcomes that will be obtained in a new experimental arrange-
ment. If the number of powers (i.e., the complexity) remains the same after the rearrangement, then the
Basis Invariance Theorem tell us that the new experimental arrangement is equivalent to the previous one.
However, if the complexity of the new experimental arrangement drops, then the Factorization Invariance
Theorem tell us that all the knowledge in the new experimental arrangement was already contained in the
previous one (see [14]).

Theorem 5.9. (Basis Invariance Theorem) Given a specific QLab Ψ, all experimental arrangements of
the same complexity, are equivalent independently of the basis.

Theorem 5.10. (Factorization Invariance Theorem) The experiments performed within an EAN
Ψ can

also be performed with an experimental arrangement of higher complexity N+M, EAN+M
Ψ , that can be produced

within the same QLab Ψ.

Now, in order to treat this situation formally, we must work with tensors. Specifically, assume that we
have two bases B and B′ obtained from two experimental arrangements in the same Q-Lab Ψ,

B = {|k1 . . . kn⟩}1≤kj≤ij , B′ = {|κ1 . . . κm⟩}1≤κj≤ιj ,

From B we infer that the first experimental arrangement has n screens, where the first screen has i1 detectors,
the second i2 detectors and so on. The second experimental arrangement has m screens, where the first
screen has ι1 detectors, the second ι2 and so on. Assume that the two bases are related by the following
transformation,

|k1 . . . kn⟩ =
ι1,...,ιm∑

κ1,...,κm=1

λk1...kn
κ1,...,κm

|κ1 . . . κm⟩, 1 ≤ k1 ≤ i1, . . . , 1 ≤ kn ≤ in.

Then, we can convert the first experimental arrangement into the second one through the algebraic properties
of the tensors. If

EAΨ,B =

i1∑
k1,k′

1=1

· · ·
in∑

kn,k′
n=1

α
k′
1,...,k

′
n

k1,...,kn
|k1 . . . kn⟩⟨k′1 . . . k′n|

then,

EAΨ,B′ =

ι1,...,ιm∑
κ1,...,κm=1

ι1,...,ιm∑
κ′
1,...,κ

′
m=1

 i1∑
k1,k′

1=1

· · ·
in∑

kn,k′
n=1

α
k′
1,...,k

′
n

k1,...,kn
λk1...kn
κ1,...,κm

λ
k′
1...k

′
n

κ′
1,...,κ

′
m

 |κ1 . . . κm⟩⟨κ′
1 . . . κ

′
m|.

Notice that in standard multi-index notation (a notation better suited for these type of algebraic expressions)
the last equation can be written more compactly as

EAΨ,B′ =
∑
κ,κ′

∑
k,k′

αk′

k λk
κλ

k′
κ′

 |κ⟩⟨κ′|.

It now becomes clear that this new formulation produces a bridge between the mathematical formalism
and the concepts required in order to refer in a meaningful manner to the experience produced within the
laboratory. As we mentioned before, this scheme also opens the doors to the natural consideration of multi-
screen entanglement (discussed in the orthodox literature as “multi-partite entanglement”).

To sum up, let us summarize all the notions we have discussed showing the relation between the physical
and the mathematical representations in the following table:
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Physical concepts Mathematical concepts
Q-Lab Ψ ISA Ψ : G(H) → [0, 1]
Screen with n places Cn

n detectors Basis {|1⟩, . . . , |n⟩}
n screens where screen j has ij places Factorization Ci1 ⊗ · · · ⊗ Cin

Detectors in each screen {|k1 . . . kn⟩}1≤kj≤ij

Power of action Projector |k1 . . . kn⟩⟨k1 . . . kn|
An experimental arrangement The tensor EAN,i1...in

Ψ,B

Degree of complexity N Cardinal of B

Potentia of the power The real number αk1,...,kn

k1,...,kn

Modify an experimental arrangement Change of basis

Table 1: Relations between physical and mathematical concepts.

6 Final Remarks

As we have shown, the replacement of matrix mechanics by a vectorial formulation implied the loss of an
enormous amount of physically meaningful information about experimental situations and phenomena. We
presented this impoverishment of the theory as an argument for a return to the matrix formalism. But, as we
have shown in the last section, if we advance even further into a tensorial formulation, we can not only recover
the phenomena captured by matrix mechanics, but also extend its reach and consider even more experimental
situations that can be observed in the lab. Notice that while the case of a single screen corresponds to the
orthodox vectorial approach, the case of two screens is linked to the orthodox extension to density matrices.
It is important to remark that in our tensional formulation these are particular cases of the more general
situation where we have n screens. We are thus able, within Tensorial QM, to consider as many screens
as we want without any complications. This leads, for example, to the possibility to naturally consider a
multi-screen analysis of entanglement which is capable to evade the many problems found when attempting
to measure quantum entanglement [15] and also within the multi-partite orthodox account of entanglement
[16]. To conclude, we can say that Tensorial QM enables us not only to regain the phenomena captured by
matrix mechanics, but also to extend our grasp in order to consider a wider amount oh phenomena, a greater
number of experimental situations that can be thus incorporated without any difficulty. Finally, the rigorous
conceptual development of a specific system of notions capable to account for the mathematical formalism
in an operational fashion opens the door to an intuitive understanding of the theory of quanta.

Acknowledgements

This work was partially supported by the following grant: ANID-FONDECYT, project number: 3240436.
The authors state that there is no conflict of interest.

References

[1] Bohr, N., 1948, “On the notions of causality and complementarity”, Dialectica, 2, 312-319.

[2] Bohr, N., 1960, The Unity of Human Knowledge, In Philosophical writings of Neils Bohr, vol. 3., Ox Bow
Press, Woodbridge.

[3] Bohr, N., 1987, The Philosophical Writings of Niels Bohr, 3 Volumes, Ox Bow Press, Woodbridge.

[4] Bokulich, A., 2006, “Heisenberg Meets Kuhn: Closed Theories and Paradigms”, Philosophy of Science,
73, 90-107.

[5] Bokulich, A. & Bokulich, P., 2020, “Bohr’s Correspondence Principle”, The Stanford Encyclopedia of Phi-
losophy (Fall 2020 Edition), E.N. Zalta (ed.). https://plato.stanford.edu/archives/fall2020/entries/bohr-
correspondence/.

12



[6] Born, M., 1926, “Zur Quantemechanik der Stossvorgange”, Zeitschrift für Physik 37 (1926) 863-867,
English translation “On the Quantum Mechanics of Collision Processes” in [46].

[7] Born, M. & Jordan, P., 1925, “Zur Quantenmechanik”, Zeitschrift für Physik 34, 858-888. English trans-
lation in Sources of Quantum Mechanics, B.L. van der Waerden, ed., Dover, 1968.

[8] Born, M., Heisenberg, W. & Jordan, P.,1926, “Zur Quantenmechanik II”, Zeitschrift für Physik, 35,
557-615. English translation in Sources of Quantum Mechanics, B.L. van der Waerden, ed., Dover, 1968.

[9] Bub, J., 1997, Interpreting the Quantum World, Cambridge University Press, Cambridge.

[10] de Ronde, C., 2017, “Causality and the Modeling of the Measurement Process in Quantum Theory”,
Disputatio, IX, 657-690.

[11] de Ronde, C., 2018, “Quantum Superpositions and the Representation of Physical Reality Beyond
Measurement Outcomes and Mathematical Structures”, Foundations of Science, 23, 621-648.

[12] de Ronde, C., 2023, “Measuring Quantum Superpositions (Or, “It is only the theory which decides what
can be observed.”)” in Non-reflexive logics, non-individuals, and the philosophy of quantum mechanics:
Essays in honour of the philosophy of Décio Krause, J.R. Arenhart, R. Arroyo (Eds.), Springer, Berlin.

[13] de Ronde, C., 2023, “Mythical Thought in Bohr’s Anti-Realist Realism (Or: Lessons on How to Capture
and Defeat Smoky Dragons)” in From Contradiction to Defectiveness to Pluralism in Science: Philosoph-
ical and Formal Analyses, O. Bueno and M. Martinez-Ordaz (Eds.), Springer, in press.

[14] de Ronde, C., Fernández Mouján, R. & Massri, C., 2024, “Equivalence Relations in Quantum Theory:
An Objective Account of Bases and Factorizations”, sent (quant-ph:2404.14891).

[15] de Ronde, C., Fernández Mouján, R. & Massri, C., 2024, “Everything is Entangled in Quantum Me-
chanics: On the Measures of Quantum Entanglement”, sent (quant-ph:2405.05756).

[16] de Ronde, C., Fernández Mouján, R. & Massri, C., 2024, “Multiscreen Entanglement in Tensorial
Quantum Mechanics”, preprint.

[17] de Ronde, C. & Massri, C., 2019, “The Logos Categorical Approach to QuantumMechanics: II. Quantum
Superpositions and Measurement Outcomes.”, International Journal of Theoretical Physics, 58, 1968-
1988.

[18] de Ronde, C. & Massri, C., 2021, “The Logos Categorical Approach to Quantum Mechanics: I. Kochen-
Specker Contextuality and Global Intensive Valuations.”, International Journal of Theoretical Physics,
60, 429-456.

[19] de Ronde, C. & Massri, C., 2021, “Against the Tyranny of Pure States in Quantum Theory”, Foundations
of Science, 27, 27-41.

[20] de Ronde, C. & Massri, C., 2022, “The Many Inconsistencies of the Purity-Mixture Distinction in
Standard Quantum Mechanics”, sent (quant-ph:2208.10574).

[21] de Ronde, C. & Massri, C., 2023, “Relational quantum entanglement beyond non-separable and contex-
tual relativism”, Studies in History and Philosophy of Science, 97, 68-78.

[22] Dirac, P.A.M., 1974, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press,
London.

[23] Einstein, A., 1920, Relativity. The Special and General Theory, Henry Holt & Company, New York.

[24] Faye, J & Jaksland R., 2021, “What Bohr wanted Carnap to learn from quantum mechanics”, Studies
in History and Philosophy of Science 88, 110-119.

[25] Feynman, R.P., 1967, The Character of Physical Law, Massachusetts Institute of Technology Press,
Massachusetts.

13
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