
ON THE QUANTUM THEORY OF MOLECULES:
RIGOUR, IDEALIZATION, AND UNCERTAINTY

NICK HUGGETT

University of Illinois Chicago

Chicago, Illinois, USA

JAMES LADYMAN

University of Bristol

Bristol, United Kingdom

KARIM P. Y. THÉBAULT
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1. Introduction

1.1. Dethroning the Queen? Quantum chemistry is the use of quantum mechanics

(and quantum field theory) to model molecules and their dynamics, to explain and pre-

dict their chemical properties and reactions. Its status is important to questions about

the place of physics among the sciences: prima facie, quantum chemistry is an example

of the success of reductionism, exemplifying the fundamentality of physics with respect

to chemistry and other natural sciences.1 However, the received view in the philosophy

of quantum chemistry is that attention to models and scientific practice reveals not only

that quantum chemistry does not reduce to quantum physics, but that the two are ex-

plicitly in conflict. A principal argument for this view is based upon alleged non-quantum

features of the ‘Born-Oppenheimer approximation’ (BO), which is the most commonly

used model of molecular dynamics in quantum chemistry, and involves approximations

including wavefunction separability, adiabaticity, and ‘clamping’. It has been claimed in

the philosophy literature that BO violates the Heisenberg uncertainty principle, and so

is in conflict with quantum theory.

1There are of course different notions of both reduction and fundamentality, and at least both epistemic
and ontic versions of each.
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This claim has been developed in most detail by Olimpia Lombardi and coauthors

(Lombardi and Castagnino 2010; González, Fortin, and Lombardi 2019; Fortin and Lom-

bardi 2021; Lombardi 2023).2 A further influential analysis is due to Chang (2015), who

(citing a talk by Lombardi) asserts that:

...the typical method of quantum-mechanical treatment of molecules be-

gins with the Born–Oppenheimer approximation, which separates out the

nuclear wavefunction from the electronic wavefunction [...] Additionally, it

is assumed that the nuclei have fixed positions in space. In this “clamping-

down” approximation, the atomic nuclei are treated essentially as classical

particles; as Olimpia Lombardi points out, this picture is non-quantum in

a very fundamental way as the simultaneous assignment of fixed positions

and fixed momenta (namely, zero) to them violates the Heisenberg uncer-

tainty principle. But without such classical scene-setting, the quantum

calculations are quite impossible (Chang 2015, p. 198)

In our terms, Chang claims that BO involves both the separation of wavefunctions (which

is what he calls ‘the Born-Oppenheimer approximation’) and a ‘clamping-down’ approx-

imation, and that the latter violates the Heisenberg uncertainty principle, so the BO

as a whole is not fully quantum. Lombardi (2023) puts the claim even more strongly.

When endorsing Torretti’s (2000) view that bringing together theories without worrying

about their incompatibility, seemingly ‘outrageously’ (p. 119), is nonetheless scientifically

legitimate on pragmatic grounds, she notes:

The [Born-Oppenheimer], as used in the context of quantum chemistry,

is a vivid example of how scientists “outrageously” appeal to incompati-

ble theories in their practice. In this case, quantum chemical models of

molecules are obtained by combining classical mechanics to describe the

nuclei and quantum mechanics to account for the motion of the electrons.

(p. 115)

The Lombardi and Chang idea that BO violates Heisenberg uncertainty is the basis for

more general anti-reductionist claims (Accorinti and González 2022; Cartwright 2022).

Cartwright argues that this alleged conflict between the quantum chemistry of molecules

2See Woolley and Sutcliffe (1977); Woolley (1978); Claverie and Diner (1980) for the original quantum
chemistry discussion. Hendry (Hendry (1998, 2006, 2010a,b, 2017); Accorinti and González (2022)) while
taking an anti-reductionist stance, does not claim that BO violates the uncertainty relations. We do not
address reduction in general, but our analysis is compatible with reduction, in the same spirit as Scerri
(2012); Hettema (2017); Franklin and Seifert (2020); Seifert (2020, 2022); Scerri (2024b,a).
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and Heisenberg uncertainty implies not only that chemistry fails to reduce to physics, but

that the two are incompatible. This case is one of the main motivations for ‘dethroning

the queen’ (i.e. not privileging physics among the sciences). After quoting the passage

from Chang above (with no reference to Lombardi et al.), Cartwright says:

This approximation treats the atomic nucleus as a classical particle.

But this fundamentally violates quantum mechanics which, following the

Heisenberg uncertainty principle, maintains that we cannot have a simul-

taneous assignment of fixed positions and fixed momenta. The approxima-

tions that provide the reduction violate the very theory that the chemistry

is being reduced to [...] the success of quantum chemistry relies fundamen-

tally on assumptions that belong to classical chemistry (Cartwright 2022,

pp. 106-7)

To our knowledge, it has never been claimed in the scientific literature that BO violates

the Heisenberg uncertainty principle.3 So either philosophers of science have uncovered

an important scientific fact that scientists themselves have somehow missed, or the argu-

ments of the philosophers are incorrect. One main aim of this paper is show the latter

to be the case: BO does not violate the Heisenberg uncertainty principle.4 We show this

by analysing a textbook-style presentation of BO. This analysis is of independent value

since it identifies the idealizations that do and do not play a role in BO.

The second aim of this paper is to address concerns about the rigour of the textbook

presentation of BO: in particular, subtle issues regarding the justification of the math-

ematical idealizations involved in modern formalisations. Sutcliffe and Woolley (2012)

argue that assumptions regarding the discrete spectra of electronic Hamiltonians used in

BO are unjustified. Furthermore, they suggest that removing these unjustified mathe-

matical idealizations requires making use of resources of classical physics and empirical

data introduced ‘by hand’. We consider the response to Sutcliffe and Woolley (2012) in

Jecko (2014) and examine the latter’s argument that the mathematical idealizations can

be justified without recourse to classical or empirical assumptions.

3This includes the notable discussions of Sutcliffe and Wooley cited earlier. The only scientific reference
that we have found cited to support the violation claim is in Accorinti and González (2022). These
authors quote remarks in (Villaveces C and Daza C 1990, pp. 100-1) that make reference to a potential
contradiction between identifying a quantum chemical structure with a single point in a nuclear configu-
ration space and the uncertainty principle as part of a motivation for moving beyond such an approach.
No argument is provided that such a step is taken in context of BO.
4For related critical remarks see Scerri (2024b,a). We give a more thorough analysis, but the latter paper
addresses related challenges beyond the scope of this paper.
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The third and final aim of this paper is to use the analysis of BO to open up

wider questions concerning the role of reduction and rigour in quantum chemistry. In

§4 we provide a prospectus for future philosophical work on the foundations of quantum

chemistry that is informed by scientific practice, as all parties agree that it should be.

We argue that such philosophical work should be disentangled from the unwarranted

mobilisation of quantum chemistry against the fundamentality of physics. We show that

attending instead to the conceptual, formal and methodological questions which scientists

themselves ask raises a range of issues and open questions relating to the various types

of semi-classical modelling, the role of persistent environmental interactions, and the

problem of isolating distinctively ‘chemical’ modes of quantum modelling practice.

1.2. The Idealization and Rigour Problems. When quantum chemists and physicists

talk about BO they refer to an approach to solving the quantum mechanical equations

for a molecule that builds on – but modifies and extends – pioneering work by Born and

Oppenheimer in 1927. §2.1 provides a short history of the approach and its development,

while §2.2 and §3 provide a detailed analysis of two levels of rigour of the modern form of

the approximation. This section sets out schematic argument patterns for the analysis of

the challenges to the modern BO in the sources cited above. First we sketch BO in simple

terms. The basic idea is to use to the high ratio between the electron and nuclear masses

to produce trial solutions to a molecular Schrödinger equation: we consider the time-

independent equation, but the method extends to dynamical problems as well. There are

two distinct aspects of BO: a separation ansatz and an adiabatic approximation. The

ansatz is that the molecular wavefunction, Ψ(x1, x2), is approximated by the product

of a function of nuclei positions, θa(x1), and a function of nuclei and electron positions,

ψa(x1, x2), so that we have: Ψ(x1, x2) = θa(x1)ψa(x1, x2). The approximation is that the

rate of change of the ψa(x1, x2) with respect to the nuclear position is approximately zero;

this condition provides an equation for θa(x1).

The justification of BO is central to the idealization problem detailed below. The

arguments of Lombardi and Castagnino (2010); González et al. (2019); Fortin and Lom-

bardi (2021) (and perhaps also of Chang (2015), which endorses Lombardi’s analysis in

the first quote above but does not otherwise elaborate) share a fundamental misrepre-

sentation of how the approximation is justified in quantum chemical practice which is

in terms of stability under de-idealization (as in many other cases). What then is the

salient idealization of BO, and how is it justified? The intuitive idea is that the total
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Figure 1. Eigenvalues λn of the clamped Hamiltonian, as (hypothetical)
functions of the heavy, nuclear degrees of freedom x1. In the region around
x1 = x the first three electronic energy levels can be seen to be widely
separated: specifically, by far more than the kinetic energy of the nuclei.
This is the condition for stable molecules, and for BO.

kinetic energy of the nuclei is small compared to the potential energy of the molecule

and the total kinetic energy of the electrons. (This is because a nucleon is far heavier

than an electron, and so typically moves far more slowly, and kinetic energy is mv2).

It is this energy difference that makes the molecular wavefunction Ψ(x1, x2) effectively

separable. Mathematically, ψa(x1, x2) is an eigenstate of a so-called ‘clamped’ Hamilton-

ian: the sum of the potential energy of the molecule plus kinetic energy of the electrons

only. It is best thought of as a family of electron (x2) wavefunctions, one for each fixed

nuclei configuration (x1), with a corresponding family of energy eigenvalues λa(x1). Each

family of eigenvalues then picks out a ‘potential energy surface’ as illustrated in Figure

1. (This part of BO is taken to somehow violate quantum theory, but it does not, as

we explain in detail below.) θa(x1) is, formally speaking, a wavefunction for the nuclei in

this potential. The molecular energy is approximately the sum of λa(x1) with the nuclear

kinetic energy, and because of the energy difference, close to the former. So if the gaps

between the λa(x1) are large, only one ψa(x1, x2) is relevant to Ψ(x1, x2) – superposing

with other eigenstates of the clamped Hamiltonian shifts the energy too far. Figure 1

shows the crucial representative features of the potential energy surfaces. It makes clear

that energy gaps do not exist for all values of x1. It also illustrates that the gap can exist

for a given range of values, about a minimum.

One expects that the nuclei of a stable molecule are restricted to a region around

such a point; the nuclear wavefunction effectively vanishes outside. Thus the more specific

assumption made in BO is:
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Heavy : in a stable molecule the nuclei are approximately localized, in

a quantum state in which their kinetic energy is much smaller than the

electron kinetic energy (though not zero).5

The idealized model is one in which Heavy holds for any nuclear configuration, x1, cor-

responding to a stable molecule. That is, the energy gaps exist for all such values of x1,

unlike the case shown in Figure 1. Inferences based upon such an idealized model are jus-

tified to the extent that they are stable under relaxing the idealization, and they remain

approximately valid when x1 is restricted to a given region. §2.2 considers the stability

under de-idealization of the Born-Oppenheimer model found in a textbook presentation

formalising the sketch just given. The approximate validity of the BO separation ansatz

and the BO adiabatic approximation follows deductively from Heavy and this derivation

is stable under de-idealization from an arbitrary to a specific range (see §2.2).6

The idealized model involves strictly false assumptions regarding the range of validity

of Heavy, but does not involve any assertions inconsistent with quantum theory. By

contrast, consider the following idealizing assumption:

Clamped : molecular nuclei have fixed definite positions and zero kinetic

energy.

An idealized model of which Clamped is literately true would be one in which ‘clamped’

molecular nuclei have classical positions and momenta (namely zero), in conflict with the

Heisenberg uncertainty principle.

In such a model it would be plausible to argue that a classical modelling procedure

is required to apply the approximations involved. However, no evidence provided by the

authors mentioned above that such an idealizing assumption is part of BO in either its

original or modern form. Nor is the use of the family of clamped Hamiltonians equivalent

to Clamped, which effectively selects one member of the family. As established in detail

below, the modern form of BO makes explicit use of Heavy precisely as explained above.

5A more precise version – and rationale for the name – will be given in §2.2, once some of the necessary
formalism has been set up.
6The adiabatic approximation can be expected to break down in various circumstances. The most
obvious is when the nuclei are light, as with hydrogen. Yang et al. (2023) note: “considering the
high mobility of light hydrogen atoms, the non-adiabatic coupling of different electronic states beyond
the Born-Oppenheimer approximation is expected to be prominent” (p. 2). Such coupling gives rise
to conical intersections between energy surfaces that are used to understand reaction pathways (Baer
2006). Much of current work in quantum chemistry goes beyond BO by considering the interactions
between electronic and nuclear vibrational motion which leads to the coupling of different energy states
of molecules (Yarkony 2012). See also Sibaev et al. (2020); Agostini and Curchod (2022)
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This is a much logically weaker assumption than Clamped and consistent with the nucleus

being a fully quantum particle.

Our argument regarding idealizations and BO is as follows:

The Idealization Problem

I1. Idealized models are related to less idealized models via approximation rela-

tions.

I2. Inferences based upon idealized models are justified if the features of the ideal-

ized model that ground the relevant inference are stable under de-idealization

I3. The fundamental idealization of the BO model is Heavy. Inferences about

the behaviour of molecules in the relevant regime are indeed stable under

de-idealization

I4. The BO model does not involve the idealization Clamped. Rather, a param-

eterised family of ‘clamped’ Hamiltonians are used as a tool to construct the

effective molecular wavefunction in which the nucleus is fully quantum and

the eigenstates of the full molecular Hamiltonian include an explicit nuclear

kinetic energy term.

I5. The conflict with the Heisenberg uncertainly relation (and stability under

de-idealization) of Clamped is irrelevant to the use of models based on BO.

The second challenge to the BO concerns the rigour of certain assumptions about

the spectrum of the clamped Hamiltonian in the separation ansatz. This rigour problem

has not to our knowledge previously been discussed in the philosophy literature, but has

been raised by important figures in quantum chemistry who have greatly influenced the

philosophy of chemistry from a broadly anti-reductionist standpoint. Here we give a brief

overview of the problem.

The derivation of the clamped Hamiltonian spectrum starts by expanding the molec-

ular wavefunction: Ψ(x1, x2) =
∑

a θa(x1)ψa(x1, x2). This expansion appears to be a

mathematical fact, since (ignoring degeneracy) the ψa form a complete orthogonal basis

because they are the eigenstates of a Hermitian operator. However, this reasoning as-

sumes that the spectrum is discrete, when in fact it contains a continuous part, reached

as the system ceases to be a stable molecule, and becomes an unbound collection of nuclei

and electrons.7 One reasonable concern is that since in a continuous spectrum there are

7As explained below, discreteness of the bound state spectrum requires transforming to a centre of mass
frame.
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no normalizable eigenstates, BO does not, as it stands, lead to physical states. Sutcliffe

and Woolley (2012) conclude from this that BO requires further classical assumptions

that do amount to the introduction of fixed nuclear positions. They reason as follows:

It is thus not possible to reduce the molecular Schrödinger equation to a

system of coupled differential equations of classical type for nuclei moving

on potential energy surfaces [...] without a further approximation of an

essentially empirical character. An extra choice of fixed nuclear positions

must be made to give any discrete spectrum and normalizable [square-

integrable] eigenfunctions. In our view this choice, that is, the introduction

of the clamped-nuclei Hamiltonian, by hand, into the molecular theory is

the essence of the “Born-Oppenheimer approximation” (p. 7)

Three related points: First, Sutcliffe and Wooley do not make explicit how ‘empirically

fixing’ nuclei positions would solve the formal problems that they identify, so it is not

clear exactly what they have in mind by this procedure; but at no point do they claim that

BO violates Heisenberg uncertainty. Second, the problem that they raise is one of formal

rigour, namely that BO, involves problematic mathematical simplifications, in particular

assumption of normalizable eigenfunctions for operators without purely discrete spectra.

One might thus plausibly understand this as a problem of justifying a ‘mathematical

idealization’. Third, their conclusion that fixed nuclear positions must be put in ‘by

hand’ only follows if that is the only way to deal with the rigour problem.8

Sutcliffe and Woolley’s reasoning perhaps suggests a version of Clamped, so could be

taken as supporting the idealization argument in spirit (though not in technical detail).

In any case, the rigour problem they raise is a valid challenge to textbook level presen-

tations of BO. However, mathematical physicists have addressed it by reframing BO as

approximating an eigenvalue and eigenstate of the total molecular Hamiltonian lying in

the low energy, discrete part of its spectrum. §3 considers some of the details of this

more rigorous treatment following the insightful work of Jecko (2014), which is both an

overview of the mathematical literature on BO, and a response to various worries raised

by Sutcliffe and Woolley (2012).

Our argument regarding rigour and BO is as follows:

8This paper is not focused on the work of Sutcliffe and Woolley, which is a critique of Born and Huang
(1954), and does not fully detail their position. We do claim that justifying Born’s and Huang’s ap-
proach requires an assumption of (quantum) localization, which their text inadequately distinguishes
from clamping.
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The Rigour Problem

(1) The textbook presentation of the BO model includes mathematical idealiza-

tions that presume the existence of normalizable eigenstates with discrete

spectra.

(2) A close analogue of Clamped is necessary to justify these mathematical ide-

alizations, so the idealization problem putatively reoccurs in the context of

trying to make the BO model rigorous (Sutcliffe and Woolley 2012).

(3) However, the relevant mathematical idealization can be justified without ap-

pealing to anything like Clamped. (Jecko 2014).

2. The Born-Oppenheimer Approximation

2.1. The Historical Treatment. What we can call the ‘Perturbative Expansion Born-

Oppenheimer approximation’ (PBO) is the approach to the approximate solution of

the (time-independent) Schrödinger equation for stable molecules pioneered by Born and

Oppenheimer in their 1927 paper Zur Quantentheorie der Molekeln (‘On the Quantum

Theory of Molecules’).9 The key physical feature upon which the PBO is built is that

nuclei are very much heavier than electrons. With this in mind Born and Oppenheimer

introduce a small parameter, κ =
(

m
M

) 1
4
, where m is the electron mass and M the

nucleon mass; the ratio m/M is roughly 1/2000 so κ ≈ 0.15. The crucial idea is to

treat the nuclear kinetic energy as a perturbation of the energy, expanded in powers

of κ. The original PBO is indicated by the authors to be valid from zeroth to fourth

order in κ with nuclear vibrational energy corresponding to terms of second order and

the rotational energy to fourth order in the energy. Coupling effects among electronic

states appear beyond fourth order in κ.

The principal achievement of PBO is to show that one can use the electronic Hamil-

tonian for a fixed nuclear configuration to construct a family of electronic wavefunctions.

These wavefunctions can then be used to calculate approximate eigenvalues for the full

molecular Hamiltonian on the assumption that the nuclear motion is confined to a small

vicinity of a privileged equilibrium configuration. Up to order κ4, approximate wavefunc-

tions can then be written as products of ‘electronic’ wavefunction and ‘nuclear’ wave-

functions (Sutcliffe and Woolley 2012, p.3) (the physical significance of these objects is

discussed in more detail in following sections).

9See Born and Oppenheimer (2000), Sutcliffe and Woolley (2012) and Scerri (2024b,a)
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The seeds of later confusion were sown in the description that Born and Oppen-

heimer provide of the zeroth order equations. In particular, Part II of the paper, titled

‘Electronic Motion for Stationary Nuclei’ states that ‘if one sets κ = 0 one obtains a dif-

ferential equation in the [electron position variables] alone, the [nuclear position variables]

appearing as parameters’. The solution of such a ‘reduced’ equation is then indicated to

‘represent the electronic motion for stationary nuclei’. As noted by Sutcliffe and Woolley

(2012), ‘it is perhaps to this statement that the idea of an electronic Hamiltonian with

fixed nuclei as arising by letting the nuclear masses increase without limit, can be traced’.

(p. 2).

Yet, the representational content of a perturbative model should not be conflated

with its zeroth order terms, on pain of misunderstanding their ubiquitous use as scientific

models. PBO does not represent the nuclei as fixed; rather it organizes an expansion in

which the only leading, zeroth order, term has that character. That is, it expands around

a fictitious system in which the nuclei are clamped. These are entirely different mod-

elling strategies. (Analogously, one should not conflate a purely Newtonian model with a

perturbative expansion involving the Newtonian model plus relativistic corrections.) The

result of PBO is, of course, (in principle) a wavefunction that satisfies the uncertainty

relations for both electrons and nuclei. Thus, the idealizing assumption Clamped does

not form part of PBO and the idealization problem does not occur.

The PBO was made redundant by later work of Born (1951) and Born and Huang

(1954), and it is that approach that is today refereed to in chemistry literature as defining

the “Born-Oppenheimer approximation” and to which we now turn.

2.2. A Textbook-style Presentation. This section is a treatment of the modern BO,

drawing in parts upon Messiah (1962) and Jecko (2014) (but with no serious attempt at

historical reconstruction). Here ‘textbook-style’ indicates both accessibility and an em-

phasis on heuristics over rigour at certain points. In particular, the pedagogical aim of a

textbook may be to sketch the overall logic of a calculational method in order to empha-

sise certain principles, so that the method is memorable and portable to related problems

in scientific practice. In the process, certain idealisations have to be made, which should

be justified by a more rigorous de-idealisation in the background. Our treatment (which

is similar to, but goes beyond standard presentations) similarly describes the overall logic

of BO in a way to make clear its quantum nature; it makes certain idealisations, (some

of) which are flagged below and addressed in detail in §3.
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Suppose a system is comprised of two parts, with canonical variables x1 ∈ Rm and

x2 ∈ Rn. In the usual way, the state of the system in the x-representation – the wave-

function – is Ψ(x1, x2) ∈ L2(Rm × Rn), and (setting ~ = 1) the canonically conjugate

observables are i∂/∂xj. The (non-relativistic) Hamiltonian is the sum of kinetic, T̂j, and

interaction, Ŵ , parts:

(1) Ĥ = T̂1 + T̂2 + Ŵ ,

with Ŵ some function of the variables xj, and T̂j a power (or sum of powers) of the

corresponding conjugate variables, i∂n/∂xnj . In the case of a molecule, the first two terms

will be the kinetic energies of nuclei and electrons ( p̂2
j/2m ∝ −∂2/∂x2

j), respectively, and

the third, Coulombic potential energy.10

We are interested in finding the eigenstates of Ĥ, which cannot be done analytically,

but requires approximation. So suppose further – and this is the crucial assumption –

that in the range of states of interest the kinetic energy of the x1 subsystem is far smaller

than both that of the x2 part, and that of their interaction energy: T1 � T2,W (where

O denotes the expected value of observable Ô). What ‘range of states’? In the first

place, those wavefunctions that only have (non-negligible) support in a range of values

of α < x1 < β; the first system is effectively localized within that region. (Moreover, the

states should be below some maximum energy level.)

This condition (elaborated and sharpened below) is an ansatz, a temporary suppo-

sition made to find solutions, which must then be inspected to verify that they really

solve the (time-independent) Schrödinger equation: if so the supposition is vindicated;

if not then it must be given up. Of course, we seek motivation for making an ansatz, a

reason to think that it will turn out to be vindicated. But such motivation should not

be understood as its justification – if an ansatz is justified, it is wholly by its success

in finding solutions. In the present case the ansatz is motivated by the composition of

a molecule, in which the nuclei comprise the first system, and the electrons the second.

In typical states, because electrons are 2000 times lighter than nucleons, they are more

easily set in motion, and a stable state is one in which almost all the kinetic energy is in

the motion of the former; if it is a low energy state then the nuclei can only be displaced

from a potential energy minimum by a small amount (Messiah 1962, XVIII.12).

10One idealization has already been made; as discussed in §3, a total kinetic energy due to the velocity
of the molecule as a whole should be subtracted.
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Supposing the assumption holds, do the supposed solutions exist, justifying it? As a

first step, consider normalized solutions to the (time-independent) Schrödinger equation

for the so-called ‘clamped’ Hamiltonian:

(2)
(
T̂2 + Ŵ (x1)

)
ψa(x1;x2) = λa(x1)ψa(x1;x2),

with a = 1, 2, . . . . Part of the spectrum of T̂2 +Ŵ (x1) is continuous, so not all such states

are normalizable, square-integrable functions. In this section we follow standard practice

and ignore this complication. Here ‘clamped’ is understood purely formally – specific

nuclear coordinates are picked out, but there is no implication that nuclei are physically

located at x1. It is as if the light, electronic subsystem sees the heavy, nuclear subsystem

at a fixed value of x1, so the Hamiltonian for that value is considered effective. Thought

of this way, Ŵ is a parameterized family of x2 operators Ŵ (x1): so there is not just

one but infinitely many clamped Hamiltonians. In that case, the T̂2 + Ŵ (x1) eigenvalues

λa(x1) and eigenstates ψa(x1;x2) are also parameterized families; hence the semi-colon.

That is, formally speaking, the energy and state of the electronic subsystem vary for fixed

energy level a, as x1 varies. (Of course, whether or not the x2 physically jump between

energy levels – ‘potential energy surfaces’ – depends on the dynamics of the motion; we

speak here only of the form of the spectrum.) From the crucial assumption, one next

infers:

Heavy : the gaps, |λn(x1)− λm(x′1)|, between the λa(x1)s are much greater

than the values of T1, when compared for any α < x1, x
′
1 < β.

Clearly, this inference is not deductive; even if T1 � |λn(x1) − λm(x1)| for α < x1 < β,

because λn(x1) varies with x1, it is possible that λn(x1) ≈ λn+1(x′1) for some values in that

range. However, there should be sufficiently small ranges for which the condition holds,

so what is really assumed is that there are eigenstates of Ĥ whose support approximately

lies in such a region. See Fig. 1. For a molecule, for instance, this amounts to the

assumption that there are energy eigenstates in which the nuclei are sufficiently localized

at the bottom of the potential energy well, which is quite reasonable for small excitation

levels.

The reader may feel that a certain amount of hand waving is occurring; arguably

it gets worse! However, our goal here is not to prove that BO is valid under certain

conditions, but to give an intuitive account of the mathematical and physical significance

of the conditions. The approximation has been subject to the more rigorous attentions
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of mathematical physicists, so the argument outlined here rests on solid mathematical

ground (see §3 and Jecko (2014)).

Before we show how BO uses Heavy, we should briefly say more regarding (2); since

its meaning is at the heart of the interpretation of BO, this is not the final word. Be-

cause they are a set of eigenstates for a self-adjoint operator of the x2 electron sub-

system, for each nuclear x1 = X ∈ Rm the ψa(X;x2) form a complete orthonormal

basis:
∫
ψaψbdx2|x1=X = δab.

11 Thus (since in addition T̂2 + Ŵ commutes with x1) any

(x1, x2) wavefunction on Rm × Rn can be written:

(3)
∑
a

θa(x1)ψa(x1, x2).

Note that the RHS is not a sum of nuclear {χa(x1)} and electron{ζa(x2)} (tensor) product

states:

(4)
∑
a

χa(x1)ζa(x2).

No, ψa(x1, x2) represents a ‘direct integral’, taking, for each x1 ∈ Rn, an x2 wavefunction

ψa(x1; ·) satisfying (2) from a distinct copy of the L2(Rn) Hilbert space. Both (3) and (4)

give the general form of L2(Rm × Rn) functions: the latter from the familiar properties

of the tensor product; the former simply because specifying an L2(Rn) function for each

value of x1 (in a suitably smooth way) specifies such a function – ψa(X;x2) is just the

cross-section of ψa(x1, x2) at x1 = X.12 So one cannot read (the terms in the sum) (3)

as describing separate nuclear and electronic states: rather ψa(x1, x2) is a wavefunction

for both parts (unlike an electron wavefunction ψa(X; ·)). A lack of clarity regarding this

situation, and perhaps specifically conflation of these two expansions, has contributed to

confusion regarding the interpretation of BO, discussed in §2.3.

Proceeding with our explication of the approximation itself, Heavy has two important

(though equivalent) consequences whose derivation we now sketch.13 The arguments are

11Here we make the important idealisation that the spectrum is discrete, which applies at many points
in the following.
12Thus contrast (3), with (2); the former expresses a function over Rm × Rn, while the latter expresses
a continuous infinity of equations for x2 wavefunctions, one for each value of x1. The use, in ψa, of a
comma in former versus a semi-colon in the latter indicates just this difference.
13The following arguments are presented without careful attention to the distinction between x1-
parameterized families of wavefunctions and operators on the one hand, and their direct integrals on
the other. They are best read as equations relating the corresponding differential operators and func-
tions in the position representation, which is indifferent to the distinction.
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straightforward, and in both cases the important point is that they follow from Heavy

alone (with no appeal to Clamped).

Derivation 1. Separability Ansatz from Heavy. There are eigenstates of Ĥ with

the approximate form θa(x1)ψa(x1, x2): the so-called ‘Born-Oppenheimer ansatz’. To

see this, suppose (for reductio) that the E-valued energy eigenstate Ψ(x1, x2) has non-

negligible contributions from two14 different (orthonormal) θa(x1)ψa(x1, x2), with energies

λm(x1) < λn(x1):

ĤΨ = Ĥ
1√
2

(θmψm + θnψn) =
E√

2
(θmψm + θnψn)

= (T̂1 + T̂2 + Ŵ )
1√
2

(θmψm + θnψn)(5)

= T̂1
1√
2

(θmψm + θnψn) +
λm√

2
θmψm +

λn√
2
θnψn,

using (1) and (2). (In the final step we use the fact that T̂2 contains only x2 derivatives,

while Ŵ is a function of x1 and x2, so both operators commute with θa(x1)). The following

argument does not depend on our simplifying assumption of equal, real amplitudes.

The sum of the second two terms is a vector that fails to be parallel to Ψ by a

vector whose amplitude is the order of (λn − λm)/
√

2: for instance, one could either add

(λn − λm)θmψm/
√

2 or subtract (λn − λm)θnψn/
√

2. That is to say, by (5) – namely the

supposition that Ψ is an eigenstate – we have

(6) |T̂1
1√
2

(θmψm + θnψn)| ≈ (λn − λm)/
√

2.

But for any Hermitian operator and normalized vector, |Ôφ| cannot exceed the greatest

eigenvalue. So in this case, by Heavy,

(7) |T̂1
1√
2

(θmψm + θnψn)| ≤ Tmax
1 � (λn − λm)/

√
2,

a manifest contradiction. Hence the supposition is false, and an eigenstate of total energy

cannot be a sum of θaψa, but has the product form

(8) ĤΨa(x1, x2) ≈ Ĥθa(x1)ψa(x1, x2) ≈ Eaθa(x1)ψa(x1, x2).

�

14This assumption is not innocuous as strictly the following depends on it; it is however illustrative of
the role energy gaps play in BO in general.
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Put another way, such states (approximately) diagonalize the total Hamiltonian: there

are no cross-terms for such states with different values of a.

Derivation 2. Adiabatic Approximation from Heavy. Recall that the position repre-

sentation of T̂1 has the form ∂2/∂x2
1:

(9) T̂1θaψa ∝
∂2

∂x2
1

θaψa =
∂2θa
∂x2

1

· ψa + 2
∂θa
∂x1

· ∂ψa

∂x1

+ θa ·
∂2ψa

∂x2
1

.

However, θaψa diagonalizes both T̂2 +Ŵ using (2), and (approximately) Ĥ = T̂1 + T̂2 +Ŵ

from (8). Therefore it also (approximately) diagonalizes T̂1: 〈θbψb|T̂1|θaψa〉 ∝ δa,b. In the

x1-representation,

(10)

∫
dx1θ

∗
b (x1)

∫
dx2ψ

∗
b (x1, x2)

{∂2θa
∂x2

1

ψa + 2
∂θa
∂x1

∂ψa

∂x1

+ θa
∂2ψa

∂x2
1

}
∝ δa,b.

Since different ψa are orthogonal (since distinct eigenstates) the x2 integral means that

the first term in the sum is proportional to δa,b. However, neither of the derivatives of ψa

will be orthogonal to ψb (and similarly for the θs), so that the remaining terms will not

be proportional to δa,b – unless they are both zero. Thus (10) entails that

(11)
∂ψa(x1, x2)

∂x1

≈ 0,

(which is the more specific statement that often goes under the name the ‘Born-

Oppenheimer approximation’).

�

Note that (11) is ‘adiabatic’ in the sense that ψ changes ‘slowly’ with respect to x1,

not time (c.f. Huggett and Thébault (2023)).

Making the adiabatic approximation (11) in (9) yields

(12) T̂1θaψa = ψa
∂2θa
∂x2

1

= ψaT̂1θa.

Hence, the significance of the ansatz and approximation is that the part of the joint state

Ψa(x1, x2) that expresses the kinetic energy of the nuclei can (approximately) be factored

out as θa(x1). But to repeat the discussion after (3), it cannot be over-emphasized that

Ψa(x1, x2) has not been factored into strictly nuclear and electronic parts, since the other

factor, ψa(x1, x2), depends on both, not just the electron configuration.

We are now in a position to solve the molecular energy eigenstate problem for the

system. From (8), one needs to find θa(x1) and ψa(x1, x2); the latter is given by (2), so
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all we need is the equation for the former. From (8) we have:

(13)
(
T̂1 + T̂2 + Ŵ

)
θa(x1)ψa(x1, x2) ≈ Eaθa(x1)ψa(x1, x2),

while from (2) and (12) we have

(14) ≈
(
T̂1θa(x1)

)
· ψa(x1, x2) + λa(x1)θa(x1)ψa(x1, x2),

which gives:

(15) (T̂1 + λa(x1)− Ea)θa(x1) ≈ 0.

This has the form of a (time-independent) Schrödinger equation for the nuclear vari-

ables, ‘living’ on a potential energy surface λa(x1), but recall the discussion after (12).

That cannot be the correct literal description of the nuclei in BO, since both θa(x1) and

ψa(x1, x2) represent aspects of the nuclear subsystem.

To sum up, from the Born-Oppenheimer separation ansatz (8), finding the approxi-

mate eigenstates Ψ(x1, x2) of Ĥ reduces to finding solutions to (2) and (15), and taking

their product, a significant simplification. (Of course, these equations can still not be

solved analytically, and require further approximations, for instance the WKB approxi-

mation.) Together these steps constitute BO.

2.3. Idealization and Uncertainty. At the heart of the interpretation of BO is the

use of (2), in which the nuclei might appear to be represented as being ‘clamped’ in place.

If this were literally the case, then they would be regarded as classical at this stage of the

method. But recall our discussion of (3): the resulting electron wavefunctions are found

simply in order to formally express the full molecular wavefunction Ψ(x1, x2) in a useful

way.

As pointed out above, the subsystem wavefunction for a given parameter value,

Ψ(X; ·), is the cross-section of the full wavefunction, Ψ(x1, x2) at x1 = X, with no physical

significance of its own. (One might say that it is the probability amplitude for the x2

subsystem conditional on the x1 subsystem ‘being found at’ x1, but that would be taken

with the usual grain of salt when we speak of quantum quantities with continuous spectra

taking on a definite value.) Conversely, Ψ(x1, x2) is the direct integral of a parameterized

family of eigenfunctions, Ψ(x1; ·). Moreover, given a family of bases ψa(x1; ·) for L2(Rn),

and their direct integral ψa(x1, x2) it is a mathematical fact that the total wavefunction

Ψ(x1, x2) can be expanded as
∑

a θa(x1)ψa(x1, x2) for some functions θ(x1).
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In BO one solves (2) for every value of x1, and since each clamped Hamiltonian

is Hermitian, there is a family of bases, which one uses to expand Ψ(x1, x2), the wave-

function of the full system, both electrons and nuclei. Note that this procedure involves

no approximations at all (given the mathematical idealization of a discrete spectrum, to

be discussed in §3); approximations are used later to select just one term in the sum,

and to find an equation for the θ(x1). In short, the use of the clamped Hamiltonian

(or rather, infinity of clamped Hamiltonians) is purely formal, for constructing a useful

expansion, and should not be given physical significance. At no stage in the method does

BO represent the nuclei to be anything but quantum.

One might contrast this direct integral with a tensor product expansion, which,

while also being formal, ascribes wavefunctions to subsystems that we take to represent

the physical states of them in the joint system. In the direct integral formalism, the

subsystem wavefunction ψa(X, x2) does not provide such a representation; at best it

represents the physical state an electron would have if it were in Coulomb potentials

centred at the X, and not actually interacting with quantum nuclei. But even this

interpretation is irrelevant to the fact that BO utilizes a formal decomposition of the

quantum state of the molecule; there simply is no requirement that its elements have a

physical interpretation at all. (And of course we should continue to distinguish BO from

the very simple approximation in which the nuclei are treated as classical charges at the

minimum, x, of the potential energy surface, in which idealization there is no molecular

wavefunction at all, just an electron wavefunction.)

All the states relevant to BO are vectors in a Hilbert space in which the Heisen-

berg uncertainty relations are automatically respected. This is because wavefunc-

tions are square-integrable functions on (configuration) space L2(Rn). For instance,

for a single degree of freedom the variances of position and momentum variables are:

σ2
x =

∫∞
−∞ x

2 · |ψ(x)|2 dx and σ2
p =

∫∞
−∞ p

2 · |ψ̃(p)|2 dp, where ψ(x) and ψ̃(p) are the

position and momentum basis wavefunctions, respectively. The Heisenberg uncertainty

relation, σxσp ≥ }
2
, is a simple mathematical consequence of the fact that position and

momentum are Fourier conjugates.

A violation of the relation would require a ‘wavefunction’ sharply peaked in both

the position and momentum basis simultaneously, contrary to this basic fact about QM

and BO. They would only be violated if, the model represented electron or nuclei states

as other than vectors in Hilbert space: say, as a delta functions in both position and



ON THE QUANTUM THEORY OF MOLECULES 19

momentum space.15 Similarly, that the ‘nuclear wavefunction’ θa(x1) ∈ L2(Rm) is a vector

in a Hilbert space means that it cannot violate the Heisenberg uncertainty relation; it does

not and cannot violate the Heisenberg uncertainty relation. (The scare quotes remind

the reader that the ‘electronic wavefunction’ ψa(x1, x2) also plays a role in representing

the state of the nuclei.)

Moreover, as already noted, it would be a mistake to näıvely interpret Ψa(x1, x2) as

being factored into strictly nuclear and electronic parts. The factor, ψa(x1, x2), depends

on the nuclear configuration, not just the electron configuration. The role of ‘classical’

parameters and the ‘clamped’ Hamiltonian in constructing ψa(x1, x2) is entirely irrelevant

to the status of the nuclei as quantum particles. BO provides an inherently quantum

representation of molecular structure that does not admit a classical separation into

purely electronic and nuclear representations. The quantum nature of the nuclei in BO

is highlighted in the discussion of Jecko (2014) who notes in his concluding section: ‘We

emphasise that, in the mathematical treatment of the Born-Oppenheimer approximation,

the nuclei are always considered as quantum particles. The use of clamped nuclei is just

a tool to construct an appropriate effective Hamiltonian but the latter is a quantum,

nuclear Hamiltonian with restricted electronic degrees of freedom’ (Jecko 2014, p. 20).

3. On the Mathematical Treatment of Born-Oppenheimer

We now turn to the question of rigour in textbook treatments of BO and consider

features of the modern mathematical BO approximation that are sufficient to allay the

relevant concerns. Recall that Sutcliffe and Woolley (2012) claim that the clamped Hamil-

tonian in general has a continuous part to its spectrum; physically plausible, for energies

at which the constituents have disassociated, and there is not longer a stable molecule.

Thus some further ingredient is needed to underwrite modelling a molecule with normal-

izable square-integrable eigenfunctions with a discrete spectrum. They suggest that extra

empirical input and classical assumptions are required to deal with this issue. This is

the ‘rigour problem’ introduced above, to which we now return. We follow Jecko (2014),

which identifies three principal problems with textbook treatments of BO.16

15See Footnote 24 for a short discussion of precisely such a possibility in the context of mixed classical-
quantum models in which there is failure of positivity of the density matrix in the quantum part of the
model. As discussed there, this is understood by the scientists themselves as a pathological feature of
the models rather than a putative representation of Heisenberg uncertainty violation.
16Thierry Jecko has also emphasized to us in correspondence that there are rigorous approaches to the
quantum treatment distinct from BO, for instance the ‘exact factorization’ of Abedi et al. (2010).
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First, the analysis only involves the internal energy of the molecule, even though it

has centre of mass motion and associated kinetic energy, with a continuous spectrum

(absent boundary conditions). To separate out the internal levels (to find the spectrum,

or the spatial structure, or for scattering) one can transform to a centre of mass frame

(of the molecule or just its nuclei, depending on the problem), and subtract the centre

of mass kinetic energy. This procedure introduces a new term into the Hamiltonian (the

Hughes-Eckart energy), which is suppressed by the ratio of electronic to nuclear masses

(∼ 10−3), so is neglected in low order approximation.17 This complication is harmless for

present purposes, so we suppressed it for reasons of space.

The second problem arises because the expansion (3) is not really a sum, but a sum

of low energy states plus an integral over states in the high energy, continuous part of the

spectrum of T̂2 +Ŵ . As is familiar, in any continuous spectrum there are no normalizable

eigenstates, something finessed in familiar ways by physicists via the Dirac delta function,

and more rigorously by the theory of ‘spectral decomposition’. However, in the present

case details of the structure of the spectrum, in particular the existence of ‘thresholds’,

(Jecko 2014, §V), make the expansion highly non-trivial, and hard to control. Its existence

is thus – from a mathematically rigorous point of view – an ‘in principle’ matter only.

The third problem is that the appropriate formalism for a mathematically rigorous

treatment is, as mentioned earlier, that of the direct integral (Reed and Simon 1978,

280-7). Any L2(Rm ×Rn) function f(x1, x2) is understood as an L2(Rn)-valued function

f(x1, ·) with x1 ∈ Rm. One then naturally defines the direct integral of a parameterized

family of operators Ô(x1) on L2(Rn), as the operator Ô on L2(Rm × Rn) whose effect

on f(x1, x2) is the direct integral of Ô(x1)f(x1, ·): i.e., it acts on each x2 function as the

appropriate operator in its state space.18

In response to the last two problems, mathematical physicists have a somewhat

different perspective on BO to that of §2.2. The goal is to approximate an eigenstate

(and eigenvalue) lying in the low energy, discrete part of the spectrum of the molecule (1).

To do this, one considers eigenstates of the Hamiltonian projected onto the subspace in

which its spectrum is discrete. See (Jecko 2014, §IV) for details of the following sketch.

Let us call T̂2 + Ŵ , the direct integral of the clamped Hamiltonians T̂2 + Ŵ (x1), the

‘reduced Hamiltonian’. While the latter acts on L2(Rn), the state space of the electron

17Sutcliffe and Woolley (2012) caution that ignoring it can make the Hamiltonian ill-defined.
18There are important questions of the self-adjointness of the various Hamiltonians involved. And we
continue to ignore degeneracy in the spectrum.
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subsystem, the former acts on L2(Rm×Rn), the state space of the full system, including

both the electrons and the nuclei : both, that is, are treated quantum mechanically. It is

also called the ‘electronic Hamiltonian’, but that would be misleading for our purposes

since it acts on the state of the whole molecule. Analogously for the projection operator:

for a given x1 = X and a finite discrete range of eigenstates ψa(X;x2) of T̂2 + Ŵ (x1)

there is an operator

(16) P̂ (X)f(x2) =
N∑
a=1

ψa(X;x2)

∫
ψ∗a(X;x2)f(x2)dx2

projecting f(x2) ∈ L2(Rn) onto the subspace spanned by the ψa(X;x2). P̂ , the direct

integral of the P̂ (x1), then projects states in L2(Rm × Rn) onto the discrete subspace

spanned by the corresponding ψa(x1, x2) eigenstates of the electronic Hamiltonian. Since

P̂ also acts on the full molecular states space, it too treats nuclei as well as electrons as

quantum mechanical.

To overcome the issue of a continuous spectrum, the first approximation made is to

seek eigenstates of the projected molecular Hamiltonian Ĥeff = P̂ (T̂1 + T̂2 + Ŵ )P̂ , instead

of T̂1 + T̂2 + Ŵ . One assumes that if an eigenstate of the latter exists in a given narrow

range of the energy, then it can be approximated by an eigenstate of the former lying in

the same range: one replaces the tricky problem of solving the ‘true’ Hamiltonian with

the simpler problem of solving an effective Hamiltonian for the energy range of a stable

molecule. Formally, Ĥeff acts on L2(Rm×Rn): first a state is projected onto the ψa(x1, x2)

subspace, then acted on by the molecular Hamiltonian, and the result projected again

onto the subspace. Ĥeff too treats both nuclei and electrons as quantum. Note that

the effect of Ĥeff is always to produce a vector in, V , the finite dimensional subspace

spanned by the ψa(x1, x2), so (a) all states orthogonal to V are eigenstates of Ĥeff with

eigenvalue 0, and (b) all its other eigenstates lie in V , and so have finite cardinality. In

relation to §2.2, one has made rigorous (3), now understood as expanding solutions of

the Schrödinger equation for the projected Hamiltonian.

Sutcliffe and Woolley (2012) argue that the direct integral decomposition of the

unprojected reduced Hamiltonian entails that it has a purely continuous spectrum, and

hence that the expansion assumed at the start of BO is invalid (p. 6). Their argument

is not entirely explicit, but plausibly they are appealing to Theorem XIII.86 of Reed and

Simon (1978) (work which they cite elsewhere). However, such an appeal is inapplicable

to the projected reduced Hamiltonian, since one of the conditions of the theorem is an
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infinite spectrum, which is exactly what the projection destroys. They are correct that

empirical input, namely the relevant range of energies, is used in the rigorous BO, but

that does not make the model not quantum. (Nor does it seem a failure of reduction that

a derivation not be carried out entirely from first principles; the approximation itself is

justified rigorously, and the empirical input merely tells us that the system is in the range

in which it holds. Moreover the use of the approximation can be vindicated post hoc by

showing that the relevant conditions hold.)

The previous section shows that textbook BO is fully quantum, and adding a step

in which the reduced Hamiltonian is projected onto a discrete part of its spectrum in no

way undermines that argument. The projected Hamiltonian is still quantum, indeed a

quantum theoretical approximation to the quantum reduced Hamiltonian. The difference

is rather that BO is no longer understood as the lowest order in some well-defined exact

expansion, but rather as an approximation, with some well-understood corrections, to an

exact solution. This situation is in contrast, not only to our textbook style presentation,

but also to those of Born and Oppenheimer, Born and Huang, and Messiah; while more

careful than ours, theirs remain heuristic.19 Once the appropriate formal machinery

has been deployed, BO can be formalised to the standards of rigour of mathematical

physics. Moreover, the arguments of Sutcliffe and Woolley (2012) can be evaded in a

rigorous quantum treatment, and they do not indict the mere appearance of the clamped

Hamiltonian in BO. Hence, the anti-reductionist arguments in philosophy of chemistry

are not only unwarranted and incorrect, but also misidentify the salient challenge to the

status of the BO.

4. Rigour and Reduction in Quantum Chemistry

This final section considers questions of mathematical rigour and reduction in quan-

tum chemistry more generally. Many of the questions raised in this section track elements

of the Sutcliffe and Woolley exchange with Jecko.

Let us start with the role of ‘classical’ assumptions in the emergence of ‘determinate

molecular structure’. Let us first assume that what is meant by ‘determinate molecular

structure’ is provided by the regime in which the adiabatic approximation is valid, and

thus the nuclei are such that the variation of the ‘electron’ wavefunction with respect to

nuclear positions is approximately zero. §2-3 show exhaustively that the emergence of

such structure requires neither classical assumptions in the sense of clamped nuclei, nor

19See (Jecko 2014, §V) for a detailed comparison.
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violation of the uncertainty relation. Rather the assumption required for BO is Heavy,

which is entirely consistent with a fully quantum treatment of the molecule. There is

a richer notion of molecular structure that includes the number, angles and lengths of

chemical bonds and chirality (Franklin and Seifert 2020). BO is far from sufficient to

model such structure, although plausibly in some circumstances it may prove necessary.20

In this context, there is debate about the requirement for a solution to the measurement

problem of quantum theory in order to account for the emergence of molecular structure

(Franklin and Seifert 2020; Fortin and Lombardi 2021; Seifert 2022; Miller 2023). It

remains to be seen whether there are any fundamental differences between foundational

problems in quantum chemistry and other applications of quantum mechanics to matter

systems.

More generally, in the context of discussions of ‘classical’ and ‘semi-classical’ assump-

tions our positive proposal is as follows. Firstly, models such as BO should be described

as ‘quantum’ models of molecules, since all aspects of the molecules are treated quantum

mechanically.

Secondly, one may legitimately deploy the term ‘semi-classical’ in a broad sense to

indicate an application of quantum theory in which, while the system is treated quantum

mechanically, the model includes radiative fields that are not. In this sense, the original

quantum theory of the atom, as well as the modern quantum-mechanical treatment, is

‘semi-classical’ since the electromagnetic field through which the nucleus and the elec-

trons interact is not quantized, cf. (Boucher and Traschen 1988). Similarly for most of

quantum chemistry including BO. It would be moot to claim that chemistry does not

reduce to quantum physics because the physics in question is semi-classical in this sense,

because huge amounts of what is ordinarily called ‘quantum physics’ is! (E.g., standard

non-relativistic quantum-mechanics other than free particles, including most condensed

matter physics.) Such semi-classical physics is a kind of quantum physics.

Thirdly, one should distinguish various more specific meanings of ‘semi-classical’.

One refers to a quantum mechanical expansion, in terms of classical zeroth order plus

quantum corrections, which is truncated at some order in } (or other parameter such as

mass ratios) to provide an approximate model.21 In such cases, the semi-classical model

20It is certainly not the case that the BO is necessary in general. See Footnote 6 for references on
quantum chemistry beyond the BO.
21The two most important examples are when such a truncation is made in a quantum moment expansion
(typically leading to Ehrenfest type equations) or in an expansion for the wavefunction (typically leading
to a WKB-approximation).
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is a sub-model within the general framework of quantum theory.22 A formally closely

related, but physically and conceptually different, sense of ‘semi-classical is found in the

context of certain ‘semi-classical’ approaches to gravity where the field equations are re-

written in terms of classical metric variables on the left-hand side but the first moment

(i.e. expectation value) of the stress-energy tensor is inserted on the right-hand side. A

further notion of semi-classicality refers to specific behaviour in the limit (usually }→ 0)

in which the classical theory obtains.23 Finally, the term ‘semi-classical’ is applied to

mixed classical-quantum models which simultaneously feature representations of classical

and quantum states and dynamics. The former in terms of classical phase space states

and Poisson bracket structure and the latter in terms of operators, density matrices and

commutator brackets structure.24

It is useful to distinguish the distinct modelling contexts in which semi-classical

models, in one or more of the more specific senses, might be deployed within quantum

chemistry and articulate the relevance for reductive explanations in each context. They

are as follows. (1) Mathematical Idealization: The model is being used to represent a fully

quantum phenomena and the semi-classical features are a mathematical idealization that

relates the semi-classical effective model to a (less) idealized fully quantum model. Given

the stability of salient explanatory features under de-idealization there no potential prob-

lem for reductive explanations of the relevant phenomena. (2) Physical Idealization: The

model is being used to represent a fully quantum phenomena but this representation is

via proxy model of semi-classical phenomena that approximate the quantum phenomena

for the purposes and degree of accuracy required. Again, there is no problem for reduc-

tive explanations given stability of the salient explanatory features under de-idealization

(Bokulich 2008, 2017). (3) Emergent Phenomena: The model is being used to represent

22We thus recover the idea familiar from Nickles reduction of a successor theory containing a version of
the predecessor theory via the application of a set of mathematical operations to its models (Palacios
2022).
23Such cases have been much discussed in the physics and philosophy of physics literature (Berry 1977,
2001; Batterman 2001; Bokulich 2008; Rosaler 2015; Steeger and Feintzeig 2021) and they merit study
in the context of quantum chemistry.
24 Mixed classical-quantum models have been widely applied in non-adiabatic quantum chemical mod-
elling (Tully 1991; Crespo-Otero and Barbatti 2018) and bring up various interesting issues that are
worthy of philosophical engagement. For example, in this context there is the possibility of failure of
positivity of the density matrix in the quantum part of the model which, in turn, allows the possibil-
ity of inconsistency with the Cauchy-Schwartz inequality that would be required for the violation of
Heisenberg uncertainty type relations (Bondarenko and Tempelaar 2023; Gay-Balmaz and Tronci 2023).
Significantly, such a feature is understood by the scientists themselves as a pathological feature of the
models rather than a putative representation of Heisenberg uncertainty violation or, moreover, a failure
of reduction. Indeed, work on the topic takes density matrix positivity to be a precondition of physically
consistent mixed classical-quantum dynamics.
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emergent semi-classical phenomena that occur in the context of classical-quantum limit

behaviour. There is a putative problem for any account of reductive explanation that is

incompatible with emergence qua novel and robust behaviour, but not for any account of

reductive explanation that is so compatible, cf. (Bokulich 2008; Butterfield 2011; Franklin

2024).

A further issue is the role of the environment (Ladyman and Thébault 2024). In

this context, Sutcliffe and Woolley (2012) say ‘one should not expect useful contact

between the quantum theory of an isolated molecule and a quantum account of individual

molecules, as met in ordinary chemical situations where persistent interactions (due to the

quantized electromagnetic field, other molecules in bulk media) and finite temperatures

are the norm.’ (p. 7). These remarks, together with related ideas developed by Seifert

(2022), form a fruitful basis for an ‘open systems view’ of quantum chemistry in the

manner recently proposed for quantum physics more generally by Cuffaro and Hartmann

(2021). We expect that such a view would prove to be consistent with any suitably

nuanced understanding of model-based understanding of reduction and idealization.25

We conclude with the following questions: Is there a methodological distinction be-

tween the use of models in modern quantum chemistry, and other examples of quantum

modelling practice in matter systems, such as applications of quantum mechanics to solid

state or few body systems? Is there space for distinctively ‘chemical’ modes of quantum

modelling practice? In answering such questions philosophers need to re-conceptualise

the physics-chemistry interface with quantum chemistry recast as a ‘littoral zone’, with

its own distinctive modelling ecology, influenced by both disciplines. The distinctive

chemical features in the methodology of quantum chemistry are rooted in experimental

practices, such as spectroscopy, rather than formal features of the models.

25Whilst it is common in quantum chemistry to model molecules as if they were isolated from their
environment, real molecules interact with other systems as per the quote from Sutcliffe and Woolley
(2012). However, in models of an ‘isolated’ quantum system the effects of the environment may be added
in to produce an ‘autonomous’ open system model, just as the effect of friction can be represented via
an autonomous model of an ‘isolated’ oscillator Ladyman and Thébault (2024). We may thus, following
Seifert (2022), understand the use of non-Coulombic Hamiltonians in quantum chemistry as a means
of encoding persistent environmental interactions in a manner analogous to the use of non-conservative
forces in other physical modelling contexts. The structure of such ‘open quantum chemistry’ models is
closely related to physical models of environmental decoherence. The connection between emergence-
reduction in the context of decoherence (Wallace 2012; Joos et al. 2013; Dawid and Thébault 2015;
Franklin 2024) and ‘open quantum chemistry’ deserves further study.
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