
 

1 
 

22 November 2024 
John Eyre  
 

Corroboration and uncertainty 
 
Abstract 
 
In science, uncertainty is always with us, both in observations and in predictions from 
theory.  This paper investigates the important role played by uncertainty in two related 
problems in philosophy of science: corroboration and the language-dependence of 
closeness to truth.  When predictions from theory are confronted with observations, the 
theories can be falsified or corroborated.  This is an iterative process, since new 
observations may falsify a previously corroborated theory.  Quantification of uncertainty 
is crucial in determining whether a prediction is consistent with an observation or not.  
Moreover, quantitative measures of corroboration must be time-dependent, because 
they rely on estimates of uncertainty, which are always open to reassessment.  We also 
discuss some consequences of these ideas on corroboration for theories of 
verisimilitude. 
 
In response to Karl Popper’s original concept of verisimilitude, Pavel Tichý offered an 
alternative method for ranking theories in terms of closeness to truth.  David Miller raised 
objections, showing that rankings within Tichý’s system did not survive transformation 
into a different mathematical space.  This problem is named here the “Miller-Tichý 
paradox”, and it has implications for the language-dependence of closeness to truth.  We 
show how this paradox can be resolved by taking account of the inevitable uncertainties 
in observations and in predictions from theory.  
 
 
1. Introduction 
 
In the history of philosophy, Karl Popper played a key role in prising the concept of 
knowledge away from the concept of certainty.  For Descartes, the only knowledge was 
certain knowledge, and certain knowledge was the goal of our enquiries.  Hume showed 
that, outside the realms of logic and mathematics, certainty is not possible, and so he 
concluded that knowledge (understood as certain knowledge) is not possible.  Popper 
(1959, 1963, 1972) showed how knowledge is possible without certainty: that knowledge 
is embedded in theories, which are conjectural, and that knowledge advances through 
the falsification of theories.   
 
This is a negative approach; the falsification of a theory tells us what is not the case.  
This reduces the range of what might be the case, but only a little.  A more positive and 
optimistic approach to the growth of knowledge in general, and scientific knowledge in 
particular, is as follows: science makes progress – false theories are superseded by 
better theories and although the latter will be shown in time also to be false, they are 
better than the theories they replace because they are closer to the truth.  
 
Popper attempted to quantify this progressive process through the concept of 
verisimilitude.  He distinguished sharply between the concepts of corroboration and 
verisimilitude (although he did regard degree of corroboration as an indicator relevant to 
verisimilitude).  A theory is corroborated when it survives attempts to falsify it – when 
predictions from the theory are found to be consistent with observations.  However, a 
theory that is corroborated today may be falsified tomorrow, and so corroboration is 
time-dependent.  On the other hand, the verisimilitude (or truthlikeness or closeness to 
truth) of a theory is conceived as being time-independent, like truth; verisimilitude 
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assesses closeness not to the observations that are available now but to all the 
consequences (potential observations) derivable from a theory.   
 
Popper’s own attempt to develop a logically consistent concept of verisimilitude is widely 
acknowledged to have been a failure.  His theory, as set out in Popper (1963), was 
shown to be seriously flawed (Miller, 1974; Tichý, 1974).  Attempts over many years to 
rescue the concept have been fraught with difficulty.  Niiniluoto (1998) and Miller (2006, 
chapter 11) summarise 20-30 years of flawed attempts.  Niiniluoto surveys several terms 
that have been used to describe various flavours of verisimilitude, with “expected” or 
“estimated” verisimilitude being measures of corroboration – measures of closeness to 
available observations – and with “theoretical” verisimilitude representing Popper’s 
original, time-independent concept.  Oddie and Cevolani (2022) and Niiniluoto et al. 
(2022) summarise more recent developments.  The literature on verisimilitude is now 
rich; it includes a range of concepts, many of which depart substantially from Popper’s 
original idea.  It is beyond the scope of this paper to review these. 
 
The concept of verisimilitude, as originally conceived by Popper consists of two 
components: accuracy and content.  Accuracy is important because it represents 
consistency between predictions from theory and objective facts.  Content is important 
because it guards against a theory being true (or close to true) whilst saying nothing or 
very little, with the limiting case being tautologies which, though true, have no empirical 
content. 
 
A problem that has complicated the search for a viable theory of verisimilitude has been 
the problem of the “language-dependence” of closeness to truth: can a theory that is 
closer to the truth (relative to another theory) in one language be further from the truth in 
another?  This problem, in the context of verisimilitude, was first identified by Miller 
(1974) – see below – and then generalised by Miller (1975), in which he suggested that 
the ranking of the accuracy of predictions from two theories (in terms of closeness to 
truth or to observation) could always be reversed by a suitable transformation into a 
different mathematical space.  Following his original statement of the problem, Miller 
concluded that “… no false theory can … be closer to the truth than is another theory”.  
Popper (1979, Appendix 2(5)) gave a simpler mathematical example for the same 
problem.  Miller (2006, chapter 11) reviewed 30 years of work on this problem, and he 
was of the opinion that no solution was in sight.   
  
If Miller’s result is both correct and applicable to science, this is clearly a major problem, 
because it flies in the face of scientific practice and experience, in which one theory is 
apparently superseded by a “better” theory and “progress” appears to be made.  As 
most people (scientists and non-scientists) generally accept that this is actually the case, 
this conflict represents a paradox.  In Eyre (2024), we named this the “Miller-Popper 
paradox” and showed how it can be resolved.  The resolution hinges on the importance 
of uncertainty in science.  As we all learn (or should learn) at school, no measurement 
(observation) is complete without an estimate of its uncertainty.  Moreover (and this we 
probably don’t learn at school), predictions from theory are also subject to uncertainties.  
These arise either from inexactness in the theory (including probabilistic or 
indeterministic aspects), or from uncertainties and approximations in the predictive 
models that embody the theory, or from the initial conditions for the predictions, or from 
all three.  Note that we are not here trying to account for errors (falsities) in the theory 
itself, but for errors that arise even if the theory is true.  Uncertainties in the initial 
conditions are inevitable because they are based (ultimately) on observations, which are 
uncertain.  In Eyre (2024), it was shown that the inclusion of finite uncertainty, in 
observations or predictions or both, resolves the paradox – the transformation into a 
different mathematical space preserves the ranking of the accuracy of predictions (at 
least for some important cases).  Moreover, it was shown that Miller’s result concerning 
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the impossibility of ranking predictions is valid only in the limit of zero uncertainty, and 
that this limit, although an interesting mathematical puzzle, is not relevant for real 
scientific problems.  It was also shown how some concepts important to science – 
concepts of “closeness”, “consistency”, “agreement” and related concepts – all rely on 
the concept of uncertainty. 
 
With this in mind, in this paper we investigate the importance of uncertainty for the 
related problem of corroboration; we show how quantification of uncertainty, in 
observations and predictions, is central to the process of comparing predictions from 
theory with observations, and to judgements on whether theories are considered 
corroborated or falsified.  We stress the empirical nature of estimates of uncertainty, and 
hence the time-dependence of judgements on corroboration/falsification.   
 
We also offer some comments on concepts of verisimilitude.  We note that verisimilitude 
is often approached as a problem in logic – within a framework in which a statement is 
either true or false.  We suggest that, in the face of uncertainty in both observations and 
predictions, this framework is not the most fruitful.  (This is not to say that a solution in 
logic cannot be found, but only that it is probably not the best place to start.) 
 
Following his demonstration of the flaws in Popper original concept of verisimilitude, 
Tichý (1974) outlined an alternative approach for a quantitative theory of verisimilitude 
and gave a simple example.  Miller (1974) criticised Tichý’s proposal and gave a 
counter-example.  This generated a paradox which is named here the “Miller-Tichý 
paradox”.  In the Appendix of this paper, we show in detail how this paradox can be 
resolved in a manner similar to the resolution of the Miller-Popper paradox.   
 
The paper is structured as follows.  Section 2 presents the process of corroboration in 
science with emphasis on the role of uncertainty.  Section 3 examines the link between 
corroboration and verisimilitude, and it offers some comments on the consequences for 
some concepts of verisimilitude of the ideas on corroboration presented in section 2.  It 
also discusses the consequences of the proposed resolution of the Miller-Tichý paradox.  
Section 4 presents further discussion of these ideas, and section 5 offers some 
conclusions.   
 
 
2. Corroboration 
 
For the purposes of this analysis, we accept the general Popperian framework; we 
assume that science progresses through an iterative process of corroboration and 
falsification, by means of “crucial experiments”.  Some may consider this a rather naïve 
view of scientific progress, but we will adopt it for now, add the concept of uncertainty 
and see where it leads us.  It is therefore instructive to look closely at the process of 
corroboration in this context.  Some of the points in this section may appear rather 
pedestrian, but they are important for the later sections of the paper.  
 
2.1  Corroboration of comparable theories 
 
By comparable theories we mean theories with comparable consequences – theories 
that lead to the predictions of the same quantities.  Let the nth theory (THn) lead to 
predictions/forecasts, Fn, (denoted F for forecasts, to avoid confusion with P for 
probability).  Let O be the observations used to falsify or corroborate these predictions.  
Let 𝑦1

𝑜 be the value of the first observation and let 𝑦1
𝑛 be the value of the prediction of 

this observation from the nth theory.  Note that the symbols Fn and O represent both the 
values of these measures and their uncertainties.  This is illustrated in Fig.1 for 
predictions from three comparable theories.   
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Figure 1.   Illustrating the comparison of 3 predictions, F1, F2 and F3, from theories TH1, TH2 

and TH3, with observation O, for a single observable quantity, 𝑦1.  The ordinate 

represents the uncertainty expressed as the conditional probability of the true 
value of 𝑦1 given the observed or predicted value. 

 
A zone of uncertainty is indicated around each predicted value and around the observed 
value.  Initially, we consider all these uncertainties to be of equal magnitude and the 
associated errors to have a Gaussian distribution or similar shape.  (Departures from 
these error distributions, including those of chaotic systems for which the error 
distributions of predictions depart substantially from these shapes, will be considered in 
section 2.5.)  The true value of 𝑦1 is unknown but (usually) lies close to 𝑦1

𝑜 with a 

probability distribution as indicated by the ordinate in Fig.1, i.e. this curve should be 
interpreted as 𝑃(𝑦1|𝑦1

𝑜), the conditional probability that the true value is 𝑦1 given the 

observed value 𝑦1
𝑜.  Similarly for the predictions: assuming the theory is true, the 

conditional probability of the true value 𝑦1 given the predicted value 𝑦1
𝑛 is 𝑃(𝑦1|𝑦1

𝑛).  For 
simplicity, we use 𝑦1

𝑜 to represent a single observation, which it could indeed be.  

However, it could also represent the mean of a set of observations of the same type. 
 
Normally, probability density functions (PDFs) of uncertainty express the conditional 
probability of the observation (or prediction) given the true value, e.g. 𝑃(𝑦1

𝑜|𝑦1), and 
Bayes theorem is invoked in order to calculate the posterior probability 𝑃(𝑦1|𝑦1

𝑜).  

However, if we assume that the prior probability of the true state is only weakly 
informative – in practice, that it is flat over the range in which 𝑃(𝑦1

𝑜|𝑦1) has significant 
value – then 𝑃(𝑦1

𝑜|𝑦1) and 𝑃(𝑦1|𝑦1
𝑜) have the same shape.  (This assumption is not 

always valid – for example, when some physical limit creates a step in the prior 
probability – but we will examine first cases for which the assumption is valid.)      
 
The usual interpretation of Fig.1 is as follows: the observation O corroborates both 
prediction F2 and prediction F3, because their zones of uncertainty overlap – they are 
“close” or “consistent”.  (Strictly, O corroborates the theories leading to these predictions, 
but we will use “corroborates the prediction …” as shorthand for this.)  On the other 
hand, the observation O falsifies F1 – their values are outside each other’s zones of 
uncertainty and hence they are inconsistent.  Note that this “falsification” is provisional, 
as the uncertainties in O or Fn (their magnitudes or their shapes) may subsequently be 
found to be substantially in error.  Also, for the error distributions shown (Gaussian or 
similar), their overlap does not fall to zero and so, although the consistency of 
observation and prediction is very improbable, they are never absolutely inconsistent. 
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It is instructive to consider Fig.1 without estimated uncertainties.  In this case it is only 

possible to say that 𝑦1
2 is closer to 𝑦1

𝑜 than is 𝑦1
1, and that 𝑦1

3 is closer to 𝑦1
𝑜 than is 𝑦1

2.  

Therefore, in this one-dimensional case, the theories can be ranked.  However, nothing 
can be said about the quantitative degree of corroboration or falsification of the 
theories.  Indeed, if all the uncertainties were substantially reduced, then all the theories 
would be considered falsified. 
 
From the evidence presented in Fig.1, TH2 and TH3 survive falsification – they are 
corroborated – and we look for a “crucial experiment” through a new observation 𝑦2

𝑜 to 

compare with 𝑦2
𝑛.  This is illustrated in Fig.2, where we now show zones of uncertainty 

by circles.  These circles are to be interpreted as representing equi-probability lines of 
2D probability functions equivalent to those shown in Fig.1, with increasing radius 
indicating decreasing conditional probability.  By drawing them as circles we imply that 
the errors in 𝑦1 and 𝑦2 are equal in magnitude and that they are uncorrelated between 𝑦1 
and 𝑦2 (and we discuss other possibilities in section 2.4). 

 

 
Figure 2.   Illustrating the comparison of 3 predictions, F1, F2 and F3, with observations O, 

for two observable quantities, 𝑦1 and 𝑦2. 

 
The interpretation of Fig.2 is that F2 is now falsified and F3 still corroborated.  It is 
important to note that the decision as to what amount of PDF-overlap constitutes 
corroboration is a procedural one.  Fortunately, the decision is always tentative and can 
be revised in future in the light of new information. 
 
We then seek another crucial experiment through a new observation 𝑦3

𝑜.  This is 

illustrated in Fig.3, which may be interpreted as a 2D projection of predictions F3 and F4 
and observations O on to the 𝑦2-𝑦3 plane.  Fig.3 shows that F3 is now falsified whereas 
F4 is corroborated.  (We assume that F4 has also survived comparisons with 𝑦1

𝑜.) 
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Figure 3.   Illustrating the comparison of 2 predictions, F3 and F4, with observations O, for 

two observable quantities, 𝑦3 and 𝑦2. 

 
This process continues iteratively; a theory can remain corroborated by all observations 
available today but can be falsified by a new observation tomorrow.  When this happens, 
the search starts for a new theory.  Note that the order in which theories can be falsified 
depends on the order in which observations become available; if 𝑦2

𝑜 had become 
available before 𝑦1

𝑜, then F2 would have been falsified before F1.  In practice the process 

of falsification is rarely as arbitrary as this suggests, because new experiments yielding 
new observations are often prompted by conflicts between existing theories.   
 
We have focussed here on simple cases in which one theory gives predictions that are 
clearly closer to observation than another.  In science, life is often more complicated; 
some observations agree better with predictions from one theory and other observations 
with those from another.  Both theories therefore have shortcomings and judgment as to 
which is better must await further information.  In this case, the choice between theories 
is a pragmatic one, concerning the applications for which the predictions will be used. 
 
 
2.2 Corroboration of incomparable theories 
 
By incomparable theories we mean theories with some consequences that cannot be 
compared – theories for which not all the observables predicted by one theory are 
predicted by another.  It is important that some way can be found for assessing these 
theories relative to each other. 
 
We suggest that all pairs of incomparable theories can be made comparable as follows:  
a theory that is incapable of generating a given prediction is equivalent to a theory that 
can make such a prediction but with a very large (or infinite) uncertainty.  This is 
illustrated in Fig.4 (which is a modified version of Fig.2).  The (almost) parallel lines 
around F2 can be considered as parts of ellipses of very large length in the 𝑦2 direction in 

the vicinity of O.  In this case, F2 would also be corroborated by the observations but not 
as strongly as F3; the area of the ellipse around F2 is very much larger than that around 
F3.  Therefore TH2 is comparatively a very weak theory and TH3 is preferred.  If Fig.4 
had been drawn such that F3 were falsified, then only F2 would remain corroborated, but 
only weakly – the search would be on for a new theory to be tested against 𝑦2

𝑜. 
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Figure 4.   As Fig.2, except with uncertainties of F2 increased to very large values in the 𝑦2 

direction. 

 
2.3 Corroboration by incomplete observations 
 
An observation that is not available is equivalent to an observation that is available but 
with a very large (or infinite) uncertainty.  This is illustrated in Fig.5.  F2 and F3 are both 
corroborated by 𝑦1

𝑜.  They differ significantly in their prediction of 𝑦2
𝑜, but this is not yet 

available and so both remain corroborated for the time being.  Note that, as observations 
of lower and lower uncertainty become available, there will come a point at which 𝑦2

𝑜 

corroborates F2 or F3 or neither, but not both. 
 

 
 
Figure 5.   As Fig.2, except with uncertainties of O increased to very large values in the 𝑦2 

direction. 
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2.4 Corroboration with varying uncertainties 
 
The degree to which predictions are corroborated or falsified depends on the 
uncertainties in observations and predictions – both their magnitudes and their 
correlations.  This is illustrated in Fig.6.  In Fig.6a, both predictions F5 and F6 are falsified 
to a similar degree.  However, they could be falsified more strongly if observation 
uncertainties were reduced, or they could corroborated if these uncertainties were 
increased.  The correlations of uncertainty between different observations or predictions 
are also important, as illustrated in Fig.6b.  Positively correlated uncertainties, as drawn, 
will now lead to F5 being corroborated but not F6.  Note that there is no change here in 
the predicted values, only in their estimated uncertainties. 
 

 
Figure 6.   Illustrating the comparison of 2 predictions, F5 and F6, with observations O, for 

two observed quantities, 𝑦1 and 𝑦2, (a) for equal and uncorrelated errors in 

observations and predictions and (b) for equal and positively correlated errors. 

 
2.5 Corroboration for predictions with different uncertainty distributions 
 
In the sections above, we have assumed that observations and predictions have error 
distributions that are either Gaussian or similar to Gaussian, i.e. that they are unimodal,  
that their error PDFs decrease monotonically away from a maximum value, and that they 
never fall to zero.  Firstly, consider the third of these: if the error PDFs of both 
observation and prediction fall to zero beyond a certain distance, then beyond a certain 
separation of observed and predicted value the probability of their being consistent falls 
to zero.  This is the region in which the condition identified by Miller (1975) is valid, i.e. 
no prediction is better than any other prediction, whatever their separation from 
observations.  However, this condition is non-physical – it indicates that at least one of 
the PDFs has been mis-specified.  In science the opposite case is more common, i.e. 
the tails of the distributions are often super-Gaussian.  For example, observations may 
consist of “good” observations (having small errors with Gaussian or other “well-
behaved” PDFs) and “bad” observations (having much larger errors than normal).  Such 
situations are common and call for methods of quality control, to separate “good” from 
“bad”.  This can be achieved by specifying an appropriate total PDF, such as a Gaussian 
plus a constant (for example, see Lorenc and Hammon, 1988).  Non-Gaussian PDFs 
give rise to non-quadratic penalty functions; the PDF of uncertainty determines the 
appropriate objective penalty function (see Eyre, 2024). 
 
Another common problem arises in nonlinear systems.  Here prediction errors may 
initially be unimodal and close to Gaussian but, as the state of the nonlinear system 
evolves, the error distributions become highly non-Gaussian and multi-modal.  In chaotic 
systems the prediction errors will grow to populate an attractor (e.g. see Palmer 2022).  
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In these cases we must abandon the comparison between individual predictions and 
“verifying” observations and instead consider the statistics of an ensemble of predictions.  
Now a theory can be considered corroborated if it leads to an ensemble of predictions 
with statistical characteristics close to those of “verifying” observations – for example, 
that the spread of the ensemble of predictions is close to the spread of the “errors” 
(difference from observation) of the verified predictions.  In this case more complex 
metrics are needed to measure “closeness” (but this will not be discussed further in this 
paper). 
 
 
3. Corroboration, verisimilitude and the language-dependence of closeness to 

truth 
 
As we have seen in section 2, quantitative degrees of corroboration depend on the 
values and the estimates of uncertainty of both predictions and observations.  (For the 
mathematics of the quantification, see Eyre (2024).)  Quantitative estimates of 
uncertainty have the same empirical status as the values to which they apply – both are 
inter-subjectively shareable and criticisable, and thus they have the status of objective 
information.  Estimates of uncertainty are, however, time-dependent – they can be 
revised as experimental evidence is reassessed and they can be changed (usually 
reduced) as a result of improved observational technology and improved ability to 
generate predictions from their underlying theories.  It could be argued that the values 
themselves may also be time-dependent; they might occasionally be revised.  Or, 
indeed, it could be argued that the observation/prediction should always be considered 
as a value and its uncertainty, as stressed in section 2.1.  In either case, we suggest 
that the process of corroboration should start again with these new values.  However, 
the key point here concerns the importance of uncertainty to the measure of the 
“closeness” of prediction to observation, and hence the degree of corroboration, even if 
the values are unchanged. 
 
Popper’s original idea was that corroboration is time-dependent, as results from new 
crucial experiments become available, but that verisimilitude is time-independent.  This 
follows from the notion that verisimilitude can be equated with “ultimate” or “theoretical” 
corroboration – with testing all the consequences of a theory.  Although verisimilitude in 
this sense has always been impractical – a goal to which one might aspire, or a 
normative concept – the analysis of corroboration presented above suggests that it is a 
flawed concept in principle, because any measure of “closeness” relevant to science 
must rely on measures of uncertainty.  There is no absolute standard of uncertainty – it 
is intrinsically a time-dependent concept – and so this criticism will apply to any time-
independent concept of verisimilitude.  It is also suggested that time-dependent 
measures of verisimilitude will not be relevant to science unless they account for 
uncertainty.  This is a tentative conclusion; a stronger statement would require a more 
thorough review of the literature on different flavours of verisimilitude, which is beyond 
the scope of this paper. 
 
The process developed in section 2 could be described as one of “iterative 
corroboration” and would belong to the family of measures of “estimated verisimilitude” 
as described by Niiniluoto (1998).  Through this process, we continually find “better” 
theories, in that they are better corroborated, i.e. consistent with observations to within 
estimated uncertainties.  As more crucial experiments are performed, the dimensions of 
the space in which a theory is corroborated increases and/or the hypervolume of the 
uncertainty within this space decreases. 
 
The last point would appear to address Popper’s concern about theory content, i.e. that 
accuracy alone is not an adequate measure, because it may be possible to increase 
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accuracy at the expense of content (e.g. through theories which, in the limit, express a 
set of tautologies).  This can be avoided through the above concept of a hypervolume of 
uncertainty; as theories improve (become stronger or “bolder”) and yield more and more 
accurate predictions, the hypervolume of uncertainty is reduced.  The magnitude of the 
hypervolume of uncertainty is related to the information content of a prediction (or of an 
observation).  According to Shannon’s information theory (Shannon and Weaver, 1963), 
the information content of an observation is equal to the reduction in the entropy of the 
associated PDF and, if the PDF is Gaussian, this is equal to the logarithm of the ratios of 
the hypervolumes of uncertainty before and after the observation.  These ideas are 
discussed in more detailed in the literature of the geosciences; see, for example, 
Rodgers (1976) or Rodgers (2000). 
 
We accept that the history of science suggests that most theories are probably false and 
also Popper’s assertion that all universal theories are, a priori, probably false.  However, 
the claim that no false theory can yield predictions that are closer to the truth that any 
other false theory can be contested.  In Eyre (2024), it was shown how this claim, 
termed the “Miller-Popper paradox”, can be resolved; the transformation of predictions 
and observations into a different mathematical space preserves the ranking of theories 
in terms of closeness to observation, because the associated error distributions are also 
transformed by the projection into the new space and in such a way as to preserve 
objective measures of closeness.  As introduced in section 1, it can also be shown (see 
Appendix) that the paradox arising from Miller’s objection (1974) to Tichý’s attempt 
(1974) to rescue Popper’s theory of verisimilitude is an example of the same problem of 
projection between spaces and can be resolved in the same way. 
 
So, if Miller’s objection can be rejected in this way, what are we to make of Tichý’s 
proposal for a new theory of verisimilitude?  We show in the Appendix that Tichý’s 
proposal represents a strategy in logic that does not map on to a real problem in 
science, because it does not consider uncertainties.  When uncertainties are taken into 
account, we find the same problem with a concept of (time-independent) verisimilitude 
as discussed above.  So, can one false theory yield better predictions than another, as 
Tichý’s example attempted to illustrate?  We suggest that it can, but using the process of 
iterative corroboration described in section 2.  In this way, the proposed solution to the 
Miller-Tichý paradox is relevant not only to Popperian-inspired measures of 
verisimilitude, but also to all other kinds of comparisons of uncertain measurements and 
predictions.  It therefore supports claims for the language-independence of acceptable 
measures of closeness to truth. 
 
 
4. Discussion 
 
The analysis in sections 2 and 3 has stayed firmly in multi-dimensional observation 
space; the concepts of corroboration and verisimilitude have been discussed in this 
space, as have the measures through which these concepts may be quantified.  All this 
relies on the concept of an “observation operator”, i.e. a function or procedure for 
mapping quantities from variables represented by theories (from theory space) to 
quantities that can be compared with observations (to observation space).  Predictions 
are compared with theories in observation space, not in theory space, and likewise 
“comparability” is described in observation space.  The process of iterative corroboration 
allows us to get “closer to truth” in observation space, i.e. in terms of the consequences 
of theories, rather than of the theories themselves.   
 
All observations and their operators are theory-laden.  An observation operator may be 
considered as a set of theories auxiliary to the theory under test.  However, the process 
of corroboration relies on a large degree of independence between the theories 
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underlying the observations and those underlying the predictions.  Whilst science strives 
to achieve this independence, it is not always fully possible.  The practical consequence 
is some degree of correlation between uncertainties in predictions and in the 
corroborating observations.  Scientists need to be aware of this (and they generally are). 
 
Another consequence of the theory-laden nature of observations is that theory-change 
can lead to a change in the interpretation of observations.  We assumed in section 2 
that, when a new theory comes along, its predictions can be compared with old 
observations, as well as with new ones.  However, old observations may need to be 
reinterpreted in the light of new theory.  This complicates the process of iterative 
corroboration outlined in section 2 but, we suggest, does not invalidate it. 
 
Central to the concept of uncertainty is the concept of truth, i.e. the idea that there is a 
“true value” of the observed quantity around which the observations (with their 
uncertainties) are clustered (but see below).  This amounts to “realism” in observation 
space, which we accept.  (We also postulate that these true values in observation space 
are the result of a true state in a theory space corresponding to the real world, but this 
assumption is not necessary for the arguments in this paper.) 
 
Whilst observations are normally clustered around the truth, this is not the case when 
systematic errors are greater than random errors.  In this case, the observation cluster 
will be offset from the truth, and this is well understood in science.  We note the 
comment by Hacking (1982) on this: “Although the idea of systematic error presents 
interesting conceptual problems, it seems to be unknown to philosophers”. 
 
The figures in section 2 have been drawn on the assumption that truth is point-like – that 
the true value is a point in a multi-dimensional observation space.  It is plausible that the 
analysis presented here could be extended to cover either an indeterministic or 
probabilistic notion of truth – that, within the framework proposed here, this possibility 
could be included in the description of uncertainty – but we do not pursue it further here. 
 
In this paper, we stress that uncertainty in observations and predictions is fundamental 
and unavoidable, both in science itself and in any coherent theory of corroboration.  
Why, then, has uncertainty been largely ignored in most previous work in this field?  We 
suggest that it is because uncertainty has been, or has been perceived to be, very low or 
unimportant in most of the key experiments discussed in the philosophy of science - that 
the agreement or otherwise between observation and prediction has been obvious 
without a detailed analysis of their uncertainties.  However, we hope it is clear from the 
analysis presented in this paper that the neglect of uncertainty is a mistake, because 
corroboration relies on “consistency” – a prediction cannot be declared consistent with 
an observation without some implicit assumption concerning their uncertainties. 
 
It could be objected that the original concept of verisimilitude was a postulated measure 
of closeness to truth, whereas we have focussed here on closeness to observations.  
However, as we have demonstrated, measures of “closeness” relevant to science 
involve estimates of uncertainty; in the limit of zero uncertainty, these measures lose 
their scientific relevance.  In other words, if we wish to say that the value of a predicted 
or observed quantity is close to the true value, then we imply values of uncertainty in the 
predicted or observed value.  This is not to deny that true values exist, but only to stress 
that measures of closeness to them involve estimates of uncertainty. 
 
As noted above, we have stayed firmly in observation space – we have identified 
corroboration with the claim that predictions from a theory are consistent with 
observations.  In this way we have stayed close to the methods of science as described 
numerous times by Popper (e.g. see Popper, 1979, section 23 and 24) and with his view 
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that rational choice between competing theories can be made using this approach.  We 
have stayed away from ideas of “closeness to truth in theory-space” and whatever this 
might mean.  We note that it is possible to make radical changes to theories, even at a 
fundamental level, whilst making relatively minor changes to some of the observable 
consequences (but perhaps radical changes to others).  In this context and as an 
example, we note the radical theory change from classical to quantum physics.  We also 
note the quotation in Palmer (2022) from Penrose (1997): “My own view is that to 
understand quantum nonlocality we shall require a radical new theory.  This theory will 
not just be a slight modification of quantum mechanics but something as different from 
standard quantum mechanics as general relativity is from Newtonian gravity.  It would 
have to be something which has a completely different conceptual framework.”    
 
We have focussed in this paper on quantitative theories, and it might be asked to what 
extent these arguments apply also to qualitative theories.  We have not considered 
these in detail.  However, it seems plausible that the inevitable vagueness inherent in a 
qualitative prediction must have an effect similar to an uncertainty in a quantitative 
prediction.  The discussion of the Miller-Tichý paradox (Appendix) illustrates this. 
  
 
5. Conclusions 
 
Popper stressed the distinction between knowledge and certainty and thus highlighted 
the importance of uncertainty, in knowledge in general and in scientific knowledge in 
particular.  Scientists also follow this maxim by acknowledging that all observations 
come with uncertainty, as do all predictions.  In this paper, we have attempted to follow 
through on both these central ideas in a consistent way; we have illustrated the 
pervasive role of uncertainty in the corroboration of theories, by comparison of their 
predictions with observations.  We have noted that decisions concerning corroboration 
or falsification are always provisional, and that they require some convention concerning 
the magnitude of the overlap of relevant uncertainties. 
 
We have also examined the concept of “theoretical” or time-independent verisimilitude 
from this perspective and found it wanting in terms of its relevance to science, because 
estimates of uncertainty are inherently time-dependent.  This criticism is likely to apply 
also to concepts of “expected” or ”estimated” verisimilitude, if they too fail to account for 
uncertainty in observations and predictions.   
 
In Eyre (2024), we showed that introduction of uncertainty resolves the problem of 
language-dependence in the Miller-Popper paradox.  Here we have shown that the 
same approach can be used to resolve the Miller-Tichý paradox (the “minnesotan-
arizonan paradox”), which arose out of early work on verisimilitude. 
 
We have conducted this analysis in observation space – in the space of the 
consequences of theories rather than the space of theory variables themselves.  We 
contend that this is how science works and how it accommodates radical theory change.  
In summary, we hope we have put Popperian theory of falsification and corroboration on 
a firmer footing.  Key to this analysis is the insistence that an observation or a prediction 
is not simply a value – it is value together with an estimate of its uncertainty .    
 
 
Appendix.  Resolution of the “Miller-Tichý paradox” 
 
A.1. The paradox 
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In a paper discussing flaws in Popper’s concept of verisimilitude, Tichý (1974) 
introduced a “rudimentary weather-related language” with only 3 primitive sentences 
equivalent to: “it is hot” (= ℎ), “it is raining” (= 𝑟) and “it is windy” (= 𝑤).  Within this 
language it is possible to construct sentences such as it is hot, raining and windy 
(ℎ&𝑟&𝑤), or it is hot, not raining and not windy (ℎ&~𝑟&~𝑤).  If the true state is ℎ&𝑟&𝑤, 

Tichý contended that a prediction, ℎ&𝑟&~𝑤, was clearly closer to the truth than a 
prediction, ~ℎ&~𝑟&~𝑤.  Tichý proposed that a different theory of verisimilitude could be 

built on closeness measures such as this. 
 
In a paper also showing flaws in Popper’s concept, Miller (1974) included a response to 
Tichý’s proposal in which he contested Tichý’s statement about the ranking of theories in 
this language.  He proposed a translation of Tichý’s hot-rainy-windy language into a 
logically equivalent language using 3 different primitive sentences: “it is hot” (= ℎ), “it is 
minnesotan” (= 𝑚), and “it is arizonan” (= 𝑎), in which “minnesotan” means  

(ℎ&𝑟. OR. ~ℎ&~𝑟) and “arizonan” means (ℎ&𝑤. OR. ~ℎ&~𝑤).  Within this language the 
ranking of closeness to truth in Tichý’s language does not hold, as demonstrated in 
Table 1, where the two sentences in each row are logically equivalent, and where 
“distance” is the distance from truth, i.e. the number of primitive sentences that are false 
in each compound sentence.   
 

Tichý’s language Miller’s language 

 distance  distance 

ℎ&𝑟&𝑤 0 ℎ&𝑚&𝑎 0 

ℎ&𝑟&~𝑤 1 ℎ&𝑚&~𝑎 1 

ℎ&~𝑟&𝑤 1 ℎ&~𝑚&𝑎 1 

ℎ&~𝑟&~𝑤 2 ℎ&~𝑚&~𝑎  2 

~ℎ&𝑟&𝑤 1 ~ℎ&~𝑚&~𝑎 3 

~ℎ&𝑟&~𝑤 2 ~ℎ&~𝑚&𝑎 2 

~ℎ&~𝑟&𝑤 2 ~ℎ&𝑚&~𝑎 2 

~ℎ&~𝑟&~𝑤 3 ~ℎ&𝑚&𝑎 1 

 
Table 1. Tichy’s and Miller’s weather-related languages. 

 
It can be seen that the ranking of the distances are reversed for two of the compound 
sentences in the table.  On this basis, Miller concluded that Tichý’s proposal was also 
flawed.  Miller’s result is paradoxical, as it conflicts with the ranking that Tichý (and 
others) claimed to be intuitively obvious.  
 
 
A.2. Proposed resolution of the paradox 
 
Although Tichý’s language is very simple and uses weather-related terms, it differs 
substantially from the language used in the science of meteorology; when told it is “hot”, 
“rainy” or “windy”, a meteorologist would ask: how hot, how rainy, how windy?  
Quantitative measures, in this case temperature and rainfall rate (or rainfall amount) and 
wind speed, would be used.  Let us use the same symbols – ℎ, 𝑟 and 𝑤 – but let them 
now stand for the quantitative departure of each of the continuous meteorological 
variables from its mean value.  Also let us use scaled variables such that for a typical hot 
day, ℎ = 1, and for a typical cold (not-hot) day, ℎ = −1, and similarly for 𝑟 and 𝑤. 

 
Next we need to create continuous variables to represent the concepts “minnesotan” 
and “arizonan”.  There are many ways in which this might be done, but let us choose a 
very simple one:  
 



 

14 
 

𝑚 = ℎ𝑟 and 𝑎 = ℎ𝑤 .          (1) 
 
Then the corresponding table is: 
 

Variables ℎ, 𝑟, 𝑤 Variables ℎ, 𝑚, 𝑎 

 distance  distance 

ℎ = 1, 𝑟 = 1, 𝑤 = 1  0 ℎ = 1, 𝑚 = 1, 𝑎 = 1 0 

ℎ = 1, 𝑟 = 1, 𝑤 = −1 1 ℎ = 1, 𝑚 = 1, 𝑎 = −1 1 

ℎ = 1, 𝑟 = −1, 𝑤 = 1 1 ℎ = 1, 𝑚 = −1, 𝑎 = 1 1 

ℎ = 1, 𝑟 = −1, 𝑤 = −1 2 ℎ = 1, 𝑚 = −1, 𝑎 = −1 2 

ℎ = −1, 𝑟 = 1, 𝑤 = 1 1 ℎ = −1, 𝑚 = −1, 𝑎 = −1 3 

ℎ = −1, 𝑟 = 1, 𝑤 = −1 2 ℎ = −1, 𝑚 = −1, 𝑎 = 1 2 

ℎ = −1, 𝑟 = −1, 𝑤 = 1 2 ℎ = −1, 𝑚 = 1, 𝑎 = −1 2 

ℎ = −1, 𝑟 = −1, 𝑤 = −1 3 ℎ = −1, 𝑚 = 1, 𝑎 = 1 1 

 
Table 2. Conversion of Tichý’s and Miller’s weather-related languages into values for 

continuous variables. 

 
Note that the relationship of (ℎ, 𝑚, 𝑎) to (ℎ, 𝑟, 𝑤) in Table 2 mirrors exactly their 

relationship in Table 1.   
 
We now recognise that observations or predictions of these variables are uncertain, and 
we need to understand how an uncertainty in (ℎ, 𝑟, 𝑤) transforms into an uncertainty in 

(ℎ, 𝑚, 𝑎).  Let us introduce a vector-matrix notation in which 

 
 𝐱 = (ℎ, 𝑟, 𝑤) and 𝐩 = (ℎ, 𝑚, 𝑎) .      (2) 

 
𝐱 and 𝐩 are related through 

 
 𝐩 = 𝐵(𝐱)         (3) 

 
where 𝐵(… ) is a nonlinear matrix function representing the relations in (1). 
 
Let the errors in observations or predictions of these quantities be 𝛆𝑥 and 𝛆𝑝 

respectively.  This is the same notation as used in Eyre (2024), in which the Appendix 
discusses nonlinear problems such as this one. 
 
Errors in 𝐱 and 𝐩 are related by 

 
 𝛆𝑝 ≈ 𝐁(𝐱)𝛆𝑥 ,         (4)  

 
where 𝐁(𝐱) = 𝐱𝐵(𝐱).  The relation in (4) becomes exact as 𝛆𝑥 → 𝟎 and 𝛆𝑝 → 𝟎. 

 
As shown in Eyre (2024), the corresponding transformation of the associated error 
covariances, 𝐂𝑥(𝐱) and 𝐂𝑝(𝐩), is given by  

 

 𝐂𝑝(𝐩) ≈ 𝐁(𝐱)𝐂𝑥(𝐱)𝐁(𝐱)𝑇 ,       (5) 

 
where T denotes matrix transpose.  𝐁(𝐱) is obtained by differentiation of equations (1) 

with respect to the elements of 𝐱: 
 

𝐁(𝐱) = 𝐱𝐵(𝐱) = [
1 0 0
𝑟 ℎ 0
𝑤 0 ℎ

].        (6) 
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If the errors in 𝐱-space are equal and uncorrelated, then 

 

𝐂𝑥 = 𝑘2 [
1 0 0
0 1 0
0 0 1

],         (7) 

 
where 𝑘 is a constant giving the magnitude of the expected error.  Then, from (5), 
 

𝐂𝑝 ≈ 𝑘2 [
1 𝑟 𝑤
𝑟 𝑟2 + ℎ2 𝑟𝑤
𝑤 𝑟𝑤 𝑤2 + ℎ2

] .      (8) 

 
This shows that the errors in 𝐩-space are correlated between variables, except for the 
points at which 𝑟 = 𝑤 = 0.  For the value of 𝐱 at the first row on Table 2 (ℎ = 1, 𝑟 =

1, 𝑤 = 1), the values of 𝐂𝑝 and 𝐂𝑝
−1 are: 

 

𝐂𝑝 ≈ 𝑘2 [
1 1 1
1 2 1
1 1 2

]  , 𝐂𝑝
−1 ≈

1

𝑘2 [
3 −1 −1

−1 1 0
−1 0 1

] ,    (9) 

 
where -1 denotes matrix inverse. 
 
For the values at the other rows in Table 2, the diagonal elements of 𝐂𝑝 are the same 

and the off-diagonals take values of either +1 or -1.  For 𝐂𝑝
−1, the values that are -1 for 

the first row take values of either +1 or -1 for other rows.     
 
When visualised geometrically, an error covariance that is spherical in the 𝐱-space 
becomes ellipsoidal when transformed into 𝐩-space.   

 
Let us now return to Tichý’s problem (Table 1 or 2) in which the first row represents the 
true values and the other rows represent predictions with different levels of accuracy.  If 
we now regard the first row as representing an observation (which, in Tichý’s example, 
contains zero error) and the other rows as predictions (all containing some degree of 
error), then we can use the result obtained in Eyre (2024), i.e. that the transformation 
from 𝐱-space to 𝐩-space (i.e. to the minnesotan-arizonan weather representation) makes 
no difference to the probability that the observation is consistent with any prediction, and 
that the ranking of predictions according to accuracy (i.e. misfit to truth) is preserved by 
the transformation.  This is confirmed in Table 3, which shows the “penalty” (i.e. 
quantified misfit of prediction to truth) for each row in Table 2, in both 𝐱-space and 𝐩-

space.  Here we have used the term representing the misfit of prediction to truth from 
Eyre (2024, eq.3.10), noting that the transformation preserves not only the total penalty 
of misfit to observation and prediction but also each of its component parts, i.e. misfit to 
observation and misfit to prediction (and also noting that, in Tichý’s example, the misfit of 
observation to truth is zero.) 
 

Variables ℎ, 𝑟, 𝑤 Variables ℎ, 𝑚, 𝑎 

xT=[ℎ, 𝑟, 𝑤] δxT=xT-xoT Penalty =  
δxTCx-1δx / k2 

pT=[ℎ, m, a] δpT=pT-poT Penalty =  
δpTCp-1δp / k2 

1,1,1  0,0,0 0 1,1,1 0,0,0 0 
1,1, −1 0,0, −2 4 1, 1, −1 0,0, −2 4 
1, −1, 1 0, −2,0 4 1, −1,1 0, −2,0 4 

1, −1, −1 0, −2, −2 8 1, −1, −1 0, −2, −2 8 
−1,1,1 −2,0,0 4 −1, −1, −1 −2, −2, −2 4 
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−1,1, −1 −2,0, −2 8 −1, −1, 1 −2, −2,0 8 
−1, −1,1 −2, −2,0 8 −1, 1, −1 −2,0, −2 8 

−1, −1, −1 −2, −2, −2 12 −1, 1, 1 −2,0,0 12 
 
Table 3. Penalty of prediction for Tichý’s variables (3 left columns) and Miller’s variables 

(3 right columns).  xo and po are the true values given in the first row. 

 
This is the proposed resolution of the paradox.  This result also demonstrates that 
“closeness to truth” depends on the magnitudes and correlations of errors in the different 
variables.   
 
The example above assumes that the uncertainties in ℎ, 𝑟 and 𝑤 are equal and 
uncorrelated.  It is possible to reverse the result if 𝐂𝑥 is chosen differently; from (5), we 

can see that, if 𝐂𝑝 is a unit matrix, then 𝐂𝑥 = 𝐁(𝐱)−1𝐁(𝐱)𝑇−1
.  In this limit the ranking of 

predictions using (ℎ, 𝑚, 𝑎)-language in Table 1 would be correct. 

 
Of course, the conversion of the problem from discrete, logical quantities to continuous 
variables is arbitrary; other functions could have been chosen to achieve the same 
result.  However, any function with the desired properties (i.e. properties that simulate 
the original Miller-Tichý problem but including the attributes of uncertainty required to 
make it a scientific problem) could be used to replace (1), thus yielding a different value 
of 𝐁(𝐱) in place of (6).  But the transformation of error covariances given by (5) is 

general, and the ranking of accuracies of predictions to which it leads is preserved for  
differentiable, non-singular transformations. 
 
Even if we were to concede that Tichý’s language of discrete in ℎ,𝑟,𝑤 variables was 
acceptable as a scientific language, we would still encounter the problem of uncertainty 
in both observations and predictions, and these would be particularly large close to the 
boundary between hot and not-hot, etc.  The PDFs of uncertainty would be more 
complex than those in the problem of continuous variables but, we suggest, they would 
have similar properties when transformed into a different space. 
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