Derivational Robustness and Independence

Abstract 
In a recent critique of Kuorikoski, Lehtinen and Marchionni’s (2010) analysis of derivational robustness, Margherita Harris (2021) argued that the proposed independence condition is not credible. While this criticism is cogent, it does not challenge the incremental epistemic benefits from robustness, as they do not hinge on satisfying independence conditions. Distinguishing between incremental increases and a high absolute degree of confidence in a result is crucial: the latter requires demonstrating the independence of every false assumption. 

1 Introduction
The argument presented by Kuorikoski, Lehtinen and Marchionni (2010, hereafter KLM) can be summarised as follows: within a family of models sharing core assumptions C and false tractability assumptions Ai, each derivation of the robust result R justifiably increases modellers’ confidence in the robust theorem: ‘ceteris paribus, if C then R’. The epistemic benefit from derivational robustness derives from such strengthening of the robust theorem. The justified increase in confidence derives from the fact that the tractability assumptions could have been responsible for the result, but the robustness of R shows that some of them are not responsible. However, this requires an independence condition to hold: if tractability assumptions are not independent of each other, they could induce similar errors. R could be derived even though it is false. The independence condition requires that tractability assumptions A1 and A2 are independent if, conditional on R being true, the prior probability of deriving the result R with a model that contains tractability assumption A1 is independent of the probability of deriving it with a model that contains A2. 

Margherita Harris (2021) argues that the independence assumption proposed by KLM is implausible, thus challenging KLM’s argument for the epistemic benefits of robustness. Harris is right about two major claims: First, the independence condition that KLM proposed is violated when models are shown to be robust, and second, derivational robustness does not necessarily justify a no-miracle argument: the fact that a set of models entails a given result does not suffice to conclude its truth or that the robust theorem is true. However, I contend that these concessions do not negate the epistemic benefits of demonstrations of robustness.

There are two different reasons for requiring an independence condition for derivational robustness. First, a failure of independence could entail that a given demonstration of robustness does not provide the epistemic benefit. Since this epistemic benefit consists in strengthening the robust theorem, the pertinent independence condition must address Question A: What kind of failure of independence would thwart the inference to strengthening the robust theorem? However, critics like Harris are more concerned with Question B: what kind of independence is adequate to ensure that the robust theorem (or result) can be interpreted as a causal mechanism (Odenbaugh and Alexandrova 2011), or applied in the real world for explanation and prediction (e.g., Harris 2021, Harris & Frigg 2023a, b). Question A can be answered by studying whether increases in confidence via strengthening the robust theorem necessitates satisfying an independence condition, while question B can be answered by evaluating whether modellers are entitled to adopt a high absolute degree of confidence in the robust theorem.

I propose the following answers. A) Strengthening the robust theorem requires violating KLMs independence condition! Establishing the robustness of a result with respect to an auxiliary[footnoteRef:1] rather itself establishes that another kind of independence condition holds: Independence of an Assumption due to Robustness (IAR). This is independence of the robust result from an auxiliary. I will then show that establishing this kind of independence is sufficient for strengthening the robust theorem and thereby for bringing the incremental epistemic benefits. Satisfying IAR is better seen as an achievement of derivational robustness than a necessary condition on attaining epistemic benefits from derivational robustness. [1:  In this paper we mostly use the term ‘auxiliary’ instead of ‘tractability’ assumptions. The difference between the two is not important for this paper.] 


B) The robustness of R to auxiliary Ai shows that Ai is not needed for deriving R, but not that all auxiliary assumptions are shown to be irrelevant for R. This means that the result R could still be false, and that it could be false because all the models in the family contain common false components that are responsible for R. Attaining a justifiably high absolute degree of confidence in the robust theorem requires that the result is shown to be independent of every false assumption in a model family. In such a case, we say that the model family satisfies Absolute Independence (AI). 

It is evident that a single demonstration of robustness is not enough to establish AI, and thus that satisfying IAR with respect to a single auxiliary is insufficient to prove that a robust theorem or result can be applied in the real world. This is rather a matter of how close the model family is to attaining AI.

The paper is structured as follows. In section 2, Harris’ criticism is discussed in relation to the incremental benefits of robustness. Section 3 provides a definition of Derivational Independence of Functional Forms and explains why it must be violated in cases where robustness is useful in an incremental sense. I then formulate IAR to better understand the requirements for incremental increases in confidence. In section 4, the Wimsattian (1981) no-miracle argument is discussed, and it is explained why a high degree of confidence requires a very strict independent condition, namely AI. 

2 Harris’ criticism and strengthening the robust theorem
This section discusses KLM's independence condition, Harris's criticism of it, and how this criticism surprisingly expresses the epistemic benefit of derivational robustness. In other words, it is shown that if Harris's criticism is cogent, the robust theorem is strengthened in the relevant epistemic situations. 

Let C denote the core assumptions and Ai the auxiliaries. There is no epistemic benefit from robustness if A2 shares some false content with A1, and this content is responsible for why R can be derived. Intuitively, the relevant failure would occur if A1 and A2 were so closely connected with each other that information concerning the derivability of the result R from A1 would give information about the derivability from A2. For these reasons, KLM formulated the following independence condition (p. 561): prior probabilities concerning whether R can be derived from C&A1 or C&A2...C&An should be independent. 

To better understand Harris' criticism, let us introduce some notation. Let p[(C&A2)├R] represent the modeller's prior degree of belief about whether R can be derived from C&A2. This notation describes the modeller's prior beliefs before obtaining any information about the derivability relations. KLM's independence condition can be expressed as follows: p[(C&A1)├R]⊥⊥ p[(C&A2)├R].

However, these degrees of belief are updated with new derivability information. Let P[(C&A2)├R] denote the modeller’s degree of belief that R can be derived from C&A2 when the modeller has some information about the logical relations between the components C, A2, and R. Such information could come from, for example, deriving R from C&A1 so that the modellers know that (C&A1)├R. Let us denote the resulting degree of belief as follows: P[(C&A2)├R|(C&A1)├R]. This is a ‘posterior’ in the sense that it is formulated after some derivability information about the relevant assumptions has become available. Although KLM do not apply their independence condition to posteriors, if such a condition is to be helpful in preventing the influence of dependent auxiliaries, one must require that deriving R with one auxiliary should not provide information about whether it can be derived with another so that the prior is identical to the posterior: p[(C&A1)├R]= P[(C&A2)├R|(C&A1)├R].  

Harris (2021) argues that deriving R from C&A1 increases the degree of belief that R is also derivable from C&A2. The reason is obvious. Deriving R from a model that contains C makes it more likely that R can be also be derived with another model that contains C and some different auxiliary assumptions. Harris’ criticism can now be expressed as the claim that the following inequality holds: 

p[(C&A2)├R]<P[(C&A2)├R|(C&A1)├R]. 					    	       (HC)

This inequality implies that the independence condition is likely to be violated when derivational robustness is used. Since model results are usually derived with a conjunction of several assumptions, no single assumption, including C, is sufficient for deriving results. Therefore, p(C├R) and P(C├R) represent the likelihood that a modeller thinks C is necessary for deriving R without and with derivability information, respectively. The same interpretation applies to p(A1├R), P(A1├R), and so on.

The robust theorem is strengthened if

p[C├R|(C&A1)├R]<P[C├R|(C&A1)├R, (C&A2)├R]. 				        (SRT)

It is important to note that if Harris' argument for why the independence condition of KLM is violated is cogent, then it inevitably follows that the robust theorem is strengthened. If (HC) holds for the reasons that Harris identifies, then (SRT) must also hold true. This is because the posterior is greater than the prior in both (SRT) and (HC) for the same reason, namely that using an assumption with one set of auxiliaries to derive a result justifiably increases confidence in being able to derive the same result with another set of auxiliaries. Therefore, independence conditions such as these should be violated, rather than satisfied, when determining whether the robust theorem is strengthened.

3 Derivational Independence
In this section, an alternative independence condition called Derivational Independence of Functional Forms (DIFF) is presented. This condition better captures what an independence condition for derivational robustness should achieve. However, it is shown that demonstrating the robustness of a result ipso facto violates this condition.

On the other hand, it is also shown that the robust theorem can still be strengthened even when DIFF is violated. Therefore, the incremental epistemic benefits of derivational robustness do not depend on independence conditions between different auxiliaries in the first place. Instead, the demonstration of robustness itself establishes the relevant kind of independence, namely the Independence of an Assumption due to Robustness (IAR), which holds between the robust result and the auxiliaries. 

The independence conditions presented above do not achieve the intended purpose that KLM had in mind: If modellers demonstrate that result R is robust concerning assumptions A1 and A2, i.e., C&A1├R and C&A2├R, then neither A1 nor A2 can be necessary for R. However, if A1 and A2 are similar to each other, in the sense that they share some content that is responsible for R, then the robustness of R does not strengthen the robust theorem. The independence condition must consider the possibility that, while neither A1 nor A2 is necessary for deriving R, their shared content is. If modellers fail to recognize this, they could mistakenly infer that (SRT) holds, even though the demonstration of robustness does not actually strengthen the robust theorem. However, this possibility arises only if the terms in (SRT) do not include all relevant assumptions. This could happen if modellers are unable to accurately identify the assumptions, or if SRT provides an incomplete description of them.

The above analysis may also be misguided because we have formulated independence conditions for entire models. However, to have any epistemic impact, an independence condition should only be formulated as independence between two auxiliary elements. Additionally, our ultimate concern is not whether A1 or A2 could be used to derive R, but whether either of them is necessary for deriving R, or more precisely, whether either of them is a relevant element of R. A relevant element is a formula that is indispensable for deriving the result R, without which it would not be possible to derive R (Schippers and Schurz 2017; 2020).

One way to formulate an independence condition is to require Derivational Independence of Assumptions (DIA). Let P[A2├R|A1├R] denote the probability that A2 is necessary for deriving R, given that one has used A1 in a model, together with some other assumptions, to derive R. Assumptions A1 and A2 are derivationally independent if 

P[A1├R|A2├R]=p(A1├R) and P[A2├R|A1├R]=p(A2├R).				       (DIA)

If the two assumptions have nothing to do with each other, replacing A1 with A2 could not affect the probability of being able to derive R. Hence, if assumptions do not have any common content, DIA holds. However, the problem with DIA is that it can never be satisfied if the assumptions are correctly identified. If result R is derived with C&A1 and without A2, this means, ipso facto, that A2 cannot be a relevant element for R, and vice versa for A1. Thus, deriving A1├R itself entails P[A2├R|A1├R]=0. The expression P[A2├R|A1├R] is thus ultimately meaningless, and the very notion of derivational independence of assumptions is incoherent.

However, modellers often test the robustness of their models with respect to tractability assumptions by replacing functional forms rather than individual assumptions. A functional form may incorporate several assumptions, and some of those assumptions can be shared among different functional forms. For instance, suppose that functional forms F1 and F2 contain a common component G such that their content can be decomposed into two assumptions, F1= A1&G and F2= A2&G. If R is shown to be robust by deriving C&F1├R and C&F2├R, does this strengthen the robust theorem? Let us now formulate an independence condition for functional forms that does not suffer from the problem mentioned above.

Derivational independence of functional forms (DIFF): Functional forms F1 and F2 are derivationally independent if 

P[F1├R|F2├R]= p(F1├R) and P[F2├R|F1├R]= p(F2├R).				      (DIFF)

This condition is not meaningless because P[F2├R|F1├R] may be nonzero even when R is derived with F1. If modellers recognise the existence of G, they can safely infer that p[C&G├R|(C&A1&G)├R]<P[C├R|(C&A1&G)├R, (C&A2&G)├R]. If this holds true, then the robust theorem is strengthened. Given that C takes part in deriving R from both models, it is possible for the robust theorem to be strengthened. However, so does G, making it possible that the robust theorem is not strengthened.

If no further information is available regarding the derivability relations, it would be rational to infer both p[C├R|(C&A1&G)├R]<P[C├R|(C&A1&G)├R, (C&A2&G)├R] and
p[G├R|(C&A1&G)├R]<P[G├R|(C&A1&G)├R, (C&A2&G)├R]. 

Insofar as the first equation holds true, this still counts as strengthening the robust theorem because one has successfully shown that A1 and A2 cannot be responsible for R. The robust theorem is not strengthened only if it can be established that C is not any more likely to be responsible for R due to this demonstrating that C&F2├R after C&F1├R was available. However, the derivation itself does not tell us whether this is the case, and applying Harris’ argument, deriving R with C another time entails that the robust theorem is strengthened. It is strengthened if modellers initially believed that either A1 or A2 could be a content element of R. If C&F1├R is available, demonstrating that the model is robust by deriving C&F2├R shows that the posterior probabilities P(A1├R|F1├R|F2├R) and P(A2├R|F1├R|F2├R) are both zero. This is what the epistemic benefit of derivational robustness consists in: the priors p(A1├R) and p(A2├R) were positive, but the posteriors are zero. 

A necessary condition for the epistemic benefits of robustness can now be formulated. To have any epistemic benefit, the robustness proof of an assumption must satisfy Independence of an Assumption due to Robustness (IAR). Given C&F1├R, deriving C&F2├R strengthens the robust theorem if 

P[A1├R| F1├R]>0 and P[A1├R|F1├R, F2├R]=0.				        	        (IAR)

In other words, the robust theorem is strengthened if modellers initially believe that the false assumption A1 could be responsible for R, and then demonstrating the robustness of R reduces this probability to zero. IAR is not an independence condition; it specifies that robustness provides an epistemic benefit only if it demonstrates the independence of an assumption (IAR). 

A more general formulation of IAR is as follows: Let B0 and B1 denote a modeller’s background information about derivability relations before and after demonstrating robustness, respectively. A demonstration of robustness satisfies IAR if there is an auxiliary Ai such that
 
P[Ai├R|B0]>0 and P[Ai├R|B1]=0.				        	        		        (IAR)

Readers familiar with Schupbach’s (2015; 2018) explanatory discrimination will see the affinity of IAR to it: If an auxiliary Ai could not have explained why R can be derived in the first place, then there could not be any epistemic benefits from robustness. 

Despite the violation of DIFF, this condition is satisfied in our toy example. However, DIFF is indeed violated: deriving C&F1├R makes the posterior P[F2├R|F1├R] greater than the prior p(F2├R) because the common component G makes deriving C&F2├R more likely. The failure of DIFF is best interpreted as the failure to show that the robust result is independent of all assumptions other than the core. Some common assumptions still persist. This is important for Absolute Independence, which will be discussed in the next section.

If G is false, then R still depends on a false assumption, and in such cases, strengthening the robust theorem does not provide any real epistemic benefit. However, G could also be another substantive assumption. For example, in the example of KLM, G could correspond to the assumption that the transportation cost increase with distance, A1 to the iceberg form, and A2 to the linear form. 

Since the robustness of R demonstrates that A1 and A2 cannot be relevant elements of R, it means that the relevant independence holds, i.e., the auxiliary assumptions A1 and A2 are independent from the robust result. Furthermore, we know that further derivations cannot show either of these assumptions to be necessary for deriving R because they are already shown to be irrelevant by the robustness of R. Therefore, in such circumstances, robustness itself proves that a relevant independence condition holds. 

If a model family contains common elements, such as G, then the robustness of R cannot show that R does not depend on those elements. Whether or not G presents a significant epistemic problem depends on several additional characteristics of G, C, and R. For example, is G a reasonable approximation or far from the truth? Does R depend on C or on G? Further knowledge about the epistemic situation can be gained by deriving further results. 

4 Absolute independence
In this section, I argue that achieving increments in the degree of confidence in the robust theorem, and ensuring high absolute degrees of confidence in the robust theorem, depend on completely different requirements. Unfortunately, this difference has not been recognised in the literature, leading to considerable confusion.[footnoteRef:2]  [2:  The authors of KLM have recognised the difference in their later publications Kuorikoski, Jaakko, and Caterina Marchionni. 2016. "Evidential diversity and the triangulation of phenomena." Philosophy of Science 83(2):227-47, Lehtinen, Aki. 2018. "Derivational Robustness and Indirect Confirmation." Erkenntnis 83(3):539-76.. However, they have not extensively analysed this difference.] 


KLM borrowed a no-miracle argument from Wimsatt (1981), which Harris (2021, p. 1458) expressed in the context of modelling: ‘A model’s conclusion is more likely to hold in the target system if several models lead to that conclusion because it would be a remarkable coincidence if that were not the case.’ Wimsatt’s claim is extremely broad, as it pertains to all forms of determination, including statistics and experiments. This can obscure the issues, particularly for those seeking a unified treatment of robustness across experiments and models. Identifying robustness with a variety of evidence (e.g., Schupbach 2018, Harris and Frigg 2023a, Dethier 2022) indicates a lack of concern for making the distinction: it is evident that variety of evidence is not valuable unless the sources are independent, and different experiments must have some degree of independence for valid conclusions to be drawn about the real world. However, as we have seen, derivational robustness is different.

KLM argued that derivational robustness supports the no-miracle argument while consistently formulating their claims in terms of ‘justifiably increasing confidence’ in the robust theorem or result. They provided an independence condition because such a condition is indeed required for a no-miracle argument. The example in the previous section illustrates the type of failure of independence that they attempted to prevent with their independence condition. DIFF is possibly closer to what they may have intended than the condition they proposed. However, we can now see that the robust theorem may be strengthened even when DIFF is violated, and that satisfying IAR is required for justifiable increments in confidence instead. 

KLM aimed to establish a condition that would guarantee an increase in confidence in the robust theorem rather than a condition that would ensure a high absolute degree of confidence in it. However, they failed to realise that no such condition was necessary in the first place for increasing confidence. On the other hand, demonstrating that a result is robust with respect to one or two tractability assumptions is not sufficient for the kind of independence that would be necessary to guarantee a high absolute degree of confidence in the robust theorem. Therefore, KLMs argument was not sufficient for the no-miracle claim they were making, and as many critics have argued, just because a result has been shown to be robust with respect to some assumptions does not mean that it is true or that the robust theorem is true; there is no guarantee that the no-miracle intuition is reliable in modelling.

To attain a high absolute degree of confidence, the robustness of results must establish more than just satisfying IAR for one auxiliary assumption. It should be noted that IAR does not hold for G, and if G happens to be false, the robust theorem or result could also be false. Therefore, an independence condition that guarantees a high degree of absolute confidence in the robust theorem is needed. This condition is called Absolute Independence (AI), which states that every assumption in a family of models must either be true or demonstrably satisfy IAR with respect to the robust result R.

Absolute Independence: Every assumption in a family of models is either true or demonstrably satisfies IAR with respect to the robust result R. 

This condition ensures that result R does not depend on any false assumption. However, if AI is considered a necessary condition for the epistemic benefits of robustness, it is seriously misguided. It suggests that robustness becomes epistemically useful only when the robustness of everything is established. This argument is absurd because it suggests that all demonstrations of robustness are epistemically useless except when the robustness of R is demonstrated with respect to the last assumption. This reductio ad absurdum highlights why the requirements for increasing the degree of confidence in the robust theorem and achieving a high absolute degree of confidence are fundamentally different.
 
It is important to note that if a modeller believes that P[A1├R| F1├R] is very close to zero even before deriving C&F1├R, then the strengthening of the robust theorem is very weak. This is because proving that A1 is irrelevant when it is already considered irrelevant is unlikely to make a significant difference in deriving R. Therefore, the degree to which deriving the result with new tractability assumptions increases the modellers' confidence in the robust theorem depends on how likely they initially thought that the tractability assumptions could be responsible for the result. The higher the value of P[A1├R| F1├R], the stronger the effect of deriving C&F2├R on strengthening the robust theorem.

Absolute Independence is a very strong condition because it requires that there cannot be any false assumptions that are not shown to be independent of R. This requirement typically fails in various cases, including our theoretical example above if G is false. One way to weaken this condition is to acknowledge that some assumptions may not be shown to be robust, but other types of background information may indicate that for some assumptions Ai, P[Ai├R] is very close to zero, but not exactly zero.

Critics of robustness often require delineation of the relevant set of models (Harris and Frigg 2023a; Houkes and Vaesen 2012; Odenbaugh 2011; Odenbaugh and Alexandrova 2011) if robustness is to provide any epistemic benefit. While this requirement is necessary to evaluate whether a high absolute degree of confidence is justified, imposing such a requirement is not appropriate in evaluating whether confidence is justifiably increased.

Consider now how claims about models are transferred into claims about reality. Admittedly, the claim that increasing one’s confidence that C rather than something else determines R says something about the models, not about reality. However, asking ‘Under what conditions are we entitled to conclude that C causes R?’ can be confusing because the answers in the absolute and incremental cases are entirely different. To make an absolute claim, we must ensure that C is true, the joint core of the model family does not contain any auxiliary assumptions that could also be the cause of R, etc. However, if we only consider whether it is more likely that C causes R due to robustness, the requirements are considerably weaker. 

Many models are highly complex and contain numerous auxiliary assumptions. As a result, the result may be shown to be robust with respect to some but not all of them. The result is derived with various tractability assumptions that are also shared by the model family, as noted by Harris and many others. However, to the extent that these assumptions could be responsible for the result instead of the core assumptions, the soundness of the argument becomes questionable. Such considerations attenuate the epistemic benefits of robustness.

Harris and Frigg (2023b) are thus correct in stating that the relevance of robustness arguments in evaluating global climate model ensembles is somewhat questionable due to the large number of assumptions and their interconnections in such models. A high absolute degree of confidence in the common prediction of a warmer climate in the future is required for policy purposes. The task of determining how far climate models are from absolute independence is better suited for climate specialists, however. 

However, Harris and Frigg (2023a) also argue that ’if [the conditions of applicability of robustness analysis] ends up  including  even  just  one  unrealistic assumption about the target system, the robust theorems end up being inapplicable to the actual world, and this renders them useless for explaining or predicting real-world phenomena.’ This claim is valid only for assumptions like G in our analysis, but not for assumptions like A1 and A2. While a single false assumption can be devastating if the robust result depends on it, requiring that all assumptions in the models are true is not reasonable. It is possible to make an inference that is sound for all intents and purposes if literally all assumptions are true or satisfy IAR, even if each individual model in a family contains false assumptions. While ‘absolute robustness’ (Odenbaugh and Alexandrova 2011) and Absolute Independence both require testing every auxiliary, the latter does not require finding true auxiliaries. 

6 Conclusions
Demonstrations of increments in the degree of confidence in the robust theorem are not sufficient for ensuring that a robust theorem can be applied to the real world. Therefore, Harris is correct in arguing that the no-miracle argument can be applied to theoretical modelling only under stringent conditions. Absolute independence requires the robustness of every false assumption. 

In many cases of modelling, a high absolute degree of confidence is unattainable because the inference to the truth of a result can fail in various ways. However, derivational robustness is incrementally relevant. Its epistemic contribution lies in demonstrating that the false tractability assumptions are not driving the result. This claim remains unscathed by Harris's criticisms because such increments in confidence do not hinge on independence conditions. Instead, demonstrating the robustness of results to false auxiliary assumptions provides information about the relevant kind of independence. Therefore, increasing one's confidence in the robust result does not require the validity of any independence condition. Robustness itself establishes the relevant independence.
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