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Abstract

Why are quantum correlations so puzzling? A standard answer is
that they seem to require either nonlocal influences or conspiratorial
coincidences. This suggests that by embracing nonlocal influences we
can avoid conspiratorial fine-tuning. But that’s not entirely true. Recent
work, leveraging the framework of graphical causal models, shows that
even with nonlocal influences, a kind of fine-tuning is needed to recover
quantum correlations. This fine-tuning arises because the world has to be
just so as to disable the use of nonlocal influences to signal, as required by
the no-signaling theorem. This places an extra burden on theories that
posit nonlocal influences, such as Bohmian mechanics, of explaining why
such influences are inaccessible to causal control. I argue that Everettian
Quantum Mechanics suffers no such burden. Not only does it not posit
nonlocal influences, it operates outside the causal models framework that
was presupposed in raising the fine-tuning worry. Specifically, it represents
subsystems with density matrices instead of random variables. This
allows it to sidestep all the results (including EPR and Bell) that put
quantum correlations in tension with causal models. However, this doesn’t
mean one must abandon causal reasoning altogether in a quantum world.
When decoherence is rampant and there’s no controlled entanglement,
Everettian Quantum Mechanics licenses our continued use of standard
causal models. When controlled entanglement is present—such as in
Bell-type experiments—we can employ recently-proposed quantum causal
models that are consistent with Everettian Quantum Mechanics. We never
need invoke any kind of non-local influence or any kind of fine-tuning.
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1 Introduction

Particularly puzzling are certain correlations that appear in certain quantum

experiments—the so-called EPR/Bell correlations (henceforth, simply Bell cor-

relations).1 What is puzzling about these correlations is what they seem to

demand from any explanation of them. It seems as if, to explain them, we must

invoke nonlocal influences or invoke delicately selected coincidences. Nonlocal

influences are unpalatable since they would conflict with relativity. Delicate

coincidences are unpalatable on broad methodological grounds.

This is a standard way of phrasing the puzzle of quantum correlations, and

it presents the problem of quantum correlations as a dilemma: Either we admit

nonlocal influences (as Bohmians or collapse theorists do) or we admit that

our experimental settings or outcomes are unavoidably fine-tuned (as super-

determinists and retrocausalists do). However, the recent work of Wood and

Spekkens (2015) employs the framework of causal models (Spirtes, Glymour,

and Scheines 2000; Pearl 2000) to show that this isn’t really a dilemma, for we

can’t avoid the fine-tuning horn of the dilemma by accepting the nonlocality

horn. Even if we admit nonlocal influences, some sort of fine-tuning persists.

This suggests that the main puzzle posed by quantum correlations is that they

require a kind of fine-tuning, no matter what.2

How does Everettian Quantum Mechanics (a.k.a. the Many Worlds Inter-

pretation) fit into this dialectic? Everettians will argue that they can explain

Bell correlations without invoking nonlocality.3 But what about the fine-tuning

objection? While much has been written about how the Everett interpretation

can avoid nonlocality (or indeed whether it does),4 to the best of my knowledge

nothing has been written about how or whether Everett avoids fine-tuning.

This is important to engage with because if Everett falls prey to a fine-tuning

objection despite requiring only local influences, then, all else equal, it is not

clearly better than superdeterminist and retrocausalist views at explaining Bell

1. The name deriving from the work of Einstein, Podolsky, and Rosen (1935) and Bell
(1964).

2. Those who would argue for the presence of nonlocal influences will say, however, that
the amount of fine-tuning required when nonlocal influences are present is far lesser than the
amount of fine-tuning required without them.

3. Some defenders of non-realist views about quantum mechanics, such as QBism and
Pragmatism (see Healey (2023)), will also argue that they can explain Bell correlations without
appeal to nonlocality. However, in this essay, I will set aside non-realist views and focus on
realist approaches.

4. See, e.g., the papers in this volume.
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correlations, which also preserve locality but admit fine-tuning.5

So, does Everett avoid the fine-tuning problem along with avoiding the

nonlocality problem? I will argue that Everettian quantum mechanics (EQM)

does not face a fine-tuning challenge. This is because of something much stronger:

Everettian quantum mechanics avoids the fine-tuning challenge because it rejects

the core principles of the causal-modeling framework that lead to the fine-tuning

challenge in the first place.6

But is that too high a price to pay? The causal modeling framework is

a powerful and valuable framework to represent, analyze, and discover causal

structure. If EQM demands we jettison it, that might be a net weakness of

EQM, despite whatever benefits such jettisoning confers concerning fine-tuning.

But I will argue that this isn’t a worry for EQM. For one, I will argue that EQM

does not require us to abandon the classical causal modeling framework in all

contexts, but only in contexts with controlled entanglement, such as the contexts

that lead to Bell correlations; decoherence licenses the use of classical causal

models in most ordinary contexts, thus allowing us to retain that successful and

well-tested framework.

For another, I will argue that in the contexts where controlled entanglement is

present, there is another framework that allows us to represent and analyze causal

relations, namely the framework of quantum causal models recently developed by

Allen et al. (2017) and Barrett, Lorenz, and Oreshkov (2021), which is compatible

with EQM, by virtue of being compatible with pure unitary quantum mechanics.

It is unclear how a framework like this could be available to non-Everettians.

Let me also remark that while this framework was motivated by the result of

Wood and Spekkens (2015), they did not explicitly articulate how their model

explains Bell correlations. Further, they did not engage with the question of

how one might realistically interpret their framework. In my paper, I advance

the discussion in these directions.

Taken together, I will argue that EQM provides non-fine-tuned explanations

of quantum correlations, traffics only in local interactions, licenses the use of

the standard causal modeling framework in most classical contexts, and fits well

with a quantum causal modeling framework when controlled entanglement is

5. Of course, all else is not equal, and there are other reasons one might favor or disfavor
Everett over superdeterminism or retrocausalism.

6. It’s interesting to note that the way in which a multiversal picture avoids fine-tuning
here is quite different from the way in which a multiversal picture avoids fine-tuning in the
context of fine-tuning of physical parameters for life or in the context of potential violations of
naturalness in particle physics. See Friederich (2023) for more on these kinds of fine-tuning.
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present. This is a constellation of virtues that EQM enjoys. While I don’t argue

in this paper that rival interpretations of QM don’t or can’t enjoy the same

constellation of virtues, it is hard to see how they will be able to. At any rate,

my goal in this paper is primarily to highlight the virtues of EQM with regards

to causal explanation and non-fine-tuning. I leave to future work the question of

comparing EQM with rival views.

Before we get there, though, I’ll need to motivate why we should at all care

about how well the causal modeling framework fits with quantum mechanics.

So, after briefly introducing the framework of causal models in the next section

(Sec. 2), I’ll show in the two following sections (Sec. 3 and 4), how the famous

arguments of EPR and Bell can be quite naturally phrased as arguments against

the inapplicability of physically plausible causal models. This will show that

applying the framework of causal models to try and explain quantum phenomena

isn’t at all new or alien—rather, it is a long tradition among philosophers and

physicists going back at least to Einstein. This provides the motivation for

us to take seriously the failure of faithfulness in quantum mechanics (Sec. 5).

Further, given the problems faced of attempts to satisfactorily causally model

quantum correlations, we have greater motivation to consider truly quantum

causal models.

2 A very brief introduction to graphical causal

models

Graphical causal models (Spirtes, Glymour, and Scheines 2000; Pearl 2000) are a

powerful framework to represent, analyze, and understand causal relations. They

provide a clear mathematical representation of causal relations between variables,

they support an interventionist semantics (Woodward 2003), and they greatly

aid in discovery of causal explanations (see, e.g., Malinsky and Danks (2018)).

So, if there’s a phenomenon which we are trying to give a causal explanation of,

then it makes sense to try to represent that phenomenon using a causal model.

Quantum correlations are one such family of phenomena. My goal in this section

is to give a very brief introduction to the framework of classical causal models

before we apply it to quantum correlations in the following sections.

The key structure used to represent causal relations in this framework is

a directed acyclic graph, and we will soon encounter examples of such graphs.

The variables in the graph represent the different systems or degrees of freedom
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that we think are causally related to each other. An arrow represents a causal

influence between the variables. We are here interested in probabilistic causal

models. Thus, we associate a probability distribution over the values the variables

of the graph can take. So if the vertices of the graph are V = {A,B,C, . . . },
then we have a joint distribution over the variables P (ABC . . . ). From the

joint distribution we can obtain the distribution of any individual variable or

calculate the correlations between variables. The structure of causal influences

in the graph—represented by the arrows—constrains the structure of conditional

probability relations between the variables in the graph. Specifically, there are

two central constraints one places on these causal models: the Causal Markov

Condition and Faithfulness.

Causal Markov condition (CMC).—This condition states that for any variable

X in a causal model, conditional on its parents (i.e., its direct causal ancestors

in the graph), X is independent of all the other variables in the model that are

not descended from it.7 Formally,

P (X|parents(X)&nondescendants(X)) = P (X|parents(X)). (1)

Roughly, the idea behind this condition is that all the causal influences on a

given variable X are laundered through the X’s immediate parents. If one can

causally manipulate X’s parents, then one gains no more causal mileage by being

able to manipulate any other variable that isn’t causally downstream of X.

It is also useful to have in mind another common formulation of CMC, which

codifies the idea that the probability distribution over all the variables can be

obtained by chaining the results of variables being influenced by their imme-

diate parents. Formally, for a collection of random variables {X1, X2, . . . , Xn}
featuring in a causal model, this formulation of the CMC asserts that

P (X1, X2, . . . , Xn) =
∏
i

P (Xi|parents(Xi)). (2)

This is called the factorization formulation of the CMC, and it is equivalent to

the screening-off formulation, Eq. (1).

Why believe the CMC? One might argue that it follows from what it even

means for a collection of variables to stand in relations of causal influence (or lack

thereof) with each other. It can also be seen as a generalization of Reichenbach’s

Common Cause Principle (Reichenbach 1956), and so deriving its plausibility

7. This is the so-called screening off formulation of the CMC.
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from that principle. A different line of argument for the CMC is given by Pearl

(2000), who argues that it follows if causal relations we see between random

variables follow underlying deterministic causal relations along with some noise.

Yet another line of argument is provided by Hausman and Woodward (1999,

2004), who argue that the idea that causes can be used to manipulate the effects

lends support to the CMC. It also has a proven track record: it has been central

to the powerful framework of causal modeling pioneered by Spirtes, Glymour,

and Scheines (2000) and Pearl (2000). More pertinent to our purposes, we will

see that we can interpret Einstein, Podolsky, and Rosen (1935) and Bell (1964)

as arguing for instances of the CMC (though they don’t think of it in those

terms) via appeal to specific physical features of the system in question—features

such as spatial separation and connection to random sources. Thus, in these

contexts, the CMC is often be motivated by what Weinberger, Williams, and

Woodward (2024) call “worldly infrastructure”.

Let’s turn now to the other central constraint that the causal graph places

on the probability distribution over variables.

Faithfulness.—Faithfulness might be thought of as the dual of the CMC.

While the CMC says that there should be no more correlations between variables

than what we would expect from the causal diagram, faithfulness says that

there should be no more independences between variables than what we would

expect from the causal diagram. The CMC tells us that a variable will become

independent of any nondescendant once we condition on its parents, but stays

silent about the relations between a variable and its parents and descendants.

Meanwhile, faithfulness tells us that the CMC encodes all the independences in

the causal network: it says there should no more independences than what you

expect from CMC.

For instance, applying the faithfulness condition to the causal graph depicted

in in Fig. 1 would lead us to expect that X and Y are not independent because

they have an arrow between them. The CMC does not deliver an independence

between them; faithfulness says that, consequently, that they are not independent.

(Note that the CMC doesn’t make X and Y independent even conditional on

Z because even though Z is a common cause, X is still a descendant of Y ,

and hence not a nondescendant.) Thus, if the distribution over XY Z is to be

faithful to this causal model, then X and Y cannot be independent, conditional

or otherwise. However, if X and Y are in fact independent, then the distribution

is said to be unfaithful.

Distributions that violate faithfulness but respect the CMC are obtained
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Figure 1: A causal model that is unfaithful to—i.e., fine-tuned for—a distribution
in which X is probabilistically independent of Y .

by fine-tuning. That is, if we consider some parameters governing the relation

between the variables (i.e., the relation between the values of the variables or the

relation between the probabilities over those values) in the causal model, then

faithfulness-violating values of these parameters will need to be very specially

selected.8 Furthermore, small deviations away from these special values will

almost always restore faithfulness.

In sum, the CMC and faithfulness can be taken together as encoding the

requirement that the probability distribution over the variables respect the

structure of the causal diagram, containing all and only those correlations that

the causal network leads to.

Having set out the main ideas of graphical causal models, we will now apply

this framework to quantum correlations. We will see, in the following two sections,

that the classic arguments of Einstein (a version of which was made famous

in Einstein, Podolsky, and Rosen (1935)) and Bell can be naturally seen as

ruling out certain classes of causal models as potential explanations of quantum

correlations. We look at these arguments so as to motivate the applicability of

the causal modeling framework to the puzzles of quantum correlations. With this

motivation in place, we can then turn (in Sec. 5) to the recent result of Wood

and Spekkens (2015), and see how attempts to explain quantum correlations

using the causal modeling framework sketched above invariably violates the

faithfulness condition.

8. More precisely, Spirtes, Glymour, and Scheines (2000, pp. 41-42) argue that for natural
parametrizations (i.e., linear parametrizations) of any causal model, the faithfulness-violating
settings of the parameters will be measure zero for any measure that’s absolutely continuous
with respect to the Lebesgue measure over the possible parameters. See Weinberger (2018) for
a discussion of how to think about these measures over parameters and for a defusal of certain
purported counterexamples to the faithfulness requirement.
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3 Einstein/EPR and the Causal Markov Condi-

tion

In 1935, EPR argued that quantum mechanics (QM) is incomplete (Einstein,

Podolsky, and Rosen 1935). The true essence of their argument was developed

by Einstein in 1927 (see Howard (1985) and Harrigan and Spekkens (2010))

and is simpler than what was presented in EPR paper and can be presented as

follows. To begin, suppose we have two spin- 12 particles in the entangled singlet

state, i.e., 1√
2
(|↑↓⟩ − |↓↑⟩).9 According to QM, if I measure the spin of the first

particle and see that it comes “↑” (or “↓”), then I immediately know that a

measurement of the second particle will yield “↓” (or “↑”) . Moreover, this will

continue to be true even if the two particles are taken far enough away from each

other so as to ensure that no signals, travelling at or below the speed of light, can

get from one particle to the other within the time-frame of the measurements.

But this is in tension with the following observation. If we just look at the

our representation of the state 1√
2
(|↑↓⟩ − |↓↑⟩), then we see nothing there that

tells us whether a measurement of either of the particles will yield “↑” or “↓”;
for both particles, the representation is symmetric between those two outcomes.

Given this symmetry between the two outcomes, it’s puzzling how we are able

to immediately come to know that the state of the second particle is “↓” upon

measuring the first particle to “↑”. About what feature of the world have we

acquired knowledge? If the answer is that we have come to know that the

state of the second particle was “↓” all along, then we have conceded that the

singlet state does not successfully represent all the features of the world in this

experiment, because clearly it does not privilege “↓” over “↑”. Consequently,

quantum mechanics’ representation of the world would be incomplete: there

would be more properties of systems than quantum mechanics represents it as

having.

One might argue that our measurement of the first particle caused the second

particle to change from being in a state that was symmetric between “↑” and “↓”
to being in the state “↓”. However, this would imply that there are superluminal—

indeed, instantaneous—influences between the two particles. After all, our ability

to immediately know the state of the other particle upon measurement of one

particle is unaffected by how far the particles are. To better understand this

point, let’s ask why we cannot construct an EPR-style argument with just a

9. As is standard, I have adopted Bohm’s spin-version of the argument.
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non-entangled superposition such as 1√
2
(|↑⟩+ |↓⟩). One might think, following

the argument in the previous paragraph, that this non-entangled superposition

state is also symmetric between “↑” and “↓”, but a measurement of a system

in such a state returns either a definite “↑” or a definite “↓”, suggesting that

QM is incomplete. However, this argument is susceptible to the objection that

the definite outcome of “↑” or “↓” was caused by the interaction of the system

with the measuring apparatus, instead of revealing a preexisting property of the

system. In contrast this objection isn’t applicable in the EPR-style case since

the first measurement is, if relativity is to be believed, causally disconnected

from the first. So, it seem as if the only way we could come by knowledge of the

second particle’s state is if our measurement of the first particle revealed to us a

preexisting property of the second particle. But this property isn’t represented

by the quantum formalism. Consequently, the quantum mechanical formalism

must be incomplete. This was the essence of Einstein’s argument.

Now let us phrase this in causal modeling terms.10 We can think of Einstein

as arguing that a certain kind of causal model is insufficient for explaining

quantum phenomena. But which kind of causal model? The natural candidate is

the causal model with the causal graph represented in Fig. 2. In this figure, A and

B represent the possible values that the measurements on the two particles may

yield, and they take values over {↑, ↓}. S and T are variables that represent the

measurement settings on the two wings of the experiment. In the development

above, we considered only one possible measurement setting; hence, S and T

only take the value of “measure z-spin”. λA and λB are local variables that help

fix, perhaps only probabilistically, the values that A and B take; these variables

can be seen as encoding whatever local property the quantum state attributes

to the particles.

Now if we apply the causal Markov condition to this graph, then we should

expect the following independences:

(i) A is independent of B, λB, and T conditional on S and λA; and B is

independent of A, λA, and S conditional on T and λB .

(ii) S, T , λA, and λB are all independent of each other.

10. Phrasing EPR-style arguments in causal modeling terms isn’t new; see, e.g., Van Fraassen
(1982) and Hausman (1999) for some classic treatments, and see, e.g., Suárez and San Pedro
(2010) and Näger (2016) for more recent treatments. While I make no great claim to originality,
my way of presenting this topic isn’t quite the way other authors present it, and so I hope this
presentation is of value. In any case, I present this material here so as to have a unified and
coherent narrative, even if that runs the risk of repeating material that might be well-known
to certain readers.
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B
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λA λB

Figure 2: Einstein’s argument rules out the possibility of this kind of causal
model reproducing the predictions of quantum mechanics.

These independences can be easily obtained by applying the screening-off formu-

lation of the CMC [Eq. (1)]. For instance, because λB is a non-descendant of

λA, and λA has no parents, then Eq. (1) implies P (λA|λB) = P (λA), which is

equivalent to P (λAλB) = P (λA)P (λB).

But why believe that this is the right graph and that the CMC is applicable

to this graph? We can see the key premises of Einstein’s reductio as motivations

for the CMC applied to this graph. The first key premise of Einstein’s argument

is that the two wings of the experiment cannot be causally connected since the

two wings can be separated arbitrarily far away, and there can be no signal

that can travel between them during the time-frame of the experiments. This

motivates both the structure of the causal graph and the causal Markov condition

applied to it. In particular, it motivates the lack of any arrows from the one

wing to the other, since there aren’t any causal influences between the two wings.

Further, it motivates the conditional independences specified in statement (i)

above because the lack of causal influence between the two wings suggests that

whatever happens on one side should be self-sufficient to causally explain what

happens there.

The second key premise of Einstein’s argument is that the entangled quantum

state is indifferent between the two possible definite outcomes and that it

is representationally complete. So if the quantum state is representationally

complete, then whatever determines the outcomes of the quantum measurement

on either wing should be indifferent between ↑ and ↓, and so λA and λB should

assign equal probability to those two possible outcomes. And since they are

causally disconnected, then they will be completely uncorrelated, which is what

the CMC requires.11

11. The independence of λA and λB with S and T is trivial since S and T can only take one
possible value.
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Let now see, informally, why the causal graph of Fig. 2, combined with the

CMC applied to that graph, is incompatible with what we see from quantum

experiments. Quantum experiments show that A and B are always perfectly

correlated. The causal Markov condition, in slogan form, asserts that there be

no more correlations than what we expect from the structure of the graph. And

since the two wings of the experiment are entirely independent of each other,

the CMC tells us that A and B should be independent. And if they are not, as

we see in the quantum experiments, then the CMC is violated.

More formally, applying the formulation of the CMC given in Eq. (2) to the

graph, we get

P (ABSTλAλB) = P (A|SλA)P (S)P (λA)P (B|TλB)P (T )P (λB). (3)

Summing over S, T , λA, and λB , we get:

P (AB) = P (A)P (B), (4)

i.e., A and B are uncorrelated. And this contradicts quantum experiments.

Faced with this contradiction, it seems as if one of the two key premises of

the argument must be rejected. Given the success of relativity theory, Einstein

and EPR think that it’s untenable to reject the premise that the two wings of

the experiment are causally disconnected. Thus, they reject the premise that

the quantum state is representationally complete.

4 Bell and the Causal Markov Condition

The Einstein/EPR argument suggests a natural follow-up project. If QM is

local but representationally incomplete, then perhaps we can come up with a

local completion of QM, i.e., one that contains elements that represent those

properties of systems that were left out by the quantum mechanical formalism

(those elements about which we gained knowledge in an EPR-type set up so that

we could immediately and with certainty come to know the outcome on the other

wing) while still trafficking entirely in local influences. These elements are usually

called hidden variables, and they would fix—perhaps only probabilistically—the

definite outcomes seen in physical systems.

The language of causal models allows us to frame this project more precisely.

I argued in the previous section that the kind of causal model that Einstein
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λ

Figure 3: The violation of the Bell inequality rules out the possibility of this
kind of causal model reproducing the predictions of quantum mechanics.

argued against is the one depicted in Fig. 2, along with CMC applied to it.

I said that the lack of correlation between λA and λB in that diagram can

justified by appeal to (a) the spatial separation between the two wings of the

experiment and (b) the fact that the quantum state contains no preference for

one outcome or the other. However, one might think that because entangled

particles started out close together—perhaps they are electrons taken from the

same Helium atom—we should not assume that the two wings of the experiment

have variables entirely causally disconnected from each other. This thought

leads us naturally to consider the causal diagram of Fig. 3, and ask whether

such a causal diagram can reproduce the statistics seen in the kinds of quantum

experiments considered by Einstein.

The famous results of Bell (Bell 1964; Bell 1975) showed that this question

has a negative answer. In particular, Bell proved an inequality that the measure-

ment statistics of any theory conforming to the schema of Fig. 3 must satisfy.

However, these inequalities are violated by the measurement statistics predicted

by QM. And these predictions have since been repeatedly empirically verified,

by experiments performed with increasing carefulness.12 Thus, Einstein’s hope

of providing a local completion of quantum mechanics is a dead end.

We will now see how the core assumption that Bell made in proving his

theorem is closely connected to the causal Markov condition applied to the graph

of Fig. 3. Much like the previous case, the CMC will be justified here by the

physics of the experimental situation.

To begin let’s unpack the causal graph of Fig. 3. Analogous to the EPR-style

case, S and T are random variables representing the measurement settings on

the left and right wings of the experiment respectively; A and B are random

12. See, e.g., Hensen et al. (2015), Giustina et al. (2013), and Shalm et al. (2015) for some
recent carefully conducted experiments.
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variables representing the measurement outcomes on either wing; and λ repre-

sents whatever common element that is shared between the two wings of the

experiment and which may influence the outcomes of measurements on the

two sides. Standard presentations of Bell’s theorem usually take S and T as

taking values over two possible measurement settings and A and B as taking

values over two possible measurement outcomes. However, the set up is more

general, and one can readily consider situations with a greater number of possible

measurement settings and possible outcomes for each measurement and prove

Bell-type theorems for such situations.

Note here that λ could be a high-dimensional variable, and need not just be

a single number. As we are trying to come up with a completion of quantum

mechanics after being moved by Einstein’s argument, we take λ to represent

that feature of the world about which the experimenter in one wing acquires

knowledge of, by measuring their own system, which then allows them to predict,

immediately and with certainty, the result in the other wing.

The key premise in Bell’s theorem is what is often called factorizability.13.

In our notation, this is the statement that:

Pr(AB|STλ) = Pr(A|Sλ) Pr(B|Tλ). (5)

From this assumption, it is straightforward to derive the CHSH inequality, which

is a simpler version of the Bell inequality.14

The factorizability condition is a straightforward consequence of the CMC

applied to Fig. 3. To see this, first note that applying the screening-off formula-

tion [Eq. (1)] of the CMC to S, T , and λ entails that the three variables are

mutually independent. This entails that

Pr(STλ) = Pr(S) Pr(T ) Pr(λ). (6)

Now, applying the factorization formulation of the CMC [Eq. (2)], we have:

Pr(ABSTλ) = Pr(A|Sλ) Pr(B|Tλ) Pr(S) Pr(T ) Pr(λ). (7)

Writing the LHS as Pr(AB|STλ) Pr(STλ), then cancelling Pr(S) Pr(T ) Pr(λ)

on both sides by using Eq. (6), we get the factorizability condition, Eq. (5).

How do we justify the CMC in this context? As in the EPR-style case, we can

13. See, e.g., Myrvold, Genovese, and Shimony (2021, Sec. 3.1) for more on this.
14. See, e.g., Brunner et al. (2014, p. 3) for details of the derivation.
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justify it by appealing to the physical situation. The CMC in this context is the

conjunction of the following independences, which can be obtained by employing

the screening-off formulation of CMC [Eq. (1)]: A ⊥⊥ BT |Sλ, B ⊥⊥ AS|Tλ,
S ⊥⊥ BTλ, T ⊥⊥ ASλ, and λ ⊥⊥ ST .15

The first two independences (i.e., A ⊥⊥ BT |Sλ, B ⊥⊥ AS|Tλ) can be justified

by appealing to the fact that there are no direct influences between the two

wings of the experiment. In the model of Fig. 3, this constraint is represented

by the absence of causal pathways between the variables on the left wing and

the variables on the right wing. In our experimental setup, we can enforce

this constraint by the spacelike separation of the measurements on the two

wings. This leads us to expect that the measurement settings and measurement

outcomes in one wing of the experiment are independent from the settings and

outcomes on the other wing, except for those correlations that can be accounted

for by the shared features (which are encoded in λ) that might arise from past

interactions between the systems.

The other independences (i.e., S ⊥⊥ BTλ, T ⊥⊥ ASλ, and λ ⊥⊥ ST ) can be

justified by the fact that the measurement settings on each wing are determined

by processes that are disconnected from each other and from the history and

physics of the system under study. We can enforce this by appropriately setting

up our experiment. For instance, in a recent experiment, the measurement

settings were set by photons arriving from parts of universe that have been

causally disconnected for billions of years (Rauch et al. 2018). This ensures not

only that the two measurement settings are entirely uncorrelated with each other,

but also uncorrelated with any variable (such as λ) describing the system under

study. Of course, we needn’t go to such lengths to satisfy the independence

condition. Choosing measurement settings randomly might suffice, say by coin

tosses. As might whatever processes—biological, mental, personal—that cause

experimenters choices of measurement setting, for we have no reason to believe

that their processes are correlated with the hidden variable under study or with

each other.16 We might be less certain that processes governing coin tosses

or experimenters making choices are uncorrelated with the system in question

than that cosmologically separated photons are uncorrelated with the system in

15. Notation: α ⊥⊥ βγδ . . . |χψω . . . means that α is independent of any subset of {β, γ, δ, . . . }
conditional on all of χψω . . . . If there’s no third entry, then it’s an unconditional independence
between α and any subset of {β, γ, δ, . . . }.
16. This is why it is sometimes said there’s a “free will” assumption in Bell’s theorem. But

this is a misnomer; we need no sophisticated thesis about free will, only an assumption about
the probabilistic independence of certain processes.
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question. But we can still be very certain, for it is hard to articulate what sort of

physics would lead to a violation of these independences outside of implausible

stories involving conspiracies.17 But this also makes it hard to articulate clear

objections against such physics, for we don’t have a clear target for criticism. That

said, we will see in the next section what theories violating these independences

will look like within the framework of causal models, and we’ll see that there’s a

broad methodological objection to such independence-violating theories within

that framework.

Given all this, the experimental violation of the Bell inequality amounts to

a crisis for causal explanations of quantum mechanical phenomena. The CMC

applied to Fig. 3 seems to encode what we are enforcing in our experiments

using known physics, namely, locality and the independence of measurement

settings from the systems under study. Thus, it seems as though if we want a

causal explanation of Bell inequality violations, we must be willing to abandon

one of these assumptions, even if it conflicts with physics we think we know.

This is what leads to a standard articulation of the puzzle posed by quantum

correlations, which is that we are faced with a dilemma: Either abandon locality

or accept that there are conspiratorial coincidences plaguing our experiments.

However, as we shall see in the next section, this is a false dilemma. We have

reason to believe that even if we abandon locality, there might still be a con-

spiratorial aspect required in the resulting explanation of quantum correlations,

threatening causal explanations of these correlations.

5 Wood and Spekkens and Faithfulness

Faced with the violation of Bell inequalities, we infer, then, that if we want a

causal explanation of quantum correlations, then we must edit the causal model

of Fig. 3. However, given the physical arguments for that causal model, these

edits would require the violation of some cherished physical principle or other.

How might we edit the causal model to account for Bell-inequality-violating

correlations? Suppose, as the Bohmian and spontaneous collapse theories do,

that we allow for there to be superluminal influences.18 This allows arrows from

(say) the left wing of the experiment to the right wing of the experiment, as

in Fig. 4. Such arrows clearly violate the empirically well-supported principle

17. See Shimony, Horne, and Clauser (1976) for an articulation what a conspiracy intended
to establish certain correlations might look like.
18. See, e.g., Maudlin (2019) for an overview of these interpretations.
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arising from the special theory of relativity that physical influences cannot

travel at superluminal speeds. However, one might conclude, as some have

done, that empirical Bell inequality violations just show us that this principle,

well-supported though it might be, is simply false.19

A

S

B

T

λ

Figure 4: A causal diagram allowing for superluminal influences. These kinds
of causal models have to be fine-tuned (i.e., violate faithfulness) if they are to
preserve the no-signalling criterion.

A different strategy to edit the causal model of Fig. 3 is the one adopted by

superdeterminists, who embrace the idea that the measurement settings on the

two sides of the experiments are not truly freely chosen, i.e., the measurement

settings are such that they induce the relevant correlations between the mea-

surement outcomes despite every effort to ensure free selection of measurement

settings. Superdeterminist theories can be represented by a causal diagram, such

as Fig. 5, which contains influences between λ and the measurement settings S

and T , along with influences from λ to A and B.

A

S

B

T

λ

Figure 5: A causal diagram allowing for superdeterminism, which prevent free
choice of measurement settings. These kinds of causal models also have to be
fine-tuned (i.e., violate faithfulness) if they are to preserve the no-signalling
criterion.

I won’t here examine the plausibility of such models on their own terms.

Instead, I want to point out that such edits don’t provide a fully satisfactory

19. See Albert and Galchen (2009) and Maudlin (2014) for discussions that take this line.
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causal explanation of quantum correlations because they’re fine-tuned ; specifically

they violate faithfulness (Sec. 2). To see this, let’s start with the models that

allow nonlocal influences, such as Fig. 4. The main idea is simple. Such

models will have to reproduce the no-signaling condition—i.e., the measurement

outcomes on one side have to be probabilistically independent of the measuring

settings on the other. However, if one admits superluminal influences, then one

has to fine-tune the physics just so as to prohibit the use of these influences to

signal. This fine-tuning is why faithfulness is violated in such models.

Specifically, from Fig. 4, we can see that the probabilistic independence of

the measurement settings on one wing and the measurement outcomes (i.e.,

the no-signaling condition) on the other wing will be unfaithful to the causal

structure. This is because there is a causal pathway from S to B, via A. If the

distribution over the variables were faithful to this causal graph, then there would

be no independence between S and B. For, recall, that the faithfulness condition

says that there ought to be no more independences than specified by the CMC.

However, given the no-signaling theorem, we must have an independence between

S and B, because otherwise we could manipulate S to influence B, sending a

signal. Such an independence is also empirically verified. Hence, models with

nonlocal influences must be unfaithful to their causal structure.

Turning now to superdeterminist theories, the main idea is clear here as

well. Such theories require fine-tuning, because microphysics would have to

be in an extraordinarily specific state so that just these certain measurement

settings occur in all these different and varied types of entanglement experiments

and data. This need for fine-tuning is reflected in the failure of faithfulness

for superdeterministic causal models. Consider Fig. 5. In experiments, we

clearly manage to make S be independent of T ; the statistics of measurement

settings are clearly such that P (ST ) = P (S)P (T ). However, this is not an

independence that is delivered by the CMC applied to this graph. The CMC

applied to this graph only tells us that S and T are independent conditional on

λ, while what we observe is an unconditional independence. And so because we

have more independences than delivered by the CMC, any empirically adequate

superdeterministic model must violate faithfulness.

Let me emphasize at this point that I don’t intend to suggest that superde-

terministic theories are in any sense on a par with theories that require nonlocal

influences. For one, theories such as Bohmian mechanics or spontaneous collapse

theories are much more precisely specified than any superdeterministic proposal

so far, and so enjoy theoretical virtues that have nothing to do with fine-tuning.
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For another, even on the count of fine-tuning, it is likely that a theory such as

Bohmian mechanics fares much better than a generic superdeterministic theory.

For, the Bohmian can argue that the Born rule probability, though needing to

be specially selected, is relatively straightforwardly specifiable and enjoys certain

natural properties within quantum theory.20 Meanwhile, it is unclear if any

superdeterministic theory can provide a simple, physically plausible specification

of the joint distribution over the variables in an experiment.21

So it seems if we try to get an empirically adequate causal model of quantum

correlations—even one that violates well-established physical principles such as

relativistic locality or independence of systems and experimental settings—we

have to fine-tune the model in some way or other. But could that be just a

symptom of not having considered sufficiently sophisticated causal models? After

all, the diagrams sketched above are but some in a vast space of possible models.

The answer is no. Wood and Spekkens (2015) prove a theorem that shows that no

faithful classical causal model can reproduce quantum correlations. This shows

us that even if we are willing to consider novel physics so as to explain quantum

correlations, we will not be able to provide a full-blooded causal explanation of

these correlations, because they will necessarily violate faithfulness.22

6 Where do we go from here?

Taken together, the arguments above lead us to question whether we can causally

explain quantum correlations. It looks as if Bell-type correlations do not really

fit with the empirically and methodologically well-motivated framework of causal

models. We want the probabilistic relations between the variables in our theories

to mirror the structure of the causal relations between them (i.e., to satisfy the

CMC and faithfulness), but the arguments of EPR, Bell, and Wood & Spekkens

tell us that we can’t achieve this.

So, if that hope is dashed, then where do we go? One strand in the literature

either took the results of EPR and Bell as undermining the CMC23 or as evidence

20. See, e.g., Goldstein and Struyve (2007).
21. For a recent philosophical critique of superdeterministic theories, see, e.g., Baas and

Le Bihan (2023).
22. Cavalcanti (2018) strengthens the Wood-Spekkens result by unifying it with Kochen-

Specker theorems.
23. See, e.g., Van Fraassen (1982), who takes Bell’s theorem to refute Reichenbach’s principle

of common cause (an important justification for the CMC), and hence to refute an argument
in favor of epistemic realism.
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for the inapplicability of the CMC in quantum contexts.24 Such responses are

plausibly in line pragmatist/anti-realist views of quantum mechanics.25 For,

if one does not take the quantum state as representing the physical state of

the world, then the physics-based arguments for adopting the CMC in the

EPR/Bell-type cases (arguments given Secs. 3 and 4) are far less persuasive.

Another line of response, more popular among those with realist views about

quantum mechanics, has been to hold on to the CMC, and instead to try and

explain why violations of faithfulness are unproblematic according to one’s

preferred view of quantum mechanics (such as Bohmian mechanics, collapse, or

retrocausality).26

I won’t here evaluate the plausibility of such responses. Instead, I want to

suggest a different response. A response which has the following commitments:

1. It is realist in its view of quantum mechanics (unlike the Van Fraassen

style response).

2. It rejects the blanket applicability of the standard framework of causal

modeling in the context of quantum mechanics (unlike the views that argue

why faithfulness violations aren’t problematic).

3. But it explains why the apparatus of causal modeling works well in most

classical contexts, failing only in quantum contexts.

4. And it still offers a way to causally explain quantum correlations, but it

has to be quantum causal.

The view I’m proposing, which has the above commitments, is the combina-

tion of Everettian quantum mechanics (EQM) and a framework for quantum

causal reasoning, recently developed by Allen et al. (2017). This view is re-

alist because EQM is a realist view about quantum mechanics. It rejects the

applicability of the standard framework of causal models to quantum phenom-

ena because it represents subsystems using density matrices instead of random

variables, which is what the standard framework uses. Further, it explains the

usual validity of classical causal modeling in a quantum world via appeal to

decoherence: usually there is significant decoherence which means we can get

24. See, e.g., Hausman and Woodward (1999), who argue that quantum correlations aren’t
so much counterexamples to the CMC, but contexts in which the CMC isn’t applicable.
25. A connection made explicitly in the case of Van Fraassen, but not in the case of Hausman

or Woodward.
26. See, e.g., Egg and Esfeld (2014), Näger (2016), and Evans (2021).
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away with treating our systems using random variables. However, if there is

controlled entanglement present then we cannot make this assumption, and

standard causal modeling is invalid. But this doesn’t mean we need to abandon

hope of causally explaining quantum correlations. We just need a framework of

causal modeling that can accommodate the way in which quantum mechanics

represents subsystems—namely, via density matrices—while still encoding what

we think of as important to causal explanations. I argue that the framework

developed by Allen et al. (2017) fits this bill. Further, because this framework

is compatible with unitary quantum mechanics, it is also compatible with Ev-

erettian quantum mechanics. Taken together, I argue that we get a satisfying

picture which allows us to causally explain quantum correlations, while avoiding

the pitfalls that previous attempts to do so have fallen into.

7 The Everettian explanation of Bell violations

The core idea behind Everettian quantum mechanics (EQM) is that we just need

to take seriously the idea that all systems—including measurement devices and

humans—are constituted by quantum mechanical parts and thus can enter into,

and be part of, superpositions. Thus, when a quantum mechanical system in

superposition interacts with another quantum system with many uncontrolled

degrees of freedom—such as a measurement device or the system’s environment—

the latter quantum system enters into a superposition too, governed by the

Schrödinger equation. Within the different branches in this larger superposition

there emerge multiple quasiclassical worlds, stable states of affairs exhibiting

approximately classical behavior.27

Thus, when a measurement is performed on a quantum system, there obtain

multiple branches, with each branch corresponding to a definite outcome. A

branch comes equipped with a branch weight—which is equal to the mod-

squared amplitude associated with that branch. Branch weights are a measure

over branches and they determine the probabilities of measurement outcomes.28

The key point here that is relevant to the applicability of causal modeling is

27. See (Wallace 2012) for a detailed development and defense.
28. Establishing the connection between this measure and the observed probabilities is by

far the most contentious question concerning the Everett interpretation (see, e.g., some of
the papers in (Saunders et al. 2010) for a good discussion). I avoid engaging with this issue
here, and assume that some account of how branch weights ground observed probabilities is
successful. Needless to say, if one thinks that EQM is unsuccessful at explaining observed
probabilities, then it won’t be a viable interpretation, and the rest of what I say here will be
largely moot.
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that this kind of branching which grounds probabilistically distributed stable

outcomes only obtains when the system is decohered. It is only then that we have

license, in a quantum world, to describe the system using random variables. And

the assumption that we can describe systems using random variables is clearly

central to the causal modeling framework. So what we see here is that this

central assumption of the causal modeling framework is not uniformly permitted

by quantum physics. (Note that this point is technically independent of EQM.

However, it fits particularly neatly with EQM, for decoherence is crucial within

EQM for explaining the emergence of randomness and stability.)

Now, this observation by itself, isn’t enough to tell us that the causal modeling

framework will fail in explaining quantum correlations. After all, in EPR/Bell-

type experiments, the experimental results are really measurement statistics, and

so it seems there is enough decoherence to license the use of random variables.

In technical terms, what this means is that, post-measurement, in each wing

of a Bell-type experiment, we can associate to the system a decohered density

matrix that is almost exactly diagonal in the measurement basis, and which has

diagonal entries equal to the Born probabilities of various possible outcomes.

This diagonal density matrix is what grounds the random variable description of

the measurement outcomes in EQM.

The place where the EQM picture starts to deviate from the picture pre-

supposed by causal modeling is that the latter picture assumes that the joint

distribution over all the variables is always well-defined. We can see this in

the way in which constraints like the CMC and faithfulness are formulated:

they are ways in which the joint probability distribution over the variables in

a causal model are constrained by the structure of the causal graph. However,

in a quantum world, because a random variable description is only licensed

by a decohered density matrix, we can’t always assume a global decohered

density matrix is well-defined which licenses describing the systems with a joint

probability distribution.

The upshot of this in the context of Bell-type experiments is that even

though we have local decohered structures, these structures don’t immediately

ramify up to a global one because there are no instantaneous interactions. Thus,

there won’t be a globally decohered density matrix simply because we have

local decohered density matrices. Consequently, we won’t have the license

to use random variables to represent the joint state of the two wings. This

means that we cannot talk about the correlations between the two wings of

experiments until and unless the two wings interact in a way that allows for a
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globally decohered structure to be established—which typically happens when

the future light-cones of the two experiments intersect—that then allows us to

talk about the correlations between the two sets of outcomes. These are the

correlations that violate the Bell inequality. That is, the overwhelming branch

weight will be on branches with values of the correlation that violate the Bell

inequality. Consequently, observers in such branches will be unable to explain

their observations with a causal model, because of the arguments considered in

the previous sections. Thus, on an Everettian picture, the violation of the Bell

inequality signals the absence of a globally decohered structure at earlier times,

not nonlocality or finetuning.

This should also make it clear, we typically get failures of classical causal

modeling when it contains entanglement that is accessible or controllable. To

see this, suppose we are trying to build a causal model of some situation that is

distant from quantum mechanics. Say the relevant variables are the amount of

precipitation in a forest and the population of beavers in that forest. While it is

very likely true that the quantum degrees of freedom constituting or grounding

these variables are entangled with each other in all sorts of complex ways, that

entanglement is not accessible or controllable. This then means we can continue

using the standard framework of classical causal models, because in cases like this

we have a globally decohered structure that goes along with locally decohered

structures. However, this is not the case for systems whose entanglement is

maintained with some care, such as in Bell-type experiments. In such cases, we

may have enough decoherence to treat the individual systems as classical random

variables but not enough for the joint system to be so treatable. So, outside of

such cases, we may safely employ the classical causal modeling framework.

Incidentally, notice here that this explanation of why standard causal models

don’t apply to Bell-type experiments is not quite the same as an explanation

that is sometimes given for why EQM is able to avoid the bite of Bell’s theorem,

which is that while Bell’s theorem assumes that experiments have definite

outcomes, EQM tells us that experiments don’t have definite outcomes. Prima

facie, this explanation might not be very convincing since Bell’s theorem only

concerns relations between random variables and one might think that EQM

certainly allows description of systems in terms of random variables, on pain

of empirical inadequacy if it did not. There’s nothing in that about definite

outcomes. In contrast, my way of explicating why Bell’s theorem doesn’t apply

in an Everettian world—namely, that global random variables can’t always be

defined—does explicitly deny a premise of Bell’s theorem, namely that joint
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probabilities are always well-defined.29

Let me consider one potential objection against my argument. One might

deny my premise that it is only a globally decohered structure that would license

the use of random variables. After all, random variables are cheap. You can just

define one whenever you want. As soon as the measurements are performed in

the two wings, the laws of physics entail that in the future, EPR/Bell correlations

will be observed. Consequently, we could define the correlations as obtaining

even before the future light cones of the two experiments intersect. It’s only that

the grounds for these correlations are in the future. But this doesn’t logically

prevent us from defining a joint distribution before they obtain.

But this objection doesn’t much affect the main thrust of my argument,

because these kinds of “cheaply defined” random variables cannot be taken as

representing the physical goings-on. And my key point is that the causal models

framework assumes that systems can be represented by random variables, and

that is the assumption that is violated in Bell-type experiments.

To better understand the importance of random variables representing the

physical goings-on for successful causal explanation, let us go back to EPR. EPR’s

argument posed a problem for causal explanation only because we thought that

a measurement in one wing immediately gave us knowledge of a measurement

outcome on the other wing, suggesting the need to posit nonlocal influences

or hidden common causes. That is, if we had a random variable that encoded

these correlations, then such a random variable creates a problem for a causal

explanation only if we think of it as representing the physical goings on at the

time of measurements. This then lets us see that if EQM is right, then even if

we mathematically define a random variable at the time of measurements that

encodes correlations, such a random variable only represents future correlations.

We can see this point in a slightly different way as well. On the Everettian

picture, when a measurement is performed, all outcomes with nonzero amplitudes

obtain. Hence, when we perform a measurement on one wing, we only obtain

knowledge about which outcome we will share our branch with in the future.

This is one way in which my no-global-random-variables response connects with

the no-definite-outcomes response of the Everettian.

Nevertheless, this doesn’t mean that we can just build a regular causal

model for the Everettian story of what is going on in Bell-type experiments.

For instance, given the account above, one might think that a causal model of

29. This isn’t to say that the no-definite-outcomes response doesn’t succeed, or to say that it
entirely distinct from the no-global-random-variable response. See below.
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the sort in Fig. 6 might be made to work. Here, the variable C is assumed

to represent the values that the correlations between A and B take. However,

this can’t be empirically adequate for the same reasons (namely, Bell’s theorem)

that the causal model of Fig. 3 isn’t empirically adequate: within the standard

causal modeling framework, the Bell-violating correlations between A and B

are established before we get to C, and so we would need nonlocal influences or

finetuning.

A B

C

S T

λ

Figure 6: A causal diagram that one might think captures the Everettian story
of Bell correlations. However, this can’t quite work because it still assumes that
correlations between A and B are always well-defined.

So far we have a picture that satisfies commitments 1, 2, and 3. The Everettian

story about Bell correlations is realist, it rejects the blanket applicability of

classial causal modeling since it only licenses the use of random variables in the

presence of decohered structures, and it explains why classical causal modeling

usually works well: because of the widespread presence of decoherence. So that

leaves the question of how we might satisfy commitment 4, and we turn to that

question next.

8 Quantum causality and Everett

So, can we causally explain quantum correlations? If one can develop a systematic

theory of causal explanation where the relata of causal relations are density

matrices instead of random variables, analogous to the powerful systematic

theory of classical causal explanation given by Spirtes, Glymour, and Scheines

(2000) and Pearl (2000), then that would be a strong start towards causally

explaining quantum mechanical phenomena as well.

I will now argue that at least one recently developed framework, due to Allen
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et al. (2017), of quantum causal models fits the ticket. It is a framework for

causal reasoning about quantum phenomena that takes as its starting point the

idea that what we should represent systems with reduced density matrices.

Not only that, I will that even though it was developed independently of

the Everettian worldview, it fits well with it because it is compatible with

unitary quantum mechanics, and Everettian quantum mechanics is, at its core,

just unitary quantum mechanics. Thus, once we have this framework in our

toolkit, we have a story about Bell correlations that simultaneously satisfied

commitments 1-4. Furthermore, given that this framework was developed with

unitary compatibility as a core assumption, it is unclear how rivals to Everett

can quite so easily help themselves to such a framework.

Let me emphasize that Allen et al. (2017) do not take their framework to be

Everettian. On my reading, they use the “church of the larger Hilbert space”

as a just a tool to derive their framework much like how Pearl (2000) uses the

deterministic structural equations framework as a tool to derive his framework of

probabilistic causal models. I, however, want to use the unitary-compatibility of

the Allen et al. (2017) framework as allowing it to be interpreted in an Everettian

way.

The best way to introduce this particular framework of quantum causal

models for our purposes is by analogy with the deterministic structural equation

modelling (SEM) framework and its relation with probabilistic classical causal

models (see, e.g., Hitchcock 2020). Imagine there are deterministic functions

that govern the behavior underlying the variables in a classical causal model.

These relations are arranged in a directed acyclic graph (DAG). For a given

SEM graph, suppose we consider a proper subgraph (which is also a DAG).

Then we can get probabilities on the variables of the subgraph by averaging

over those variables which don’t show up in this subgraph. This is similar to

how we can see probabilistic behavior in statistical mechanical systems at an

emergent level even if the underlying dynamics is deterministic. Mathematically,

if we have a deterministic function that is of the form Y = f(λ,X), then we can

get a distribution P (Y |X) =
∑

λ P (λ)f(λ,X), where P (λ) is some distribution

(which could arise due to a deterministic process) over the “hidden variable” λ.

In Fig. 7, I show in diagrammatic form a deterministic SEM model and the

probabilistic causal model derived from it. (The representation I employ here

of the SEM and the probabilistic model derived from it is really the dual of

their representation as a DAG in the sense that the lines represent variables

and the boxes represent the transformations. In what follows, including in the
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quantum case, I’m going to stick to this dual representation, and draw boxes to

represent the transformations on the systems and use wires to denote inputs to

the transformations. Doing so unfortunately breaks the visual analogy with the

DAGs, but allows for greater conceptual clarity.)

Now, let’s turn to the quantum version of such an analysis. Here, the

analogue of the deterministic functions of variables is unitary transformations on

a Hilbert space. The corresponding analogue of probabilistic model is obtained

by tracing over the subsystems of the Hilbert space which we are discarding. A

map obtained by taking a unitary map and discarding its action on auxiliary

subsystems is called a quantum channel, which, mathematically is represented

by so-called completely positive maps. These maps take density matrices—which

are obtained by tracing over subsystems of a quantum wavefunction—to other

density matrices.

Quantum channels can also be thought of as the quantum generalization of the

classical channels of Shannon’s information theory (hence the name “channel”).

Classical channels are represented by conditional probability functions: a channel

X → Y is associated to the distribution P (Y |X), which represents the probability

of receiving a message Y = y given that the message X = x was sent. Thus,

while in the case of classical causal diagrams, the causal links between variables

are associated with conditional probabilities, in the quantum case, the causal

links between subsystem are associated with quantum channels EX→Y .
30

Thus, in analogy with the classical causal model framework, the inputs are

subsystems of the global Hilbert space and the transformations are quantum

channels, which are to be thought of as being obtained by tracing over auxiliary

quantum subsystems of the Hilbert space. This is depicted in Fig. 8, where

a quantum channel is derived from a unitary transformation by tracing over

auxiliary degrees of freedom. Allen et al. (2017) show how we can obtain a

picture of DAGs from the starting points of the brief sketch I presented here.

They also present a generalization of the causal Markov condition. I refer the

reader to Allen et al. (2017) for more details.

A key question now is: How to model interventions in quantum causal

models? After all, interventionist ideas are crucial in understanding classical

causal models (Woodward 2003). In the context of classical causal models, the

30. Note that Allen et al. (2017) use a particular representation of quantum channels, called
the Choi-Jamiolkowski representation, to develop their theory. On this representation, we
can associate a density matrix ρA|B with the channel itself, which makes the analogy with
conditional probability functions sharper. But I do not present it this way here to avoid
complicating the presentation.
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Figure 7: A deterministic structural equation model (SEM) and a classical
probabilisitic causal model obtained from it. (a) A very simple deterministic
structural equation: Y = f(λ,X). (b) A very simple classical channel obtained
from this deterministic SEM by averaging over λ.
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Figure 8: A deterministic quantum map and a quantum causal model obtained
from it. (a) A very simple deterministic quantum transformation: |ψout⟩ =
U(|ψλAµ⟩. (b) A very simple quantum channel obtained from the by tracing over
an auxiliary system [depicted in (a) by discard ]: ρBC ≡ Traux |ψout⟩ ⟨ψout| ≡
EA→BC(ρA), where ρA = Trλµ(|ψλAµ⟩ ⟨ψλAµ|).

idea of an intervention is modeled, mathematically, using the do-calculus. We

intervene on a particular variable X by setting the variable equal to particular

value: written do(X = x). What this does is that it breaks the arrows between
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X and its parents. And then we are interested in the ways in which the act of

intervening on X changes its descendants. In the quantum mechanical case, how

do we represent the do operation? We represent it by a quantum instrument :

a collection of completely positive maps Ek, where k is to be thought of as a

classically readable result of applying the quantum instrument on the system.

Thus, if the quantum instrument reads out k, then the quantum state of the

system is now Ek(ρ)/Tr(Ek(ρ)), assuming that the system was in state ρ before

the interaction with the quantum instrument. The denominator—i.e., Tr(Ek(ρ))—
represents the probability that the instrument will record k.

Why are quantum instruments the right framework with which to understand

interventions in quantum causal models? What we want an intervention on a

system to do, for the purposes of causal explanation, is to fix the system in

a particular definite state. In classical physics, what one can do is, in effect,

erase the previous state of the system, and rewrite a new state onto the system.

However, this is not possible in general for quantum systems, because the

transformations have to be linear.31 The closest thing one can do to deliberately

pushing the system on to a desired state is operate on the system with a kind

of measuring device, which, with some probability, puts the system into one of

many different possible states. This operation is what is mathematically modeled

using the framework of quantum instruments I just sketched.32

Having done all this set up, the presentation of what is going on in a Bell-

violation experiment is really quite straightforward, and can be represented

directly in Fig. 9. The two particles of the entangled pair correspond to two

subsystems which are carted off to two far away regions, though they maintain

their entanglement (this is the part where control of entanglement becomes

essential). Then, they are brought into interaction with the measurement

devices at the two ends by a unitary process, producing post measurement

systems. The unitary interaction with the measurement devices is consistent

with the Everettian framework: there is no collapse, and hence no globally

unique outcome. These post-measurement systems are then brought together

where they interact unitarily with a device that measures the correlations

between the two post-measurement systems, producing a quantum system,

31. If a linear map takes all elements of a vector space to a single vector, then that map has
to be the zero map. If Ax = Ay for all x, y, then, by linearity, A(x− y) = 0 for all x, y. Thus
A = 0.
32. Note, however, that the framework of quantum instruments is powerful enough to represent

the transformation by which one uses a SWAP operation to swa in a quantum system (prepared
in an arbitrary quantum state) and swap out the current state. So the “measurements” of
generic quantum measurements can be quite complex and allow for delicate local interventions.
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which represents as a probabilistic mixture—i.e., a diagonal density matrix—the

correlations. According to the Everett interpretation, this diagonal density matrix

will correspond to different observers on different branches of the wavefunction

seeing different sets of outcomes. But observers seeing Bell-violating statistics

will have the overwhelming weight.

Unitary Unitary

Measurement 
device

Measurement 
device

Entangled pair

Discard Discard

Unitary

Discard Discard

Correlation 
measurement 
device

Bell-violating 
correlations

Figure 9: A quantum causal diagram showing how quantum causal diagrams
can provide a representation for the Everettian story of what is happening in
the experiments showing violations of Bell inequalities.

One point that becomes clear when we use the quantum causal framework to

represent such an experiment is that intervening on one side of the experiment

has no causal effect on the other side of the experiment. This is because we can

only intervene using a quantum instrument which does not allow you select to a

state to “collapse” to, which is made particularly clear within the Everettian

framework, which has no collapses. Note however, that this condition is not

transparent either in the quantum formalism itself or in attempts to represent

quantum processes in the framework of classical causal models. Within the

“textbook” formulation, a measurement on one end instantaneously collapses

the entangled state, and thus causing an instantaneous definite state to be the

correct state on the other end.

Another point becomes clear as well. The quantum causal framework doesn’t
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require any fine-tuning in explaining EPR/Bell-style correlations. This is made

precise by formulating the faithfulness condition within this quantum causal

framework. Barrett, Lorenz, and Oreshkov (2021) define faithfulness for quantum

causal models roughly as follows: an assignment of an initial state and a collection

of quantum channels (which results in an assignment of density matrices to

subsystems) is faithful to the causal structure (represented by the DAG), insofar

as that assignment allows for signaling between any two systems connected by a

channel. What does “allow for signaling” mean? Essentially, it means that one

can intervene (using a quantum instrument) on one of the systems and effect a

change in the probability distribution of potential measurements at the other

end. Thus, an assignment of channels/density matrices is unfaithful if, despite a

causal pathway between two systems, we cannot signal between them.

From this we can see that there is no worry about faithfulness-violations in the

Everettian/quantum causal way of thinking about Bell correlations. Wherever

there are causal connections between systems, those connections can be used to

signal, but none of these signals are problematic in any way. That is, signaling

between the causally connected systems in Fig. 9 doesn’t violate the no-signaling

theorem or require invoking physics in tension with relativity. In particular,

that diagram has no connections between the left wing and right wing until the

worldlines of the two experimenters come into contact.

9 Conclusion

So after rehearsing the ways in which classical causal explanations struggle to

deal with Bell correlations, I have argued that the combination of Everettian

quantum mechanics and a recently developed framework of quantum causal

models offers an attractive package using which we can offer realistic causal

explanation for Bell correlations that is both local and non-fine-tuned.

To close, let us deal with one final question. Are quantum causal explanations

really causal explanations? After all, we took the classical causal modeling

framework seriously because we thought it embedded the core assumptions of

what good causal explanations consist in. And if these core assumptions no

longer hold when it comes to quantum causal models, then to what extent can I

say that the quantum causal explanations are actually causal explanations?

I concede that quantum causal models and the assumptions built into them

haven’t been as well-tested as classical causal models have been. So if these
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assumptions turn out to be more shaky and less philosophically defensible than

one might have initially thought, then it would be questionable whether we

have satisfactorily causally explained Bell correlations. I leave it to future work

to further unpack and defend the assumptions employed in quantum causal

modeling, and to articulate to what extent they can still be reasonably called

“causal”.33

That said, part of what I’m challenging when it comes to the causal model-

ing framework is not so much its particular assumptions—such as the Markov

condition or faithfulness—that embody the principles we expect causal explana-

tions to satisfy, but rather the background physical presuppositions that that

framework employs. Indeed, the new quantum causal framework is trying to

keep the older principles of causal explanations around—i.e., it is trying to

retain notions of intervention and trying to formulate appropriate versions of

the Markov condition and faithfulness for the quantum context. Instead, what

my arguments have done is to show that there was always a physical assumption

(about the representative aptness of random variables) built into the causal

modeling framework and that physical assumption is defeated in the context of

quantum mechanics. This shows us the need to develop a version of our causal

modeling that accords with our knowledge of the physical world, while retaining

well-tested principles of causal explanations.34
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