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Del Santo and Gisin have recently argued that classical mechanics exhibits a form
of indeterminacy and that by treating the observables of classical mechanics with
real number precision we introduce hidden variables that restore determinacy. In
this article we introduce the conceptual machinery required to critically evaluate
these claims. We present a characterization of indeterminacy which can capture
both quantum indeterminacy and the classical indeterminacy of Del Santo and
Gisin. This allows us to show that there is an important difference in kind between
the two: their classical indeterminacy can be resolved with hidden variables in a
manner which is not possible for quantum indeterminacy.

1. Introduction. Determinacy is a kinematic feature of the states that a phys-
ical theory associates with systems at an instant. Classical mechanics provides the
hallmark of a theory in which all observables are fully determinate at all times.
The determinacy consists in the fact that the observables of classical mechanics
all take on values which are specified with real number precision. There is no
more precise kinematically allowed way for the states to be, and hence, by ascrib-
ing a real number to the observables, one makes the states of affairs described
by the theory fully determinate. Determinism is a dynamical feature of the col-
lections of states that a physical theory associates with systems over the course
of their histories. If we set aside a class of models which is typically regarded
as exceptional,1 classical mechanics also provides the paradigmatic example of a
deterministic theory. The determinism of classical mechanics consists in the fact
that when we specify an initial condition with real number precision, we uniquely
fix the exact values of every observable with real number precision for all subse-
quent times. In this way, the determinism of classical mechanics is connected to
its full determinacy.

In quantum mechanics the status of determinacy and determinism becomes
fraught. Whether or not determinacy and determinism obtain depends on which
interpretation of the theory one adopts and whether or not that interpretation
postulates hidden variables or wavefunction collapse. Without hidden variables,
the theory exhibits indeterminacy with respect to at least some of its observables.
It is only if we adopt a hidden variable theory that the determinacy of all observ-
ables is restored. Without departure from the time evolution generated by the
Schrödinger equation, the theory exhibits determinism. However, if we introduce
some form of wavefunction collapse to resolve the quantum measurement problem,
the theory exhibits indeterminism.

1E.g. Norton’s dome (Norton 2003).

-1-



So, standardly understood, classical mechanics exhibits determinacy and de-
terminism, but in quantum mechanics these features are interpretation-dependent.
In a series of recent papers, Del Santo and Gisin have raised a number of doubts
about this orthodoxy.2 On their view, an appropriately formulated classical me-
chanics would exhibit indeterminism, and this indeterminism arises due to a failure
of determinacy. They argue on multiple distinct grounds that physical quantities
can only contain a finite amount of information. However, all but a special class of
real numbers contain infinite information. A classical failure of determinacy must
result, they suggest, because there fail to be physical facts about the observables
of classical mechanics with full real number precision. By treating such observ-
ables with real number precision in classical mechanics we are adopting a hidden
variable model that restores determinacy, and as a consequence, determinism.
They argue, moreover, that once we attend to the presence of this classical inde-
terminacy, we can see that classical mechanics exhibits an analog of the quantum
mechanical measurement problem.

We expect that this package of claims will be met by incredulous stares from
some quarters. It would be a mistake, however, to reject their view out of hand as
it raises several important matters of principle. In order to properly evaluate their
claims, a theory-independent characterization of indeterminacy is required. We
employ a characterization of metaphysical indeterminacy in terms of determinable
and determinate properties due to Wilson3 to capture what it means for a physical
quantity to exhibit indeterminacy. Then, building on a proposal due to Calosi
and Wilson,4 we show that quantum indeterminacy is an instance of this form of
metaphysical indeterminacy, and that a properly reformulated version of Del Santo
and Gisin’s classical indeterminacy is as well. Pursuing this approach allows us to
retain the standard mathematical expression of classical and quantum mechanics
while still faithfully capturing the kind of indeterminacy at issue in Del Santo and
Gisin’s view.

Once the nature of the metaphysical indeterminacy at issue is made precise, it
becomes clear that the classical indeterminacy of Del Santo and Gisin is different in
kind from the indeterminacy arising in quantum theory. While both are instances
of Wilson’s conception of metaphysical indeterminacy, classical indeterminacy can
be consistently rendered fully determinate whereas quantum indeterminacy can-
not. This observation problematizes their claim that real numbers are hidden
variables for classical mechanics in direct analogy with hidden variable models
of quantum mechanics. Nonetheless, critical engagment with their view yields a
better understanding of the relationship between the concepts of precision, deter-
minacy, and hidden variables.

2(Del Santo and Gisin 2019; Gisin 2020, 2021a, 2021b; Del Santo 2021; Del Santo and Gisin
2021, 2022, 2023) .

3(Wilson 2012, 2013, 2017)
4(Calosi and Wilson 2019; Calosi and Mariani 2020; Calosi 2021; Calosi and Mariani 2021; Calosi
and Wilson 2021; Calosi 2022; Calosi and Wilson 2022)
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2. Classical Indeterminacy. The package of claims that Del Santo and Gisin
defend which which we aim to evaluate is as follows5:

Classical Indeterminacy: Classical physical systems exhibit inde-
terminacy. This indeterminacy involves observable physical quantities
about which there are facts of the matter up to some level of precision
in their decimal expansion, but about which there fail to be facts of
the matter for all subsequent digits.

Classical Indeterminism: This classical indeterminacy is responsi-
ble for making the dynamical evolution of classical physical systems
indeterministic. A classical observable which is indeterminate beyond
some level of precision has propensities for its indeterminate digits
to become determinate as the state dynamically evolves in time. As
these propensities together with the determined digits at a time do
not uniquely fix the value at future times, the classical indeterminacy
leads to indeterminism.

Real Number Hidden Variables: The standard mathematical for-
malism for classical mechanics represents observables with real number
precision. These real numbers function as hidden variables which give
a fully determinate representation of the indeterminate classical sys-
tems. This fully determinate theoretical description is dynamically
deterministic.

Classical Measurement Problem: If the indeterminacy of classi-
cal physical systems is properly accounted for in our theoretical rep-
resentation of those systems, the resulting theory exhibits a classical
analog of the quantum measurement problem. In particular, if one
measures an indeterminate classical observable with greater precision
than the determinacy of that observable at the time of measurement,
in order to obtain a determinate outcome, some of the digits which
were indeterminate pre-measurement must become determinate post-
measurement. That is, the measurement process induces more deter-
minacy in the value of the measured observable than was present be-
fore the measurement. In this sense, indeterminate classical mechanics
exhibits an analogue of the quantum measurement problem.

Evaluating this package of claims is complicated by the fact that while in-
determinism has a well-regimented theory-independent meaning, indeterminacy,
hidden variables, and the measurement problem are concepts arising from dis-
cussions of quantum mechanics and it is not immediately obvious what they are
supposed to mean outside of that context. The notion of indeterminacy as it arises
in quantum mechanics is typically glossed as the failure of a system to have a “de-
terminate” or “definite” or “well-defined” or “fully precise” value of an observable.

5(Del Santo and Gisin 2019; Gisin 2020, 2021a, 2021b; Del Santo 2021; Del Santo and Gisin
2021, 2022, 2023)
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This kind of talk is regimented by appeal to the eigenstate-eigenvalue link which
holds that a system has a determinate value of an observable just in case the state
is an eigenstate of the operator representing that observable, and fails to have a
determinate value of that observable otherwise. This sharpening of the concept
of indeterminacy leans on the Hilbert space formalism of quantum mechanics in
a manner that cannot be directly exported to other theoretical contexts. The
situation is similar for the concept of hidden variables and for the measurement
problem as both are bound up with what we mean by quantum indeterminacy.

Del Santo and Gisin rely on an intuitive generalization of the concept of inde-
terminacy. For them, an observable exhibits indeterminacy just in case there fail to
be physical facts of the matter concerning its value after a given level of precision in
its decimal expansion. For example, consider the position of a structureless parti-
cle as it moves in one spatial dimension, Γ. The kinematically allowed values of Γ,
denoted γ, are represented as decimal expansions γ = γ1γ2 . . . γm.γm+1 . . . γi . . .,
with the first m digits occuring before the decimal point. A state of affairs involv-
ing such a particle would be fully determinate if there was a fact of the matter
concerning the value of γi for all i. Del Santo and Gisin introduce indeterminacy
by stipulating that at time t, only the values of the first N(t) digits are determi-
nate and that there is no fact of the matter concerning the value of γi for i > N(t).
That N is a function of t reflects the fact that on their view, the digits of γ beyond
this place in the expansion are subject to propensities to become determinate as
a consequence of the dynamics.

It is important to note that when Del Santo and Gisin suggest that there is
no fact of the matter concerning the position of the particle beyond some level
of precision, they are not suggesting that the possible values of Γ are rational
numbers. The rationals are a subset of the reals, so taking a rational value would
still amount to full determinacy. A decimal expansion with a cutoff only corre-
sponds to a rational number if one supposes that after the finite initial segment
of specified digits, all subsequent digits are zero. But Del Santo and Gisin are
explicit that there is no matter of fact about the digits after γN(t): they are all
indeterminate. According to their view, what follows γN(t) is a finite sequence
of propensities that determine how likely it is that subsequent positions in the
series will take on particular values at a later time under the action of the dy-
namics. In order to ensure that the entire decimal expansion for γ only contains
finite information, they further stipulate that following the propensities there is
an infinite tail of digits each of which takes on the value denoted by the symbol
“?”. This value is supposed to indicate that not only does γ fail to take on a
particular value to those levels of precision, but there is not even a non-trivial
propensity which might bias the value those digits will take on when they become
determinate under the action of the dynamics.

This proposed structure for the values of γ successfully secures the finiteness of
their information content, and it avoids collapsing into full determinacy. Achiev-
ing these desiderata comes at a substantial cost, however. Our first worry is that
while it is clear what role each component of the values are supposed to play,
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and there is an intuitive sense in which this expresses a way in which a quantity
could exhibit indeterminacy, it is not at all clear that the resulting objects will
in fact be numbers in any standard mathematical sense.6 This leads naturally to
our second worry, which concerns how the values of γ interface with the dynamics
of the theory. Dynamical evolution acts uniformly on the full structure of the
object that one enters as input: standard approaches to dynamics do not treat
some part of the input one way and other parts of the input in a different way.
But Del Santo and Gisin seem to need a notion of dynamics which can do pre-
cisely that. Moreover, the validity of their claims about the existence of classical
indeterminism and a classical analog of the measurement problem will hinge on
how precisely one goes about filling in the dynamics. While we think that there
are options available to advocates of Del Santo and Gisin’s approach to address
these worries, these difficulties might instead be interpreted as an indication that
we should reconceptualize how indeterminacy is represented in physical theories.
In the next section we show that in quantum mechanics, indeterminacy consists
of a pattern in the properties instantiated in a given quantum system.

3. Quantum Indeterminacy. On a view due to Wilson, metaphysical inde-
terminacy consists in the patterns of instantiation of determinable properties and
their determinates in a given state of affairs.7 In particular, a state of affairs is
metaphysically indeterminate if some determinable property is instantiated but no
unique determinate of that determinable is instantiated. Calosi and Wilson have
argued that Wilson’s determinables-based view of metaphysical indeterminacy
naturally captures the phenomenon of quantum indeterminacy.8 Here we show
how to generalize their view in a manner which can be applied in the context of
classical physics as well.

Capturing quantum indeterminacy using Wilson’s account of metaphysical in-
determinacy requires specifying the determinables and determinates appropriate
for quantum systems and the conditions under which they are instantiated. The
determinable properties of quantum theory are represented by Hermitian opera-
tors on Hilbert spaces and the determinates of these determinables are just their
eigenvalues. This suffices to specify the relevant classes of determinables and de-
terminates. One must also specify when a quantum system in a particular state
instantiates those determinables and determinates. On our view, a quantum sys-
tem in state |ψ⟩ ∈ H instantiates the determinable property represented by the
Hermitian operator Ô just in case Ô is defined on H, and that system instantiates
the determinate property represented by the Ô-eigenvalue λ just in case |ψ⟩ is
an eigenstate of Ô with eigenvalue λ. A state of affairs consisting of a quantum
system in the state |ψ⟩ ∈ H is then metaphysically indeterminate just in case
there is some observable Ô defined on H of which |ψ⟩ is not an eigenstate. This

6For an initial effort to make mathematical sense of these objects, see (van der Lugt 2021).
7(Wilson 2012, 2013, 2017)
8(Calosi and Wilson 2019; Calosi and Mariani 2020, 2021; Calosi 2021; Calosi and Wilson 2021,
2022; Calosi 2022)
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captures the conditions under which a quantum system instantiates one of its
determinables but no determinate of that determinable, and hence is the natural
application of Wilson’s view of indeterminacy to quantum mechanics.

Consider an electron whose spin state is represented on the Hilbert space C2.
According to the property ascription scheme we have just articulated, the elec-
tron instantiates the determinables associated with all and only the Hermitian
operators on C2. That is, the electron instantiates the determinables we stan-
dardly associate with spin-1/2 systems, but it does not instantiate any of the
determinables associated with higher or lower spin systems as the corresponding
operators are defined on distinct Hilbert spaces. Among the determinables an
electron instantiates are the “being a spin-1/2 system” determinable represented
by the identity Î, the “spin in the z-direction” and “spin in the x-direction” de-
terminables represented by the Pauli operators σ̂z and σ̂x, respectively, and the
“spin-↑ in the z-direction” determinable represented by the projection operator
|↑z⟩ ⟨↑z|.

The Î operator has only one eigenvalue, 1, and every state in C2 is an eigenstate
with that eigenvalue. This captures the fact that there is only one determinate
way to instantiate the determinable property of being a spin-1/2 system, and every
electron instantiates that determinate regardless of its state. Suppose an electron
is in the state | ↑z⟩. Such an electron is in an eigenstate of σz with eigenvalue 1,
and thus instantiates the determinate of spin in the z-direction associated with
being spin up. That is, while every electron, regardless of its state, instantiates
the determinable property of having spin in the z-direction, if an electron is in
the state | ↑z⟩, it additionally instantiates this determinable in a particular way,
namely, it instantiates the determinate property of being spin up in the z-direction.
Indeed, this system instantiates the 1 determinate of the projector |↑z⟩ ⟨↑z| as well.
If, instead, an electron is in the state 1√

2
(|↑z⟩ + |↓z⟩), it is not an eigenstate of

σ̂z, and therefore fails to instantiate any of the σ̂z-determinates; it has spin in
the z-direction, but it fails to have any specific value of spin in the z-direction.
A state of affairs in which an electron takes on such a state is metaphysically
indeterminate in virtue of the fact that no determinate of spin in the z-direction
is instantiated. However, since 1√

2
(|↑z⟩+ |↓z⟩) is an eigenstate of the σ̂x operator

with eigenvalue 1, an electron in such a state, while indeterminate with respect
to spin in the z-direction, nevertheless instantiates spin in the x-direction in a
particular way: it instantiates the “spin up in the x-direction” determinate.

This way of thinking about property instantiation leads to a natural charac-
terization of the sense in which some quantum mechanical properties precisify
others. In particular, we can encode the relative precision of different properties
entirely in terms of structure on the set of determinable properties. A deter-
minable ÔA is a precisification of another ÔB , which we will write as ÔA ⪯ ÔB ,
if the eigenspaces of ÔA are all subspaces of the eigenspaces of ÔB . Thus, for
example, Î is precisified by both σ̂z and σ̂x, that is, σ̂z ⪯ Î and σ̂x ⪯ Î, and σ̂z
is precisified by |↑z⟩ ⟨↑z|, while neither σ̂z nor σ̂x is a precisification of the other.
In order to establish the connection to Del Santo and Gisin’s view, we need to
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generalize this notion of precisification so that it applies to the case of continuous
valued determinables like position.

This can be achieved by treating the quantum mechanical position of a particle
in one dimension not as a single determinable property but, rather, as a hierarchy
of determinables. Suppose the space in which a particle moves is represented as
R and let P be a partition of R into intervals. There exists a self-adjoint operator
of the form ÔP =

∑
A∈P λAΠ̂A where Π̂A is the projection onto region A and

each λA is a distinct real number. Call every such ÔP a region determinable. If
a partition P ′ is a refinement of the partition P , then ÔP ′ is a precisification of
ÔP . For example, if P is the partition of R into unit intervals, there is a region
determinable associated with P given by

ÔP =
∑
n∈Z

nΠ̂[n,n+1).

One refinement of P is the partition P ′ which divides each interval in P into 10
intervals; its associated region determinable is

ÔP ′ =
∑
n∈Z

n

10
Π̂[ n

10 ,
(n+1)

10 ).

ÔP ′ is a precisification of ÔP in the sense that specifying that the particle is
located in the interval [0,0.1) is more precise than specifying that it is located in the
interval [0,1). A general expression for the class of quantum region determinables
associated with refinements of P of this form is given by

ÔPk
=

∑
n∈Z

( n

10k

)
Π̂[ n

10k
,n+1

10k
) for k ∈ Z.

Increasing values of k result in determinables composed of projections onto ele-
ments of finer partitions of the line and hence determinables that precisify region
determinables generated by smaller values of k. As we will show in the next sec-
tion, the classical analogs of these properties provide the class of determinables
required to articulate Del Santo and Gisin’s classical indeterminacy.

4. . . . And Back. In the previous section we showed how to capture the phe-
nomenon of quantum indeterminacy by identifying how the theory represents de-
terminable and determinate properties and how it specifies the conditions under
which they are instatiated by a particular system at a time. On this approach,
indeterminacy occurs whenever a system instantiates a determinable but none of
the determinates of that determinable. In addition to providing what we think is
a helpful regimentation of what is meant by indeterminacy in the context of quan-
tum mechanics, the generalization of Calosi and Wilson’s approach that we have
introduced here has the advantage that it also naturally captures the classical me-
chanical case. We simply need to specify how the determinables and determinates
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are represented in classical mechanics and the conditions under which a classical
mechanical system instantiates those determinables and determinates.

Before providing our characterization of classical indeterminacy, it will be help-
ful to express the standard approach to property ascription in classical mechanics
using the language of determinables and determinates. The determinable proper-
ties of classical mechanics are represented by functions f : S → R from a phase
space S to the real numbers R. The determinates of a determinable f are the
values in its image Im(f) ⊆ R. The state of a classical mechanical system at time
t is represented by a point in that system’s phase space s(t) ∈ S. The system in-
stantiates a determinable f if and only if f is defined on S, and it instantiates the
determinate λ ∈ Im(f) if and only if f(s(t)) = λ. On this standard approach to
classical mechanical property ascription, there is no indeterminacy: fixing a state
s(t) uniquely determines which determinate of each determinable is instantiated.

One can introduce indeterminacy into this standard property ascription scheme
by expanding the space of determinables and modifying the condition for determi-
nate instantiation. In the case of a particle moving in one dimension the requisite
additional determinables can be constructed from the characteristic functions on
the intervals we used to partition the line in the quantum mechanical case:

χn,k(s(t)) =

{
1 if s(t) ∈ [ n

10k
, n+1

10k
)

0 otherwise

The region determinables are then given by:

Xk(s(t)) =
∑
n∈Z

n

10k
χn,k(s(t))

The observables of classical mechanics are standardly assumed to be represented
by smooth functions and so unlike in the quantum mechanical case, we are adding
new determinables to the theory. To express the alternative determinate instan-
tiation condition we need to introduce a precisification relation between classical
determinables: a classical determinable f is a precisification of g, f ⪯ g, if for any
λ ∈ Im(f), there is some τ ∈ Im(g) such that f−1(λ) ⊆ g−1(τ). If k′ > k, then
we have that Xk′ ⪯ Xk which captures the intuitive idea that being located in
an interval which is contained in another interval is a more precise way of being
located than being located in the containing interval.

This precisification relation introduces a partial ordering on the set of classical
determinables D. There are different ways to cut this order into disjoint upper and
lower sets of determinables containing the more and less precise determinables,
respectively. A cut of the partial order ⟨D,⪯⟩ is a partition ⟨L,U⟩ of D such
that for all f ∈ L and g ∈ U , f ⪯ g. Classical indeterminacy is introduced
by stipulating the existence of a time-dependent precision cut π(t) = ⟨L(t), U(t)⟩
which distinguishes which determinables have determinates instantiated and which
determinables do not. In particular, suppose we stipulate that a system in state
s(t) instantiates the determinate λ of the determinable f at time t if and only if
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f ∈ U(t) and f(s(t)) = λ. Then the system will exhibit determinacy with respect
to all of the determinables in U(t), but it will exhibit indeterminacy with respect
to all of the determinables in L(t).

These modifications to the property ascription scheme of classical mechan-
ics are sufficient to recover the classical indeterminacy of Del Santo and Gisin.
To see this note that having determinate values only for the first N(t) digits of
Γ is equivalent to the claim the most precise location fact about the particle is
that it is located in a particular interval of width 10−(N(t)−m). In particular,
Del Santo and Gisin say that the value of Γ is γ = γ1γ2 . . . γm.γm+1 . . . γN(t) ex-
actly when the most precise location fact about the particle is that is located
in the interval

[
γ, γ + 10−(N(t)−m)

)
, which occurs if and only if χn,k(s(t)) = 1

for n = γ · 10N(t)−m and k = N(t) − m. If one generates the precision cut
π(t) so that Xk is the most precise region determinable in U(t), then Xk(s(t)) =
γ1γ2 . . . γm.γm+1 . . . γN(t)000 . . . is the instantiated determinate associated with
the most precise region determinable above the cutoff. This is how our revised
property ascription scheme for classical mechanics recovers the classical indeter-
minacy of Del Santo and Gisin.

If one generates the precision cut π(t) in a way that makes Xk the most precise
determinable in the upper set, then γ, understood as a rational number, is the
instantiated determinate associated with the most precise determinable above the
cutoff. This is the sense in which our revised property ascription scheme for
classical mechanics recovers the classical indeterminacy of Del Santo and Gisin.

Having treated quantum and classical indeterminacy as instances of the same
general phenomenon of metaphysical indeterminacy, we now will argue that there
is an important difference in kind between these two instances of metaphysical in-
determinacy: classical indeterminacy can be consistently filled in, whereas quan-
tum indeterminacy cannot. The distinction at issue here is the distinction be-
tween shallow and deep indeterminacy established in (Skow 2010). Cashed out
in terms of determinables and determinates, an indeterminate state of affairs ex-
hibits shallow indeterminacy if one can consistently assign determinates to each
of the determinables that exhibits indeterminacy. It yields deep indeterminacy if
any attempt to fill in determinates yields a valuation which is inconsistent with
the prediction of the theory.

The fact that quantum indeterminacy is deep follows from the Kochen-Specker
theorem. The theorem states that under mild conditions, quantum mechanics does
not admit of a non-contextual, value definite, hidden variable theory. In the lan-
guage of determinables and determinates this means that there is no way to assign
a unique determinate to each determinable in a way that preserves the predictions
of quantum mechanics: quantum states of affairs necessarily involve metaphysi-
cal indeterminacy and cannot be filled in to restore metaphysical determinacy
without altering the predictions of the theory. The structural feature of quan-
tum mechanics responsible for this result is the representation of determinables
as Hilbert space operators. This introduces functional relationships between the
assignments of determinates to the determinables which prevent the assignment
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of a unique determinate to each determinable without changing the predictions
of the theory. In the case of classical mechanical determinables there are no such
functional constraints and so the classical indeterminacy we have introduced can
be filled in without changing the predictions of the theory. This makes classical
indeterminacy shallow rather than deep.

We are now in a position to complete our evaluation of Del Santo and Gisin’s
package of claims. We have shown that their concept of classical indeterminacy
can be integrated into the standard property ascription scheme of classical me-
chanics by expanding the space of determinables and modifying the condition
for determinate instantiation. We have also shown that while there is a sense in
which real number values can be thought of as hidden variables for indeterminate
classical quantities, these hidden variables are importantly different from hidden
variables for indeterminate quantum mechanical quantities. The approach to clas-
sical indeterminacy we have developed here does not involve a modification to the
dynamics of classical mechanics and so even when modified to exhibit indeter-
minacy, the theory will still be deterministic. To arrive at a version of classical
mechanics that exhibits indeterminism, Del Santo and Gisin must modify the dy-
namics to incorporate the propensities for the indeterminate digits to take on a
particular determinate value. The situation is similar for their claim about the
classical measurement problem: the underlying dynamics will remain determin-
istic unless they introduce an explicit modification that determines how systems
evolve during a measurement which is indeterministic.

5. Conclusion. We employed a theory independent characterization of inde-
terminacy to express both quantum and classical indeterminacy as instances of the
same phenomenon. This allowed for an appraisal of the package of claims argued
for by Del Santo and Gisin. While many of our conclusions have been critical,
their view raises important matters of principle about the status of observables
characterized with real number precision, and the relationship of full precision
to the determinacy of physical quantities. By characterizing precisification as a
relation on a set of determinables, we have developed the requisite conceptual
tool for developing a systematic theory of the relationship between precision and
determinacy.
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