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Abstract
Virtual particles are peculiar objects. They figure prominently in much of theoretical and experimental
research in elementary particle physics. But exactly what they are is far from obvious. In particular, to
what extent they should be considered “real” remains a matter of controversy in philosophy of science.
Also their origin and development has only recently come into focus of scholarship in the history of
science. In this study, we propose using the intriguing case of virtual particles to discuss the efficacy of
Semantic Change Detection (SCD) based on contextualized word embeddings from a domain-adapted
BERT model in studying specific scientific concepts. We find that the SCD metrics align well with
qualitative research insights in the history and philosophy of science, as well as with the results obtained
from Dependency Parsing to determine the frequency and connotations of the term “virtual”. Still, the
metrics of SCD provide additional insights over and above the qualitative research and the Dependency
Parsing. Among other things, the metrics suggest that the concept of the virtual particle became more
stable after 1950 but at the same time also more polysemous.
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1. Introduction

Virtual particles have been important elements of particle physics since long. But despite their
widespread use, the term “virtual particle” holds different meanings and connotations within
today’s particle physics community, and its historical origins and development have remained
unclear. Virtual particles are peculiar objects which may be considered responsible for the
fundamental interactions of matter and radiation. In this sense, they have detectable and real
effects. However, they do not share the properties of real particles; for instance, the mass
and energy of a virtual particle does not stand in the same relation as would be the case with
a particle that is observed in the appropriate detectors. Virtual particles only ever occur in
intermediate, unobservable phases of decays or other processes involving elementary particles.
The precise meaning and interpretation of the term “virtual particle” has, therefore, been a
topic for philosophical debate [1]. Recent works by Ehberger [2] and Martinez [3] have shed
considerable light on the associated historical issues concerning the origin and development of
the virtual particle concept. Additional studies on the conceptual shift due to Feynman diagrams
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and the associated calculation schemes have highlighted the relevance of virtual particles in
the evolution of theoretical and experimental particle physics [4, 5, 6]. While valuable, these
studies are limited by their focus on carefully selected texts. Here, we aim to go beyond case
studies and gain a more comprehensive view of the development of the concept of the virtual
particle by analyzing a large dataset over an extended period of time.

To achieve this, we combine conceptual history with computational methods, an approach also
referred to as digital Begriffsgeschichte [7]. First, we adapt our BERT model to the domain-specific
language of our large corpus of physics texts and extract contextualized word embeddings
for all occurrences of the term “virtual”. These word embeddings can then be used to employ
Semantic Change Detection (SCD), which aims to identify, interpret and assess shifts in lexical
meaning over time using computational techniques. SCD has emerged as a distinct research
field in recent years supported by multiple survey studies [e.g., 8, 9]. While most studies focus
on the technical implementation of SCD, there have also been calls for further evaluation of
the methods through in-depth case studies backed by qualitative analysis [10, 11]. We hope
to provide such a case study with this paper. To this end, we employ various SCD metrics to
trace the origin, usage, and evolution of the concept of the virtual particle from a historical
perspective, with special focus on the change in dominant meaning of the term “virtual” as
well as its degree of polysemy, i.e., the coexistence of multiple meanings for a single word form.
For instance, the meaning of “virtual” in the context of “reality” differs from its meaning in
the context of “particle.” In order to enable a thorough evaluation of our results, we also use
Dependency Parsing, thereby gaining a deeper understanding of the observed semantic shifts.1

2. Dataset

2.1. Physical Review corpus

Our dataset consists of a large number of scientific articles from eight journals of the Physical
Review-family. The corpus spans from the introduction of the concept of virtuality in quantum
physics in 1924 up to 2022, the latest complete year available for analysis, making it well-suited
for studying the history of the virtual particle. The PR-journals are highly influential in the field
of physics [12] and qualitative investigations [2, 3] confirm their pivotal role in the emergence
and establishment of the virtual particle concept, with several key articles on the topic published
in these journals [e.g., 13, 14, 15]. Through an agreement between our research project and the
American Physical Society (APS), we have access to all normally restricted full texts, metadata,
and citation data from this period [16]. We include eight relevant journals into our analysis:
PR - Series II (all of physics until 1969), Review of Modern Physics (long review articles with
broad disciplinary scope, since 1929), PR - Letters (short articles with high impact and broad
disciplinary scope, since 1958), PR - A (covering atomic, molecular and optical physics, since
1970), PR - B (condensed matter and materials physics, since 1970), PR - C (nuclear physics, since
1970), PR - D (particle physics, field theory, gravitation, and cosmology, since 1970), and PR - E
(statistical, nonlinear, biological and soft matter physics, since 1993). To focus on long-term

1The code used in this study is available at https://github.com/mZichert/scd_vp. Due to copyright restrictions, the
dataset and the domain-adapted BERT model used in the study are not available for public release.
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trends, newer journals are excluded from the analysis.
The dataset’s substantial size, comprising nearly 700,000 articles, makes it well-suited for

extensive analysis using computational methods. However, it also presents notable limitations,
particularly concerning the early development of the concept. As a primarily US-based source
written exclusively in English, significant developments from other regions are not captured.
For instance, the center of the old quantum theory in the 1920s and early 1930s was in Central
Europe, particularly in German-speaking countries, the Netherlands, and Denmark. Since they
also published mostly in German journals, most of their works are not a direct part of this study.
Another issue is the relatively small number of articles in the corpus published before 1950
(approximately 12,000 articles or just under 2 percent). For a more comprehensive analysis
of the early phase of the concept using, it would be necessary to incorporate additional text
sources.

2.2. Data preprocessing

Analyzing articles in the entire corpus using word embeddings is impractical due to scalability
issues. Instead, we first identify articles potentially relevant to the concept of the virtual particle
through a keyword search for “virtual” in the full texts, abstracts, and titles. Approximately
half of the full texts are available as digitized and OCR-processed PDF files (331,210 entries
before 2004), while the other half are in native digital XML format (329,880 entries from 2004
onwards). For processing the PDF-files we use GROBID2, which allows parsing and restructuring
of scientific publications in PDF format into uniformly TEI-formatted3 XML files. To catch
common OCR-errors prevalent the PDF-extracted text data, we apply some basic cleaning steps
like removing special characters etc. Subsequently, citations and mathematical formulas are
also removed from the text. While the formulas used likely reflect significant developments
in the conceptualization of the virtual particle, there are currently no established tools for the
content analysis of mathematical formulas in the context of conceptual history and the history
of science.4 Therefore, this work focuses on the analysis of linguistic text data.

To ensure the efficient use of the BERT model the texts are segmented into sentences. For
this task, we utilize the large language model of the Python natural language processing library
SciSpaCy5, which has been trained on a large corpus of scientific texts (albeit in bio-medicine),
making it suited for this purpose. We also use the model for dependency parsing, where a
sentence’s syntactic structure is created by identifying how words are grammatically related
through directed links. This is particularly helpful for analyzing adjectives like “virtual”, as
it allows for accurate identification of the associated nouns. We use these dependencies to

2GROBID stands for GeneRation Of BIbliographic Data (https://grobid.readthedocs.io/en/latest/).
3https://tei-c.org/
4We consider this an important open problem in semantic change detection in scientific texts. Also, it is hard
to estimate the impact of the omission of mathematical formulas. On the one hand, the symbols used in the
formulas are usually explained in the surrounding text (which we do take into account). On the other hand,
different mathematical formulas may describe different virtual entities (particles, states, processes etc.) without
clear indications of this in the surrounding text. Moreover, as one of the anonymous reviewers pointed out, the
frequency of formulas might have changed over time, which makes the omission potentially more or less impactful.
We did not control for this.

5https://allenai.github.io/scispacy/
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evaluate and gain a deeper understanding of the observed semantic shifts. Following Laicher
et al. [17], we do not employ further preprocessing steps, such as lemmatization, as they do not
seem to improve for SCD in English texts. After data preparation, our corpus consists 126,540
occurrences of “virtual”, spread across 41,786 articles.

3. Methods

3.1. BERT and domain adaptation

For Semantic Change Detection using BERT[18], fine-tuning for downstream tasks is un-
necessary, as the focus is on the learned word representations, i.e., the contextualized word
embeddings themselves. Instead, BERT is adapted to the domain-specific language through
re-training, a process known as domain adaptation. This involves reapplying Masked Language
Modeling, enabling the model to learn the linguistic nuances and specialized terminology of the
target domain. Domain adaptation is particularly crucial for this study, as the dataset comprises
highly specialized scientific texts in physics. At the time of conducting our analysis, no suitable
large language models specifically trained on general physics text data were available. However,
there are two models trained on specific sub-domains of physics: astroBERT6 for astrophysics
[19] and Astro-HEP-BERT7 for astrophysics and (recent) high energy physics [20].8 For a
comprehensive overview of scientific large language models, including those in the domain of
physics, see Zhang et al. [22].

We therefore employ the BERT-base-uncased model9, which features 12 attention layers and a
hidden layer size of 768, and apply domain-adaption on our “virtual”-corpus. We also re-trained
and tested SciBERT [23]10, which is primarily trained on scientific texts from biomedicine, but
found that the re-trained BERT-base performs slightly better in terms of training and validation
loss. Regarding time-specific fine-tuning, we follow the findings from Martinc et al. [24],
indicating that BERT’s word embeddings are already well-suited to their temporal context due
to their context-dependent nature. For inference, the segmented sentences are fed into the model
with a maximum sequence length of 512 tokens, and the sum of the last four layers is extracted
for each token. For words comprising multiple subword tokens, the average embedding is stored.
Given the contextual embeddings, each token occurrence results in one embedding vector. To
reduce disk storage requirements, embeddings are saved only for meaningful words, excluding
stop words, numbers, and special characters.



Table 1
Reference table of notations used in this paper.

Notation Definition

𝐶 Corpus

𝑤 Target word

𝑡 Time step in the investigation period [1, . . . , 𝑇 ]

𝑠𝑤 Semantic shift 𝑤

𝐶𝑡
𝑤 Subcorpus containing 𝑤 at 𝑡

Φ𝑡
𝑤 Set of all embeddings of 𝑤 in 𝐶𝑡

𝑤

𝑒𝑡𝑤,𝑖 𝑖-th contextualized embedding of 𝑤 in Φ𝑡
𝑤

𝜇𝑡
𝑤 Word prototype of 𝑤 for Φ𝑡

𝑤

𝜑𝑡
𝑤,𝑛 𝑛-th cluster of embeddings of 𝑤 in Φ𝑡

𝑤

𝑃 𝑡
𝑤 Cluster distribution of meaning clusters 𝜑𝑡

𝑤,𝑛

3.2. Semantic Change Detection

3.2.1. General workflow

The basic procedure of Semantic Change Detection (SCD) can be outlined as follows: Given a
diachronic corpus of documents 𝐶 =

⋃︀𝑇
𝑡=1𝐶

𝑡
𝑤 , where 𝐶𝑡

𝑤 represents a subcorpus of documents
at time 𝑡 within the overall investigation period [1, . . . , 𝑇 ] that contains the target word 𝑤. The
goal of SCD is to quantify the semantic shift 𝑠𝑤 for 𝑤 between two time-specific subcorpora 𝐶𝑡

𝑤

and 𝐶𝑡′
𝑤 or across the entire corpus. There are two ways a semantic shift can manifest: firstly,

as a change in the dominant meaning of a term, or secondly, as a change in the degree of its
polysemy. Both aspects will be analyzed in this study. Specifically, for our purposes the target
word is “virtual”, the documents comprise all the full texts plus abstracts of the PR-corpus that
contain “virtual”, and the time interval is one year.

The generalized work-flow required for performing contextualized SCD can be split into three
steps. In the first step (Embedding), contextualized word embeddings are generated for each
occurrence of the target word in the corpus using a large language model like BERT. The set of
all these embeddings in the time-specific subcorpus 𝐶𝑡

𝑤 is expressed as Φ𝑡
𝑤 = {𝑒𝑡𝑤,𝑖, . . . , 𝑒

𝑡
𝑤,𝐼},

where 𝑒𝑡𝑤,𝑖 represents a contextualized word embedding in the subcorpus and 𝐼 denotes the
number of all occurrences of 𝑤 in it. In the second step (Aggregation) the embeddings of a

6https://huggingface.co/adsabs/astroBERT
7https://huggingface.co/arnosimons/astro-hep-bert
8Recently, PhysBERT [21] was released, having been pre-trained on a large corpus of 1.2 million arXiv papers across
various sub-fields of physics. While the model appears promising for our use case, it was released too late to be
included in our study.

9https://huggingface.co/google-bert/bert-base-uncased
10https://huggingface.co/allenai/scibert_scivocab_uncased

https://huggingface.co/adsabs/astroBERT
https://huggingface.co/arnosimons/astro-hep-bert
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/allenai/scibert_scivocab_uncased


time period Φ𝑡
𝑤 are aggregated to represent the time-specific meanings of 𝑤. Two types of

representations are defined: Form-based approaches examine the high-level properties of the
target word per time period by looking directly at the dominant sense of a word or the degree
of polysemy. When considering the dominant meaning, word prototypes 𝜇𝑡

𝑤 can be generated
for each time interval representing the average of all embeddings in Φ𝑡

𝑤, thus providing an
aggregated representation of the semantic properties of the target word in 𝐶𝑡

𝑤. When looking
at polysemy at the high level, the aggregation step is usually skipped and the semantic shift
of 𝑤 is measured by directly comparing the degree of polysemy in the time-specific set of
embeddings Φ𝑡

𝑤 and Φ𝑡′
𝑤. Sense-based approaches, in contrast, attempt to first capture the

different time-specific senses or meanings of the target word in 𝐶𝑡
𝑤 using clustering methods.

Each time-specific meaning corresponds to a cluster of embeddings 𝜑𝑡
𝑤,𝑛 in the set of embeddings

Φ𝑡
𝑤.
We apply two clustering methods to identify meaning clusters. In K-Means Clustering (KM),

embeddings are organized into a predefined number of clusters by iteratively updating cluster
centers until stable. Determining the optimal number of clusters is challenging; automated
methods like the silhouette coefficient often fail to identify the actual number of meaning clusters
[25]. Therefore, we set the number of clusters to 𝑁 = 10 based on qualitative assessment.
Affinity propagation (AP) identifies exemplars among data points and forms clusters without
the need to pre-specify their number by iteratively exchanging “messages” between data points
to determine the clusters. However, the number of clusters often correlates with the number
of input embeddings rather than actual meanings, potentially resulting in a large number of
clusters [26]. Another drawback of AP is its high computational complexity of 𝑂(𝑛2). In our
study, both clustering methods are applied to the entire corpus; however, it would also be
feasible to employ time-specific clustering. In order to make the clusters usable for SCD, we
then calculate the probability distribution of the clusters, i.e., the cluster distribution 𝑃 𝑡

𝑤. The
cluster distribution consists of the individual probabilities 𝑝𝑡𝑤,𝑛, which indicate the frequency
with which a specific embedding 𝑒𝑡𝑤,𝑖 from the total set of embeddings Φ𝑡

𝑤 can be assigned to a
particular cluster 𝜑𝑡

𝑤,𝑛. It is defined as follows:

𝑃 𝑡
𝑤 = [𝑝𝑡𝑤,1, 𝑝

𝑡
𝑤,2, . . . , 𝑝

𝑡
𝑤,𝑁 ], where 𝑝𝑡𝑤,𝑛 =

|𝜑𝑡
𝑤,𝑛|

|Φ𝑡
𝑤|

·

Once the time-specific representations are identified, they can be compared over time in the
final step (Assessment) to determine the extent of the semantic shift 𝑠𝑤. The methods used
to quantify this shift, split into those measuring the semantic shift for polysemy and those for
dominant meaning, will be introduced in the next chapters. Table 1 provides an overview of the
notations used in this study.

3.2.2. Polysemy

We apply two methods to quantify the temporal development of a term’s polysemy. The first
method is Shannon entropy 𝐻(𝑃 𝑡

𝑤), which utilizes the cluster distribution to describe the
degree of uncertainty in the distribution of embeddings across meaning clusters within a given
time period. Specifically, Shannon entropy quantifies the average amount of information needed



to assign a particular embedding, i.e., an occurrence of the term “virtual”, to a specific cluster,
i.e., a specific meaning of the term “virtual”. A higher value of 𝐻(𝑃 𝑡

𝑤) indicates a higher degree
of polysemy, as there is greater uncertainty or variability in the cluster membership of the
embeddings [27, 28]. To ensure comparability of entropy values across different time periods,
we use the normalized Shannon entropy 𝜂(𝑃 𝑡

𝑤), which ranges from 0 to 1 and is defined as
follows:

𝜂(𝑃 𝑡
𝑤) =

𝐻(𝑃 𝑡
𝑤)

log(𝑁)
, where 𝐻(𝑃 𝑡

𝑤) = −
∑︁
𝑛∈𝑁

𝑝𝑡𝑤,𝑛 log(𝑝
𝑡
𝑤,𝑛)·

The second method, Average Inner Distance (AID), utilizes the variance of the contextu-
alized word embeddings Φ𝑡

𝑤, reflecting the degree of polysemy of 𝑤 in 𝐶𝑡
𝑤. In this approach,

embeddings are not aggregated into meaning clusters or word prototypes. Instead, the average
distances between all possible pairs of embeddings within a single time period are calculated
[8]. This method is sometimes also referred to as self-similarity [29]. A higher AID value
indicates greater polysemy of 𝑤 in 𝑡. We employ Euclidean distance, denoted in the formula as
𝑑(𝑒𝑡𝑤,𝑖, 𝑒

𝑡
𝑤,𝑗). AID is defined as follows:

AID(Φ𝑡
𝑤) =

1

|Φ𝑡
𝑤|

·
∑︁

𝑒𝑡𝑤,𝑖,𝑒
𝑡
𝑤,𝑗∈Φ𝑡

𝑤,𝑖<𝑗

𝑑(𝑒𝑡𝑤,𝑖, 𝑒
𝑡
𝑤,𝑗)·

3.2.3. Dominant meaning

To assess the shift in dominant meaning in a form-based manner, Cosine Similarity (CS) can
be used. CS measures the alignment between the vectors of two word prototypes 𝜇𝑡

𝑤 and 𝜇𝑡′
𝑤

by calculating the dot product of the vectors divided by the product of their norms (lengths).
CS values range between -1 and 1, where a high value indicates vector alignment and a low
value indicates opposition. We employ the variant Inverted Cosine Similarity over Word
Prototypes (PRT), which, according to Kutuzov et al. [11], is better suited for quantifying the
extent of the semantic shift. PRT values are always greater than 1, where higher values signify
a more pronounced shift. PRT is defined as follows:

PRT(𝜇𝑡
𝑤, 𝜇

𝑡′
𝑤) =

1

CS(𝜇𝑡
𝑤, 𝜇

𝑡′
𝑤)

, where CS(𝜇𝑡
𝑤, 𝜇

𝑡′
𝑤) =

𝜇𝑡
𝑤 · 𝜇𝑡′

𝑤

‖𝜇𝑡
𝑤‖ ‖𝜇𝑡′

𝑤‖
·

The shift in dominant meaning can also be assessed using meaning clusters (sense-based)
through the Jensen-Shannon Divergence (JSD). JSD, based on normalized Shannon entropy,
measures the similarity between cluster distributions across different time periods. This method
considers not only the variation in the size of the clusters but also how the size of specific
clusters across the different time periods changes [28]. A high JSD value indicates significantly
different cluster distributions, suggesting pronounced semantic shifts. Conversely, a low JSD
value indicates relatively similar distributions, implying stability in the dominant meaning. JSD
is defined as follows:



JSD(𝑃 𝑡
𝑤, 𝑃

𝑡′
𝑤 ) = 𝐻

(︂
1

2
(𝑃 𝑡

𝑤 + 𝑃 𝑡′
𝑤 )

)︂
− 1

2

(︁
𝐻(𝑃 𝑡

𝑤)−𝐻(𝑃 𝑡′
𝑤 )

)︁
·

4. Results

4.1. Temporal development of “virtual”
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Figure 1: Overview of the Physical Review corpus: The figure displays the total number of published
articles per year containing “virtual” for the entire corpus (on the left) and their proportion (rolling
mean over 3 years) per journal (on the right). For clarity, the proportions in PR - Letters and RMP are
not shown.

The first result of our study is the descriptive analysis of the “virtual” corpus in regards to the
temporal development of the term. Figure 1 shows the number of published articles per year
containing “virtual” for the entire corpus (left) and their proportion per journal (right). The
dashed lines in the left figure indicate two key disciplinary differentiations in the PR journals:
the transition from Series II to PR A - D in 1970, and the introduction of new journals like
PR - X (2011) and PRX - Quantum (2021). To focus on long-term trends, these newer journals
are excluded from the analysis. The decline in articles after 2010 is thus an artefact of the
dataset and does not reflect overall trends in PR publications or physics. Notably, there is a low
number of articles in the early phase of the study period, with only 384 publications in our
corpus containing “virtual” before 1950, especially sparse before 1930 and during the war years
(1942-1945). The exact number of articles, “virtual”-embeddings and cleaned tokens per year
for the early phase can be found in the appendix (table 4). From 1950 onwards, the number of



articles containing “virtual” increases steadily, with short periods of relative stagnation during
the 1970s and 2010s, mirroring the broader increase in PR journal publications. Additional
details on the total publication count per journal are available in the appendix (figure 4).

The average share of articles containing “virtual” across all journals, as depicted in the right
figure, is 6.04 percent over the entire period. In the pre-Feynman era (before 1950), this percent-
age generally remains lower, except for two notable peaks. In 1937, there is a temporary increase
above 5 percent, driven by significant contributions from Bethe, Bacher, and Livingston in RMP
[13, 30, 31]. The second peak in 1949 is best explained by Richard Feynman’s groundbreaking
articles and their reception. For instance, with Space-Time Approach to Quantum Electrody-
namics [14] – published in PR - Series II – Feynman introduced his eponymous diagrams for
representing and analyzing quantum electrodynamic processes, which contributed significantly
to the establishment of the concept of the virtual particle. In the same year, Freeman J. Dyson’s
contributions, also published in Series II [15, 32], further validated and established Feynman
diagrams as a fundamental tool in quantum field theory (QFT) [2, 5]. Following the publications
by Feynman and Dyson, the prevalence of “virtual” steadily increased, culminating in a peak
during the 1960s and 1970s. This relatively high ratio of articles containing “virtual” may, at least
in part, be due to the rise of an alternative to QFT: the so-called S-matrix theory [33]. In this
new theory, intermediate states were always on-shell such that it seems, at first sight, that “all
talk of virtual particles was gone” [4, p. 285]. However, in other work by S-matrix theorists like
Chew, Low, or Barut the virtual particle concept seems to take center stage, and even explicitly
occurs in the title of one of their articles [34, 35]. Subsequently, from the 1970s onward, QFT
emerged as the dominant theory, supported by its successful predictions and discoveries of
fundamental particles such as quarks, W bosons, and Z bosons. Finally, by the early 1980s, the
proportion of articles containing “virtual” starts to decline to approximately 5 percent, gradually
rising again from the 1990s onward, albeit not returning to the levels observed during the earlier
peak period.

Zooming in on the individual journals or disciplines respectively, articles containing “virtual”
are notably prevalent in PR - D (particle physics, field theory, gravitation, and cosmology) and
PR - C (nuclear physics). Examination of arXiv classifications within PR - D reveals that nearly
90 percent of these articles fall under high-energy physics. The frequency of “virtual” in PR -
D peaks in the 1970s, 1990s and 2000s with drops in usage in between. Overall, it contributes
approximately 27 percent of all articles containing the term “virtual” in the corpus, making it
the largest source. Nuclear physics (PR - C) also features a significant percentage of articles
containing “virtual”, comprising about 9 percent of the corpus. This aligns with recent research
by Martinez on the origin of the notion of virtuality in modern physics [3]. The proportion of
relevant articles in PR - C increases steadily until the mid-1990s, plateaus until around 2010,
and shows a recent decline. The term is less prevalent in the remaining journals, which will not
be discussed in detail here for the sake of brevity. A table showing the top 5 journal-specific
dependencies of “virtual” can be found in the appendix (table 3).

4.2. Dominant meaning becomes more stable

One key finding of our study is that the dominant meaning of “virtual” becomes more stable
over time. Figure 2 presents the results of the SCD-calculations regarding the shifts in the
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Figure 2: Shifts in dominant meaning for “virtual”, using PRT (left) and JSD for K-Means and AP-
clustering (right) in the entire PR-corpus and over the entire investigation period.

dominant meaning throughout the entire investigation period. The left graph displays the
PRT-values for “virtual”, i.e., the inverted cosine similarity of the word prototypes for each year
to preceding year. The right graph shows the JSD-values for both the K-Means-Clustering and
the AP-Clustering. Due to the computational expense of AP-Clustering, we randomly sampled
approximately 25 percent of all embeddings, ensuring a minimum of 400 embeddings per year,
where available.

The resulting conceptual development of “virtual” can be divided into two distinct phases.
The first period, up until the 1950s, is characterized by pronounced fluctuations, indicating
repeated conceptual reorientation during the early development of the concept, with no firmly
established or dominant meaning. This trend can be seen in all three metrics, although the values
for JSD on the basis of AP-Clustering stabilizes at around 0.4. Notably, peaks are observed in
the late 1920s and early 1940s. Given the limited number of data points available for this period,
it is important to emphasize that our results for this early period reflect general trends rather
than individual peaks. To ensure the robustness of our results, we conduct permutation-based
statistical tests, which are described in detail at the end of this chapter. From approximately 1950
onward, marking the beginning of the second phase, the dominant meaning begins to stabilize
progressively, although a minor peak is observed in the early 1980s. This suggests the growing
establishment of the concept of the virtual particle, following the outlined contributions of
Feynman and Dyson. Additional details on the shifts in dominant meaning in the discipline-
specific journals can be found in the appendix (figure 5), indicating that the peak in the 1980s
is mainly caused by a change in dominant meaning in PR - C (nuclear physics). We plan to



Table 2
Top 4 lemmatized dependencies of “virtual” per decade. The number in brackets represents the share of
the dependency in all dependencies of the decade.

Decade Top 1 Top 2 Top 3 Top 4

1920 cathode (23%) orbit (14%) oscillator (12%) radiation (7%)

1930 height (22%) level (18%) state (9%) oscillator (5%)

1940 height (13%) quanta (11%) level (8%) state (8%)

1950 photon (11%) state (10%) meson (9%) process (6%)

1960 photon (13%) state (12%) transition (5%) excitation (5%)

1970 photon (21%) state (11%) excitation (5%) transition (3%)

1980 photon (15%) state (11%) transition (4%) excitation (4%)

1990 photon (14%) state (8%) transition (3%) correction (3%)

2000 photon (14%) state (8%) correction (4%) excitation (3%)

2010 photon (12%) state (7%) correction (4%) process (3%)

2020 photon (14%) state (7%) correction (3%) orbital (2%)

conduct further research into the cause of this and other peaks.
Our findings regarding the stabilization of the dominant meaning of “virtual” are also sup-

ported by the time-specific dependencies, as shown in Table 2. From the 1920s to the 1940s,
“virtual” is most often associated with terms as diverse as “cathode”, “height”, “orbit”, “level”, and
“oscillator”. In the 1940s, “virtual quanta” came into use, prominently featured in Feynman’s
first diagrams [14]. With the onset of the post-Feynman era in the 1950s, “virtual photons” and
“virtual states” become increasingly established as the dominant contexts. Notably though, the
concept of “virtual transition”, which Ehberger describes as essential for the concept’s early
development [2], only appears among the most frequent dependencies from 1960s on. From
around 1990 onward, the dependency “correction” gains importance. These “virtual corrections”
refer to parts of Feynman diagrams (or the corresponding mathematical expressions) involving
the representation of a virtual particle. The increasing frequency of this use of “virtual” might
be attributed to an increasing interest in (and feasibility of) “higher order” calculations and
presicion measurements in various contexts, the most prominent being the search for the Higgs
boson at the Large Electron–Positron Collider (LEP), which was in use at CERN from 1989 to
2000, the Tevatron (at Fermilab, 1983–2011), the planned Superconducting Super Collider (SSC,
planned ca. 1983, cancelled in 1993), and at the Large Hadron Collider (LHC), which has been
in use at CERN since 2009.11 Nonetheless, “virtual photons” and “virtual states” remain the
dominant contexts of use until the present, though less pronounced than in the 1960s and 1970s.

The consistency of results across all three calculation methods, despite their different ap-
proaches, also notable: The values of PRT strongly correlate with those of JSD (Pearson co-

11For an non-technical overview of higher order calculations, see [36]



efficient for PRT and JSD - KM: 0.96, PRT and JSD - AP: 0.8), as well as the those of the two
JSD metrics (0.77). These high correlation values suggest that both clustering methods reliably
identify the various meanings of “virtual”, indicating stable and meaningful results. To further
ensure the robustness of our findings despite the relatively low frequency of “virtual” in the early
years, we employ permutation-based statistical tests for the PRT-metric, following the approach
outlined in Liu et al. [37]. Permutation tests can be used to assess whether the observed test
statistic (i.e., the SCD-metrics) differs significantly from zero, therefore indicating a semantic
shift between two time periods. These tests are particularly suitable for low-frequency data
because they do not rely on large sample sizes or specific distributional assumptions; instead
they generate the sampling distribution based on the available data itself. This is achieved
through the random and repeated rearrangement of the “virtual”-embeddings across the two
time periods by sampling without replacement and then recalculating the SCD-metric for each
permutation.12 Following Liu et al. [37], we employ the Benjamini-Hochberg procedure to
adjust the 𝑝-values for multiple comparisons, thereby limiting the false discovery rate. Applying
this method to our data, we find that the semantic shifts for the dominant meaning of “virtual”
based on PRT are significant for almost all time interval. These findings support our conclusion
regarding the general trend of the conceptual development while acknowledging variability in
specific time periods. A detailed exemplary figure illustrating the results of the permutation
tests for PRT can be found in the appendix (figure 6).

4.3. Polysemy increases

The second key finding of our study is that the degree of polysemy of “virtual” increases. That
means that while the most dominant use is that in association with the aforementioned concepts,
its usage in different meanings is also expanding. Figure 3 presents the development of the
degree of polysemy for “virtual” in the entire PR-corpus and over the entire investigation period.
The left graph shows the AID-values, i.e., the average inner distances of all “virtual” embeddings
in a given year. The values for the normalized Shannon-Entropy are displayed in the right
graph, again for both the K-Means-Clustering and the AP-Clustering (with the same random
sampling as described in Section 4.2).

Similar to the results regarding the dominant meaning, the degree of polysemy fluctuates
significantly in the early phase of the concept. Notably, the values are particularly low in
the mid to late 1920s and early 1940s. These results are expected given the limited number
of articles during these periods, as a small number of embeddings implies a correspondingly
low number of different meanings. From 1938 to 1940, however, the values for all calculation
methods are particularly high. A clear explanation for this spike is not immediately apparent,
as neither the examination of the dependencies nor the shift in dominant meaning during these
years provide insight. The described peaks in PRT and JSD occur several years later. One
possible explanation could be that few but very different embeddings cause the peak. While
the correlation coefficients between the metrics are again high (0.64 for AID and Entropy (KM),
0.66 for AID and Entropy (AP), and 0.94 for Entropy (KM) and Entropy (AP)), suggesting stable
results, we were, however, unable to identify a suitable method for statistical testing of polysemy.

12We limit the number of permutations to a maximum of 100,000 per time interval, i.e. two subsequent years, to save
computational resources.
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Figure 3: Changing degree of polysemy for “virtual”, using AID (left) and normalized Shannon-Entropy
for K-Means and AP-clustering (right) in the entire PR-corpus and over the entire investigation period.

Further research and qualitative assessment of the relevant papers is required and planned.
Consequently, our present analysis focuses, once again, on general trends rather than individual
peaks.

From around 1950 or 1960, depending on the metric, the fluctuations become smaller and
the degree of polysemy continues to steadily increase. Notably, there is a brief spike in the
early 1980s in the AID-values and another sharp increase in the 1990s, followed by a relative
stabilization in recent years. This increase in recent years is also reflected in the dependencies
of “virtual” (table 2), with the most frequent usage contexts becoming more evenly distributed
from the 1990s compared to earlier decades. This trend is supported by the introduction of the
journal PR - E in 1993, which is characterized by distinct usage contexts differing from those of
other journals (see table 3). The Shannon-Entropy based on both clustering methods remains
consistently high, exceeding or maxing out at 0.8 from about the 1950s onward and reaching
nearly maximum values around the 2000s in the case of K-Means. From 2010 onward, there is a
small decrease in polysemy, possibly due to the second disciplinary differentiation leading to a
slightly less varied usage of the term across the remaining journals. The trends observed in
discipline-specific journals generally align with the overall findings. The details can be found in
the appendix (figure 7).



5. Discussion

We have used a large number of contextualized word embeddings to employ various Semantic
Change Detection metrics in order to trace the diachronic development of the concept of the
virtual particle. Our findings show that the dominant meaning of “virtual” becomes more stable
over time while at the same time its degree of polysemy is increasing. This development can be
split into two periods: An initial phase characterized by repeated conceptual reorientation with
no firmly established meaning yet, and a second phase marked by the growing consolidation
of the dominant meaning in the sense of the virtual particle, following the seminal works of
Richard Feynman and their reception around 1950. Simultaneously, the degree of polysemy
steadily increases throughout almost the entire investigation period and only recently seems to
stabilize at a high level.

While these two findings might seem contradictory at first, they can easily be reconciled.
Simply put, the metrics for polysemy measure how spread out the word embeddings are in the
vector space, while the metrics for dominant meaning measure where the relative majority of
the embeddings lie and how this position changes from year to year. Our findings suggest that
from the 1950s onward, the relative majority of the embeddings consistently centers around a
usage in the sense of the virtual particle (especially virtual photons), while the overall usage of
the term “virtual” diversifies, possibly due to its uses in different disciplines like those in PR - E.

We have combined our SCD-based approach with evaluation via Dependency Parsing as well
as qualitative assessment of the results. We find that the observed semantic shifts are largely
supported by recent work in the history of the virtual particle. This is particularly true for the
first period of the conceptual development, whereas SCD can be employed in a more heuristic
manner for the still relatively under-researched second phase. For instance, we identified a
notable and unexpected shift in dominant meaning in the 1980s, primarily driven by articles in
nuclear physics (PR - C). We plan to conduct further research into this peak as well as a more
in-depth discussion of the relevance of our findings for the history and philosophy of physics.13

The complementary method of Dependency Parsing revealed that most of the semantic shifts
coincide with significant changes in the most prominent dependencies at that time. While
Dependency Parsing may have been particularly effective in our case because “virtual”, the focus
of our study, is an adjective, it could prove to be a valuable and resource-efficient evaluation
method for broader use in SCD research.
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Appendix

A. Figures
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Figure 4: Number of published articles per year for each journal in the PR-corpus. The first dashed line
indicates the transition from Series II to PR A - D, while the second dashed line marks a subsequent
disciplinary differentiation around 2010.
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Figure 5: Shifts in dominant meaning in discipline-specific PR-journals for “virtual”, using PRT (left)
and JSD for K-Means clustering (right). For clarity, the rolling mean over 3 years is shown.
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Figure 6: P-values (unadjusted and adjusted with Benjamini-Hochberg procedure) for the permutation-
based statistical testing of the PRT-metric for “virtual”. The testing was done for 100.000 iterations (r).
The dashed red line marks the significance threshold of 0.05.
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Figure 7: Changing degree in polysemy in discipline-specific PR-journals for “virtual”, using AID (left)
and normalized Shannon-Entropy for K-Means clustering (right). For clarity, the rolling mean over 3
years is shown.



B. Tables

Table 3
Top 5 lemmatized dependencies for “virtual” per discipline-specific journal. The number in brackets
represents the share of the dependency per journal in all dependencies of the decade.

Top PR - A PR - B PR - C PR - D PR - E

1 state (12%) state (12%) photon (31%) photon (19%) particle (5%)

2 orbital (11%) transition (6%) state (12%) correction (8%) qubit (4%)

3 photon (10%) process (6%) excitation (4%) particle (3%) temperature (3%)

4 excitation (5%) excitation (5%) pion (2%) state (3%) time (2%)

5 transition (5%) approximation (4%) virtuality (2%) contribution (3%) point (2%)



Table 4
Count of articles, “virtual”-embeddings and cleaned tokens in corpus per year for early-phase of analysis
(up to 1950). After 1950 all three counts grow steadily, as can be seen in figure 1.

Year Article count “virtual”-embedding count Cleaned tokens count

1924 3 11 6,715

1925 7 14 10,723

1926 4 4 6,600

1927 4 24 5,343

1928 3 7 4,660

1929 2 23 4,384

1930 7 13 24,682

1931 9 32 32,688

1932 9 19 15,540

1933 8 13 32,767

1934 9 15 31,648

1935 18 53 26,422

1936 26 65 84,642

1937 36 128 114,524

1938 16 47 33,787

1939 29 93 51,193

1940 10 47 16,443

1941 11 31 26,949

1942 8 24 7,643

1943 3 4 3,628

1944 6 14 4,512

1945 12 30 53,587

1946 12 26 28,033

1947 20 68 35,555

1948 34 107 43,308

1949 78 208 135,181

1950 62 170 119,892
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