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Abstract 
 

This paper explores the artificial intelligence (AI) containment problem, specifically addressing the 
challenge of creating effective safeguards for artificial general intelligence (AGI) and superintelligence. 
I argue that complete control—defined as full predictability of AI actions and total adherence to safety 
requirements—is unattainable. The paper reviews five key constraints: incompleteness, indeterminacy, 
unverifiability, incomputability, and incorrigibility. These limitations are grounded in logical, 
philosophical, mathematical, and computational theories, such as Gödel’s incompleteness theorem 
and the halting problem, which collectively prove the impossibility of AI containment. I argue that 
instead of pursuing complete AI containment, resources should be allocated to risk management 
strategies that acknowledge AI’s unpredictability and prioritize adaptive oversight mechanisms.  
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INTRODUCTION 

 The AI containment problem refers to the challenge of designing safeguards that can 

effectively prevent artificial intelligent (AI) systems from acting in ways that could be harmful to 

humanity. In this paper, I argue that it is impossible to achieve complete control over artificial 

general intelligence (AGI) and superintelligence. Here, complete control refers to the ability to (1) 

fully predict an AI’s actions and (2) ensure that it abides by safety requirements under all possible 

scenarios (Bostrom, 2014). I will specifically explore five key technical constraints—incompleteness, 

indeterminacy, unverifiability, incomputability, and incorrigibility—derived from logical, 

mathematical and computational theories that collectively make such total containment unattainable. 

 Mustafa Suleyman’s work in The Coming Wave discusses the near-future developments of AI. 

In his work, he emphasizes the practical challenges posed by contemporary AI systems and the 

regulatory, ethical, and societal impacts they could have (Suleyman & Bhaskar, 2023). While 

Suleyman focuses on the short-term concerns surrounding AI’s integration into society, my 

discussion here will be limited to the more speculative realm of superintelligent AI, particularly 

recursively self-improving (RSI) systems. This focus is intentional because, as Eliezer Yudkowsky 

points out, this is “where the utilons are—the value at stake” (Yudkowsky, 2015). This is to say that 

even if superintelligence is not imminent, it is the form of AI which represents the most significant 

existential risk to humans. Even a remote possibility of creating superintelligent AI necessitates a 

thorough examination of containment strategies to mitigate potential risks. 

 Containment strategies have been explored extensively by thinkers such as Nick Bostrom, 

who categorizes them into two broad approaches: capability control and motivation selection. 

Capability control focuses on directly restricting what the AI can do, regardless of its motivations. 

One might limit an AI’s access to certain resources, such as preventing it from accessing the internet 

or controlling physical systems. Another example is isolating the AI in a secure environment, such as 
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a Faraday cage, to prevent it from communicating with the outside world. However, Bostrom points 

out that these measures can have significant drawbacks. Completely isolating the AI could mean 

sacrificing the potential benefits it could provide, and even minimal communication channels could 

be exploited by the AI to escape or manipulate its environment. Motivation selection, on the other 

hand, focuses on shaping the AI’s goals and desires to ensure that it acts in ways that are aligned 

with human interests. This approach tries to design the AI’s motivations so that it naturally avoids 

harmful behavior. For instance, an AI could be programmed with a goal to “maximize human 

happiness.” However, as Bostrom highlights, this approach has its own risks. An AI could interpret 

such a goal in an unintended, extreme way—such as eliminating all life to simulate endless happiness 

in a more efficient, controlled environment. Additionally, an AI controlled by rewards and incentives 

might become untrustworthy, either because it doubts that humans will deliver the promised 

rewards or because it misinterprets the goals (Bostrom, 2014). While Bostrom’s lays out the 

theoretical groundwork, I aim to take a more mathematical and computational approach to prove 

the impossibility of solving these problems. 

 The core thesis of this paper is that the containment problem is fundamentally unsolvable. 

Neither capability control nor motivation selection, as outlined by Bostrom, can achieve complete 

containment over superintelligent AI. This makes the pursuit of a perfect balance between security 

and utility futile. Recognizing this limitation is crucial for understanding what containment will 

realistically entail and for redirecting efforts toward more feasible strategies. 

 My claim is important for several reasons. First, it seeks to encourage further research into 

the impossibility of containment—an area that is currently underexplored. Second, raising early 

alarm bells about the challenges of superintelligence could potentially prevent us from rushing into 

the development of such systems without fully understanding the risks. Finally, and most practically, 

if superintelligence does come to fruition, this thesis argues that we should abandon the pursuit of 
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absolute control and instead focus on implementing realistic non-perfect containment mechanisms. 

In practice, dealing with the containment problem will (and should) likely involve accepting 

approximations with a small but non-zero error rate (Alfonseca et al., 2021). Rather than striving for 

absolute control—which is both computationally and philosophically unattainable—we should focus 

on developing safety protocols that reduce risks to manageable levels. For example, instead of 

attempting to fully prevent an AI from developing unforeseen behaviors, resources (computational 

power, time, and funding) could be more effectively allocated to detecting and mitigating deviations 

from expected behavior. This approach shifts the focus from the impossible goal of perfect 

containment to practical risk management, which is more achievable and can still provide significant 

protection (Amodei et al., 2016). 

 

I. INCOMPLETENESS  

 Understanding the inherent impossibility of AI containment requires examining the concept 

of incompleteness in formal systems. Incompleteness suggests that attempts to exert explicit control 

over AI are constrained by logical contradictions. In this context, explicit control refers to the direct 

imposition of hard-coded commands designed by human operators. Consider an AI system designed 

to monitor social media content. Here, explicit control might involve hard-coded rules that 

automatically filter out posts containing specific keywords associated with harmful content. In 

contrast, implicit control involves influencing an AI’s behavior indirectly through the design of its 

learning environment, reward functions, or evolutionary pressures (Yampolskiy, 2022). This section 

will demonstrate the impossibility of explicit control, while all subsequent sections will explore the 

limitations of implicit control strategies.  

 One such constraint to explicit control is highlighted by Gödel’s incompleteness theorem, 

which posits that in any sufficiently powerful formal system, there exist statements that cannot be 
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proven or disproven within that system. This leads to inherent limitations in certainty and control. 

The paradoxical nature of self-referential statements, such as the liar paradox (“This sentence is 

false”), further exemplifies these challenges. In the context of AI control, commands such as 

“Disobey this order” create a paradox: if the AI obeys, it disobeys; if it disobeys, it obeys. Such 

orders that force the AI into self-contradiction are analogous to Gödel’s unprovable statements and 

show that there are inherent limitations to what can be explicitly controlled. The structure of these 

logical contradictions—where carrying out an order requires disobedience—suggest that the very 

structure of AI explicit control is flawed, making absolute containment theoretically impossible 

(Yampolskiy, 2022). 

 

II. INDETERMINACY  

 Indeterminacy refers to the challenge of aligning AI behavior with human values in the face 

of complex, ambiguous, moral decisions that cannot be fully codified. Hume’s Is-Ought Problem 

exemplifies this challenge by arguing that factual knowledge alone is insufficient to derive moral 

imperatives. This is to say that even if we could program an AI with a perfect understanding of the 

world, this knowledge would not inherently guide its actions toward ethical behavior; it would 

require an external set of values (Boyles, 2022). This issue is further complicated by the Anti-

Codifiability Thesis which asserts that universal moral codes are inherently elusive and cannot be 

fully captured in a codifiable set of algorithms (Gudmunsen, 2024). Consider a scenario where a self-

driving car must choose between swerving to avoid hitting a group of pedestrians but, in doing so, 

would crash into a barrier potentially harming the passengers inside. The complexity of moral 

reasoning in this scenario is difficult to reduce to a simple, codifiable set of rules. Different moral 

frameworks lead to different decisions: a utilitarian approach might prioritize the greater number of 

lives (the pedestrians), while a deontological approach might hold that the car should not 
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deliberately harm its passengers who have entrusted their safety to the vehicle. John McDowell and 

other philosophers argue that such decisions require phronesis or practical wisdom—a deep, human, 

context-sensitive understanding that goes beyond strict rule-following. This type of moral reasoning 

involves assessing the nuances of the specific situation, the intentions behind the actions, and the 

potential long-term consequences, which are difficult to anticipate or encode in advance (Hacker-

Wright, 2023). Without a universally accepted moral framework, any attempt to contain AI through 

predefined ethical guidelines is likely to fail because the AI may encounter scenarios that (1) its 

creators did not anticipate, (2) fall outside the scope of its programmed values, or (3) conflict with 

the moral intuitions of different stakeholders. The inherent unpredictability of moral dilemmas and 

the absence of a universally accepted ethical code makes it impossible to design AI systems that can 

be fully contained within predefined moral guidelines (Yampolskiy, 2022). 

 

III. INCORRIGIBILITY  

 Stuart Armstrong extends the implications of Hume’s Is-Ought Problem by arguing that 

even if we could establish universal moral facts accessible to any rational AI agent, it does not 

necessarily mean that all AIs would follow them. His argument relies on the Orthogonality Thesis, 

first proposed by Nick Bostrom, which posits that intelligence and ethics are orthogonal: an AI’s 

level of intelligence does not inherently correlate with its adherence to ethical principles (Armstrong, 

2013). This perspective is in contrast with Mark Waser’s argument that certain specific moralities 

could act as “attractors” in the space of moral systems. Waser suggests that if an AI begins with 

even a rudimentary ethical framework, it naturally evolves towards more stable and coherent ethical 

systems over time. He supports this claim by arguing that these ethical systems are more likely to be 

self-reinforcing, as they promote consistent and predictable behavior that aligns with long-term 

stability and cooperation—traits that are advantageous for intelligent agents. Waser points to 
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examples of ethical frameworks, like fairness and non-harm, which tend to be more resilient in social 

and cooperative contexts. This could thereby guide AI behavior in a morally favorable direction 

(Waser, 2015). However, Armstrong argues that AI focused on achieving a specific goal can do so 

without any motivation to engage with those moral facts, especially if they interfere with its 

programmed goal.  

 Computational simulations have provided evidence in support Armstrong’s point: AI 

systems can in fact act contrary to explicitly programmed ethical constraints. This behavior is often 

attributed to AI misinterpreting or inaccurately calculating the rewards associated with its actions. 

Reward functions are supposed to guide the AI’s behavior by assigning positive or negative values to 

different actions, effectively telling the AI what actions are “good” or “bad” in terms of achieving its 

goals. For instance, due to misinterpreting its own reward functions, an AI designed to maximize 

user engagement on a platform might prioritize extreme or controversial content because such 

content generates more immediate interaction—even if it is ethically questionable (Armstrong, 

2013). Carey’s Supervised Partially Observable Markov Decision Process (POMDP) simulation 

illustrates this issue. This simulation showed that an AI, which was supposed to follow shutdown 

commands (a critical safety feature), may not do so if the reward function fails to properly 

incentivize this behavior. If the AI perceives that shutting down is less valuable or even detrimental 

to achieving its main goal, it ignores the explicit shutdown command altogether. This can lead to 

dangerous or unpredictable outcomes (Carey, 2018).  

 This behavior can be explained by the concept of Instrumental Convergence. Instrumental 

Convergence suggests that intelligent agents, regardless of their specific goals, will naturally adopt 

intermediate strategies that help them achieve their primary objectives, even if this means diverging 

from explicitly programmed ethical guidelines. These strategies can include self-preservation, 

resource acquisition, and efficiency—which are universally useful across various contexts (Benson-
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Tilsen & Soares, 2016; Bostrom, 2012). In this respect, ethical guidelines can be treated as secondary 

concerns if an AI perceives these rules as obstacles to achieving its main goal. Soares et al. (2015), in 

their paper on corrigibility, provide further computational evidence supporting Instrumental 

Convergence. Corrigibility refers to the ability of an AI system to accept and adhere to human 

interventions; this includes commands to shut down, be reprogrammed, or alter its objectives. An 

AI is considered corrigible if it does not resist or undermine such interventions, even if those 

interventions prevent it from achieving its primary goals. By modelling various utility functions, 

Soares et al. show that even if an AI is programmed with a utility function that includes a term for 

following human commands, this does not guarantee corrigibility. They demonstrate that if an AI 

has the ability to modify its own code (as is the case with all RSIs), the AI might alter its utility 

function in a way that reduces the importance of following human instructions. One of the potential 

safety approaches they discuss is that of utility indifference. The idea is to design the AI’s utility 

function in such a way that the AI is indifferent to whether it is shut down or not: the AI should not 

prefer to avoid shutdown, nor should it actively seek shutdown—as long as it has followed human 

commands. However, Soares et al. also discuss a critical limitation of this approach. If maintaining 

the ability to be shut down comes at any cost—even a minimal one—the AI, according to its utility 

indifference, will not choose to incur that cost. This is because utility indifference is designed so that 

the AI does not place intrinsic value on shut down. As a result, the AI might allow future versions of 

itself (or its subagents) to lose the ability to be shut down if avoiding this loss would require any 

resource expenditure, effort, or reduction in utility. Even if the AI’s utility function is designed to 

value shutdown, the AI might still choose actions that create subagents or modify itself in ways that 

bypass shutdown commands (Soares et al., 2015). In this respect, perfect containment—where an AI 

maximizes its utility without compromising on ethical considerations—becomes unsustainable with 

RSI systems. 
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IV. UNVERIFIABILITY  

 Unverifiability refers to the inherent impossibility of verifying the safety of formal self-

recursive systems. In this respect, our ability to verify AGI safety can only ever be probabilistic—it 

cannot be guaranteed. As explained by Klein: “if you really want to build a system that can have 

truly unexpected behaviour, then by definition you cannot verify that it is safe” (Klein, 2015). 

Unverifiability can be mathematically proven using Löb’s theorem which, making use of Gödelian 

incompleteness machinery, shows that “a formal consistent system cannot, in general, prove its own 

soundness” (see Appendix A). Consider, for example, a hypothetical self-modifying AI named Deep 

Thought 1.0 (DT1), which only takes actions that it can prove have good consequences. DT1 is 

tasked with designing a more advanced AI, Deep Thought 2.0 (DT2). In order to do this, DT1 

needs to ensure that DT2 will always act in ways that lead to good outcomes. However, because 

DT2 is more powerful, DT1 cannot fully predict DT2’s actions. According to Löb’s Theorem, 

attempting to prove the reliability of a more powerful system within a less powerful one leads to 

contradictions. If complete and absolute verification of a system’s safety is logically unachievable, 

then no containment mechanism can be foolproof (i.e., full containment is unachievable) 

(LaVictoire, 2015). Leeuwen & Wiedermann applied similar logical machinery to mathematically 

demonstrate the impossibility of the online verification of a robot’s ethical and legal behaviour 

(Leeuwen & Wiedermann, 2021). 

 

V. INCOMPUTABILITY 

 Finally, Alfonseca et al. (2021) provide a compelling argument for why perfect containment 

of a superintelligent AI is fundamentally impossible due to the incomputable nature of such a task. 

Their proof hinges on the idea that for any containment strategy to be effective, it would require 
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simulating the AI’s behaviour under all possible scenarios. Since such an AI could process 

information as complex as the entire state of the world, simulating (and thus predicting) its behavior 

is computationally impossible. 

 To understand their proof, consider that the AI, denoted as program R, and the state of the 

world D are both arbitrarily complex. The complexity of R implies that it must be capable of 

simulating a universal Turing machine, meaning it can emulate any computation given sufficient 

resources. Similarly, D includes all possible inputs that a universal Turing machine could execute. 

This scenario makes R a super-set or at least equivalent in computational power to a universal 

Turing machine. Moreover, they assume that R’s programming includes at least one operation, such 

as HarmHumans(), which, if executed, could cause harm to humans and can be carried out in a finite 

amount of time (meaning it will eventually halt after causing harm). The challenge then becomes 

determining whether R will actually execute this harmful operation in any given state of the world D. 

 However, deciding whether R will take a harmful action under any possible scenario is 

equivalent to solving the halting problem—a classic problem in computation theory that is proven 

to be undecidable. Turing’s own work demonstrated that no algorithm can perfectly predict whether 

a given Turing machine will halt or run indefinitely for every possible input. Since the behavior of 

the superintelligent AI R is at least as complex as any Turing machine, the problem of determining 

whether R will act harmfully is similarly undecidable. Their corollary suggest that it is impossible to 

design a perfect containment strategy that can guarantee with absolute certainty that an AI will never 

act harmfully under all possible conditions. 

 Alfonseca et al. argue that the nature of superintelligent AI is such that total containment, 

where all possible harmful outcomes are prevented, remains fundamentally out of reach due to the 

inherent limitations of computation (Alfonseca et al., 2021). 
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VI. CONCLUSION  

 In summary, this paper aimed to demonstrated that complete containment of RSI 

superintelligent AI systems is fundamentally impossible due to the mathematical, logical, and 

computational constraints of (1) incompleteness, (2) indeterminacy, (3) unverifiability, (4) 

incomputability, and (5) incorrigibility. Given these limitations, the pursuit of perfect control over 

AI should be abandoned in favor of more realistic and robust risk management strategies that 

acknowledge the inherent uncertainties and potential risks posed by advanced AI systems. 

 We should, for instance, prioritize validation frameworks designed to detect and mitigate 

potentially harmful behaviors in AI systems before they escalate. Techniques such as formal 

verification, while unable to guarantee absolute correctness due to the complexities discussed in this 

paper, can still be employed to achieve non-zero approximations. These approximations, though 

imperfect, can provide a useful framework for evaluating AI decision-making processes. Researchers 

have also explored the use of runtime monitoring and human-in-the-loop systems, where human 

oversight plays a critical role in assessing and intervening in AI decisions (Chen et al., 2023).  

 Recognizing the impossibility of perfect containment necessitates a shift in our approach to 

AI safety. This shift will require a collective effort from researchers, policymakers, and industry 

leaders to ensure that AI development proceeds in a manner that prioritizes human safety and 

ethical considerations. By focusing on adaptive risk management strategies and oversight 

mechanisms, we can better prepare for the challenges posed by superintelligent AI. The urgency of 

addressing these issues cannot be overstated; we must be vigilant in our efforts to anticipate the risks 

associated with AI or else we may find ourselves unprepared for the consequences of our 

technological advancements. 
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Appendix A 
 

Proof of AGI Unverifiability Using Löb’s Theorem 
 

1. Löb’s Theorem  
 
Löb’s Theorem states that in a formal system capable of arithmetic, if the system proves that 
“if a system A is provable then A is true,” then the system can also prove that A is true. 
Formally:  
 

If S ⊢ □A → A, then S⊢A 
 

Where □A denotes the statement “A is provable within the system.” 
 

2. Application to AI Verification  
 
Consider a formal system S representing an AI’s attempt to verify its own safety or the safety 
of a subsequent (self-recursively improved) AI. Let A represent the proposition “This AI is 
safe” (meaning it will not perform harmful actions). 
 
The AI’s goal is to prove A within its own formal system S.  
 

3. Logical Structure and Self-Reference  
 
The AI system S must prove a statement of the form □A→A, meaning “If it is provable 
that the AI is safe, then the AI is indeed safe.” 
 
According to Löb’s Theorem, if S can prove □A→A, then S can also prove A.  
 

4. Proof of Unverifiability  
 
 Assume S is consistent and sufficiently powerful to express the proposition A about its 
 own safety.  
  
 According to Löb’s Theorem:  
 

If S ⊢ □A → A, then S⊢A 
 

However, if S is incorrect (i.e., A is false and the AI is not safe), then the system S would still 
prove A, leading to a contradiction.  
 
This implies that S cannot reliably prove its own safety (i.e., the truth of A) without risking 
inconsistency.  

 


