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Abstract

The application of Noether’s theorem to the exact SU(3) color symmetry of quan-
tum chromodynamics results in the conservation of the color charge current. This cur-
rent takes values in SU(3)’s Lie algebra, and it is therefore eight-dimensional. But how
can this eight-dimensional space be the right mathematical object for the conservation
of the three color charges red, blue, and green and their three corresponding anti-colors?
We might have expected a six-dimensional space, or perhaps a nine-dimensional one,
but eight is surprising. This paper answers this question through explicit construction
of the SU(3) adjoint representation from the two fundamental representations of SU(3).
This construction generates principled reasons for interpreting elements of the SU(3)
Lie algebra as bearing combinations of color and anti-color. In light of this construction,
this paper contrasts mathematical and conceptual features of color charge conserva-
tion with electric charge conservation, thereby highlighting some of the challenges and
subtleties of interpreting non-Abelian gauge theories.
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1 Introduction

Emmy Noether’s two celebrated 1918 theorems give a correspondence between
the continuous symmetries of a physical system and the conserved quantities of
that system [Noether, 1918]. It is well-known that these theorems provide, when
applied in the appropriate contexts, proofs of the conservation of energy, linear
and angular momentum, as well as charge. The U(1) gauge symmetry in classical
electromagnetism is shown, by way of these theorems, to imply conservation
of electric charge. The generalization of this application to the conservation
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of new kinds of charge in non-Abelian gauge theories, such as color charge for
chromodynamics, is mathematically clear. However, the physical interpretation
of the resulting conserved quantify is not straightforward. This aim of this paper
is to clarify the physical interpretation of Noether’s charges for non-Abelian gauge
theories. We find that the non-Abelian case exhibits the foundational role of the
relationship between charge and anti-charge, whereas this relationship is obscured
in the Abelian case. Conceptually, conservation requires that charge and its
opposite, anti-charge, share a home within a single mathematical space, such
that contributions of charge and anti-charge can be sensibly added together.
For electric charge the shared mathematical home is R, and the accounting work
behind conservation is simple arithmetic. But non-Abelian theories need the more
sophisticated mathematical home of the Lie algebra of the relevant symmetry
group. Noether’s non-Abelian ‘ledger’, as it were, is Lie algebra valued. In what
follows, we will discuss the sense in which the Lie algebra is the appropriate
mathematical space for bringing together charge and anti-charge using tools from
Lie group representation theory.

To make the discussion concrete, we will focus on a (classical version of)
chromodynamics, the non-Abelian gauge theory of the strong interaction between
quarks, anti-quarks, and gluons. In this theory, the charge property is color
charge. Philosophers and physicists alike introduce color charge as analogous to
electric charge. Moreover, there are three colors, usually called ‘red’, ‘green’, and
‘blue.’1 Quarks are the sort of particles that can have these three different colors.
Moreover, quarks are the leptons in the theory, which means that they are the
chromodynamic analogues of electrons (and their heavier cousins, the muons and
tauons): as electrons are in electrodynamics, quarks are in chromodynamics.
This analogy suggests that conservation of charge in chromodynamics would
simply be the conservation of red charge, of blue charge, and of green charge.
And frequently in the context of Feynman diagrams, color charge conservation is
explicitly discussed as the accounting of such color states at each vertex in the
diagram (as shown below in figure 1).

However, Noether’s theorem does not lead to conservation of the three colors.
In general, the conserved quantity given by these theorems takes values in the
Lie algebra of the symmetry group. In chromodynamics, the relevant Lie algebra
is eight-dimensional. So the conserved quantity cannot be valued in the three
dimensional space of the three basic color states. But if not these three basic
colors, what is the appropriate physical interpretation of this eight-dimensional
Noether charge?

The answer is that Noetherian color charge is the same sort of color charge
carried by gluons: it is a combination of both color and anti-color. The goal of
this paper is to develop this interpretation explicitly and in a mathematically
principled manner. In so doing, several points of connection between the pure
mathematics of Lie group representations and the applications of these represen-
tations to particle physics are laid out systematically. There are a number of ex-
cellent resources for the applications of group theory to particle physics, such as
[Cahn, 2014], [Georgi, 1999], [Baez and Huerta, 2010], [Lichtenberg, 1978], and
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more recently [Woit, 2017]. However, the specific interpretive challenges of Lie
algebra valued quantities, such as in the case of color charge, are not addressed in
these resources. This paper serves to fill in this gap in the literature concerning
the physical interpretation of Lie algebra valued quantities in particle physics.
Furthermore, much of the philosophical literature has focused on the physical
status of gauge symmetry transformations. This paper, instead, focuses on the
physical interpretation of the conserved quantity associated with a non-Abelian
gauge symmetry, and in this way it pushes the philosophical literature on gauge
theories in a new direction.

The remainder of this paper is structured as follows. Section 2 reviews the
standard account of Noetherian conservation of electric charge in scalar electrody-
namics in terms of the vanishing of the divergence of the charge-current density.
It then presents the generalization of this account to non-Abelian scalar field
theories using the fiber bundle formalism. Section 3 develops the preliminaries of
group representation theory of SU(3) that are necessary for understanding the
sense in which the Noether charge for chromodynamics is a combination of both
color and anti-color. Section 4 gives the technical punch line, demonstrating the
construction of the adjoint representation out of the two fundamental represen-
tations. Walking through the mathematical details of this construction has the
philosophy payoff of generating principled reasons for assigning combinations of
color and anti-color to states in the adjoint representation. Further philosophical
discussion of the appropriateness of the adjoint representation for the conceptual
work of conservation is discussed in section 5. Concluding remarks are given in
section 6.

For a recent mathematical treatment of Noether’s theorems and generalization
thereof, see [Sardanashvily, 2016]. See also [Kosmann-Schwarzbach, 2011] for an
authoritative historical account of Noether’s work. For more on the history and
philosophy of Noether’s work and the relationship between the two theorems,
see [Brading, 2002], [Brading and Brown, 2003], and [Brading and Brown, 2000].
For additional recent philosophical discussions of the connections between Noether’s
theorems, symmetries, and conserved quantities see [Butterfield, 2006] and the
entries in [Read and Teh, 2022], especially [Gomes, 2022] for more on the in-
terpretive challenges of and subtleties of Noether’s theory in the non-Abelian
context.

2 Noether’s Theorem in Scalar Field Theories

In this section, we first briefly review the standard account of Noether’s theo-
rem as applied in classical scalar electrodynamics, as presented in such places
as [Ryder, 1996] and [Brading and Brown, 2000]. We then consider the straitfor-
ward generalization of this account to classical scalar chromodynamics. Through-
out, we restrict attention to scalar matter for simplicity of presentation.

In scalar electrodynamics, the conservation of electric charge is derived by
applying Noether’s theorem to the following Lagrangian. (The subscript E on
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the Lagrangian reminds us that we are considering electrodynamics.)

LE = Dµφ(Dµφ)∗ −mφφ∗ (1)

where φ is a scalar field of mass m carrying non-zero electric charge. Dµ is the
covariant derivative,

Dµ = ∂µ + iqAµ, (2)

where Aµ is the vector potential. The real number q has a double role: it is both
the coupling constant and the fundamental unit of electric charge.

The charge-current density associated with this Lagrangian is

jµ = iq(φ∗Dµφ− φ(Dµφ)∗). (3)

As is well-known, Noether’s first theorem shows that the U(1) symmetry of this
Lagrangian implies that

∂µj
µ = 0. (4)

This is the so-called continuity equation, and it is the key result that leads to
the conservation of electric charge. One defines the total charge Q as,

Q :=

∫
j0d3x. (5)

From the continuity of jµ given in eq. (4), it follows that the time derivative of Q
is zero. This is how Noether’s theorem implies the conservation of total electric
charge.

In generalizing this result to the non-Abelian case, we will employ the fiber
bundle formalism of gauge theories. This formalism has many appealing features.
For our purposes, it is especially helpful since, in this formalism, distinct group
representations are very clearly hardwired into the equations of a non-Abelian
gauge theory. The gauge field is a connection on a principal fiber bundle, and all
such connections are Lie algebra valued. Thus, the gauge field transforms accord-
ing to the adjoint representation. Moreover, matter fields are sections of vector
bundles associated to the principal bundle. The typical fiber of an associated
bundle is a carrier space for a given irreducible representation of the principal
bundle’s Lie group. Different types of matter generally transform according to
different irreducible representations. In what follows, our goal will be to explain
how these distinct representations relate to each other, and to use those relations
to better understand charge conservation. For more on the fiber bundle for-
malism, see [Kobayashi and Nomizu, 1969], [Nakahara, 2003], [Bleecker, 2013],
[Weatherall, 2016], [Hamilton, 2017], and references therein.

Here we adopt the abstract index notion developed in [Wald, 1984] along
with the further notational conventions of [Weatherall, 2016]. Let (M, gab) be a
relativistic spacetime. Vectors and tensors tangent to M have lower-case Latin
indices a, b, c; vectors and tensors tangent to the total space P have lower-case
Greek indices; and upper-case Fraktur indices are used for vectors with a Lie
algebra structure.
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Let us first recast the conservation of electric charge in the fiber bundle formal-
ism before turning to the non-Abelian case. Fix a relativistic spacetime (M, gab)

and an U(1) principal bundle U(1) → P
℘→ M over M . We then define the

total current Jα on the total space of this principal bundle. Given a section
σ : M → P , we can pull back Jα along σ, resulting in a local representation Ja
on spacetime. The current Ja is conserved in the sense that it is divergence-free.

Because U(1) is Abelian, this resulting current Ja on spacetime is independent
of the choice of section, and thus the charge-current density in electromagnetism
is gauge-independent. While a current for a non-Abelian theory defined on the
total space of the bundle can still be pulled back along a choice of local section
to the base space, the resulting local representation of the current depends upon
the choice of section. Thus, for non-Abelian theories, the charge-current density
is a gauge-dependent quantity.

This gauge dependence poses the usual interpretive challenges concerning the
physical significance of a quantity that changes with arbitrary choices of gauge.
But prior to pulling back the current along a choice of section, one is struck
by a different interpretive challenge. In the case of non-Abelian gauge theories,
as we shall see presently, Noether’s conserved current is manifestly Lie algebra
valued. (In the Abelian case of electrodynamics, the current is also Lie algebra
valued, but this is easily overlooked since the Lie algebra of U(1) is simply R.)
We are accustomed to interpreting real valued quantities such as electric charge
and mass without needing to give any special attention to the structure of Lie
algebras. But in the non-Abelian case, our interpretation of the physical quantity
of charge must take into account Lie algebra structure.

Let us use the specific case of (a classical version of) chromodynamics to see
how Lie algebra structure arises for the charge current density. In chromodynam-
ics, the relevant symmetry group is SU(3), whose eight-dimensional Lie algebra
we denote as su(3). In addition to the index conventions set above, we further
specify for our purposes here that indices i, j, etc. will be used to label vectors
in the carrier space V of a representation of SU(3) used to construct an associ-
ated bundle. Using these conventions, fix a relativistic spacetime (M, gab) and an

SU(3) principal bundle P
℘→ M over M . In addition, fix a principal connection

ωA
α on P and an inner product kAB on su(3).
Since the charge-current density will take values in the Lie algebra, we give it

the appropriate index structure as JA
α. The definition of JA

α relies upon an inner
product kAB on su(3), as well as an inner product hij on the carrier space V of
the representation of G used to describe the relevant matter field. Fix a basis
{eA} of the Lie algebra su(3). Then, following [Bleecker, 2013] 5.1.2., the current
JA

α is given by

JA
α = kABeBhijψ̃

j
ω

Dαψ
i , (6)

where ψ̃j = ρ∗(eA) B ψj. That is, ψ̃j is the result of transforming ψj under the
representation ρ∗ of su(3) on V induced by the representation ρ of G on V (see
[Hamilton, 2017] 2.1.12.)

As in the case of electromagnetism, we can take the pull back of JA
α along a
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choice of local section σ to get the local current JA
a. Note, however, that unlike

in electromagnetism, the chromodynamic current gauge-dependent. Finally, JA
a

is divergence-free, and thus color charge is conserved. For more on Noether’s
theorem applied in non-Abelian gauge theories, especially issues concerning def-
initions for spacetime-region specific conservation laws, see [Gomes, 2022].

The definition of the current in eq. (6) suggests that, in general, the charge
quantities for charged matter fields that contribute to JA

α are Lie-algebra-valued.
This is prima facie surprising. In discussions of the conservation of color charge,
most textbook discussions proceed at the level of specific quark and anti-quark
color states, (r, b, g; r̄, b̄, ḡ). Often in conjunction with Feynman diagrams,
physicists speak of the conservation of color in terms of, separately, the conser-
vation of each of these kinds of color at each vertex in a diagram (see figure 1).
Since (r, b, g; r̄, b̄, ḡ) are not elements of su(3), this gives a very different way
of thinking of the conservation of color charge than the sense of conservation
given by Noether’s theorem.2 We might have reasonably expected that the ap-
plication of Noether’s theorem in chromodynamics would give us a clear sense
in which red, blue, and green are conserved. But instead Noether’s theorem tells
us that the conserved color current JA

α associated with the SU(3) symmetry is
eight-dimensional.

What, then, is the relationship between the eight-dimensional conserved cur-
rent JA

α and the three colors of red, blue, and green? How exactly do the corre-
sponind anti-colors, anti-red, anti-blue, and anti-green play a role in color charge
conservation? Answering these question is the central task of this paper. The
answer lies in understanding the relationship between, on the one hand, the the
role of the Lie algebra in the adjoint representation and, on the other hand, the
description of the basic colors (r, b, g; r̄, b̄, ḡ) in the two fundamental repre-
sentations of SU(3). What we find is a principled way of associating specific
combinations of color and anti-color states to Lie algebra elements. This is de-
veloped in section 4. But first, in the next section, we need to clearly set out
several moving pieces from the mathematics of group representation theory.

3 Representation Theory for SU(n)

Our target is to understand the relationship between the Lie algebra-valued
Noether charge JA

a on the one hand and the (anti)color properties of quarks
and anti-quarks, (r, b, g; r̄, b̄, ḡ), on the other. The key to understanding
this relationship lies in showing how three distinct irreducible representations of
SU(3) relate to each other. These three irreducible representations are the two
fundamental representations (used for quark and anti-quark color states) and
the adjoint representation (used for gluon color states). We will first show in
concrete detail how the adjoint representation of SU(3) may be built out of the
two fundamental representations, and then discuss the physical interpretation of
adjoint charge states afforded by this construction.

This section reviews well-known definitions and results from Lie group repre-
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Figure 1: “Some Feynman diagrams for the emission of multiple gluons
by a quark pair contrasted with corresponding leading colour diagrams.”
The flow lines in the lower diagram capture an intuitive notion of color
charge conservation. Quark color states are given by single lines, and gluon
states are given by double lines. Time-reverse flow corresponds to anti-color
states, yielding an interpretation of the double gluon lines as combinations
of color and anti-color. Conservation amounts to the rule that no color
line can be broken. For example, a quark in the r state may emit a rb̄
gluon, and thereby transform into a quark in the b state. From The Black
Book of Quantum Chromodynamics: A Primer for the LHC Era. (p. 30),
by John Campbell, Joey Huston, and Frank Krauss, 2017, Oxford: Oxford
University Press. Licensed under CC BY 4.0, a copy of which is available
at https://creativecommons.org/licenses/by/4.0/.
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sentation theory, which will prove to be key for understanding the interpretive
significance of the Lie algebra in the context of Noether’s theorem for non-Abelian
gauge theories. There is nothing new as far as group theory is concerned in this
section. However, the presentation here aims to be more thorough and math-
ematically precise than those given in most physics resources. Conversely, it
also aims to preserve normalization and choice of bases conventions common to
physics sources. The increased attention to mathematical precision serves here to
facilitate careful thinking about the intricacies and of the SU(3) color symmetry
that will inform our understanding of the Noether current JA

a. Readers familiar
with the details of Lie group representations may proceed to section 3.3.

3.1 Representations of SU(2) and spin

It is instructive to first review the standard application of the classification of
representations in the case of spin and SU(2). This case exemplifies the basic
framework for distinguishing between the representations themselves and inter-
pretation of the physical properties associated with various aspects of the rep-
resentations. Recall, for example, that spin-1

2
particles, transform according to

SU(2) doublets,

| ↑〉 = +
1

2
=

(
1
0

)
, | ↓〉 = −1

2
=

(
0
1

)
, (7)

whereas spin-1 particles, such as photons, are described by an SU(2) triplet of
states,

1 =

1
0
0

, 0 =

0
1
0

, − 1 =

0
0
1

. (8)

These sets of states transform according to two different representations of the
same group. While the group SU(2) is often defined as the group of 2×2 special
unitary matrices, thinking of the group this way is, strictly speaking, to already
think of it in a representation. Indeed, writing out basis elements of the group
as special unitary matrices of the relevant dimension is sometimes called the
“defining” representation of the group. We will proceed here instead by locating
the defining characterization of a group in its abstract commutation relations.
This clarifies the sense in which the 2 × 2 matrices which act on the states in
eq. (7) can implement the same symmetries as the 3 × 3 matrices which act on
the states in eq. (8), since both sets of matrices obey the group’s commutation
relations.

Furthermore, it is an artifact of SU(2) that no two inequivalent irreducible
representations are of equal dimension; this is what allows for the individuation
of representations with terms such as ‘doublet’ and ‘triplet’. This is no longer
the case is SU(3). In particular, the quark and anti-quark representations are
inequivalent, even though they are both triplets. Thus, it will be helpful from the
outset to draw a sharp distinction between the group itself—defined abstractly
by the commutation relations—and its myriad concrete representations.
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So far, this is enough to illustrate the two main ingredients of any (matrix)
representation of a group. The first ingredient is a vector space V (to be inter-
preted as a space of physical states). The second ingredient is an appropriate
mapping ρ : G → GL(V ) of the abstract group elements into matrices that act
on that vector space. The sense of “appropriate” mapping is that of a group ho-
momorphism: ρ(g1) ◦ ρ(g2) = ρ(g1 · g2). In this sense, the matrices represent the
group by concretely enacting the same commutation relations as those that de-
fine the group abstractly. The space V on which the represented group elements
act is called the carrier space.

The groups associated with charge properties are in the class of groups called
Lie groups. Lie groups have, in addition to their group structure, manifold struc-
ture. In particular, this means that we can construct a tangent space attached
to any group element g in G. When we take the tangent space at the identity
element, e, the resulting space TeG forms the Lie algebra associated to the Lie
group G.3

For any simply connected Lie group, such as the SU(n) groups, there is a
one-to-one correspondence between the group’s representations and the represen-
tations of its Lie algebra g (see [Hall, 2015] theorem 5.6). It is often convenient
to first work with the representations of the Lie algebra, and then move to the
corresponding group representation. A representation of a Lie algebra is defined
in parallel with a representation of a group. The representation is a mapping of
algebra elements into a set of endomorphisms on a carrier space V that preserves
the algebraic structure. Thus, a representation of a Lie algebra g on a vector
space V is a Lie algebra homomorphism ρ : g → gl(V ). Given a basis for the
carrier space V , we can write each algebra element under the representation as
a matrix. For su(n) these matrices representing Lie algebra elements are always
traceless and skew-Hermitian.

These Lie algebra elements are also called “generators” of the group. This
is because elements of the group are generated by exponentiation of the Lie
algebra elements. Indeed, one way of defining the Lie algebra of a Lie group is
that it consists of all matrices X such that etX is an element of the group, for
all real numbers t (see, for example, [Hall, 2015] §3.3).4 Using the Lie algebra
is convenient because, as the generators of the group, it gives an infinitesimal
description of the group. We will therefore focus attention on representations for
Lie algebras, keeping in mind that these have unique partner representations of
the group (for the SU(n) groups of present interest).

The Lie algebra su(2), just like the Lie group SU(2), has both a defining
representation as the set 2× 2 traceless hermitian matrices, and a more abstract
characterization. In the defining representation, su(2) is spanned by the Pauli
spin matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (9)

This is an arbitrary choice of basis for su(2). However, for any choice of basis,
only one such basis matrix can be diagonalized at a time. In any basis, the
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diagonalized matrix (here given by σ3) has a special role to play in distinguishing
representations of the group.

More abstractly, the key properties of su(2) as a Lie algebra are captured by
the commutation relations

[σi, σj] = 2iΣkε
k
ijσk (10)

where εijk is the totally anti-symmetric Levi-Civita tensor. The factors of 2iεijk
are called the structure constants of su(2). Any set of matrices that obeys these
commutation relations, together with a carrier space, can serve as a representa-
tion for su(2). For instance, in the triplet representation, the Pauli matrices may
be written as

ρ(σ1) =
√
2
2

0 1 0
1 0 1
0 1 0

 , ρ(σ2) =
√
2i
2

0 −1 0
1 0 −1
0 1 0

 , ρ(σ3) =

1 0 0
0 0 0
0 0 −1

 ,

(11)
and one may easily verify that these matrices obey the commutations relations
in eq. (10).

In this context, we develop the standard interpretation of SU(2) group struc-
ture for spin properties as follows. We first exploit the fact that SU(2) is the
double-cover of SO(3). SU(2) and SO(3) are therefore locally isomorphic. This
entails that their Lie algebras are isomorphic: su(2) ∼= so(3). This provides a
way to use the group SU(2) to describe the SO(3) rotational symmetry proper-
ties which may be aligned in either the x, y, or z directions. For spin properties
aligned in each of these three directions, we use eigenvectors of the Pauli matrices,

Jx =
1

2
σ1, Jy =

1

2
σ2, Jz =

1

2
σ3, (12)

where the factors of 1
2

are conventional. The operation of Jz on the doublet
states gives the conventional numerical values for labeling spin states: the z-spin
up state is label by +1

2
, and the z-spin down state is label by −1

2
. That is,

the eigenvalues of the diagonalized matrix in the chosen basis for the Lie algebra
serve as labels for distinct, specific states (z-spin up or z-spin down) of the general
property (spin-1

2
) under study. These eigenvalues of the diagonalized Lie algebra

element are called weights.
Finally, complex sums of the two non-diagonal operators are used to define

raising and lowering operators,

J+ = (Jx + iJy), J− = (Jx − iJy) (13)

The action of J+ on a z-spin down state raises it to a z-spin up state, and
similarly, the action of J− on a z-spin up state lowers it to a z-spin down state.

This generalized. Given a Lie algebra in the su(n) family, and given a basis for
su(n), the simultaneous eigenvalues of the diagonalized matrices serve as labels
for distinct, specific states instantiating the general property associated with the
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Figure 2: Weight diagram from SU(2). Diamond points indicate possible
states for fermions, whereas circle points give possible states for bosons.

symmetry group. In general, the number of diagonalizable matrices is greater
than 1, in which case the weights are ordered m-tuples, where m = n − 1. In
what follows, we will deploy the technical machinery of the weights of SU(3) to
develop the physical interpretation of color charge conservation.

Much of the physical interpretation of the su(2) representations can be usefully
summarized by diagramming the weights of the various spin states. We call such
a diagram a “weight diagram” as given in figure 2. Certain subsets of this diagram
(e.g. {−1

2
, 1
2
} or {−1, 0, 1}, etc.) correspond to possible spin states of various

classes of particles. The highest weight in such a set labels the corresponding
class of particles (e.g., spin 1

2
or spin 1 particles). In this case, the relevant

ordering on the weights is obvious. This will not be the case for the weights
of SU(3) where some choice of ordering must be made. Additionally, as noted
above, for SU(2) no two inequivalent irreducible representations have the same
dimension. It is therefore not misleading to use terminology such as “doublet”
and “triplet” to name distinct representations of SU(2), since the dimensionality
of an irreducible representation suffices to distinguish it from all other irreducible
representations. This, also, is not the case for SU(3).

The key lessons, which will launch our study of the relevant SU(3) representa-
tions for color charge, are as follows. Points in the weight space label distinct spin
states for particles of various kinds of spin. Different kinds of spin correspond to
different representations of the group, and each representation corresponds to a
subset of points in the weight space. The highest weight in each subset serves as a
label for the representation. Analogously, we will be able to construct the weight
diagram for SU(3) and use points in that diagram to label distinct color/anti-
color charge states. Different classes of particles with different constitutive ways
of having color charge—namely, quarks, anti-quarks, and gluons—correspond to
different representations of SU(3). These different representations are distin-
guished by their highest weight. The weight space of SU(3) will be an essential
tool for demonstrating the relationship between the quark, anti-quark, and gluon
representations of SU(3) and for explicating the conservation of color charge.
Unlike SU(2), the weight space for SU(3) is two dimensional.

3.2 The two fundamental representations of SU(3)

In its defining representation, elements of SU(3) are written as 3 × 3 special
unitary matrices. The associated defining representation of the Lie algebra su(3)
is given by the set of 3 × 3 traceless Hermitian matrices, spanned by the Gell-
Mann matrices:
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λ1 =

(
0 1 0
1 0 0
0 0 0

)
, λ2 =

(
0 −i 0
i 0 0
0 0 0

)
, λ3 =

(
1 0 0
0 −1 0
0 0 0

)
, λ4 =

(
0 0 1
0 0 0
1 0 0

)
,

λ5 =

(
0 0 −i
0 0 0
i 0 0

)
, λ6 =

(
0 0 0
0 0 1
0 1 0

)
, λ7 =

(
0 0 0
0 0 −i
0 i 0

)
, λ8 = 1√

3

(
1 0 0
0 1 0
0 0 −2

)
.

By convention, and in explicit analogy to Pauli spin matrices5, we adjust each
matrix, except for λ8 by a factor of 1

2
to redefine these Lie algebra elements as

Ti =
1

2
λi. (14)

For ease of reference later, this gives,

T3 = 1
2

1 0 0
0 −1 0
0 0 0

 , T8 = 1
2
√
3

1 0 0
0 1 0
0 0 −2

 . (15)

Just as before, by writing out these elements as explicit 3×3 matrices, we are
already thinking of the Lie algebra in a representation. More abstractly, su(3)
is spanned by any set of eight ordered elements Ta (a = 1, . . . , 8) that obey the
following commutation relations,

[Ta, Tb] = i
∑
c

f cabTc (16)

where the real numbers fabc are the structure constants of SU(3). They are the
generalization of εijk in eq. (10). The constants fabc are completely antisymmet-
ric. A minimal, defining number of non-zero constants are listed in equation 17.
The remaining non-zero constants can be determined by antisymmetry, and all
others are zero.

f123 = 1, f458 = f678 =
√
3
2
, f147 = f165 = f246 = f257 = f345 = f376 =

1

2
. (17)

The set of constants in eq. 17 is of course dependent upon the choice of basis
for su(3). Any set of n×n matrices, for any n, that obey these same commutation
relations, forms a basis for a representation su(3).

In this defining representation, these Gell-mann matrices can act upon a 3
dimensional carrier space. Basis vectors for this space are used to describe the
three basic quark colors, red, blue, and green.

r =

(
1
0
0

)
, b =

(
0
1
0

)
, g =

(
0
0
1

)
. (18)

These three basic color are roughly analogous to the properties of z-spin up and
z-spin down. The notion of z-spin appeals to the isomorphism between su(2) and
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su(3) to give an external, spacial z direction, whereas the color ‘space’ operative
here is internal. Color space—or at least, one of the internal color-valued spaces
deserving of the name—is eight-dimensional. A natural extension of the analogy
with spin would suggest that gluons can have determinate color values in two
dimensions simultaneously.

In the su(2) case, only one of the Pauli matrices can be diagonalized at a
time. But here in su(3), both T3 and T8 are diagonal. For any Lie algebra
in general, the subspace of simultaneously diagonalizable matrices is called the
Cartan subalgebra. The diagonal matrices T3 and T8 (and their counterparts in
other representations) that span su(3)’s Cartan subalgebra have the same special
role to play in classifying and distinguishing all of the irreducible representations
of SU(3) as did Jz in SU(2). Each basis vector of the carrier space of a given
representation ρ is labeled by the pair of its simultaneous eigenvalues (t3, t8) of
these diagonal matrices. A partial order is placed on these pairs of simultaneous
eigenvalues. Finally, the unique highest weight for each irreducible representation
according to this partial order distinguishes between inequivalent representations.

Returning, now, to this defining representation of SU(3), direct calculation
gives the weights for each state. We thus label the r color state by (1

2
, 1
2
√
3
), the

b color state by (−1
2
, 1
2
√
3
), and the green color state by (0,− 1√

3
). These are the

weights for the first fundamental representation of SU(3). They are plotted in
figure 3 (a).

Next, we need a way of determining the highest weight. In general, one first
designates a set of weights of the adjoint representation, called positive simple
roots, which can serve as a basis for all of the other weights, and these positive
simple roots are used to define a partial ordering on the space of weights (see
[Hall, 2015] §6.1 - 6.3). We will return to the determination of positive simple
roots below at eq. (25). In the meantime, we will accept by fiat the following
ordering: (1

2
, 1
2
√
3
) � (−1

2
, 1
2
√
3
) and (1

2
, 1
2
√
3
) � (0,− 1√

3
) . Thus the red state

has the highest weight, which will serve as a suitable label to distinguish this
representation for color states from other representations of SU(3). Thus, just
as we use the 1

2
representation of SU(2) for elementary fermionic spin states, we

use the (1
2
, 1
2
√
3
) representation of SU(3) for the quark color states.

In further analogy with the case of spin, we have at our disposal a notion
of raising and lowering operators that move states of a higher/lower weight to
states of a lower/higher weight. As with the Pauli spin matrices, these are given
by complex sums of the remaining non-Cartan matrices. But in this case we get
three pairs of raising and lowering operators:

T± = (T1 ± iT2), U± = (T6 ± iT7), V± = (T4 ± iT5). (19)

Each set of raising and lowering operators corresponds to an SU(2) subgroup
of SU(3). The T subgroup is spanned by T1, T2, and T3. The U subgroup is
spanned by T6, T7, and (T8 − T3). And the V subgroup is spanned by T4, T5,
and (T8 +T3). Explicitly, in the defining representation, the raising and lowering
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t8

t3

(a)

t8

t3

(b)

Figure 3: (a) Weight space for the quark color states given by a basis for the
carrier space of the first fundamental representation of SU(3). (b) Weight
space for the anti-color states of anti-quarks given by a basis for the carrier
space of the second fundamental representation of SU(3).

operators are:

T+ =

0 1 0
0 0 0
0 0 0

 , U+ =

0 0 0
0 0 1
0 0 0

 , V+ =

0 0 1
0 0 0
0 0 0

 ,

T− =

0 0 0
1 0 0
0 0 0

 , U− =

0 0 0
0 0 0
0 1 0

 , V− =

0 0 0
0 0 0
1 0 0

 .

One may easily verify that T± raises and lowers between r and b states, whereas
U± raises and lowers between b and g states, and V± raises and lowers between
g and r. There is an element of conventionality here. We chose an ordering on
the space of weights, such that r was the highest weight. Once that is fixed,
our choice of sorting operators into those that ‘raise’ and those that ‘lower’ are
constrained, in so far as the highest weight must be annihilated by all raising
operators.

For SU(3), this defining representation is not the only fundamental represen-
tation. In general for SU(n), there are 1− n many fundamental representations,
so called because all other irreducible representations of SU(n) may be system-
atically constructed from these fundamental representations. Thus, SU(3) has a
two fundamental representations. What we have been calling the defining repre-
sentation is one of them, and it is used for quark color charge states. The other
is used to describe the anti-color states of anti-quarks.6 This second fundamen-
tal representation of SU(3) is dual to the first. Thus, the carrier space for this
representation is C3∗, the dual space of C3. We select the following basis7 for C3∗

for the anti-colors states:

r̄ =

1
0
0

, b̄ = −

0
1
0

, ḡ =

0
0
1

. (20)

14



We further exploit the analogy with the colors of ordinary light using compli-
mentary hues to denote anti-colors: thus anti-red is red’s compliment, cyan, and
similarly anti-blue is yellow, and finally anti-green is magenta.

Next we need to define the action of su(3) elements on C3∗ to complete the
definition of this dual representation. This action is given by,

X = −ρ(X)tr (21)

for all X ∈ su(3), where ρ is the mapping for the first fundamental representation.
Consequently,

T 3 =
1

2

−1 0 0
0 1 0
0 0 0

 , T 8 =
1

2
√

3

−1 0 0
0 −1 0
0 0 2

 . (22)

The simultaneous eigenvalues of T3 and T8 give the weights for this second
fundamental representation. Each weight designates a different anti-color state.
These are plotted in 3 (b). Notice the way in which the weight diagram captures
a sense of a relation of ‘opposites’ between the color and anti-color states: they
differ by a minus sign in both their t3 and t8 entries.

In this second fundamental representation we again have instances of—or
better yet, ‘representatives’ of—the raising and lowering operators. Thus, for
example,

T− =

0 −1 0
0 0 0
0 0 0

 , U− =

0 0 0
0 0 −1
0 0 0

 , V − =

0 0 −1
0 0 0
0 0 0

 .

One may verify that T− lowers b̄ states into r̄ states, while U− lowers ḡ into b̄, and
V − lowers ḡ into−r̄. The partial ordering for these weights is (0, 1√

3
) � (1

2
,− 1

2
√
3
),

(0, 1√
3
) � (−1

2
,− 1

2
√
3
), and (1

2
,− 1

2
√
3
) � (−1

2
,− 1

2
√
3
). The weight (0, 1√

3
) of the ḡ

state is the highest weight of this representation.

3.3 Diagrammatic view of the SU(3) adjoint representa-
tion

So far we have distinguished between the two fundamental representations of
SU(3), and we have identified their carrier spaces with the spaces of color and
anti-color states of quarks and anti-quarks, respectively. We now turn to the
adjoint representation, recalling our aim of showing the relationship between this
adjoint representation (and the Noether charge which transforms according to it)
and the two fundamental representations.

As we have already seen, a key feature of a representation is its carrier space.
In general, the carrier space may be any vector space. The adjoint representation
uses the Lie algebra itself as its underlying carrier space. In this case, then,
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}
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(a)
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T+T−

V+U+

}

U−V−

T−

U−V−

(b)

Figure 4: Action of lowering operators in (a) first fundamental representa-
tion and (b) second fundamental representation.

the Lie algebra’s role becomes twofold: it is both the generators for the group
elements, and it is the carrier space on which those group elements act. For
su(3), the adjoint representation is therefore eight-dimensional.

To determine the weights of the adjoint representation, we need the simulta-
neous eigenvalues of the Cartan subalgebra. At this stage it is more convenient
to use the ordered basis T+, T−, T3, U+, U−, V+, V−, and T8, rather than the
Ti of eq. (14). The Cartan subalgebra of su(3) in the adjoint representation is
spanned by,

ρadj(T3) =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1

2
0 0 0 0

0 0 0 0 1
2

0 0 0
0 0 0 0 0 1

2
0 0

0 0 0 0 0 0 −1
2

0
0 0 0 0 0 0 0 0


(23)

ρadj(T8) =

√
3

2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0


.

Plotting their simultaneous eigenvalues gives the weights for the chosen basis of
the Lie algebra in its role as carrier space (the black dots in figures 4 and 5).
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rḡbḡ

}

gb̄gr̄
(b)

Figure 5: Color states in weight space of first fundamental representation
(red, blue, and green), the second fundamental representation (magenta,
yellow, and cyan), and of the adjoint representation (black) of SU(3).

We may now compare the weights for each of our three representations. For
ease of comparison the weights of the two fundamental representations are in-
cluded in figure 5. This diagrammatic comparison of weights among the three
representations is the first step in answering our question concerning the physi-
cal interpretation of the Noether current JA

a. The comparison shows that each
non-zero weight of the adjoint representation is the vector sum of a weight from
the first fundamental representation and a weight from the second fundamental
representation. This suggests an interpretation of each state of the adjoint rep-
resentation as precisely those combinations of color and anti-color given by the
appropriate vector sum. This is noted in figure 5 (b). For example, consider
the suggestion that the T− lowering operator should be identified with the br̄
state. This fits nicely with our Feynman diagram view of charge conservation
and the action of T− on quark and anti-quark sates. T− lowers r quarks into
b quarks by annihilating the r, and replacing it with b. And T− lowers b̄ anti-
quarks into r̄ anti-quarks by annihilating the b̄ and replacing it with r̄. In this
way, the actions of lowering operators noted in figure 4 supports the attributions
of color/anti-color combinations to adjoint representation states in figure 5.

While suggestive, this diagrammatic explanation of the relationship between
our three representations is insufficient in two ways. First, it needs to be clarified
how it is that these vector sums are not mere coincidence: why is it that adding
r with b̄ within the weight space results in an adjoint-representation state? We
need a more principled reason to identify elements of su(3) with combinations
of color and anti-color. Second, there are two weight (0, 0) states of the adjoint
representation whose interpretation is underdetermined by the diagram alone.
To remedy these two insufficiencies, we turn in the next section to the formal
construction of the adjoint representation out of the two fundamental represen-
tations.
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4 Construction of the Adjoint Representation

In the previous section, we saw that, after first determining the weights of the
adjoint representation of su(3), it turned out that these weights could be asso-
ciated with pairs of weights from the two fundamental representations. In this
section, we reverse directions. We start instead with pairs of states from the
two fundamental representations, and we ultimately arrive at a principled way
of identifying these pairs with elements of su(3). The process begins by building
a basis for the carrier space for the adjoint representation, and it then proceeds
by defining the action of the group on that space. Next, we identify the state of
highest weight. Finally, successive application of the lowering operators to this
state produces all the remaining states of the adjoint representation.

To build a basis for the carrier space for the adjoint representation, we start
with pairs of states from the two fundamental representations, understood as
elements of the space C3 ⊗ C3∗. This is a nine dimensional vector space, one
dimension too big. The group acts on this space by

ρadj(X) = X ⊗ I + I ⊗X, (24)

for all X in su(3). For example, ρadj(T−)(r ⊗ ḡ) = b⊗ ḡ.
It can be shown that, in a higher dimensional representation built out of lower

dimensional representations, the state of the higher dimensional representation
of the highest weight is that state built from the tensor product of the states of
highest weight from the lower dimensional representations (see [Hall, 2015] prop.
6.17). Thus, the state of highest weight in the adjoint representation is r ⊗ ḡ.
Successive application of the lowering operators to this r⊗ ḡ state produces each
of the other basis elements of the adjoint representation’s carrier space. It suffices
to consider just two lowering operators since [U−, T−] = V−.

We can summarize the results of this process in the diagram given in figure
6. To save space, we omit the tensor product symbol and simply write the states
as, e.g. rb̄. Arrows to the left indicate the action of U− on the previous state,
and arrows to the right indicate the action of T−. From the diagram, we see that
the resulting eight states are: rḡ, rb̄, bḡ, (bb̄+ rr̄), (gḡ+ bb̄), gb̄, br̄, and gr̄. Note
that the (rr̄ + bb̄+ gḡ) dimension of C3 ⊗ C3∗ is excluded.

At this stage we have eight linearly independent combinations of color and
anti-color identified with elements of C3 ⊗ C3∗. We now need a principled way
of associating each of these eight states with elements of su(3). More precisely,
we have a way of thinking of basis vectors for the carrier space of an eight-
dimensional representation of SU(3) as combinations of color and anti-color, but
it remains to be seen how these combinations can be associated with elements of
su(3) understood as operators on that space. So we next need to say more about
how su(3) can act on itself.

In general, a Lie-algebra acts on itself via the adjoint map: AdX(·) = [X, ·] for
all Lie-algebra elements X. This adjoint action corresponds to the foundational
commutation relations, such as eq. (10) for su(2) and eq. (16) for SU(3). These
commutations relations for su(3) are recorded in table 1. The next step is to
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rḡ

↙ ↘

rb̄ bḡ

↙ ↓ ↓ ↘

0 (bb̄+ rr̄) (gḡ + bb̄) 0

↙ ↓ ↓ ↘

gb̄ 2br̄ 2gb̄ br̄

↙ ↓ ↓ ↘ ↙ ↓ ↓ ↘

0 gr̄ 2gr̄ 0 2gr̄ gr̄ 0

↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘

0 0 0 0 0

Figure 6: Construction of the adjoint representation’s carrier space in
color/anti-color states. Arrows to the left indicate the action of U− on
the previous state, and arrows to the right indicate the action of T−

match the operator within our basis for su(3) with the highest weight to the
state of the highest weight, rḡ. To do so, we need to give the principled reason
behind our ordering on the space of weights.

We now introduce some additional terminology to explain how we arrive at an
ordering on the space of weights.8 We follow [Hall, 2015] closely. First, we call all
non-zero weights of the adjoint representation roots. These are recorded in table
2. The next step is to select two roots such that all of the roots can be expressed
as linear combinations thereof with, crucially, integer coefficients. Furthermore,
these coefficients are, for each root, either both greater than or equal to zero,
or both less than or equal to zero. We call these the simple positive roots. For
our purposes, we select the eigenvalues of T+ and U+ to be our simple positive
roots, and label these as α1 and α2. Some straightforward if tedious calculation
confirms that these satisfy the requirements for simple positive roots.

α1 = (1, 0) α2 = (−1
2
,
√
3
2

) (25)

We then define our ordering as follows. For any two weights µ1 and µ2, we say
that µ2 � µ1 provided that the following equation holds,

µ1 − µ2 = aα1 + bα2 (26)

with the coefficients a ≥ 0 and b ≥ 0. Given a collection of weights for a
specified representation, the highest weight is that which is higher than each of
the other weights. Further calculation confirms that V+ has the highest weight
of the adjoint representation. One may also apply the same calculation to the

19



T+ T− T3 U+ U− V+ V− T8

T+ 0 2T3 −T+ V+ 0 0 −U− 0

T− −2T3 0 T− 0 −V− U+ 0 0

T3 T+ −T− 0 −1
2
U+

1
2
U−

1
2
V+ −1

2
V− 0

U+ −V+ 0 1
2
U+ 0

√
3T8 − T3 0 T− −

√
3
2
U+

U− 0 V− −1
2
U− T3 −

√
3T8 0 −T+ 0

√
3
2
U−

V+ 0 −U+ −1
2
V+ 0 T+ 0 T3 +

√
3T8 −

√
3
2
V+

V− U− 0 1
2
V− −T− 0 −T3 −

√
3T8 0

√
3
2
V−

T8 0 0 0
√
3
2
U+ −

√
3
2
U+

√
3
2
V+ −

√
3
2
V− 0

Table 1: Commutation Relations for su(3) in the raising/lower-
ing basis. The label on the row give the first entry in commuta-
tor, and the column label gives the second entry. For example,
[T+, T−] = 2T3.

T+ T− U+ U− V+ V−

(1, 0) (−1, 0) (−1
2
,
√
3
2

) (1
2
,−
√
3
2

) (1
2
,
√
3
2

) (−1
2
,−
√
3
2

)

Table 2: Non-zero weights of su(3) basis elements. These are
called roots. We select T+ and U+ to be our simple positive
roots.
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V+

↙ ↘

−T+ U+

↙ ↓ ↓ ↘

0 2T3 (T3 −
√

3T8) 0

↙ ↓ ↓ ↘

−U− 2T− −2U− T−

↙ ↓ ↓ ↘ ↙ ↓ ↓ ↘

0 V− 2V− 0 2V− V− 0

↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘

0 0 0 0 0 0

Figure 7: Construction of the adjoint representation in operators.

weights of the fundamental representations to verify that the r and ḡ states are
the highest in their respective representations.

We have already seen that the state of the highest weight for the adjoint
representation is rb̄. Thus, the raising operator V+ corresponds to the rb̄ state in
the adjoint representation. Successive application of the lowering operators on V+
will produce the remaining states, as recorded in figure 7. Again, arrows to the
left indicate the action of ρadj(U−) on the previous state, and arrows to the right
indicate the action of ρadj(T−). For example, ρadj(U−)(V+) = [U−, V+] = −T+.
The resulting basis operators may then be assigned their color/anti-color content
by matching the diagram in figure 7 to the diagram in figure 6. Those results
are recoreded in table 3. Reassuringly, these calculations confirm the suggestive
interpretations of the weight space diagrams.

This suffices to address the first insufficiency in the diagrammatic interpre-
tation of the adjoint states given at the end of section 3.3. The second insuffi-
ciency is remedied with a simple calculation to associate a color-anticolor state
with T3 and T8 operators which each have weight (0, 0). Since we have that
2T3 = (bb̄ + rr̄) and (T3 −

√
3T8) = (gḡ + bb̄), we find that T3 = 1

2
(bb̄ + rr̄) and

T8 =
√
3
2

(rr̄ − bb̄− 2gḡ). Any element of the Cartan subalgebra will have weight
(0, 0), and so will be ‘white’ in that it has some combination of rr̄, bb̄, and gḡ.
But individual elements of the Cartan subalgebra can be distinguished from each
other by the specific amounts of rr̄, bb̄, and gḡ present in that state.
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Lowering Op. Color/Anti-color Raising Op. Color/Anti-color

T− br̄ T+ −rb̄
U− −gb̄ U+ bḡ
V− gr̄ V+ rḡ

Table 3: Physical interpretation of su(3) raising and lowering
operators

5 Noether’s Group Theoretic Ledger

Section 3 developed the mathematical machinery needed to interpret basis ele-
ments of the Lie algebra su(3) in terms of the interpretation given for the basis
elements of carrier spaces for the two fundamental representations of SU(3). The
construction of the adjoint representation in section 4 took the color basis ele-
ments tensored together with the anti-color basis elements. In this section, we
discuss how this construction explains the relationship between Noether’s color
charge current JA

a—which takes values in su(3)—and the properties (r, b, g; r̄,
b̄, ḡ) which we so readily think of as the color charges.

Contributions to JA
a are combinations of the three basic colors and their

anti-color counterparts. In this way, the conservation of color charge involves a
conceptually complex process of accounting for both color and anti-color—more
complex, that is, than the conservation of electric charge. To account for a
conserved amount of electric charge in some physical process, it suffices to simply
add the initial positive and negative charges and ensure that this is equivalent
to the sum of the final positive and negative charges. Positive electric charge
and negative electric charge take values within the same mathematical space; we
are always dealing with quantities in R. The accounting work of conservation
for electric charge is, therefore, no more sophisticated than arithmetic with real
numbers. In contrast, the analogous sense of ‘adding up’ color and anti-color
charge contributions to JA

a requires vector addition within the space C3 ⊗ C3∗.
That is, we needed to construct a new mathematical space specifically designed to
put color states together with anti-color states. Neither of the two fundamental
representations of SU(3) would suffice.

Notice the difference between the relevant mathematical structures for oppo-
site charges in the electric and color cases. In the electric case, the structure of
opposite charge is given by the opposite direction with the same vector space.
In the color charge case, the structure of opposite is that of matching one basis
element within a vector space to its dual basis element within the dual vector
space. The quantity r̄ ∈ C3∗ is not the same as −r ∈ C3.

Thus Noether’s theorem does not imply the conservation of the charge of
ordinary matter on its own. Rather, the conserved quantity is a union of charge
and anti-charge. This foundational role of anti-charge, in concert with ordinary
charge, is obscured in the case of electrodynamics. We can explicate this point
more fully by investigating the relevant group representation theory for electric
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charge. In this case, the group is the Abelian group U(1), which is the set of
numbers in the complex plane with unit modulus, eiθ for θ ∈ [0, 2π]. Its complex
irreducible representations are all of the form

ρn(eiθ) = einθ (27)

where n is an integer. The value of n labeling the representation gives the amount
of electric charge had by particles which transform according to that representa-
tion. Thus electrons transform in ρ−1, neutrinos in ρ0, positrons in ρ1, etc. This
labeling of the irreducible representations is the U(1) analog of the weights used
to distinguish representations in SU(n).

The ρ−n representation is dual to the ρn representation, just as the anti-quark
color representation of SU(3) is dual to the quark color representation. Thus, in
electrodynamics, the negative numbers correspond to anti-charge while positive
numbers correspond to ordinary charge. But this is the point in the analogy
between color charge and electric charge where the conceptual structures for
electric charge are a drastic simplification of those for color charge. There is
no analog of r, b, and g in the electric case. Each irreducible representation of
U(1) is one-dimensional, and so there is, literally, no space within a U(1) irrep
to capture different directions within electric charge space, in the way that r, b,
and g are different directions within matter field color space.

To account for a conserved amount of electric charge in some physical process,
it suffices to simply add the initial positive and negative charges and ensure that
this is equivalent to the sum of the final positive and negative charges. So in
electrodynamics, conservation of charge is also a law regarding a sort of union of
charge and anti-charge. And yet the nature of this union in the electric case is
far simpler than in the color case. For color charge, the union of colors with anti-
colors in the adjoint representation resulted in a novel eight-dimensional, internal
color space. For electric charge, the union of charge with anti-charge does not
generate a novel internal charge space. Although, in general, the addition of
electric charges results in a different irreducible representation of U(1) than the
representations used for the component charges, the internal charge space never
changes from C. Thus electric charge conservation needs no more than garden
variety arithmetic with real numbers.

6 Conclusion

We began with puzzle of how to make sense of the eight-dimensional Noether
color charge current given that there are three colors and three anti-colors. How
come the eight-dimensional su(3) is the right space for the accounting work of the
conservation of color charge? Why is Noether’s ledger Lie algebra valued? We
saw how to answer these questions through the explicit construction of the SU(3)
adjoint representation out of the two fundamental representations of SU(3). This
construction revealed principled ways to assign different specific combinations of
color and anti-color quantities to different states of the adjoint representation.
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Finally, the physical difference of electric charge and electric anti-charge, cap-
tured in the mathematical difference between positive and negative real numbers,
is far weaker than the physical difference of color charge and color anti-charge,
captured in the mathematical difference between the two fundamental represen-
tations of SU(3). Thus, Noether’s theorem in non-Abelian gauge theories reveals
that the general notion of charge conservation is not simply the conservation
of ordinary charge: rather, it is the conservation of a union of ordinary charge
and anti-charge. In general, ordinary charge and anti-charge quantities ‘live’
in different mathematical spaces. Thus, in order to accomplish the conceptual
accounting work of charge conservation, we generally need to construct a new
mathematical space specifically designed to put units of charge and anti-charge
together. The Lie algebra, as the carrier space for the adjoint representation, is
the natural mathematical home for the work of charge conservation. Noether’s
ledger is Lie algebra valued because conserved charge quantities are unions of
charge and anti-charge (and vice versa).

Notes
1These colors are related to the macroscopic colors of electromagnetic radiation only by way

of analogy: just as white light is a combination of all the different colors of light, so too are
certain ‘white’ states of neutral color charge a combination of ‘red,’ ‘green,’ and ‘blue’ color
states. These color charge states of quarks have no physical bearing on macroscopic color.

2The Feynman diagram version of color charge conservation is an important heuristic in
QCD calculations. But, as with other aspects of Feynman diagrams, it is best to be extremely
cautious against reading them as literal depictions of physical processes.

3There are alternative characterizations of the Lie algebra associated with a given Lie
group. The Lie algebra can also be defined as the space of left-invariant vector fields on
G, and it can be shown that this space is canonically isomorphic to TeG. See, for instance,
[Kobayashi and Nomizu, 1969] or [Hamilton, 2017].

4Many physics books use an alternative convention such that group elements correspond to
eitX for real numbers t.

5While this convention will be somewhat cumbersome in the calculations that follow, it is
standard throughout the relevant physics. In particular, this choice effects the normalization
of the QCD coupling gs, as well as the values for the two QCD Casimir operators and the
familiar form of the structure constants. We therefore accept the calculational burden, in order
to facilitate cross-referencing physics sources.

6Similarly, when we use SU(3) for the inexact flavor symmetry, we use one copy of the first
fundamental representation is use for up, down, and strange quarks; a second copy of the first
fundamental representation for the top, bottom, and charmed quarks; and two copies of the
second fundamental representation for the corresponding anti-quarks.

7We might usually use row vector instead in order to emphasize that the dual space of some
vector space V is the collection of linear forms on V . But in this context, we wish instead
to emphasize the vector space structure of C3∗ and its suitability as a carrier space for a new
representation of su(3). Column vectors are better suited to this purpose.

8These technicalities are more useful to the mathematician working in group theory than to
the physicist working in particle physics phenomenology. We devote space to it here because
it clarifies where our hitherto fiat ordering on the space of weights comes from. And for our
interpretive purposes, it is worthwhile to see why our raising and lowering operators, applied
to various color and anti-color matter states, are sensibly said to ‘raise’ or ‘lower’ in accordance
with this ordering.
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