
Draft version – accepted for PSA 2024 contributed paper proceedings 

 1 

Can Generative AI Produce Novel Evidence? 
 

Donal Khosrowi (Leibniz University Hannover)  
donal.khosrowi@philos.uni-hannover.de 

 
Finola Finn (University of Luxembourg, Leibniz University Hannover) 

finola.finn@uni.lu 

 
Abstract 

Researchers in archaeology explore the use of generative AI (GenAI) systems for 
reconstructing destroyed artifacts. This paper poses a novel question: can such 
GenAI systems generate evidence that provides new knowledge about the world 
or can they only produce hypotheses that we might seek evidence for? Exploring 
responses to this question, the paper argues that 1) GenAI outputs can at least be 
understood as higher-order evidence (Parker 2022) and 2) may also produce de 
novo synthetic evidence. 
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1 Introduction 
Artificial intelligence (AI) systems, including generative AI (GenAI), play ever larger roles 
across the sciences: they are used to make novel discoveries, e.g., of proteins, drugs, or 
materials (Jumper et al. 2021; Sourati and Evans 2023); to identify new concepts and 
equations in physics (Iten et al. 2020; Udrescu et al. 2020; Wu and Tegmark 2019); and to 
suggest new hypotheses, ideas, research questions or experiments (Krenn et al. 2023; 
Melnikov et al. 2018). These increasingly extensive roles played by AI put foundational 
concepts we use to understand and structure scientific pursuits under pressure (Löhr 2023; 
Hopster and Löhr 2023). For instance, what does it mean to be a scientific ‘discoverer’ (Clark 
and Khosrowi 2022)? Are AI systems like AlphaFold only ‘tools’ that humans use, or can they 
exhibit attributes such as ‘autonomy’ or scientific ‘understanding’ (Gonzalez Barman et al. 
2023) which we consider essential to the role of ‘discoverer’ or ‘researcher’?  
While use cases of AI in physics, chemistry and biology attract increasing attention by 
philosophers, there are also underexplored emerging uses of AI in the historical sciences (i.e. 
history, archaeology, anthropology), where researchers explore the use of GenAI for 
reconstructing partially destroyed manuscripts and artifacts (Navarro et al. 2022; 2023) and 
other tasks. Turning attention to these uses, this paper draws out a novel conceptual disruption 
regarding how we should understand the outputs of GenAI systems: can GenAI systems 
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generate evidence that provides genuinely new knowledge in the way that, say, finding new 
material evidence can? Or can they only produce hypotheses, which may give us reasons for 
pursuit, but ultimately are the kind of thing that we require evidence for? Call this the evidence 
question. Like other conceptual disruptions caused by AI, the evidence question does not have 
a straightforward answer and highlights substantial uncertainty around how we should apply 
the concept of ‘evidence’. The issues this raises are not merely terminological ones but have 
epistemic and methodological import for practicing researchers. Classifying an output as 
‘evidence’ rather than a ‘hypothesis’ confers information about it: existing norms may trigger 
different expectations, attitudes and actions as appropriate in relation to an output. 
Beyond putting the evidence question on the map, this paper also explores potential responses 
to it. We first consider related debates in the philosophy of computer simulation, where 
scholars such as Wendy Parker (2022) have elucidated whether simulation systems, such as 
those used in climate science, can provide (new) evidence for claims about the earth’s climate 
system. Drawing on this debate, we argue that GenAI systems can at least provide higher-
order evidence in Parker’s sense, i.e. evidence that other evidence for a claim about the world 
exists. We also explore a more ambitious argument, according to which GenAI systems can 
produce de novo synthetic evidence, which could be epistemically on par with traditional 
forms of evidence, such as material evidence or expert judgment. We suggest they do so by 
performing pattern recognition-type inferences to yield outputs that provide genuinely new 
knowledge to agents who lack the ability to make those same inferences.  
The discussion is organized as follows. Section 2 outlines the emerging use of GenAI in the 
historical sciences. Section 3 sharpens the evidence question. Section 4 explores debates in the 
philosophy of computer simulation and sketches the sequential arguments that GenAI can at 
least produce higher-order evidence, as well as, possibly, synthetic evidence. Section 5 
concretizes why we may take GenAI outputs seriously. Section 6 concludes.  
 

2 Generative AI in the Historical Sciences 
A central challenge for researchers in the historical sciences is that the ‘record’ of historical 
evidence, e.g. manuscripts or artifacts such as pottery, is eroded – both figuratively and 
literally. Not everything survives, and what does is often incomplete or broken. A standard 
activity in getting a handle on the past, e.g. to stratify archaeological sites, entertain larger 
inferences about chronology, locating or classifying ethnic groups, or inferring trade patterns, 
is hence to reconstruct what was from what remains. Reconstructing partially destroyed 
artifacts, e.g. to better determine relevant morphological or textural features, is currently often 
performed by hand, which is resource intensive, can further deteriorate remaining fragments, 
and cannot deal with fragments that are missing (Navarro et al. 2023). Dealing with such and 
similar challenges, there is a rich tradition in the historical sciences, especially in archaeology, 
to recruit techniques and technologies from adjacent fields (Wylie 2000), e.g. for sensing and 
scanning, or, in computational archaeology, involving machine-learning based technologies. 
For instance, Navarro et al. (2023) develop a GenAI system based on generative adversarial 
network (GAN; Goodfellow et al. 2014) called IberianVoxel, which reconstructs 3D-models 
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of broken Iberian pottery artifacts. GANs consist of a coupled generator and discriminator 
architecture – in Navarro et al.’s case, the generator produces 3D-voxel geometries and the 
discriminator ‘judges’ whether the geometries produced by the generator look like they were 
drawn from the data distribution of scanned real artifacts on which it is trained. After a period 
of adversarial training, the GAN is evaluated, including by surveying domain experts to assess 
reconstruction quality. The authors report that “[…] archaeologists judge that IberianVoxel 
generated a correct Iberian style from an initial fragment, and also consider that the 
reconstructed pottery is between Good and Very Good.” (2023, 5839) and conclude their 
system is “[…] very helpful for exploring and designing automatic procedures to aid experts 
with the pottery completion task” (ibid., 5833).  
Systems such as IberianVoxel are first steps on a likely trajectory towards more advanced 
systems permitting finer-grained inferences, especially as GenAI technologies become cheaper 
to train. Extrapolating along this trajectory, let us imagine a stylized toy case inspired by 
IberianVoxel to draw out the central question of this paper more clearly. Consider AlphaPot, 
an imagined GenAI system that has been trained on a very large dataset consisting of images 
and corresponding high-quality 3D-scans of a wide range of pottery artifacts in various states 
of decay. AlphaPot is trained to reconstruct masked/corrupted features of an input, e.g. parts of 
a 3D-mesh from a real scanned artifact that are intentionally corrupted (e.g. either by 
generating synthetic data based on real artifacts that simulate fragmentation or by physically 
breaking artifacts and then re-scanning them) and the system is forced to predict how the 
uncorrupted artifact would have looked like. Assume we are impressed with AlphaPot’s 
performance on held-out test data: it accurately reconstructs broken artifacts for which the 
ground truth geometry is known. Imagine now that we venture to provide a reconstruction R 
of a novel, partially destroyed artifact A, for which the ground truth is unknown. A is missing 
pieces that haven’t been recovered, but are believed to be essential to classifying A’s likely 
origin or function. R, let us assume, is a plausible looking, high-resolution 3D-mesh 
containing fine-grained morphological features that would significantly aid a domain expert 
(or, for that matter, another AI system) in telling when and where A originated. 

 
3 What’s Going on Here, Epistemically? 
The key disruption motivating this paper is now clearly in view: what’s going on here, 
epistemically? Has AlphaPot generated a hypothesis or made a prediction? Or has it generated 
evidence, providing experts with genuinely new knowledge about how A looked like when it 
was still intact? Understood as a mere hypothesis, R is the kind of thing that might give us 
reasons for pursuit, seeking further evidence to support that R is indeed what A looked like 
when it was still intact. By contrast, understood as evidence, R might already, by itself, entitle 
us to form novel, justified beliefs about A, or to make knowledge claims. 
In making progress on the evidence question, we need to agree on a benchmark first. A 
standard Bayesian conception of evidence requires only that a token of evidence E has the 
capacity to increase the posterior probability we assign to a hypothesis H (say, a claim about 
how A looked like when it was intact) relative to some background theory T (Bovens and 



Draft version – accepted for PSA 2024 contributed paper proceedings 

 4 

Hartmann 2003). It is easy to imagine that R has some such capacity, but that is not a very 
interesting insight. Other, functional conceptions of evidence articulate what role evidence 
plays. Here, we are sympathetic to accounts that consider evidence as always being 1) of 
something, 2) for something, and 3) to someone, relative to a theory of evidence (Hacking 
2006; Martini 2021). For instance, a freshly excavated artifact A is evidence of something, e.g. 
the fact that pottery of A’s kind was made, used or traded at site S; evidence for something, 
e.g. an inferred claim that pottery of A’s kind was produced in P but ended up at S through a 
trade route; and evidence to someone who has a theory of evidence T and relevant background 
knowledge K to tell what A can be evidence of and for. Beyond following such structured 
conceptions, the subsequent discussion will remain largely uncommitted to specific 
philosophical accounts of evidence. Instead, we find it more productive to consider evidential 
practices in the historical science and think about what existing benchmark types of evidence 
we could compare GenAI outputs to. What could such benchmarks be? It seems unhelpful, for 
instance, to think that observing A when it was still intact, or freshly made is a relevant 
benchmark for clarifying whether R is evidence for claims about A or wider inferences that 
draw on beliefs about A. Rather, the historical sciences have a distinct preference for primary, 
material sources, e.g. artifacts and manuscripts that are close (causally, spatially, temporally, 
by provenance) to the phenomena of interest. Relevant benchmarks to address the evidence 
question could hence be, for instance, a highly similar, intact artifact B found in the same 
stratum at the same site; pertinent text, illustrations or tools bearing on the likely 
morphological features of A; or expert judgment that joins up available background theory and 
knowledge together with primary material evidence of the aforementioned kinds in an 
inference. The evidence question is sharper now: could AlphaPot’s outputs be considered 
evidence comparable to these benchmarks, e.g. other, material evidence like B that could 
licence an analogical inference that ‘A would have probably looked like B when it was intact’; 
or expert judgment that joins various resources together to yield, say, a rendition or description 
of what A would look like, were it still intact? 
 

4 Yes, but What Kind of Evidence Is It? 
The answer that we want to explore here is: yes, GenAI systems like AlphaPot have the 
capacity to generate synthetic evidence that provides genuinely new knowledge about the 
world. What could an argument for such a thesis look like? A first pass could build on familiar 
successes of using AI systems for inferential tasks in science, like AlphaFold 2.0 (Jumper et 
al. 2021). Specifically, at training, these systems 1) latch onto information, especially high-
dimensional and distributed correlational information or patterns, in training data, and 2) learn 
a model, i.e. an abstract representational space encoding relevant features and a corresponding 
function 𝑓(∙) within that space, which maps inputs to outputs in a way that minimizes 
empirical risk (at least locally). At inference, given an input (e.g. a scan of a partially 
destroyed artifact), 3) such models generate outputs that yield accurate reconstructions of the 
input, as governed by 𝑓(∙). This kind of story would touch on guarantees in machine learning 
(e.g. Cybenko 1989) and statistical learning theory (e.g. Vapnik 2000; Bargagli Stoffi et al. 
2022) to explain notable successes of machine learning systems, e.g. in latching onto complex, 



Draft version – accepted for PSA 2024 contributed paper proceedings 

 5 

subtle, and distributed patterns that escape human attention, such as in skin cancer 
classification or protein structure prediction (Jumper et al. 2021), or in successfully learning 
novel high-dimensional representations (e.g. word or image embeddings) that can be used for 
text and image synthesis, as demonstrated by GenAI systems like ChatGPT or StableDiffusion 
(Rombach et al. 2022). 
This story, while somewhat compelling, is still too simple, however. Here, we focus on 
concerns arising from related debates in the philosophy of scientific models and computer 
simulation. In this space, philosophers have tried to understand whether models and 
simulations can provide genuinely new knowledge about the world and, if so, how (e.g. Parker 
2022; Beisbart 2012). In a nutshell, sceptics about the epistemological significance of models 
and simulations point out that these tools only help us recognize the consequences of 
knowledge that we already possess, e.g. assumptions (e.g. equations) and initial conditions 
(e.g. measurements, parameterizations). These consequences can at most be evidence in the 
sense that they provide new information to agents who are not able to, or simply did not, 
derive those same consequences given the same assumptions and initial conditions. But they 
would not be evidence to a more ideal agent who would already recognize these consequences 
under some form of inferential closure. So, while observation and experimentation allow us to 
gather new experience (Beisbart 2012, 245), models and simulations don’t add anything new 
to the table; though they do help limited epistemic agents better see what’s already on the 
table.  
What does this mean for the evidence question? Parker summarizes the consequences of the 
sceptical view on computer simulation as follows: “If computer simulation is at bottom an 
attempt to calculate the implications of a set of modelling assumptions, then simulation results 
[…] seem to be predictions rather than evidence; they are the kind of thing we might seek 
evidence for […].” (Parker 2022, 1522; emphasis added) On such a view, the outputs of 
GenAI systems like AlphaPot are predictions, or, more generally, hypotheses. They might 
alert us to possibilities for how an artifact may have looked like, and may give us reasons for 
pursuing these hypotheses by means of bringing evidence to bear on them; but they are not to 
be taken as evidence that already, by itself, licenses knowledge claims or underwrites 
downstream inferences, such as about trade taking place between different communities. 
Filling the space between more extreme views that either consider simulation results evidence, 
or deny that they can ever be, Parker offers a finer-grained view to characterize what 
simulations provide to agents. Specifically, Parker argues that simulation outputs can be 
higher-order evidence: they can be evidence E that other evidence E’ for a hypothesis H 
exists. Specifically, such higher-order evidence can help agents obtain genuinely new 
knowledge of the world if they 1) either don’t have access to E’, or else, 2) lack the 
background knowledge needed to understand how E’ bears on H. So, while simulations “[…] 
do not provide information about the world that goes beyond that which is already implicit in 
their assumptions, particular epistemic agents—including even scientists and engineers using 
simulation models—might still gain genuinely new knowledge of the world via simulation.” 
(Parker 2022, 1522) 
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Parker’s view offers a useful backstop for thinking about GenAI outputs. At the very least, 
they seem able to figure as higher-order evidence. A 3D reconstruction of a broken artifact A 
from a suitably validated system like AlphaPot provides new knowledge about specific 
artifacts to agents who either don’t have access to the training data1 E’ that bear on the 
reconstructive query about A, or else lack the background knowledge to understand how E’ 
bears on questions about A. This is a useful insight already, but it also seems interesting to 
explore whether GenAI systems could ever provide more than ‘just’ higher-order evidence. 
 

4.1 More Than Higher-Order? 
What might GenAI systems be doing, or capable of, that goes beyond what simulation systems 
do? A central difference seems to be that GenAI systems can exhibit higher degrees of 
independence, which allows them to perform computations that instantiate inferences of a kind 
that simulation systems don’t instantiate. Specifically, simulation systems in the climate 
sciences are built based on highly concrete antecedent understanding of the physics equations 
describing aspects of the earth’s climate system (background knowledge), are parameterized 
according to our best understanding of key parameters and known/understood aspects of the 
phenomena involved, and are calibrated using data regarding the earth’s climate system. 
Together, these inputs substantially constrain the behaviors of simulating systems. 
GenAI systems exhibit comparatively higher independence because they are not as tightly 
constrained. There are no accepted equations that describe, say, the ‘grammar’ of Iberian 
pottery. Nor, for lack of such equations, are there measurements that a GenAI system is 
parameterized with. In short, there is no developed body of background knowledge that goes 
into building GenAI systems (at least in unsupervised/self-supervised regimes), nor would our 
existing background knowledge permit building systems in a way that mirrors the strategies 
behind building climate simulation systems. Rather, the very purpose of machine learning 
approaches to problems such as those faced in reconstructing artifacts is often to extract 
pertinent background knowledge from data, e.g. to find a function	𝑓(∙)	that usefully captures a 
joint distribution and can be used to perform successful inferences. For this enterprise to be 
successful, GenAI systems must exhibit considerable degrees of freedom to ‘settle’ on 
representational spaces, representations, and input-output relationships that are 1) predictively 
useful, 2) not up to human agents to identify, and 3) possibly inaccessible to humans by other 
means (e.g. visual inspection) and 4) novel to humans. GenAI systems hence harbor the 
capacity for a special kind of novelty in their outputs. Unlike simulation systems, they can 
generate synthetic evidence, i.e. evidence E that is not only psychologically novel to agents 
who lack other evidence E’ or background knowledge K, but is novel to agents who do not 
possess the same inferential abilities to extract pertinent knowledge K (e.g. of 𝑓(∙)) from the 
same training data. Such abilities are different from computational abilities to derive 
implications of equations and initial conditions. They are more akin to the ability to 

 
1 In particular, they might lack access to the information contained in that data, e.g. regularities about the 
‘grammar’ of Iberian pottery. 
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‘recognize’ that such-and-such is a good way to represent or compress data, or that such-and-
such is a successful (i.e. error-minimizing) way to ‘fill in the blanks’ of a reconstructive query. 
On the narrative presented here, GenAI systems bring inferential abilities to the table that 
simulation systems don’t. But why should this lead us to conclude that they can generate 
evidence that provides genuinely new knowledge to agents? Couldn’t, or shouldn’t, we still 
maintain that the relevant information with bearing on reconstructive queries ‘resides in’ the 
training data that GenAI systems are trained on?2 This would bring us back to understanding 
GenAI systems as, at most, providing higher-order evidence in Parker’s sense and conclude 
that no evidence that is novel over and above whatever is contained in these data is generated. 
A good way to explore how GenAI systems can provide novelty beyond higher-order evidence 
is to think about patterns. A standard success narrative of machine-learning based inference 
alluded to above is centrally tied to the ability to identify patterns, including subtle and 
distributed ones, and exploit them for inference. But what is a pattern, anyway? This is just 
another conceptual disruption that ML systems press us to confront with greater care. Here, it 
is useful to distinguish two general types of views we can take on patterns: ontic views and 
epistemic views. On the first, a pattern is constituted by a collection of material facts about the 
world that may be distributed across entities. A pattern, on this view, is always ‘there’, even 
without a mind to recognize and exploit it for inference. We are not aware of work defending 
such a view. On an epistemic view (cf. Dennett 1991; McAllister 2010), patterns come into 
existence only through an epistemic agent that recovers it, including, say, by devising an 
ontology of entities and features ranging over a domain (e.g. pots, fractures, materials, 
textures), making efforts to describe and represent these entities and features within that 
domain in an abstract way (e.g. material or shape types), and exploring how these 
representations hang together, e.g. causally or probabilistically, at that abstract 
representational level. On such a view, a pattern is instantiated by, refers to, and supervenes 
on, concrete material things, but ultimately resides at an abstract representational level. If we 
find such an epistemic view compelling, then this allows that GenAI systems, like other 
epistemic agents, can perform inferential activities that bring patterns into existence.3 It is this 
ability, which sets GenAI systems apart from simulating systems in that they produce an 
output, based on the ability to infer patterns from data, that is novel to an agent who does not 
possess similar inferential abilities. 
 

5 Strictures on Synthetic Evidence 
We now have a sketch of an argument for the claim that GenAI systems like AlphaPot may 
produce synthetic evidence, i.e. evidence E that provides genuinely new knowledge about the 

 
2 This concern also flags a version of the problem of old evidence for Bayesian confirmation theory; see e.g. 
Sprenger (2015) for a discussion. 
3 Of course, we must be careful here in navigating a conceptual landscape rich in anthropomorphic pitfalls. Terms 
like ‘recognizing’, ‘using’, and so on, must not be taken to suggest that GenAI systems literally have mental 
states or cognitive abilities often associated with these terms. 
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world to agents who do not possess the same inferential abilities to recover E from primary 
evidence E’ as the system that produced E. But when can we expect GenAI systems to 
produce good synthetic evidence? As researchers are exploring use-cases of LLMs in history 
(Hutson et al. 2024), for instance to ‘ventriloquize’ the voices of the past through LLMs 
trained and/or fine-tuned on historical text corpora to enable researchers to ‘query’ past 
societies or individuals, there is a real risk of low-cost bogus AI-driven science. Here, we 
outline some potential virtues that GenAI systems may exhibit, if designed and deployed 
responsibly. These virtues help better understand the conditions under which we may 
reasonably hope these systems to make valuable epistemic contributions. 

1) Comprehensiveness: GenAI systems are good at processing and ‘drawing’ on large 
amounts of rich data, which is relevant when patterns are distributed across large 
numbers of entities and different data modalities. 

2) Sensitivity: ML systems are known to usefully latch onto subtle, distributed patterns, 
especially in quantitative data, that are often not accessible to human perception.  

3) Probabilism: ML-based inference is probabilistic. Outputs are sampled from a whole 
modeled joint distribution. This often means that other possibilities for an output are 
not discarded by a system, but remain, or can be made, available to investigators.  

4) Mechanicity: outputs are often (near-) repeatable from the same inputs, and so GenAI 
systems can be subjected to systematic intervention, allowing investigators to 
understand how outputs depend on inputs. For instance, they may upsample rare input 
types (e.g., by using synthetic training data to induce more variation regarding specific 
artefact types) and gauge whether outputs change for specific query types. 

5) Theory-freedom/-agnosticism: especially in unsupervised or self-supervised learning 
regimes, GenAI systems organize data somewhat independently of existing theory, 
working against unhelpful forms of theory-ladenness of observation. 

6) Complexity: universal function approximation theorems (e.g. Cybenko 1989) and 
statistical learning theory (Vapnik 2000; Bargagli Stoffi et al. 2022) provide 
(probabilistic) guarantees for specific system-types to successfully approximate 
arbitrarily complex input-output relationships under suitable conditions. This is 
important as there are no good reasons to believe that, say, the ‘grammar’ of, say, 
Iberian pottery, i.e. the ‘rules’ that govern the joint distribution of morphological 
features of Iberian pottery artifacts, is easily captured by simple, human-expressible 
functions. 

7) Granularity: GenAI systems perform inference at multiple levels, including at fine-
grained pixel- or voxel levels that may not be salient to human investigators. Such 
systems are hence not as susceptible as humans to latch exclusively onto patterns or 
analogies obtaining at higher, more salient levels of analysis, e.g. inferring that artifact 
A probably had inscription S because, B, C, D, who look morphologically similar, do. 

Of course, specific GenAI systems are not guaranteed to exhibit any of these virtues to 
significant degrees; only well-engineered systems may. Moreover, many of the candidate 
virtues outlined here can turn into vices if the properties they track are expressed too strongly 
– think of theory-freedom or comprehensiveness that could lead a system to consider 
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irrelevant or misleading information when there are good theoretical reasons not to. Spelling 
out a contextualist virtue epistemology for GenAI systems in science is arguably a larger 
project that will require more space, which is why the virtues sketched here should only 
provide some early inspiration rather than a sketch of a full-fledged account of what GenAI 
systems may bring to the table. That said, it seems promising to explore such an account in 
articulating answers to the evidence question. 

 
6 Conclusions 
This paper puts an important new question about the role of generative AI (GenAI) systems in 
the sciences on the map. The evidence question asks: can GenAI systems generate evidence 
that provides agents, including experts, with genuinely new knowledge about the world? 
Focusing on the historical sciences, where researchers explore the use of GenAI systems to 
reconstruct partially destroyed manuscripts and artifacts to learn about the past, we argued that 
it is currently unclear whether we should understand the outputs produced by these systems as 
mere hypotheses or as evidence, where the former may give researchers reasons for pursuit 
and seeking out further evidence, and the latter may already licence knowledge claims about 
the world and figure directly in underwriting further inferences. Given this conceptual and 
practical uncertainty, we sketched how we may understand GenAI outputs as synthetic 
evidence, i.e. evidence that can provide agents, including experts, with genuinely new 
knowledge about the world. In a nutshell, compared to even our most sophisticated simulating 
systems, such as those used in climate science, GenAI systems do not merely compute the 
consequences of a conjunction of background knowledge and existing evidence, but acquire 
and deploy inferential abilities to produce outputs that are evidence to agents who lack those 
same inferential abilities, which may include even our best domain experts. The scope of this 
argument sketch is narrow: it applies, for now, only to the emerging uses of GenAI in the 
historical sciences discussed here. But zooming out, the evidence question may also extend to 
a range of other domains that explore the utility of GenAI for advanced inferential tasks (e.g. 
drug and materials discovery). For philosophers of science this is good news, inviting us to 
help characterize and resolve the methodological disruptions affecting emerging scientific 
practices and contribute to development of sound methodologies involving GenAI. 
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