
A Puzzle About General Covariance and Gauge

Eleanor March

Faculty of Philosophy

University of Oxford

James Owen Weatherall

Department of Logic and Philosophy of Science
University of California, Irvine

Abstract

We consider two simple criteria for when a physical theory should be said to be “generally
covariant”, and we argue that these criteria are not met by Yang-Mills theory, even on
geometric formulations of that theory. The reason, we show, is that the bundles encountered
in Yang-Mills theory are not natural bundles; instead, they are gauge-natural. We then show
how these observations relate to previous arguments about the significance of solder forms
in assessing disanalogies between general relativity and Yang-Mills theory. We conclude by
suggesting that general covariance is really about functoriality.

1. Introduction

Few observations would find more universal assent among relativists of the past century than

that one should prefer – or insist on – generally covariant theories. Of course, over the same

period there has been little agreement about what “general covariance” means, much less

whether it imposes a substantive constraint on physical theorizing (Norton, 1993; Earman,

2006; Pooley, 2009). On one side are followers of Kretschmann (1917), who famously argued

(contra Einstein) that general covariance is trivial because any remotely plausible physical

theory can be reformulated in generally covariant form; and on the other side have been

dozens of attempts to identify some non-trivial, physically well-motivated principle, satisfied

by general relativity and affiliated theories but not others, that captures working physicists’
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sense that general covariance imposes a difficult-to-meet constraint on theorizing, with real

consequences for things like conservation principles (Freidel and Teh, 2022).

We will not attempt to adjudicate the many decades of dispute on this topic. (By our

reckoning, it is now 11 and counting!) Instead, we wish to identify one sense in which

general covariance, or something very much like it, does amount to a non-trivial constraint

on theories—a constraint, we suggest, that is so non-trivial that it is not even satisfied by

widely accepted current physics. Specifically, we will argue that (classical) Yang-Mills theory

is not generally covariant.1 The technical facts on which this claim is based will not come as a

surprise to the cognoscenti, but we suggest that their significance for foundational discussions

has not been widely appreciated, in part because of lack of clarity about the meaning of

general covariance. As we will argue, that Yang-Mills theory fails to be genercally covariant

has consequences for how we interpret physical geometry, the meaning of diffeomorphism

invariance, the role of principal bundles and solder forms in Yang-Mills theory, and the

meaning of “gauge” in contemporary physics.2

Of course, in order to defend this claim, we will need to say what we mean by “general

covariance”. We will do that in section 2. In section 3, we will present our argument

that Yang-Mills theory is not generally covariant (even though it admits a “geometrical”

formulation and has other features quite similar to general covariance). Then, in section

4, we will introduce the formalism of natural bundles (Salvioli, 1972; Terng, 1978; Kolář

et al., 1993), which extends and generalizes the geometric object program (Schouten and

Haantjes, 1936; Nijenhuis, 1952). As we explain there, the arguments of sections 2 and 3

1For background on this theory, its interpretation, and the formalism we adopt here for discussing it, see
Weatherall (2016), which builds on earlier work by Palais (1981) and Bleecker (1981).

2One anonymous reviewer summarized our thesis as follows: general relativity is generally covariant,
whereas gauge theories are gauge covariant. In those terms, what we claim here may sound like a truism.
But our point, spelled out in more detail in section 6, is that general covariance can be viewed as a special
case of gauge covariance, but not vice versa. In other words, though every generally covariant theory is
gauge covariant, not every gauge covariant theory is generally covariant. This reverses a common view, on
which gauge covariant theories satisfy both general covariance and an additional further condition related
to gauge transformations.
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may be neatly summarized as follows: whereas the tangent structures to a manifold used

in general relativity form natural bundles, the vector and principal bundles encountered in

Yang-Mills theory are not natural.

The remainder of the paper will address responses and consequences. In section 5, we

will argue that the need to generalize and thereby restore naturality for Yang-Mills theories

provides a new perspective on the role that principal bundles play in those theories; it also

clarifies the role of the frame bundle in general relativity. In section 6, we will discuss the

relationship between natural bundles and gauge natural bundles, and how this sheds light

on the sense in which gauge naturality restores a minimal sense of general covariance for

Yang-Mills theory. Then, in section 7, we will argue that the foregoing arguments also

provide a new perspective on the role of solder forms in some analyses of tangent structures

(c.f. Anandan, 1993; Healey, 2007; Weatherall, 2016). Finally, we will conclude with some

remarks about how naturality bears on older debates about the meaning and status of

general covariance and preview some further ways in which the perspective offered here can

help clarify issues in the foundations of general relativity and Yang-Mills theory.

2. What is General Covariance?

As alluded to above, general covariance is a famously vexed concept. Many versions of

general covariance, as a criterion that a physical theory may or may not satisfy, have been

proposed, and many arguments have been made that those criteria are incoherent, trivial,

or inadequate. For present purposes, though, the key issues in the debate – namely, whether

some particular account does or does not provide a non-trivial and plausibly reasonable

constraint – may be set aside. Our discussion, at least in the next several sections, concerns

only certain core ideas connected to general covariance that are apparently shared among

virtually all participants in the debate. In other words, we will consider just minimal neces-

sary conditions for general covariance; many authors have argued that (substantive) general
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covariance requires more than just these weak necessary conditions (Norton, 1993; Pooley,

2009). Our goal is to show that in fact widely accepted theories fail to satisfy even these

weak necessary conditions.

For our purposes, the conceptual core of general covariance is the requirement that the

principal relationships posited by a theory must be preserved under coordinate transfor-

mations. In other words, whether some physically meaningful assertion holds true cannot

depend on a choice of coordinate system; were some relationship to hold when expressed

in one coordinate system, then the same relationship, expressed in different coordinates

using suitably transformed representations of the objects involved in the assertion, would

still hold (and in fact, express the same fact). From a modern perspective (c.f. Misner

et al., 1973; Wald, 1984), the requirement that some object has the appropriate transfor-

mation properties under coordinate transformations to enter into such relationships is often

replaced by the requirements that the object admit a coordinate-independent characteri-

zation and that the relationships involving such objects can be expressed using just these

coordinate-independent objects.3 Coordinate transformations, then, may be re-interpreted

as implementing diffeomorphisms acting on these coordindate-independent relationships,

and invariance under coordinate changes can be interpreted as the requirement that physi-

cally meaningful relationships between coordinate-independent objects preserve their truth

value under the action of diffeomorphisms.

Thus, we will assume that a theory is rightly described as generally covariant only if :

1. the objects involved in the principal claims and relationships of that theory are (or

can be) expressed in a way that does not depend on particular choices of coordinate

system; and

3 Our approach is especially close to Misner et al. (1973, p. 48), who identify general covariance with
the requirement that “every physical quantity must be describable by a geometric object” in the sense of
Nijenhuis (1952); and they attribute the first clear articulation of this view to Veblen and Whitehead (1932).
(See also Misner et al., 1973, pp.302-3.) These remarks are very closely connected to our arguments here
and, especially, in section 4.
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2. those objects have well-defined actions under diffeomorphisms, or changes of coordinate

system.

As we said above, we take these to be weak necessary conditions expected to hold of any

generally covariant theory. Any full account of general covariance would require more. At

very least, it would require that the principal claims and relationships asserted by a theory

are preserved under the actions of diffeomorphisms on the objects concerned.4 But even with

this further requirement, we do not not claim to have captured all of the desiderata that

have been required by various authors assessing whether general covariance is a plausible

and substantive constraint on theories.

Consider an example. General relativity is surely a canonical example of a generally

covariant theory. What does this mean? Let M be a smooth, four-dimensional manifold

representing events in space and time, and let gab be a smooth, Lorentz-signature metric on

M representing spatio-temporal relations between those events. (The pair (M, gab) will be

called a relativistic spacetime in what follows.) Finally, suppose there is some distribution of

matter throughout space and time, whose energy and momentum properties can be repre-

sented by a smooth tensor field T ab. Then according to general relativity, Einstein’s equation

must hold, relating the metric and its associated curvature to the energy-momentum tensor

T ab:

Rab −
1

2
Rgab = kTab,

where Rab is the Ricci curvature tensor, R is scalar curvature, k is a constant related to

Newton’s gravitational constant and the speed of light, and indices are lowered using the

spacetime metric.

As we have just described it, general relativity clearly meets the two criteria we have

4Much more can be said about what makes a “theory”, understood as a system of differential equations,
generally covariant in the sense suggested here, but we leave that discussion of “natural theories” to future
work because it is not necessary for the present points. (Fatibene and Francaviglia (2003) offer one approach
for theories derived from a variational principle.)
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set out. The objects implicated in Einstein’s equation – the metric, curvature, and stress-

energy tensor – are all tensor fields, which we have presented in a coordinate independent

way. Moreover, diffeomorphisms act on all of these fields in a well-defined way, via the

push-forward construction. Though it is not immediately relevant, we also note that the

relationship expressed by Einstein’s equation is preserved under that action by diffeomor-

phisms. That is, if φ : M → N is a diffeomorphism between M and some other manifold

N , then we have

Rab −
1

2
Rgab = kTab ⇔ φ∗(Rab −

1

2
Rgab) = φ∗(kTab),

where φ∗ is the pushforward along φ. Thus, Einstein’s equation is “coordinate-independent”

in the required way, and the theory is generally covariant.

The example helps show how weak our conditions are, at least for theories formulated

using tensor fields. General covariance is automatic for such theories. To show a theory is

generally covariant, one need only rewrite it in the language of tensor calculus. It was on

these grounds that Kretschmann (1917) argued that general covariance is trivial. At very

least, one might think he established that these conditions are trivial, and so the whole

of the dispute about general covariance is whether there are other, stronger criteria that

should be imposed on top of these.5 Many arguments are available that aim to show more

is required. We set those aside because we will presently argue that even these conditions

are not satisfied for realistic (and widely accepted) theories.

5For just one example: (Wald, 1984, p. 57-8) takes for granted the two conditions required here, and
adds further that “the metric of space is the only quantity pertaining to space that can appear in the laws
of physics”. Later he allows that quantities pertaining to space that are determined by the metric, such as
a derivative operator, are also compatible with general covariance.
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3. Yang-Mills Theory is not Generally Covariant

Models of Yang-Mills theory consist of a relativistic spacetime (M, gab), a principal G-bundle

G → P → M over M , and a principal connection ω on G → P → M . Sections of vector

bundles P ×G V → M associated to this principal bundle represent matter fields that

participate in the Yang-Mills interaction. Sections σ :M → P ×G V of an associated bundle

can, in turn, be associated with charge-current densities J on P . These enter into the

Yang-Mills equation

⋆D ⋆ Ω = J

where ⋆ is the Hodge star operator relative to gab (pulled back to P along π), D is the exterior

covariant derivative relative to ω, and Ω is the curvature two-form of ω. For example, the

structure group of electromagnetism is U(1), so models of electromagnetism consist in a

principal U(1) bundle U(1) → EM →M over M and a principal connection ω on EM . In

the simplest case, where matter is represented by a complex scalar field, the vector space

V is a copy of C equipped with a faithful representation of U(1), and the associated bundle

EM ×U(1) C →M has fibers isomorphic to C.6

On this way of presenting Yang-Mills theory, it does satisfy our condition (1). In par-

ticular, the objects involved in the principal claims and relationships of Yang-Mills theory,

including connections on a principal bundle and sections of an associated bundle, can be

characterized in a coordinate-independent way as per the above.

However, notice that the coordinates at issue here are importantly different from the

coordinates at issue in the claim that general relativity admits a coordinate-independent

characterization. This is because a full coordinate-based description of a section of an

associated bundle, or of the connection or curvature on the principal bundle, would involve

coordinates on the total space of the bundle in which they are valued, rather than the base

6We describe the associated bundle construction in more detail in section 5.
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space, i.e., the manifold representing space and time. In general, coordinates on the base

space of a bundle do not determine coordinates on the total space, and similarly coordinate

transformations on the base space do not lift to coordinate transformations on the total

space.

This raises a problem for how to understand the action of smooth maps on the base

space on these objects. In particular, given a diffeomorphism φ : M → M which acts on

the base space of some vector bundle B → M , and given two sections σ, σ′ : M → B of

that bundle, there is in general no way to say whether or not those sections are “related by

the diffeomorphism φ”. As a result, Yang-Mills theory does not satisfy our condition (2), at

least on one plausible way of understanding what the relevant class of diffeomorphisms for

condition (2) is. Note also that this failure to satisfy (2) does not depend on the details of

the dynamics of Yang-Mills theory. Rather, it is a simple consequence of the fact that the

theory is formulated using structures defined on a generic principal bundle and its associated

vector bundles.

To make this concrete, consider the following example. Suppose we have two diffeomor-

phic manifolds M and N and (smooth) complex scalar fields on each, i.e. smooth sections

σM , σN of the bundles EMM ×U(1) C → M and EMN ×U(1) C → N on M , N respectively.

Let φ : M → N be a diffeomorphism. One might then ask: is σN the image of σM under

the action of φ? There is no way to answer this question. The reason is that φ does not

act on points in the bundle space EMM ×U(1) C. Indeed, there is no well-defined, unam-

biguous way of saying what it would mean for φ to act on EM ×U(1) C. What is needed

is some canonical way of associating to each diffeomorphism φ a unique bundle morphism

(ψ, φ), but in general, to do so would require further structure, such as a flat connection or a

preferred global trivialization; and different choices of that additional structure would yield

different associations of diffeomorphisms to bundle morphisms. This illustrates our claim

that Yang-Mills theory, even in its “geometric formulation”, does not satisfy our condition
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(2).

It is worth emphasising the difference between real and complex scalar fields in this

respect. Näıvely, one might think that if this argument that Yang-Mills theory is not gen-

erally covariant works, it works too well, in that a version of this problem would also apply

to smooth real scalar fields of the sort often encountered in general relativity. Recall that

smooth real scalar fields, i.e. maps M → R, can always be thought of as smooth (global)

sections of the trivial smooth rank-1 vector bundle R → B
π→M . So by parity of reasoning

(so the thought goes): diffeomorphisms φ : M → N act only on the base space, but not

on B, smooth real scalar fields are smooth (global) sections σ : M → B, and therefore

diffeomorphisms do not act on those fields and so one cannot say whether two such fields

are “related by a diffeomorphism”.

What has gone wrong here? The crucial point is that unlike the associated bundle

EM ×U(1)C →M of Yang-Mills theory, there is always a canonical way of lifting diffeomor-

phisms φ :M → N on M to bundle morphisms on R → B
π→M . (As we will see in section

4, this is deeply related to the fact that the bundle R → B
π→ M is, in a certain intuitive

sense, “constructed” out of the base spaceM , whereas the bundle EM×U(1)C →M is not.)

To see this, first recall that any two complete ordered fields R1 = (R1,+1,×1,≤1, 01, 11),

R2 = (R2,+2,×2,≤2, 02, 12) are uniquely isomorphic (by standard results in analysis). Now

suppose that R → B
π→ M is a trivial smooth rank-1 vector bundle. The foregoing implies

that not only is B isomorphic to M ×R (since it is a trivial bundle with R fibers), but there

is in fact a unique isomorphism χ : B → M × R that preserves the complete ordered field

structure on the fibers of B. In turn, this means that B comes canonically equipped with

a projection map πR onto the second factor (since M × R does, so we just pull it back by

χ). So we can define a canonical bundle morphism (ψ, φ) by requiring that it preserve this

projection onto the second factor, which gives us ψ = φ × idR. In other words: whilst the

diffeomorphism φ is defined to act only on the base space, the way that we have constructed
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the bundle R → B
π→ M means that diffeomorphisms φ on the base space are always

canonically associated with a unique action on the total space, and hence induce bundle

morphisms.

This makes it clear why no analogous construction works for the bundle EM ×U(1) V →

M . For one, the space EM×U(1)C need not be isomorphic toM×C; even if it is, we cannot

use this fact to pin down a unique vector bundle morphism unless we first specify a choice

of isomorphism χ : EM ×U(1)C →M ×C, since the field C has a non-trivial automorphism

group.

4. Naturality, Geometricity, and Covariance

As we have now seen, there is a sense in which general relativity meets certain necessary

conditions for general covariance, but that Yang-Mills theory does not. What is the differ-

ence? One way to understand what is going on here is to introduce the concept of a natural

bundle. This is a way of capturing the idea of a “geometric object”, developed by Schouten

and Haantjes (1936), Nijenhuis (1952) and others in the middle part of the century.7 The

basic observation is that the bundles encountered in general relativity typically are natural,

whereas the ones encountered in Yang-Mills theory are not natural.8

Roughly speaking, natural bundles are “species” of bundles that depend (only) on the

structure of their base space, in the sense that (a) given any (suitable) smooth manifold,

one can uniquely define a bundle of the relevant species over that manifold; and (b) (suit-

able) smooth maps acting on base spaces “lift” to bundle morphisms between the natural

bundles defined over them. (The term “suitable” in each of these clauses will be clarified

presently.) What is intended here is clearest when one considers examples. Take, for in-

7Recall fn. 3.
8Though we do not discuss them here, spinors are an example of a type of structure sometimes encountered

in (extensions to) general relativity that are not natural, because to equip a manifold with a spinor structure
involves an additional choice of convention (c.f. Fatibene and Francaviglia, 2003). We are grateful to Henrique
Gomes to raising this point, but we will postpone further discussion of it to future work.
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stance, tangent bundles. Every manifold M determines a smooth bundle TM →M , whose

fiber at each point is the tangent space at that point, and whose sections are smooth vector

fields. Moreover, well-behaved smooth maps φ : M → N between manifolds determine

smooth maps between the tangent bundles of the manifolds, via the pushforward construc-

tion. Thus, tangent bundles realize the two properties we have isolated. Other examples

abound. Cotangent bundles, (tangent) frame bundles, (tangent) tensor bundles, bundles of

metrics, bundles of k−forms for fixed k, and bundles of connections are all natural. (So are

the bundles in which real scalar fields are valued.)

The ideas just sketched can be made precise using the language of category theory. Let

Mn denote the category of smooth, n−dimensional manifolds, with smooth embeddings as

morphisms.9 Let FB denote the category whose objects are smooth fiber bundles and whose

morphisms are smooth bundle morphisms. Then a natural bundle (over n−manifolds) is a

functor F : Mn → FB such that (1) for every object M of Mn, FM is a bundle whose

base space is M ; and (2) for every morphism φ :M → N of Mn, Fφ is of the form (φ∗, φ),

where the maps φ∗ induces from fibers of FM to fibers of FN are diffeomorphisms.10

The two informal conditions sketched above get realized in the requirements for func-

toriality: a natural bundle associates bundles with manifolds and bundle morphisms with

embeddings. (Moreover, it does so in a way that preserves composition and identity.) The

“suitable” provisos in the informal discussion, meanwhile, are made precise with our defi-

nitions of the categories, specifically with the choices of objects and arrows of Mn. Note

that for some natural bundles one might wish to study in physics (especially, general rela-

tivity), we must modify the category Mn to require manifolds to satisfy further conditions.

9Our definition of Mn here most closely follows Palais and Terng (1977). Kolář et al. (1993) define
the category of n-manifolds to have local diffeomorphisms as its arrows. These are immersions but not
necessarily injective.

10Another way of doing this would be to include, as morphisms of FB, only smooth bundle morphisms that
act as diffeomorphisms on fibers. This is the approach taken by Palais and Terng (1977). Some treatments
also impose a “regularity” condition, but a classic result due to Epstein and Thurston (1979) establishes
that that condition is automatic in the presence of the others.
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For instance, while Lorentzian metrics have a well-defined behavior under pushforwards

along embeddings, not every n−manifold admits any Lorentz-signature metric (Geroch and

Horowitz, 1979; O’Neill, 1983).

Note that the terminology is a bit odd. A natural bundle, officially, is not a bundle at

all; rather, it is a functor that associates bundles with each manifold. This is why we wrote

above of “species” of bundles. Although it is an abuse of language, we will use “natural

bundle” to refer to both natural bundle functors and to the objects in the image of those

functors. This is similar to using the phrase “the tangent bundle” to refer both to a general

construction procedure and to specific bundles over specific manifolds that arise from that

construction procedure.

We have already discussed several examples of natural bundles familiar from general

relativity. Indeed, one can easily check that all of the standard examples of fields that one

encounters in relativistic field theories – spacetime metrics, derivative operators, curvature

tensors, stress-energy tensors, electromagnetic field strengths, real scalar fields, and so on –

can be seen as sections of natural bundles over spacetime. We claim that this fact is deeply

connected to the general covariance of theories involving these structures. In fact, we take

the natural bundle framework to provide a more precise specification of the two necessary

conditions we identified in section 2. The objects under consideration in a generally covariant

theory have to exhibit “diffeomorphism” covariance in the sense made precise by the fact

that a natural bundle is functorial over smooth manifolds.

This framework also allows us to restate the claims of section 3. Neither the principal

bundles nor the associated vector bundles encountered in Yang-Mills theory are natural

bundles. In fact, there are several barriers to naturality. One is that when we define the

bundles used in Yang-Mills theory, it is common to specify only the fiber type, and not

the global topology of the bundle. We say, for instance, that we are considering an SU(2)

theory, which implies the fibers are SU(2) torsors, but implies nothing about the bundle
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topology. But given a base space and typical fiber, there are generally many principal bundles

(respectively, vector bundles) available. Which bundle one chooses will determine the space

of global field configurations. This failure of uniqueness, meanwhile, creates problems for

defining the bundles using a functor, since a functor must assign at most one object in its

codomain to each object in its domain.

Now, admittedly, the bare technical problem can be overcome, for instance by specifying

that one is considering only trivial bundles. (Though to be clear, restricting to trivial

bundles does not restore naturality; it simply removes one barrier.) This can always be

done, but it comes at an interpretational cost, because it effectively rules out certain classes

of global field configuration associated with non-trivial bundles (or, more generally, ones

with different global topology than those in the codomain of the functor). More generally, if

one wishes to allow that field configurations associated with different bundles over a single

base space are all in some sense possible configurations of a field with Yang-Mills charge,

then one cannot take those fields to be sections of a (single) natural bundle over that base

space.11

The other barriers to naturality are arguably deeper. The bundles encountered in Yang-

Mills theory are not generally constructed from (just) the structure of the base space. This,

in turn, means that there is no generally applicable and uniform – i.e., no natural – way to lift

diffeomorphisms to act on the fibers of these bundles. Preserving the structure of the base

space is not enough to preserve the structure of the bundle. Some further choice is needed

to identify fibers that were otherwise associated with different points, and in general, that

choice can be made in many different ways. Of course, we have already made this argument

in concrete detail for the case of complex scalar fields. Now, though, we see that the problem

11There are deep and under-explored issues, here, about global topology of principal bundles and the
physical possibility of certain global configurations of matter that we are setting aside. We are not aware
of a physical situation in which the representational freedom afforded by using non-trivial principal bundles
is needed. Our point is only that a generic base space and typical fiber do not even uniquely determine a
principal bundle, much less a way for smooth maps on the base space to lift to the total space.
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manifests as a failure of functoriality.

5. Gauge Naturality

Thus far, we have argued that there is an important sense in which Yang-Mills theories,

by virtue of being formulated on principal bundles and associated vector bundles on which

base space diffeomorphisms do not act, are not generally covariant. This situation presents

a puzzle. Surely we cannot give up on Yang-Mills theory simply because it fails to meet

some abstract principle of physical theorizing, given its enormous empirical and theoretical

success. On the other hand, giving up on general covariance is also a hard bullet to bite,

especially given how fundamental the two necessary conditions we identified in section 2

appear to be. In particular, as discussed in section 3, the failure of naturality has far-reaching

consequences for assessing the physical equivalence of field configurations on diffeomorphic

manifolds. This raises other questions, such as how to assess the well-posedness of partial

differential equations set on such bundles.12

For these reasons, we do not propose dropping general covariance, so much as reconsid-

ering precisely what it demands. As we have seen, the two necessary conditions for general

covariance that we presented in section 2 can be restated as the requirement that certain

structures should be natural, in the sense of being functorial. And as we have shown, gener-

ically vector bundles are not natural in this sense, at least over their base spaces. But it

turns out that these vector bundles can be reconstrued as natural, by adopting a different

perspective on what sorts of maps should be required to lift to act on them. This idea

can be made precise using the formalism of gauge natural bundles (Kolář et al., 1993, Ch.

12).13 The key move is to change the category that acts as the domain of the natural bundle

12Here is what we have in mind. As we know from Einstein’s equation, subtle issues regarding physical
equivalence of solutions can arise when trying to determine whether a system of equations has unique
solutions for some initial data. Without clear criteria for equivalence of solutions, it is hard to see how to
get started in analyzing uniqueness properties of those solutions.

13See also Fatibene and Francaviglia (2003) for a more accessible discussion of these ideas.
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functor, so that the objects in that category are not the base space of the bundle under

consideration but rather principal bundles, for some fixed structure group G, over that base

space.

We proceed similarly to as before. We define a category PBn(G) whose objects are

principal G−bundles over n dimensional manifolds and whose arrows are principal bundle

morphisms whose action on the base space is a smooth embedding. (Thus we have a full

functor B : PBn(G) → Mn, taking each object in PBn(G) to its base space, and taking

arrows to their underlying smooth embedding.) Then a gauge natural bundle is a functor

F : PBn(G) → FB satisfying the following conditions: (1) the action of F on objects

preserves their base space, i.e., it takes principal bundles over a manifoldM to fiber bundles

over M ; (2) the action of F on arrows preserves their action on the base space; and (3)

for every object π : P → M of PBn(G) and open set U ⊆ M , the inclusion arrow (i, 1M),

which takes the subbundle π−1[U ] → U into P → M , is mapped to the inclusion arrow

taking q−1[U ] → U into F (π : P → M), where q is the projection map associated with

F (π : P →M).

This definition is abstract. The key examples of gauge natural bundles for present

purposes – that is, for the purposes of interpreting matter theories in Yang-Mills theory –

are the vector bundles associated to a principal bundle.14 One can construct these bundles

systematically by fixing a vector space V and a representation ρ : G → GL(V ) of G on

V . (More generally, one can consider any fixed manifold S with a left G action.) One

then considers, for each principal bundle G → P → M in PBn(G), the product manifold

P × V → P . This structure can be viewed as a trivial bundle with typical fiber V over P ,

though for present purposes we will keep the full product structure, so that in fact we are

considering a trivial bundle with fixed global trivialization.

14In fact, the construction we presently discuss is generic at “0th order”; we discuss higher order associated
bundles in the next section.
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The representation of G on V , along with the right action of G on P , determines a right

action of G on P × V , by (x, v) · g = (x · g, ρ(g−1) · v) for each g ∈ G. Let E = (P × V )/G

be the smooth manifold that results by quotienting by this action, so that points of E are

equivalence classes [x, v] of points related by the action. Since the action of G on P ×G is

fiber preserving over G, the projection π : P → G determines a projection πf : E → M .

Finally, for any smooth G principal bundle morphism f : (P →M) → (P ′ →M ′), the map

(f, 1V ) : P × V → P ′ × V determines a smooth bundle morphism between the quotients

(P × V )/G→M and (P ′ × V )/G→M ′.15 These two constructions together can be shown

to define a functor from PB(G) to FB that satisfies the conditions set forth above.

Gauge natural bundles are like natural bundles in the sense that they associate bundles

with manifolds uniformly across different manifolds, in a way that is compatible with the

manifold structure (as reflected by the functoriality of the construction); and because they

give rise to a notion of “pushforward” along maps in PBn(G). Now, though, both the

assignment of bundles and the pushforward depends on more than just the base space and

maps acting on base spaces; they also depend on a principal bundle over the base space and

arrows between principal bundles. Why should the principal bundle structure help here? As

emphasized by various authors (e.g. Kolář et al., 1993; Weatherall, 2016; Gomes, 2024), a

principal bundle associated with a vector bundle can be thought of as a bundle of frames, or

basis fields, for that vector bundle. (We make this idea precise and elaborate on it below.)

Specifying information about those frames and how they transform is the missing piece in

resolving the issues raised in the previous section.

Consider, for instance, how the issue of uniqueness raised above, concerning the global

topology of a non-natural bundle, is addressed here. It remains the case that one can

define many vector bundles, with different global topologies, with a given typical fiber over

15These quotients are the same bundles we encountered above, for which we previously used the notation
P ×G V → M . Here we are emphasizing the construction procedure, and so the fact that these are quotients
by a G action is especially salient.
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a generic manifold. But that freedom corresponds exactly to the freedom to define different

principal G bundles with different group representations acting on those fibers over the same

manifold. Thus, by the construction above, one gets a different vector bundle over M for

each principal U(1) bundle over M . Similarly, the problem of how to define the action

of diffeomorphisms on non-natural bundles is resolved by also specifying how elements of

arbitrary bases at each point transform. That extra information uniquely determines how

fiber elements in an associated bundle transform.

To see what this means in more concrete detail, consider again the example of the

complex scalar field discussed above. Since the complex numbers come equipped with a

preferred Hermitian product, they can be thought of as carrying a representation of U(1)

that preserves that product.16 (This is the “fundamental” representation of U(1).) To think

of complex scalar fields as a natural bundle over manifolds of dimension n, then, one can

begin with the category of U(1) bundles over n dimensional manifolds, PBn(U(1)), and

then define a functor via the construction above for associated bundles, yielding, for each

object U(1) → P → M of PBn(U(1)), a one dimensional complex vector bundle over M .

Arrows in PBn(U(1)) specify not just an action on the base spaces of each bundle, but also

specify how to identify complex phases between fibers at domain and codomain points, by

specifying how bases transform.

Before proceeding, we note a connection between the remarks here and an argument

from Weatherall (2016), to the effect that the principal bundles in Yang-Mills theory are

“auxiliary” or “secondary” structure. The idea is that it is the (associated) vector bundles

that represent the possible states of matter, and it is the connections on those bundles

that determine the physically relevant standards of constancy for those matter fields. The

principal bundles, meanwhile, serve only to coordinate the Yang-Mills connections across

different types of matter that participate in the same Yang-Mills force. They do not represent

16One could also proceed by considering principal GL(1,C) bundles.
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matter or its possible states directly. Weatherall analogizes this situation to the sense in

which a coach plays an auxiliary coordinating role vis a vis players on the field. Gomes

(2024) goes even further, arguing that principal bundles are “epiphenomenal” in Yang-Mills

theory because in fact, all matter properties can be valued in a single vector bundle, with

fibers C3 × C2 × C, and so principal bundles are not needed even to coordinate between

distinct vector bundles.

These analyses bear revisiting in light of the role of principal bundles in defining gauge

natural bundles. While it is true that principal bundles do not represent possible states

of matter directly, the role they do play in Yang-Mills theory is nonetheless robust and

important. What we have seen in this section is that the vector bundles in which matter

takes its properties are, in the sense described above, determined by the principal bundles

to which they are associated—in a way analogous to how natural bundles are determined

by their base space. We also now see that what it means for matter valued in two different

vector bundles to participate in the same Yang-Mills force on a given spacetime is for them to

be images of the same principal bundle under two different gauge natural bundle functors.

Likewise, the bundles associated with a given type of matter across different base spaces

depends not just on the base space, but also on a choice of principal bundle over that space.

Most importantly, it is principal bundle morphisms that play the role of smooth maps

on the base space in considerations of general covariance for associated vector bundles. This

means that the coordinating role of the principal bundle is not just to determine what it

means for the same connection to act on different vector bundles, but also what it means

to act on sections of different bundles with a single coordinate transformation or smooth

(bundle) map. Even if one follows Gomes and discards principal bundles in favor of the

vector bundles (and tensor bundles constructed from them) in which matter properties are

valued, those vector bundles are not natural bundles. Diffeomorphisms do not lift to them.

Further data is needed to specify how their sections behave under the action of smooth
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maps. And, crucially, though that data could in principle be specified without mentioning

principal bundles, it would uniquely determine (and be uniquely determined by) a gauge

natural bundle functor. We thus conclude that while principal bundles may be viewed as

auxiliary or secondary in one important sense, there are other senses in which they are of

central importance.

6. A Unifying Perspective

We have now seen that we can recover a sense in which Yang-Mills theory is natural, even

though it is not generally covariant in the sense with which began; and we have seen some

consequences for foundational discussions about the formal structure of Yang-Mills theory.

But this discussion raises a further question. How should we understand the relationship

between natural bundles and gauge natural bundles? There is a clear formal analogy, insofar

as both are functors from some category of geometrical structures to fiber bundles associated

with them. But in fact, more can be said. As we will presently argue, natural bundles can

be seen as a special case of gauge natural bundles—or rather, they are gauge natural bundles

that can be precomposed with functors from the category of n-manifolds to some category

of principal G-bundles. Put another way, every natural bundle functor factors through a

gauge natural bundle functor. To see this point, we will return to our motivating example

of a natural bundle: the tangent bundle over n−manifolds. We presented the tangent

bundle as something constructed from smooth manifolds, and defined the tangent bundle

as a natural bundle T : Mn → FB. But has often been observed, we could also think of

the tangent bundle over a given manifold differently, as an associated bundle to a certain

principal bundle. The relevant principal bundle in that case is the (tangent) frame bundle

GL(n,R) → LM → M , where GL(n,R) is the (real) general linear group in n dimensions.

Then, if V is an n-dimensional vector space equipped with a representation of GL(n,R), the

associated bundle V → LM ×GL V →M is (canonically) isomorphic to the tangent bundle
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Mn FB

PBn(GL(n,R))

L

T

T̃

Figure 1: The tangent bundle, understood as a natural bundle functor, factors through a
gauge natural bundle by precomposition with the functor L.

TM →M , and sections of V → LM ×GL V →M correspond to vector fields on M .

Put in another way, these remarks show that we can think of the tangent bundle as

a gauge-natural bundle T̃ : PBn(GL(n,R)) → FB, precomposed with another functor L.

Similarly, the cotangent bundle and bundles of rank-(r, s) tensor fields on M can all be

understood as associated to the frame bundle—and thus, as gauge natural bundles. We can

summarize the situation just presented in Fig. 1. Note that the frame bundle functor L,

here, can itself be seen as a natural bundle functor, once we recognize that PBn(GL(n,R))

is a faithful subcategory of FB.

How can we know that every natural bundle arises in this way? It is a consequence of a

classic result known as the finite order theorem (Palais and Terng, 1977). To present this,

we need to introduce one more bit of machinery.17 Let M be a smooth (real) manifold of

dimension n. An r-frame at p ∈M is an invertible r-jet jr0f , for some f : Rn →M such that

f(0) = p, where 0 denotes the zero element of Rn.18 The set of all r-frames on M LrM is a

17Many natural bundles of interest, such as bundles of rank-(p, q) tensor fields, are associated to LM . But
other important examples of natural bundles, such as the bundle of affine connections, or more generally the
bundle of r-jets of sections of any first-order natural bundle, are higher-order. (The bundle of affine connec-
tions, for example, is second-order.) Since these bundles become important for thinking about differential
equations on a manifold, we think that this justifies the additional generality of introducing higher order
frame bundles here.

18Recall that if M and N are smooth manifolds, and f : U → N , g : V → N are smooth maps defined
on open neighbourhoods U , V of some p ∈ M , then f and g are said to be r-equivalent at p iff they agree
on all their partial derivatives up to order r at p (in any local coordinate charts containing p, f(p), g(p)).
An r-jet at p is an equivalence class [f ]p of smooth maps which are r-equivalent at p, and the r-jet at p
containing f is denoted jrpf . For any smooth maps f : U ⊂ M → N and g : V ⊂ N → P , if f(p) = q, then
jrqg ◦ jrpf := jrp(g ◦ f). An r-jet jrpf , f : U ⊂ M → N is invertible iff there exists an r-jet jrqg, for some
g : V ⊂ N → M satisfying q = f(p), such that jrqg◦jrpf = jrp idM and jrpf ◦jrqg = jrq idN . To simplify notation
in what follows, we will assume that if jrpf is an r-jet, then f is always a local smooth map, i.e., f : M → N
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principal fiber bundle (the r-frame bundle) over M with structure group GLr(n,R), where

GLr(n,R) is the group of invertible r-jets jr0f , f : Rn → Rn with group multiplication

as composition of r-jets, and comes with an obvious family of projection maps πr
s , s ≤ r,

πr
s(j

r
0f) = js0f .

19 It is straightforward to check that GL1(n,R) = GL(n,R) and L1M is

canonically isomorphic to LM . Intuitively, the bundle LrM can be thought of as follows:

whilst the fiber over π(p) in the frame bundle LM consists of all 1-equivalence classes of

smooth local homeomorphisms between Rn andM at p, i.e. linear isomorphisms between Rn

and the space of 1-equivalence classes of curves at p, the fibre over π(p) in the LrM consists

of all r-equivalent smooth local homeomorphisms between Rn and M at p.

With this background, we can now state the finite order theorem.

Theorem 1. Let M be a smooth manifold of dimension n and let S be a smooth manifold
which carries a (left) GLr(n,R) action. Then the associated bundle LrM ×GLr S →M is a
natural bundle, and conversely, any natural bundle over M can be constructed in this way.

What this theorem establishes is that the facts we noted above about the tangent bundle

are generic. Every natural bundle factors through some gauge natural bundle or other,

determined by the typical fibers of the natural bundles and representations of GLr(n,R) on

those fibers, for some r.

These remarks clarify the sense in which gauge naturality restores a minimal sense of

general covariance for Yang-Mills theory. As we argued in sections 3 and 4, general co-

variance, in the guise of naturality, is deeply related to the fact that natural bundles are,

in a certain intuitive sense, ‘constructed from’ (just) the structure of the base space. Our

discussion of the finite-order theorem for natural bundles provides one way of making this

denotes f : U ⊂ M → N for some (unspecified) open neighbourhood U of p. We note that our definitions of
r jets and r frames, here, makes use of Rn, as opposed to a generic vector space V , which might be viewed as
more general and/or geometric (and more consistent with the style elsewhere in the paper). But for present
purposes, nothing turns on this choice, and we adopt it for simplicity and consistency with the literature.

19Our terminology follows e.g. Kolář et al. (1993), though note that LrM is also sometimes called the
bundle of holonomic r-frames (to distinguish it from, e.g. the bundle of (non-holonomic) r-frames obtained
by r − 1 times recursively taking the bundle of first jets of sections of LM).
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notion of ‘being constructed out of’ precise: any natural bundle is associated to some (pos-

sibly higher-order) frame bundle, and so is constructed out of the base space insofar as

r-frame bundles are constructed out of their base space. From this perspective, a theory

(of vector fields) is “(minimally) generally covariant” only if its objects have a well-defined

behavior under smooth maps on the base space and smoothly varying frame changes (in-

cluding, possibly, higher-order frames). What makes natural bundles distinctive, from this

perspective, is that the smooth maps on the base space determine the basis changes. This

is because natural bundles are gauge natural bundles associated to principle bundles that

are determined, functorially, by the base space. For other gauge natural bundles, additional

information regarding how principal bundle morphisms act on fibers is needed.

7. Solder Forms

We now turn to an application of the ideas presented thus far. Several authors have discussed

an apparent disanalogy between Yang-Mills theory and general relativity (Anandan, 1993;

Healey, 2007; Weatherall, 2016). The starting point for seeing this disanalogy is effectively

a restatement of the key claim of the previous section, which was that natural bundles can

be seen as a special case of gauge natural bundles. Applied to the physical theories we

are considering here, this has the consequences that, much like Yang-Mills theory, general

relativity can be understood as a theory of connections on principal bundles (Trautman,

1980; Weatherall, 2016).

But of course, as we have also seen, not all gauge natural bundles are also natural

bundles. And this leads to the disanalogy between general relativity and Yang-Mills theory.

Recall, again, the diagram in figure 1, where we see that the tangent bundle arises as an

associated bundle V → LM ×GL V
π−→ M over the frame bundle. We have presented this

as a commuting diagram. But in fact, to get that commuting diagram, a certain convention

is adopted, regarding how to identify sections of LM → M with bases for tangent vectors.
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More generally, there are many gauge natural bundle functors T̃ that one might consider,

and for each of them there is a natural isomorphism θ : T → T̃ ◦ L. Each of these natural

isomorphisms realizes a sense in which the tangent bundle, over any manifold, can be seen

as isomorphic to an vector bundle associated to the frame bundle over that manifold. But

in general, there are many such isomorphisms available.

These different possible isomorphisms are not often discussed, because the standard

constructions of the tangent bundle, frame bundle, and associated bundle together determine

a canonical one, relative to certain choices made in those constructions. This canonical

isomorphism equips the frame bundle with a solder form θ, which is a linear isomorphism,

at each u ∈ LM , between Tπ(u)M and V , that is equivariant with respect to the GL(n,R)

action on LM .

As Weatherall (2016) notes, this construction is very general, in the sense that any

frame bundle, including ones constructed from vector bundles that are not tangent to a

manifold, comes equipped with a solder form that fixes an isomorphism between the vector

bundle and associated vector bundles (of the same dimension) to its frame bundle. In more

detail, let V → B → M be any vector bundle over M . We can construct the frame bundle

GL(V ) → LB
℘−→ M for B. Since the associated bundle LM ×GL V → M is isomorphic to

B, we can equip LB with an equivariant one-form that defines, at each u ∈ LB, a linear

isomorphism between the fiber of B at ℘(u) and the fiber of LM ×GL V at ℘(u). The

construction procedures fix a preferred isomorphism, and thus a preferred solder form, in

just the same way as for the tangent bundle.

But not all principal bundles carry a (canonical) solder form. They do so only insofar

as they are viewed as (subbundles of) the frame bundle for some particular vector bundle.

And the principal bundles in Yang-Mills theory are not always thought of as frame bundles.

For some authors, this fact reveals a sense in which general relativity is disanalogous to

Yang-Mills theory. For example, for Anandan (1993) and Healey (2007), the lack of a solder
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form on principal bundles shows that Yang-Mills theory does not admit the same kind of

geometrical interpretation as general relativity. Anandan even argues that the existence

of the solder form “breaks” gauge invariance of the gravitational field. Healey, meanwhile,

takes the solder form in general relativity to partly motivate his endorsement of a holonomy

interpretation of Yang-Mills theory but not general relativity. Weatherall (2016), on the

other hand, drawing on the above construction, emphasizes that every principal bundle in

Yang-Mills theory can be thought of as a subbundle of a frame bundle, and in that sense

does carry a solder form. For Weatherall, the important difference is that LM is soldered

specifically to the tangent bundle, rather than that there is a solder form at all; and he

argues that this difference does not support the conclusions drawn by Healey and Anandan.

Our discussion of naturality and gauge naturality in the previous sections provides a

new perspective on this debate about the sense in which the solder form is a ‘real’ point

of disanalogy between general relativity and Yang-Mills theory. In particular, we will show

that once we have the formalism of natural and gauge natural bundles on the table, we can

see that (i) solder forms are in some sense a generic feature of natural bundles, but that

(ii) they are also, in a precisely analogous sense, a generic feature of gauge natural bundles.

And finally, (iii) the difference between solder forms in the contexts of natural bundles and

gauge natural bundles has to do with the spaces that they are soldered to, rather than the

fact that there exists a solder form at all. This has two conceptual payoffs. First, it clarifies

the sense in which the solder form does point to a real disanalogy between general relativity

and Yang-Mills theory—namely, that the bundles one encounters in general relativity are

natural rather than gauge natural. Second, it provides a deeper explication of Weatherall’s

point that the important disanalogy between general relativity and Yang-Mills theory is not

that there exists a solder form, but that LM is soldered specifically to the tangent bundle.

We will now make these claims precise.

To establish point (i), we now make use of Theorem 1 along with the following fact.
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Fact 1. Let M be a smooth manifold of dimension n and V an n-dimensional vector space.
Then every LrM carries a canonical equivariant one-form θr, which assigns, to each p ∈
LrM , a linear isomorphism between Tπr

r−1(p)
Lr−1M and V ⊕ glr−1(n,R).

Fact 1 can be seen as follows. First, like L1M , W 1P comes equipped with a canonical

form θG. This is because, if V is an n-dimensional vector space, then the associated bundle

W 1P ×W rG (V ⊕ g), where g is the Lie algebra of G, is isomorphic to the bundle TP/G

(Kolář et al., 1993, p. 155). Again, there are many such isomorphisms, but the construction

of the associated bundle and quotient tangent bundle determine a canonical one, relative

to certain choices made in those constructions. This canonical isomorphism equips W 1P

with a canonical form θG, which is a linear isomorphism, at each u ∈ W 1P , between Tπ(u)P

and V ⊕ g. Second, since W 1(Lr−1M) carries the canonical form θGLr−1 , and every local

smooth map f : Rn → M lifts to a local smooth map jrf : Rn × GLr(n,R) → LrM in the

neighbourhood of the identity element er of GLr(n,R),20 we can pull θGLr−1 back to LrM

via the map LrM → W 1(Lr−1M), jr0f → j1(0,er−1)j
r−1f to obtain θr.21 Putting Theorem 1

and Fact 1 together, we see that solder forms are a generic feature of natural bundles, in

the sense that any natural bundle (excepting the 0th-order case) is associated to a bundle

which carries a solder form.

We now move on to establish point (ii). The key point here is that there is a version of

the finite order theorem for principal bundles as well. Again, let M be a smooth manifold

of dimension n, and let G → P
π→ M be a principal bundle. An r-frame at p ∈ P is an

invertible r-jet jr(0,e)f , f : Rn × G → P , f(0, e) = p, where 0 again denotes the zero of

Rn and e is the identity element of G. The set of all r-frames on P , W rP , is a principal

bundle (the rth-order principal prolongation of P ) overM with structure groupW r(n,R, G),

where W r(n,R, G) is the group of invertible r-jets jr(0,e)f , f : Rn ×G→ Rn ×G with group

multiplication as composition of r-jets, and comes with an obvious family of projection maps

20Defined via the condition jr(jrpg) = jrp(f ◦ g) for all g : Rn → Rn.
21Note that this makes sense, since the element j1(0,er−1)j

r−1f depends only on jr0f .
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πr
s , s ≤ r, πr

s(j
r
(0,e)f) = js(0,e)f .

22

Perhaps unsurprisingly, given the discussion in §6, one has the following exact analogue

of Theorem 1 for gauge natural bundles, originally due to Eck (1981) and strengthened by

Kolář et al. (1993)):

Theorem 2. Let G→ P
π→M be a principal bundle and let S be a smooth manifold with a

(left) W r(n,R, G) action. Then the associated bundle W rP ×W rGS →M is a gauge natural
bundle, and conversely, any gauge natural bundle over P can be constructed in this way.23

One also has an analogue to fact 1

Fact 2. Let G → P
π→ M be a principal bundle over a smooth manifold M of dimension

n and V an n-dimensional vector space. Then every W rP carries a canonical equivariant
one-form θrG, which assigns, to each p ∈ W rP , a linear isomorphism between Tπr

r−1(p)
W r−1P

and V ⊕wr−1(n,R, G).

The argument is much like before. SinceW 1(W r−1P ) carries the canonical form θW r−1G, and

every local smooth map f : Rn×G→ P lifts to a local smooth map jrf : Rn×W r(n,R, G) →

W rP in the neighbourhood of the identity element erG of W r(n,R, G), we can pull θW r−1G

back toW rP via the mapW rP → W 1(W r−1P ), defined by jr(0,e)f 7→ j1(0,e)j
r−1f to obtain θrG.

So again, putting Theorem 2 and Fact 2 together, solder forms are also a generic feature of

gauge natural bundles, in the sense that any gauge natural bundle (excepting the 0th-order

case) is associated to a bundle which carries a solder form.

Finally, this takes us onto point (iii), and our two conceptual payoffs. As we have just

seen, one can construct a variety of solder forms for both natural and gauge natural bundles.

From this perspective, the fact the solder form is ‘more apparent’ in general relativity than

in Yang-Mills theory is just an artefact of the fact that many of the bundles one encounters

in Yang-Mills theory are 0th order, whereas many of the bundles one encounters in general

22Note that W r(n,R, G) can also be defined as the semidirect product W r(n,R, G) = GLr(n,R)⋊ Jr
nG,

where Jr
nG is the (Lie) group of r-jets jr0f , f : Rn → G with group multiplication defined via jr0f ◦ jr0g :=

jr0(f · g), where · here denotes group composition in G (see Kolář et al., 1993, Ch. XII).
23As we already noted, many gauge natural bundles one encounters in Yang-Mills theory are associated

to P , i.e. are 0th-order. But other important examples of gauge natural bundles for Yang-Mills theory are
higher-order, for example, the bundle of principal connections on P is first-order.
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relativity are 1st-order. This does not mean that there is not a real disanalogy between

solder forms in the contexts of natural and gauge natural bundles. As we have now seen in

some detail, and as Weatherall notes, the disanalogy is that, for example, LM is soldered

to TM , whereas W 1P is soldered to TP/G. But once we have the formalism of natural

and gauge natural bundles on the table, we can see that this disanalogy is really just a

manifestation of the fact that the bundles one encounters in general relativity are natural,

whereas the bundles one encounters in Yang-Mills theory are gauge natural.

8. Conclusion: General Covariance Revisited

Our primary goal in this paper was to extract, from the long and vexed literature on general

covariance, certain precise necessary conditions; and then to argue that those conditions are

non-trivial because in fact they are violated by Yang-Mills theory. We then argued that

something like general covariance, properly generalized, could be restored for Yang-Mills

theory, but only by moving to a more general mathematical setting; and we showed how

this perspective could provide fruitful insight into other different debates, concerning the

status and significance of principal bundle and solder forms in understanding the relationship

between general relativity and Yang-Mills theory.

We have not attempted to give a general or complete account of general covariance.

As we have noted, to do so, we would need to say much more about what it means for

a theory to have the right sort of behavior under diffeomorphisms, whereas our focus has

been on properties of the objects that our theories posit. We postpone that more complete

discussion for future work. Even so, we will conclude by suggesting that the (somewhat

preliminary) arguments and observations offered here offer a valuable perspective on what

general covariance and related issues, such as coordinate-independence, are really about.

General covariance is often discussed in terms of coordinate transformations and coor-

dinate independence. But we take the lesson of the forgoing discussion to be that more
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important than coordinate independence is how the objects we use in constructing physical

theories depend on one another—and, in particular, how those objects depend on a space-

time manifold and other, related structures. In fact, coordinate independence turns out

not to be fully probative, because as we have seen, objects can have coordinate independent

characterizations without having well-defined behavior under coordinate transformation (or,

better yet, smooth maps). This is because objects can be coordinate-independent simply

because they do not have the right relationship with a manifold to be candidates to depend

on (manifold) coordinates. The complex vector bundles we discussed above demonstrate

this.

We can restore a minimal sense of general covariance for Yang-Mills theory by recognizing

that the background geometry of Yang-Mills theory consists of only the structure a principal

bundle, along with a family of vector bundles, all systematically related to one another,

endowed with certain further structure preserved under the action of the principal bundle’s

structure group: an inner product and, in some cases, an orientation. No further structure,

such as a preferred trivialization or coordinatization, is assumed. In this, general covariance

for Yang-Mills theory is analogous to general covariance for general relativity, where the

background geometry consists of only the structure of a smooth manifold, along with various

bundles that can be constructed from that. Of course, to represent concrete situations in

Yang-Mills theory, one adds to this background structure sections of certain gauge natural

bundles, such as a connection and vector fields representing matter configurations. But this

is also analogous to general relativity, where one introduces a metric and various matter

fields, all sections of natural bundles.

Talk of “structures” and “dependence” is evocative, but not very precise. But the key

idea in the present case is explicated using the formalism of natural and gauge-natural bun-

dles. We suggest that it is naturality, or more precisely, still, functoriality, that captures

the core of what general covariance is concerned with. The difference between the sorts of
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objects and relationships we encounter in general relativity – the generally covariant ones –

and those in Yang-Mills theory is that the former, but not the latter, involve objects that

depend only on a manifolds that represents space and time; whereas the latter depends on

further structure on top of that. Functoriality reflects this idea by enforcing the require-

ment that our constructions can be applied uniformly across manifolds, in a way that is

compatible with those maps that we take to preserve manifold structure. Coordinate- or

frame-dependent constructions fail to be functorial (over manifolds) because they require

further information that is not generally preserved by diffeomorphisms. This is why those

constructions fail to be generally covariant. But that is not the only way to fail to be

generally covariant, and the natural bundle formalisms shows very clearly why.
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