
Density Matrix Realism*

Eddy Keming Chen†

November 1, 2024

Abstract

Realism about quantum theory naturally leads to realism about the quantum
state of the universe. It leaves open whether it is a pure state represented by a
wave function, or an impure one represented by a density matrix. I characterize
and elaborate on Density Matrix Realism, the thesis that the universal quantum
state is objective but can be impure. To clarify the thesis, I compare it with Wave
Function Realism, explain the conditions under which they are empirically
equivalent, consider two generalizations of Density Matrix Realism, and answer
some frequently asked questions. I end by highlighting an implication for
scientific realism.
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1 Introduction

Realism about quantum theory naturally leads to realism about the quantum state
of the universe, the idea that the universal quantum state is an objective and mind-
independent feature of the physical world. It leaves open, however, whether it is a
pure state represented by a wave function, or an impure (mixed) one represented
by a density matrix. In this paper, I characterize and elaborate on Density Matrix
Realism (DMR), the thesis that the universal quantum state is objective but can be
impure.

Related ideas have been considered in quantum foundations (Dürr et al. 2005,
Maroney 2005, Tumulka 2010, Allori et al. 2013, Wallace 2012, Chen and Tumulka
2022), quantum cosmology (Page 1986, 2008, Barvinsky and Kamenshchik 2006),
quantum gravity (Hawking 1976, 1982), and philosophy of science (McCoy 2020,
Robertson 2022, Cuffaro and Hartmann 2021).

DMR was formulated and given its name in Chen (2018)1, with further develop-
ments in Chen (2020, 2022a,b, 2023a, 2024b,c). DMR provides a broad (and I think
fruitful) framework for thinking about quantum theory.

For various reasons, DMR remains puzzling to many people. The common
issues are:

1. Density matrices are often regarded as second-class citizens in quantum theory,
representing subsystem states (in the form of reduced density matrices) or
epistemic states (in the form of statistical density matrices). Such a perspective
is taught in standard textbooks on quantum mechanics and assumed in many
research articles in quantum foundations.

2. Density-matrix theories of quantum mechanics are less familiar than wave-

1The formulation of DMR in that paper seems to require the universal density matrix be impure,
but I intended to allow the possibility that it is pure.
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function theories. Although both can be adapted to solve the quantum mea-
surement problem, the density-matrix solutions are not widely known.

3. It is unclear how to interpret the density matrix as an objective feature of the
universe.

4. It is unclear whether and how density-matrix theories can reproduce the same
empirical predictions as wave-function theories. In other words, it is unclear
whether and under what conditions such theories are empirically equivalent.

5. It is unclear what theories with a universal density matrix look like from the
subsystem level.

6. There are multiple versions of DMR; it is sometimes unclear which one is being
discussed in a particular context.

This paper attempts to address such issues. First, I discuss some definitions, exam-
ples, and interpretations of density-matrix realist theories. Second, I suggest that
wave-function theories and density-matrix theories can be empirically equivalent
at the universal level, the subsystem level, and the local level. Third, I consider
two generalizations of density matrix realism. Finally, I answer six frequently asked
questions and highlight an implication for scientific realism.

The goal here is to clarify DMR. There are other issues worth considering, re-
garding the motivations for and arguments in favor of DMR. Although they are not
the focus here, I briefly address them in §7.6. See the companion paper Chen (2024c)
for more related discussions and references.

2 Definitions

I begin by defining Wave Function Realism (WFR), a more familiar and popular
thesis about quantum state realism, and a close cousin to DMR.

Consider realist solutions to the quantum measurement problem, such as Bohmian
mechanics, objective collapse theories, and Everettian quantum mechanics. In such
theories, the universal quantum state plays an indispensable role in the kinematics
and the dynamics, providing reasons to regard it as an objective feature of reality.
Given how such theories are often presented, it is widely believed that the objective
universal quantum state has to be pure, represented by a wave function. Let us
formulate the thesis as follows:

Wave Function Realism (WFR) The quantum state of the universe is objective; it
has to be pure.

This characterization of WFR is broader than that of Albert (1996) and Ney (2021).
For them, WFR carries a specific commitment to understanding the universal wave
function as a physical field that lives on a vastly high dimensional “configuration”
space, from which the ordinary 3-dimensional space is emergent. That is, however,
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not the only way to be a realist about the wave function. For example, the multi-field
interpretation, spacetime state realism, and the nomological interpretation all count
as realist interpretations of the wave function, and hence properly fall under the
same label (Chen 2019b).

WFR, thus defined, is a standard position for realism about the universal quan-
tum state. We often assume that the universal quantum state, if objective, must be
pure. In textbook presentations, mixed states are often used to represent reduced or
statistical states, as expressions of entanglement with other systems or our ignorance
of the actual pure state. However, there is no compelling reason why the universe
cannot be in a fundamental mixed-state density matrix, one that does not arise from
entanglement or lack of knowledge. In fact, we can formulate Bohmian mechanics,
objective collapse theories, and Everettian quantum mechanics with a fundamental
density matrix (Dürr et al. 2005, Maroney 2005, Allori et al. 2013, Wallace 2012). I
explain them in §3.

Let us consider an alternative to WFR:

Density Matrix Realism (DMR) The quantum state of the universe is objective; it
can be pure or impure.

This thesis provides additional theoretical freedom in choosing the quantum state
of the universe; it can be pure or impure (a “mixed state”). The option to use
impure states is crucial for certain proposals in quantum foundations and quantum
cosmology (§3).

Let us clarify some key terms in both theses.
(i) “The”: it implies uniqueness. Both theses differ from the proposal that seems

to be suggested by Wallace (2016) that the universe can possess two physical states
at the same time: a fundamental pure state and a fundamental mixed state.

(ii) “Quantum state of the universe”: both theses are about the quantum state
of the universe. It does not logically entail that subsystem quantum states must be
objective or that they must be pure (or impure). We consider a generalization to
subsystem quantum states in §6.

(iii) “Objective”: it means that the universal quantum state corresponds to an
objective feature of reality, which is not merely epistemic (encoding lack of knowl-
edge), or pragmatically useful (merely an instrument for calculations). The meaning
of objectivity is left open-ended, leaving room for different realist interpretations
(Chen 2019b). We consider several options in §4.

(iv) “Must be pure” vs. “Can be pure or impure”: this is the only difference
between the two theses. “Must” and “can” are modal concepts. WFR restricts
universal quantum states to only pure ones, while DMR allows both pure and
impure universal quantum states. However, the latter is compatible with additional
laws of physics (such as the Initial Projection Hypothesis proposed in Chen (2018))
that make it physically impossible for the universe to be in a pure state.
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3 Examples

Let us illustrate WFR and DMR with some examples of physical theories.
Ψ-BM. Consider the standard formulation of Bohmian mechanics (Ψ-BM) that

validates WFR. The state of the universe at a time is given by (Ψ,Q). The universal
wave function Ψ that evolves unitarily according to the Schrödinger equation

ih̵
∂Ψ
∂t

= HΨ (1)

There are actual particles that have precise locations in physical space, represented
by R3. The change in particle configuration Q = (Q1,Q2, ...,QN) ∈ R3N follows the
guidance equation (written for the i-th particle):

dQi

dt
= h̵

mi
Im

∇iΨ(q)
Ψ(q) (q = Q) (2)

Moreover, the initial particle distribution is given by the quantum equilibrium
distribution:

ρt0(q) = ∣Ψ(q, t0)∣2 (3)

W-BM. Consider an alternative formulation of Bohmian mechanics (W-BM)
whose natural interpretation validates DMR. The state of the universe at a time
is given by (W,Q). The universal density matrix W (which can be a mixed state)
evolves unitarily according to the Von Neumann Equation:

ih̵
∂W
∂t

= [H,W] (4)

The particle configuration Q = (Q1,Q2, ...,QN) ∈ R3N follows a new guidance equa-
tion (Dürr et al. 2005):

dQi

dt
= h̵

mi
Im

∇qiW(q, q′, t)
W(q, q′, t) (q = q′ = Q) (5)

and is initially distributed by:

ρt0(q) = W(q, q, t0)dq (6)

This version of Bohmian mechanics satisfies equivariance just as the wave-function
version does (Dürr et al. 1992, 2005).

Ψ-GRW. There are several versions of GRW theories that validate WFR. In
the first one, Ψ-GRW0, the fundamental ontology consists only of the universal
wave function. The wave function typically obeys (1), but the linear evolution is
interrupted randomly (with rate Nλ, where N is the number of particles and λ is a
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new constant of nature of order 10−15 s−1) by collapses:

ΨT+ =
Λk(X)1/2ΨT−

∣∣Λk(X)1/2ΨT− ∣∣
(7)

where ΨT− is the pre-collapse wave function, ΨT+ is the post-collapse wave func-
tion, the collapse center X is chosen randomly with probability distribution ρ(x) =
∣∣Λk(x)1/2ΨT− ∣∣2dx, k ∈ {1,2, ...N} is chosen randomly with uniform distribution on
that set of particle labels, and the collapse rate operator is defined as:

Λk(x) = 1
(2πσ2)3/2 e−

(Qk−x)2
2σ2 (8)

where Qk is the position operator of “particle” k, and σ is another new constant
of nature of order 10−7 m postulated in current GRW theories. We can also define
Ψ-GRWf and Ψ-GRWm, a flashy version and a mass-density version of GRW with
distinct choices of the local beables. For example, Ψ-GRWm includes an additional
law for the mass-density ontology in spacetime:

m(x, t) = ⟨Ψ(t)∣M(x) ∣Ψ(t)⟩ (9)

where x is a physical space variable, M(x) = ∑i miδ(Qi − x) is the mass-density
operator, which is defined via the position operator Qiψ(q1, q2, ...qn) = qiψ(q1, q2, ...qn).

W-GRW. Consider a class of alternative formulations of GRW that validate DMR.
For W-GRW0, the fundamental ontology consists only of the universal density
matrix W, which typically obeys (4), but the linear evolution is interrupted randomly

WT+ =
ΛIk(X)1/2WT−ΛIk(X)1/2

tr(WT−ΛIk(X)) (10)

with WT+ the post-collapse density matrix, WT− the pre-collapse density matrix, and
X distributed by the probability density ρ(x) = tr(WT−ΛIk(x)).

We can similarly define W-GRWf and W-GRWm, the flashy version and the
mass-density version (Allori et al. 2013). For example, W-GRWm includes the
mass-density law:

m(x, t) = tr(M(x)W(t)). (11)

Ψ-EQM. In the standard version of Everettian quantum mechanics with a fun-
damental pure state, the universal wave function evolves unitarily by (1), with the
branching structure emergent from decoherence. We also have the option to add a
separable fundamental ontology in spacetime by defining a mass-density field as in
(9).

W-EQM. In the alternative formulation of Everettian quantum mechanics with
a fundamental density matrix, we can unitarily evolve the universal density matrix
W by (4), understand the emergent branching structure via decoherence, and apply
self-locating probability to recover the Born rule (Chua and Chen 2023). We also
have the option to add a separable fundamental ontology in spacetime by defining
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a mass-density field as in (11).
Such theories illustrate the similarities and differences between WFR and DMR.

The Ψ-theories and the W-theories employ similar equations, but the fundamental
objects are different. The Ψ-theories postulate a universal wave function, while the
W-theories postulate a universal density matrix that may be a fundamental mixed
state.

For both WFR and DMR, we can postulate other laws to further restrict the
nomologically possible quantum states. For example, to explain the manifest arrows
of time in Ψ theories, we may postulate a Past Hypothesis (PH) to constrain the
initial wave functions to those compatible with HPH, a low-dimensional subspace
corresponding to the initial low-entropy macrostate of the universe. W-theories
offer some distinctive choices. A particularly natural one is to apply the Initial
Projection Hypothesis (IPH) and pick the normalized projection onto HPH as the
only nomologically possible initial quantum state (Chen 2018, 2024c). Such a choice
requires DMR (as long as HPH has more than one dimension).

As another example, consider the on-going discussion in quantum cosmology
inspired by the No-Boundary proposal (Hartle and Hawking 1983). In the WFR
framework, we can follow the Hartle and Hawking prescription (insofar as it is
well-defined) and select the universal wave function to be the one where space
smoothly shrinks to a point towards one temporal boundary. However, there are
also proposals that require DMR, such as Page’s No-Bang cosmology (Page 2008)
and the thermal version of the Hartle-Hawking state (Barvinsky and Kamenshchik
2006). Certain approaches to the black hole information loss paradox require DMR
(Hawking 1976, 1982), but they remain controversial. DMR may also be a natural
setting (but not a requirement) for investigating the thermal time hypothesis (Connes
and Rovelli 1994), according to which the time variable is determined by a universal
density matrix.

4 Interpretations

What does a universal density matrix represent in the physical world? The density
matrix is an abstract mathematical object. It can be challenging to say what kind
of thing it represents. Nevertheless, the situation is no more difficult than that in
the case of WFR. Strategies for interpreting the universal wave function are also
available for interpreting the universal density matrix.

Similar to the situation in WFR (Chen 2019b), we have four ontological interpre-
tations of the universal density matrix in DMR. First, we can understand W(q, q′, t)
as representing a physical field evolving in a 6N-dimensional fundamental space
represented by R6N. The field assigns properties to every point on that space.
Second, we can understand it as representing a low-dimensional multi-field. The
fundamental space is a 3-dimensional space represented by R3, and W(q, q′, t) as-
signs properties to every 2N-tuple of points on that space. Third, we can understand
it as describing properties of spacetime regions. We can obtain, from the universal
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density matrix, reduced density matrices that correspond to physical properties of
regions in a 4-dimensional manifold. Such properties are in general non-separable
due to quantum entanglement. Finally, we can understand it as representing a
geometric object in Hilbert space.

For the ontological interpretations, locality and separability considerations al-
ways go together in WFR but may come apart in DMR. For example, in W-BM, the
smallest space where everything is separable is R6N, while the smallest space where
the dynamics is local is R3N, since the particle configuration lies in R3N. Hence,
for those who understand the quantum state as a field-like material object (Albert
1996, Ney 2021), they face a choice on whether the fundamental physical space is
3N-dimensional or 6N-dimensional.

Alternatively, we can adopt the nomological interpretation of the quantum state.
In W-BM, we can regard W0 as a function that prescribes the velocity field for the
particle configuration, just like the Hamiltonian function prescribes the velocity field
on phase space in classical mechanics. In W-EQM with a mass-density ontology, we
have the option of postulating the m(x, t) field as the only material ontology, whose
time evolution is given by a law written in terms of a mathematical function corre-
sponding to a universal density matrix. DMR allows us to choose a simple initial
density matrix (Chen 2018, 2022a). So we have an easy route to the nomological
interpretation of the universal quantum state in DMR.

5 Empirical Equivalence

In §3 we saw some examples of physical theories with fundamental universal density
matrices that are natural to understand in the DMR framework. Given appropriate
choices of physical laws, each density-matrix theory is empirically equivalent to its
wave-function counterpart, so that they cannot be distinguished even in principle
by experiment or observation (Chen 2019a).

This is important, for it means the two kinds of theories rise and fall together
with respect to empirical evidence. If one is confirmed by evidence, the other is too,
and by the same degree. Conversely, if one is disconfirmed by evidence, so is the
other. However, the relevant statement of empirical equivalence depends on not
just the quantum state but also laws governing its history, and this is a place where
different choices for the density-matrix dynamics can make a difference. In §6, we
will consider an empirical difference in the generalized quantum theory advocated
by Cuffaro and Hartmann (2021).

There are different ways to understand the empirical equivalence of theories. I
shall approach it from three levels. The first is at the universal level, the second at
the subsystem level, and the third at the local level, with significant overlap between
the latter two. Even though wave-function realist theories and density-matrix realist
theories are physically distinct, they can be empirically equivalent at all three levels.
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5.1 The Universal Level: Equivalence of Probabilities

We start with a general conception of empirical equivalence:

Criterion for Empirical Equivalence: Theories A and B are empirically equivalent
if they assign the same probability to every possible outcome in every possible
measurement.

The criterion should be understood at the universal level, since it concerns all
possible measurements that can be done in the universe. If two theories satisfy this
criterion, they are empirically equivalent in a very strong sense, concerning not just
actual data, but all possible data; not just the actual world, but all possible worlds,
permitted by their physical laws. No observation or experiment can distinguish
between them.

The general criterion can take on different forms in different interpretations of
quantum mechanics. For example, we can formulate a special case for Bohmian
theories. Since in a Bohmian universe every measurement apparatus is made out
of particles with precise positions, every measurement boils down to a position
measurement. Hence, to achieve the strong sense of empirical equivalence, we just
need two theories to agree on the probability of the particle configurations.

Criterion for Empirical Equivalence of Bohmian Theories: Bohmian theories A and
B are empirically equivalent if, for every time t, PA(Qt ∈ dq) = PB(Qt ∈ dq).

We can formulate W-BM and Ψ-BM in such a way that the criterion is satisfied.

Theorem 5.1 Let W-BM be the theory of (W, Q) such that W evolves by (4), Q evolves by
(5) and satisfies (6); moreover, a particular W(t0) is chosen. Let Ψ-BM be the theory of (Ψ,
Q) such that Ψ evolves by the Schrödinger equation, Q evolves by the guidance equation
and satisfies the quantum equilibrium distribution in the wave-function version of Bohmian
mechanics; moreover, Ψ(t0) is chosen at random from a statistical ensemble represented by
the density matrix W(t0). W-BM and Ψ-BM are empirically equivalent in the sense above.

Proof: see Chen (2019a). The basic idea is that, because of equivariance, at every
time, the two theories have the same formula for the probability distribution of
particle configuration.

For Everettian theories, we can draw the same conclusion about the respective
theories. Let W-EQM be the theory of W such that W evolves by (4); moreover, a
particular W(t0) is chosen. Let Ψ-EQM be the theory of Ψ such that Ψ evolves by
(1); moreover, Ψ(t0) is chosen at random from a statistical ensemble represented by
the density matrix W(t0).

W-EQM and Ψ-EQM are empirically equivalent, because they assign the same
probability to every outcome in every experiment. Let A be a self-adjoint operator
corresponding to some observable. Suppose that its spectral measure is given by
A , a projection-valued measure. Then the probability that at time t, the outcome of
the measurement x will be within some measurable set M is:
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• W-EQM: PW−EQM(x ∈ M) = tr(WtA (M)).

• Ψ-EQM: PΨ−EQM(x ∈ M) = tr(WtA (M)).

Under the assumption that probability makes sense in the Ψ-Everettian and W-
Everettian theories, the two types of Everettian theories are empirically equivalent.

For GRW theories, the W and Ψ versions with different choices of the primitive
ontology (m or f ) are also empirically equivalent to each other (with the arrows
denoting empirical equivalence):

Ψ-GRWf //

��

W-GRWf

��

oo

Ψ-GRWm //

OO

W-GRWm

OO

oo

(12)

For arguments for why they are empirical equivalent, see Allori et al. (2013) and
Chen (2019a).

5.2 The Subsystem Level: Collapses

The general argument for empirical equivalence is clean and powerful. Neverthe-
less, it may be useful to analyze how the universe works at the subsystem level and
how WFR and DMR can converge on their predictions for the subsystem dynamics.
In this section, I shall use Bohmian mechanics as a concrete example, for its sharp
mathematical structure offers a particularly clear picture of how subsystem states
can differ on Ψ-BM and W-BM but lead to the same empirical consequences.

Following Chen (2019a), consider the following analysis of subsystems in W-BM:
(1) Splitting. For any given subsystem of particles we have a splitting:

q = (x, y), (13)

with x the generic variable for the configuration of the subsystem and y the generic
variable for the configuration of the environment, i.e. the complement of the sub-
system. (13) provides a splitting of the actual configuration into two parts:

Q = (X,Y). (14)

So we can write the universal density matrix in terms of W = W(x, y,x′, y′).
(2) Effective density matrix. The subsystem corresponding to the x-variables has

an effective density matrix (at a given time) if the universal density matrix W(x, y,x′, y′)
and the actual configuration Q = (X,Y) (at that time) satisfy:

W(x, y,x′, y′) = ρ(x,x′)γ(y, y′) +W�(x, y,x′, y′), (15)

such that γ(y, y′) and W�(x, y,x′, y′) have macroscopically disjoint (y, y)-supports,
and

(Y,Y) ∈ supp γ(y, y′), (16)
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In this case, the effective density matrix of the subsystem is ρ(x,x′).
(3) Conditional density matrix. The effective density matrix for a subsystem

does not always exist. However, we can always define the conditional density matrix
in the following way:

w(x,x′) = W(x,Y,x′,Y). (17)

Here we identify quantum states differing by a constant factor. Given the definition
of the velocity (5), the velocity field of the x-system will be given by its conditional
density matrix.

(4) Collapse and effective collapse. When (15) and (16) are satisfied, we can ne-
glect, for all practical purposes, W�(x, y,x′, y′). The configuration will be carried by
the relevant part of the universal density matrix—ρ(x,x′)γ(y, y′)—into the future,
without much interference from the other parts contained in W�(x, y,x′, y′). In this
case, we can say that during measurement, the universal density matrix has un-
dergone an effective collapse from Wt− to Wt+ = ρ(x,x′, t+)γ(y, y′, t+). Nevertheless,
for the subsystem density matrix, represented by the conditional density matrix
w(x,x′, t), the time evolution is not given by a von Neumann equation but will in
measurement-like situation look practically like a collapse, with a rapid evolution
to w(x,x′, t+).

(5) The Fundamental Conditional Probability Formula. By equivariance, the
distribution of Qt is always given by W(q, q, t). By (17), at time t, for the conditional
probability distribution of the configuration of a subsystem Xt given the actual con-
figuration of the environment Yt, we have the fundamental conditional probability
formula for W theories:

P(Xt ∈ dx∣Yt) = w(x,x, t)dx, (18)

where w(x,x′, t) = w(x,x′, t)Yt is the conditional density matrix of the subsystem at
time t. Similar to the situation in Ψ-BM, the configurations Xt and Yt are condition-
ally independent given the density matrix w(x,x′, t).

It is easy to check that pure effective density matrices can emerge following
collapses on the conditional states (see Chen (2019a) for a simple example). What is
surprising is that W-BM offers a new type of collapses that have no analog in textbook
quantum mechanics or even Ψ-BM. The following example shows in a concrete way
how subsystem dynamics can differ on the two theories and yet produce the same
probabilistic predictions.2

Consider two momentum eigenstates, one with momentum +1 (moving uni-
formly to the right) and the other −1 (moving uniformly to the left). On Ψ-BM,
suppose one of them is the actual quantum state guiding the particle. The particle
will be either moving to the left or to the right. However, on W-BM, if we regard the
equal mixture of the two as the fundamental density matrix, one might worry that
the particle guided by this density matrix will be permanently at rest, because the
average of the two gives exactly zero momentum. Nevertheless, when we measure
the particle, the record may indicate that the particle is moving. What is going on?

2It was raised as an objection to W-BM by Albert (2023), but properly understood it is a feature
and not a bug of W-BM.
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Let us analyze the measurement situation with the subsystem analysis provided
above. Let us split the universal configuration Q into (X,Y), with X the subsystem
configuration and Y the environmental one. At t1, before measurement, consider two
possible universal “wave functions” (setting aside the issue of square-integrability):

Ψt1
A(x, y) = ψ−(x)φready(y) (19)

Ψt1
B (x, y) = ψ+(x)φready(y) (20)

with ψ−(x) and ψ+(x) denote the momentum eigenstates with momentum −1 and
momentum +1 and φready(y) the quantum state of the environment that is ready to
measure the particle’s momentum. Let us suppose the two will unitarily evolve into
these:

Ψt2
A(x, y) = ψ−(x)φ−(y) (21)

Ψt2
B (x, y) = ψ+(x)φ+(y) (22)

with φ−(y) and φ+(y) the states of the environment indicating the particle in the
subsystem is moving to the left and moving to the right, respectively. As usual,
we assume that the two records are macroscopically distinct, with φ−(y) and φ+(y)
having macroscopically-disjoint supports.

Consider an impure density matrix, the equal mixture of Ψt1
A(x, y) and Ψt1

B (x, y):

Wt1(x, y,x′, y′) = 1
2

Ψt1
A(x, y)Ψt1∗

A (x′, y′) + 1
2

Ψt1
B (x, y)Ψt1∗

B (x′, y′) (23)

Let the universal particle configuration be guided by such a density matrix according
to the W-BM dynamics.

Before measurement, at t1, the conditional density matrix of the one-particle
subsystem is an impure state:

wt1(x,x′) = KWt1(x,Yt1 ; x′,Yt1) = 1
2
ψ−(x)ψ−∗(x′) + 1

2
ψ+(x)ψ+∗(x′) (24)

with K the normalization constant.
After measurement, at t2, the subsystem is measured and the record indicates

that it is actually moving to the left. The universal quantum state has evolved into
this:

Wt2(x, y,x′, y′) = 1
2

Ψt2
A(x, y)Ψt2∗

A (x′, y′) + 1
2

Ψt2
B (x, y)Ψt2∗

B (x′, y′) (25)

Because of the macroscopically-disjoint supports of φ−(y) and φ+(y), the two
terms on the right hand side, Ψt2

A(x, y)Ψt2∗
A (x′, y′) and Ψt2

B (x, y)Ψt2∗
B (x′, y′), also have

macroscopically-disjoint supports.
At t2, the environmental configuration Yt2 lies within the support of φ−(y).

Plugging it into the universal density matrix, we have (almost) zero contributions
from terms with φ+(y). So the conditional density matrix of the subsystem becomes
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a pure state:
wt2(x,x′) = K′Wt2(x,Yt2 ; x′,Yt2) = ψ−(x)ψ−∗(x′) (26)

with K′ the normalization constant. The evolution of the conditional quantum state
of the subsystem from wt1(x,x′) into wt2(x,x′) is a non-unitary one, corresponding
to a more general type of quantum state collapses. The collapse into ψ−(x)ψ−∗(x′)
has a probability of 1/2, the same as the collapse into ψ+(x)ψ+∗(x′). Notice that the
collapse takes a mixed state to a pure state. It is a real collapse for the subsystem state
in W-BM. However, this is a case where textbook QM and Ψ-BM do not postulate a
collapse at all; they would regard the transition as an epistemic change of learning
which of the two pure states is the actual one, or, in Bayesian terms, update by
conditionalization. Let us call this collapse without “textbook collapse.” It illustrates a
crucial difference between Ψ-BM and W-BM at the subsystem level. In this case, the
conditional state collapses in W-BM but the corresponding one does not collapse in
Ψ-BM, and yet they are predictively equivalent, assigning the same probabilities to
possible outcomes. In other words, they offer different physical explanations for the
empirical phenomena.

5.3 The Local Level: Canonical Typicality

The previous arguments are quite general and sufficient to establish exact empirical
equivalence with exact agreements of probabilities. I shall propose another argu-
ment for an approximate sort of empirical equivalence between WFR and DMR
based on local indistinguishability of “small” subsystems in a “large” universe. It
exploits recent results in quantum statistical mechanics known as canonical typicality.
Its scope is more restricted: the argument depends on the size of the actual universe
and how much of it we have direct empirical access. However, because of the
generous bound on subsystem size, it presumably applies to our actual epistemic
situation. I include the argument here because it is surprising and interesting.

In the early 2000s, several teams of researchers (Gemmer and Mahler 2003,
Goldstein et al. 2006, Popescu et al. 2006) have independently discovered a feature
of quantum mechanics that has no parallel in classical mechanics. Suppose we have
a large quantum universe U with a wave function Ψ, with the universe partitioned
into a small subsystem S and its environment E (the complement of S in U) and
the universal Hilbert space is the tensor product of the Hilbert spaces of S and
E, i.e. H = HS ⊗ HE. Suppose further that there is a global constraint R on the
universe such that Ψ ∈ HR, with HR the subspace of the universal Hilbert space
corresponding to R. The reduced density matrix of the subsystem S, obtained from
Ψ by tracing out the environmental degrees of freedom in E, is

ρΨ
S = trE∣Ψ⟩⟨Ψ∣ (27)

Now, the normalized projection onto HR is WR = IR/dimHR, with IR the projection
onto HR. WR is mathematically the same as the statistical density matrix corre-
sponding to the uniform probability distribution, with respect to the normalized
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surface area measure µ, on the unit sphere of HR:

WR = ∫
S(H )

µ(dψ) ∣ψ⟩⟨ψ∣ (28)

The reduced density matrix of the subsystem S, obtained from WR by tracing out
the environmental degrees of freedom in E, is

ρWR
S = trEWR (29)

Remarkably, it is shown that, under suitable conditions and for typical wave func-
tions in HR,

ρΨ
S ≈ ρWR

S (30)

where the approximation can be made precise by various inequalities (Teufel et al.
2024). This is known as canonical typicality. The phenomenon is a manifestation of
quantum entanglement and has no classical analogue.

Popescu et al. (2006) gloss canonical typicality as “almost every pure state of
the universe is locally (that is, on the system) indistinguishable from [WR].” They
interpret the latter as encoding a statistical density matrix. Results of this form have
been used to support the individualistic picture of quantum statistical mechanics
that it is meaningful to use standard statistical ensembles for subsystem descriptions
even when the universe is in a pure state, and to justify the postulate of micro-
canonical ensembles and canonical ensembles.

However, there is an under-appreciated corollary of canonical typicality, relevant
to the empirical equivalence between WFR and DMR. Precisely because of canonical
typicality, we cannot use local data to distinguish whether the universal quantum
state is pure or impure.

How close ρΨ
S and ρWR

S are to each other depends on the size of the subsystem
and the size of the environment. To apply canonical typicality, the subsystem can
contain up to 50% of the number of degrees of freedom of the total system (e.g.
the universe) (Teufel et al. 2024). Let’s consider the solar system as such a “small”
subsystem of the universe. The spatial region of the solar system includes all our
direct evidence of the universe collected so far. We may have other observational
data about the universe, such as other galaxies, but it will be inferred from our direct
evidence (pointer readings), which is locally here in the solar system. Given the local
data in the solar system, we only have access to the reduced density matrix of the
solar system. The latter, by canonical typicality, is more or less the same whether it
is obtained from a typical wave function in the present macrostate of the universe
HM or the normalized projection onto the subspace associated with the macrostate,
a mixed state. Therefore, given the local data we have, we cannot tell whether the
universe is in a pure state or a mixed state.3

3It is true that we often know more about the subsystem state than that it is reduced from a
typical pure state of the present macrostate. The argument can be modified to accommodate such
information. First, restrict ourselves from the present macrostate HM to those wave functions whose
earlier histories are compatible with a Past Hypothesis HPH. This gives us a smaller subspace HM′ .
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We are gradually exploring other parts of the universe. But it is realistic to expect
that we will not have direct empirical access to more than 50% of the microscopic
degrees of freedom in the universe. Considered as an abstract subsystem, our
evidence by itself will (typically) not be able to distinguish between a universal
pure state or a universal mixed state. In other words, the totality of direct empirical
evidence, as long as it is sufficiently local, will typically (according to the standard
measure) underdetermine the universal quantum state. This argument requires
that our evidence be local in the appropriate sense. As it turns out, by appealing to
another result called distribution typicality, we can drop the locality assumption and
generalize the argument to any empirical evidence (Chen and Tumulka 2024).

6 Generalizations

In §3 and §5, I have considered density-matrix realist theories that are “conservative
extensions” from their wave-function realist counterparts. The laws in the former
are natural generalization of those in the latter. For example, (4) conservatively
extends from (1), (5) from (2), and (10) from (7). All of those laws may be called
closed-system dynamics. They differ from the more general open-system dynamics
suggested by Cuffaro and Hartmann (2021). Regarding my definition of DMR in
§2, the relevant quantum state whose objectivity is at issue is the universal one.
With the focus on closed-system dynamics and universal quantum states, we can
establish the empirical equivalence between WFR and DMR. For clarity, let me label
the version of DMR I am committed to as DMRU

C , with U standing for the universe
and C closed-system dynamics.

In this section, let us consider two generalizations of DMR. They are related
to the proposals of Robertson (2022) and Cuffaro and Hartmann (2021). There are
important similarities and differences.

6.1 The Subsystem Version: DMRS

First, consider DMRS, the thesis that the reduced density matrices assigned to sub-
systems of the universe are objective. This view faces an apparent objection. Since
reduced states are obtained by tracing out the environment, which is akin to taking
a statistical average, they surely cannot be entirely objective. The standard view
regards the reduced states as carrying incomplete information about subsystems.
Against the standard view, Robertson (2022) argues for DMRS by suggesting that
density matrices are inevitable and the most complete description for subsystems
entangled with their environments, concluding that density matrices should not

Next, project the wave functions onto the subspace corresponding to the present “branch” of the
wave function, say, with humans existing. This yields another subspace HM′′ . How the projection
is physically implemented depends on the interpretation of quantum mechanics. (In Bohmian
theories, we can obtain a much more detailed conditional density matrix of the subsystem, using the
environmental configuration located outside the subsystem of interest.) Once we focus on HM′′ , the
argument from canonical typicality applies again.
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be understood as entities that encode subjective information but as states of the
relevant physical systems4:

The density matrix is arguably the best mathematical object to rep-
resent the state of the individual system (rather than the wavefunction
ψ), since ρ is a more general object than ψ. Quantum systems rapidly
become entangled with their environment — which means that the indi-
vidual system cannot be described by a wavefunction, but instead must
be a (reduced) density matrix (by tracing over the environment). Since
the density matrix formalism is more general, and sometimes required,
the density matrix should be taken to be more fundamental...... Thus the
individual state of the system in QM is not represented by a ray in Hilbert
space (the quantum equivalent of a point in phase space), but a density
matrix.... Thus, there is no difference in the mathematical object that rep-
resents the state of the individual system, and a probability distribution
over it. Thus, in QSM, the dichotomy between ‘being a property of a
probability distribution’ and ‘being a property of the individual system’
never arises.

But the defender of the standard view has a ready response: the dichotomy can still
arise in quantum statistical mechanics. For example, even though the hydrogen
atom is entangled with the rest of the universe, we attribute to it a pure state,
while the reduced density matrix is heavily mixed. How different quantum theories
explain this phenomenon is briefly discussed in §5.3. If WFR is correct, in Bohmian
mechanics the subsystem can possess a (conditional) pure state, obtained from
plugging the environmental configuration into the universal wave function. Even
on DMRU

C , such a conditional state obtained from the universal density matrix can
still be pure. (The Everettian story will involve branching.)

Hence, there is still a choice. Empirically equivalent but physically distinct
theories can assign different subsystem states, some pure and some mixed. One has
the option to regard the mixedness as a symptom for non-objectivity. Hence, we are
not forced to accept DMRS.

However, if we accept DMRU
C , there is a natural argument for a restricted ver-

sion of DMRS. If the universal quantum state is mixed, the actual states of some
subsystems will be more mixed than when we assume WFR. Equation (24) in §5.2
provides an example. See (Dürr et al. 2005, sect.4) for another type of example in-
volving spin. Such mixed states can be objective, though not as fundamental as the
universal density matrix. Hence, we may have motivations to adopt the restricted
version of DMRS, treating some subsystem density matrices as objective (though
not fundamental), if we already accept DMRU

C .

4For a similar argument, see Wallace (2016).
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6.2 The Open Systems View: DMRU
O

Next, consider DMRU
O, the idea that the universal density matrix is objective, can be

impure, and evolves non-unitarily according to a fundamental open-system dynam-
ical equation, such as the Lindblad equation (Cuffaro and Hartmann 2021). For ex-
ample, one can formulate a Bohm-type theory where particles exist in 3-dimensional
space and are guided by a universal density matrix that evolves according to not the
von Neumann equation (4) but a Lindblad equation. The predictions of the theory
differs from those of Ψ-BM and W-BM.5 Advocates of the open-system dynamics
should be understood as committing not just to the theoretical possibility of such
open-system dynamics, but also assigning a non-zero epistemic probability that it
is the correct description of the fundamental law of the universe. Otherwise, it will
be epistemically equivalent to holding DMRU

C .
Thus understood, DMRU

O is distinct from DMRU
C .6 While DMRU

C can be shown to
be empirically equivalent as WFR, because the fundamental dynamics can be of the
same type, advocates of DMRU

O should assign a non-zero probability in predictions
that diverge from standard formulations of realist quantum theories. This provides
an epistemic argument in favor of DMRU

C and against DMRU
O. Insofar as all data are

in full agreement with quantum mechanics, DMRU
O makes the data more surprising

than DMRU
C . Schematically, we may represent the situation as follows:

Prob(EQM ∣DMRU
C) > Prob(EQM ∣DMRU

O) (31)

and it is rationally permissible to have the following prior assignment:

Prob(DMRU
C) = Prob(DMRU

O) (32)

We are also allowed to assign higher prior in DMRU
C than DMRU

O. The reason we
are not rationally required to assign equal or higher prior in the latter, even though
every model of DMRU

C will correspond to a model of DMRU
O but not vice versa,

is because they are distinct hypotheses about the fundamental laws (Chen 2023c,
2024a). Hence, by Bayes’s rule, the posterior probability in DMRU

C , given available
data, is higher than that in DMRU

O.
In other words, DMRU

C is the conservative and empirically equivalent extension
of WFR, so that they are confirmed and disconfirmed to the same degree by empirical
evidence, while DMRU

O takes on extra epistemic risks. If empirical evidence had been
different and if we have seen deviations from quantum mechanics, we might have
possessed empirical evidence to favor DMRU

O over DMRU
C . But insofar as empirical

evidence is compatible with DMRU
C and WFR and incompatible with certain versions

of DMRU
O, the opposite is the case.

This does not mean it is not pragmatically fruitful to consider DMRU
O. Clarifying

5This theory is suggested but not endorsed in (Allori et al. 2013, sect.4.3). Thanks to Roderich
Tumulka for discussions about this point.

6DMRU
C includes W-GRW theories, but their fundamental laws differ from the master equations

of open systems, such as the Lindblad equation. See (Goldstein et al. 2012, sect. 6.3).
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such a framework can be useful for developing possible quantum gravity or post-
quantum theories. But insofar as no empirical evidence deviates from quantum
predictions, we do not have an epistemic reason to go beyond DMRU

C .

7 Frequently Asked Questions

In this section, I answer six sets of frequently asked questions regarding DMR, by
pointing to relevant discussions in earlier sections and elsewhere in the literature.

7.1 Intelligibility

How is DMR an intelligible thesis? Density matrices, by definition, are about partial
information or epistemic ignorance. It makes no sense to be a realist about the
density matrix.

Answer: Density matrices can play different roles in quantum theory. While
some of them encode partial information or epistemic ignorance, it does not follow
that all density matrices play such roles. The universal quantum state can be a
fundamental mixed state, not arising from entanglement or statistical mixture, as
shown in §3-4.

7.2 Familiarity

DMR is unfamiliar. No textbooks in quantum mechanics introduce density matrices
as fundamental features of the universe. Why should we consider DMR?

Answer: The lack of familiarity of DMR is not an epistemic reason for taking it
less seriously. We can come to a better understanding of DMR by thinking through
the definition, examples, interpretations, possible generalizations, and relation to
WFR. Insofar as we do not have decisive reasons against DMR, we should consider
DMR as a serious alternative to WFR. In §7.6, I also mention some reasons to favor
DMR over WFR.

7.3 Purification

Even if DMR is intelligible and there may be reasons to consider it, we can always
purify the mixed state by adding a factor in a larger Hilbert space. Why can’t we
just focus on WFR?

Answer: From the perspective of WFR, that is indeed possible. However, absent
any reason to think WFR has to be true, DMR is on the table. From the perspective
of DMR, the purification is not always physical. The universal state may just be a
fundamental mixed state that does not arise from entanglement from the outside,
as there is no physical degree of freedom that it is entangled with.
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7.4 Physical Equivalence

If DMR and WFR are empirically equivalent, are they not the same theory? How
are they physically or ontologically distinct?

Answer: They are physically distinct theories, as they prescribe different physical
possibilities. Are fundamental universal mixed states physically possible? Yes on
DMR but No on WFR. Empirical equivalence does not entail physical or ontological
equivalence. Even though DMR and WFR can yield the same predictions, they
provide different explanations for how such phenomena arise. For example, a
universal mixed state can give rise to particle trajectories, quantum state collapses,
and multiverse evolutions that are ontologically different from those arising from a
universal pure state.

7.5 Occam’s Razor

Doesn’t Occam’s Razor favor WFR over DMR? Isn’t DMR more complicated than
WFR?

Answer: The wave-function realist theories and density-matrix realist theories
discussed in §3 employ very similar laws. For example, (4), (5), (10) are no more
complex than their wave-function counterparts (1), (2), and (7). Regarding state
space structure, both wave functions and density matrices live in the Hilbert space.
One may insist that, intuitively speaking, there are more density matrices than
wave functions, since every pure state corresponds to a one-dimensional projec-
tion density matrix but not every mixed state has a corresponding wave function.
Hence, one might make a modal version of Occam’s Razor by objecting that WFR
is more modally parsimonious. The modal Razor might work when considering
WFR and DMR without any additional laws. However, the argument can work
against WFR, because some versions of DMR are more modally parsimonious than
versions of WFR. For example, the Wentaculus (a version of DMR) is compatible
with exactly one initial quantum state but the quantum Mentaculus (a version of
WFR) is compatible with infinitely many. See Chen (2024c).

7.6 Theoretical Payoffs

What are the theoretical payoffs of DMR?
Answer: We should take DMR at least as seriously as WFR, regardless of the

theoretical payoffs of the former. Since DMR is a clear and intelligible alternative
to WFR, and since it is no more complicated than WFR, both of them should be on
the table. That being the case, there are many theoretical payoffs of DMR. I find the
following most compelling, but it is by no means an exhaustive list:

• Nature of the quantum state. DMR provides a new argument for the nomological
interpretation of the quantum state. On the nomological interpretation, the
universal quantum state is regarded as a nomic object like the Hamiltonian
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telling objects how to move. However, the exact initial wave function may not
be sufficiently simple to be a law. DMR offers a new possibility Chen (2018,
2022a, 2024c). For example, in the Wentaculus theories, we can stipulate that
the initial quantum state is the normalized projection onto the Past Hypothesis
subspace, one that is no more complex than the Past Hypothesis itself. Insofar
as PH can be simply specified, the initial density matrix can be too.

• Strong Determinism. DMR can potentially satisfy our explanatory desire to have
all physical facts explained by simple laws. Determinism provides conditional
explanations of later states in terms of earlier ones. But that does not explain
the initial state of the universe, which requires an additional postulate. With
Everettian Wentaculus, the initial density matrix is pinned down by a law, and
the multiverse evolution is too (Chen 2024b, 2023b).

• Statistical Mechanical Probability. Insofar as we have a fundamental density
matrix in DMR that can mimic the statistical density matrix over the under-
lying pure state of WFR, we can regard the statistical mechanical probability
distribution as being subsumed under the fundamental density matrix and
become part of the quantum mechanical probability (Chen 2020).

• Theoretical Unity. In a universe with a fundamental wave function, most
subsystems may be in mixed states but the universal one is pure. This is not
the case in a universe with a fundamental mixed-state density matrix, where
typical subsystems and the universe are all in mixed states (Chen 2018).

• Nomic Exactness. DMR provides a new route to eliminate fundamental nomic
vagueness, i.e. vagueness in the fundamental laws of nature (Chen 2022b).

8 Conclusion

DMR is a clear and intelligible thesis. With suitable choices of states and dynamics,
DMR is empirically equivalent to WFR. Since they are compatible with different sets
of states, they cannot both be correct. It is therefore an interesting case study for sci-
entific realism. In a quantum universe, we face a substantive and interesting choice
regarding what kind of quantum theory we should accept, even after choosing our
favorite interpretation of quantum theory. Empirical evidence underdetermines be-
tween Ψ-theories and W-theories, so our decision needs to rely on theoretical virtues
(super-empirical considerations). In a quantum universe, a satisfactory defense of
scientific realism must confront this issue and justify what reasons (if any) we have
to favor one over the other.
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