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Abstract

Some learning strategies that work well when computational consider-
ations are abstracted away from become severely limiting when such
considerations are taken into account. We illustrate this phenomenon
for agents who attempt to extrapolate patterns in binary data streams
chosen from among a countable family of possibilities. If computational
constraints are ignored, then two strategies that will always work are
learning by enumeration (enumerate the possibilities—in order of sim-
plicity, say—then search for the one earliest in the ordering that agrees
with your data and use it to predict the next data point) and Bayesian
learning. But there are many types of computable data streams that,
although they can be successfully extrapolated by computable agents,
cannot be handled by any computable learner by enumeration. And
while there is a sense in which Bayesian learning is a fully general
strategy for computable learners, the ability to mimic powerful learners
comes at a price for Bayesians: they cannot, in general, become highly
confident of their predictions in the limit of large data sets and they
cannot, in general, use priors that incorporate all relevant background
knowledge.

1. Introduction

Consider a situation in which an infinite data stream is being revealed
to us one data point at a time and in which we are certain that this data
stream has been selected from a particular countable set of possible
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data streams (hypotheses). We may be interested in either of two related
inductive problems: to determine which of the competing hypotheses
is true (the problem of identification); or to become good at predicting the
next data point (the problem of extrapolation).

This is a context in which long-run learning is, in a sense, easy. A
strategy that will always work is learning by enumeration: enumerate
the salient hypotheses (in order, say, of strictly decreasing simplicity);
at each stage of inquiry, conjecture the hypothesis consistent with the
data that occurs earliest in your order and use it to arrive at your
prediction for the next data point. No matter which hypothesis is true,
you will from some point onwards always conjecture the true hypothesis
and correctly predict the next data point (each false hypothesis will
eventually be ruled out by the data—and only finitely many of them
can come earlier in your order than does the true one).

Another strategy that will always work is Bayesian learning. Divide
your prior credence among the salient hypotheses and update by con-
ditionalization on the data seen (killing off any credence assigned to
hypotheses inconsistent with the data and normalizing). So long as
your prior assigns positive credence to each hypothesis in play, in the
limit of large data sets you will become arbitrarily confident in the true
hypothesis and will therefore also become arbitrarily confident in its
prediction of the next data point.

Note that for this sort of problem (setting aside fiddly details about
hypotheses of equal a priori plausibility) the Bayesian approach just
described can be thought of as quantitative version of learning by
enumeration: a Bayesian prior of this sort induces a rank-ordering
of hypotheses by a priori plausibility—but also allows us to make
quantitative comparisons of relative plausibility. This extra quantitative
information has epistemological import: there is an important difference
between an agent who always makes the right prediction, but never
with more than minimal confidence, and one who not only always
makes correct predictions but who also becomes as confident as can be
in these predictions in the limit of large data sets.

It has long been known that aspects of the above picture must



be revised in interesting ways if we restrict attention to agents who
follow computable strategies for learning (as, presumably, we and the
machines that we build must).1 Gold (1967) introduced a version of
the problem of identification in which a computable agent conjectures
natural numbers, aiming to eventually settle on the code number of
a Turing machine that computes the data stream. For this problem
computable learners by enumeration are in fact quite limited in their
power: there are learning tasks that can easily be accomplished by
some computable learners but which cannot be accomplished by any
computable learner by enumeration.2 And, as was noted in Juhl (1993),
in this context Bayesian learning is essentially just a species of learning
by enumeration and so suffers from the same shortcoming.3

Here we will focus on the problem of extrapolation for computable
learners.4 This subject was initiated by Putnam (1963).5 His approach
was developed and generalized in the Brezhnev era—see Bārzdin, š
(1972), Bārzdin, š and Freivalds (1972), and Podnieks (1974, 1975).6 A
sense of the limitations of learning by enumeration as a strategy for

1For fundamental investigations of the extent to which requiring computability
can impair the power of learning strategies, see Kelly (1996) and Jain et al.
(1999).

2This observation goes back to Bārzdin, š (1971) and to Blum and Blum (1975).
More generally, as observed in Wiehagen (1976), in this setting there are feasible
learning goals that cannot be attained by any learner whose conjectures are
always consistent with the data. As noted in Kugel (1977), additional restrictions
apply to agents who, further, never abandon a conjecture once made unless it
has been ruled out by data. For further discussion and references see Chapter
5 of Jain et al. (1999).

3For a related result in a more elaborate setting, see Osherson, Stob, and We-
instein (1988). For cases in which Bayesian updating cannot be implemented
computably, see Ackerman, Freer, and Roy (2011).

4On the relation between the problem of identification and the problem of
extrapolation in the computable setting, see, e.g., Angluin and Smith (1983)
and Case and Smith (1983). Below, we will work in the simple context in
which data streams are binary sequences—although this renders invisible some
phenomena that arise for learners facing data streams consisting of natural
numbers—see, e.g., Corollary 13 in Zeugmann and Zilles (2008).

5For discussions and elaborations of Putnam’s approach, see Earman (1992) and
Sterkenburg (2019).

6See also Blum and Blum (1975).

computable extrapolators emerged in those classic papers: here, as in
the problem of identification, there are learning tasks easily achievable
by computable agents that cannot be achieved by any computable
learner by enumeration. As these results appear not to be well-known
among philosophers, after some preliminaries our first task below will
be to survey the limitations of learning by enumeration as a strategy
for computable extrapolators, extending the approach of Fortnow et al.
(1998) in order to put the point in an especially sharp way.

We will then turn to computable Bayesian extrapolators. Here there
is good news and bad news. The good news for Bayesians is that any
class of patterns that can be successfully extrapolated by a computable
learner can be successfully extrapolated by a computable Bayesian
learner. So there is a sense in which Bayesianism is not restrictive for
computable extrapolators. The bad news is that some aspects of the
picture that emerge will be unsettling to many Bayesians: in our setting,
powerful Bayesian learners will not, in general, become highly confident
in their predictions in the limit of large data sets—and they cannot, in
general, use priors that incorporate all relevant background knowledge.

2. Framework

The sections below aim to present an elementary and self-contained
introduction to issues of computation in epistemology via an exami-
nation of the problem of extrapolation for computable agents facing
computable binary data streams. This preliminary section sets the stage,
reviewing conventions, notions, and results required for our subsequent
discussion.

2.1 Bits and Pieces
We call {0, 1} the set of bits. For any k ≥ 0, a k-bit string is a k-tuple
(b1, b2, . . . , bk) of bits (special case: the empty string ∅ of zero bits).
A binary sequence is a function from the positive natural numbers to
bits—informally, we picture these as ω-tuples (b1, b2, b3, . . .) of bits. We
denote by 2ω the set of all binary sequences. If S is a binary sequence
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and n is a natural number then we write S(n) for the nth bit of S and
write S�n for the binary string consisting of the first n bits of S. When a
string and a sequence are related in this way, we say that the string is
an initial segment of the sequence. We write 1k for the string consisting
of k 1’s, write 01ω for the sequence whose initial bit is 0 and whose
other bits are all 1, and so on. We say that a set of binary sequences
is dense if for any binary string, there is a member of the set with that
string as an initial segment. For any binary string τ, we write JτK for
the set of binary sequences whose initial bits are given by τ. We call
subsets of 2ω of this type basic sets. Special case: J∅K = 2ω . Henceforth,
sequence always means one-way infinite binary sequence and string always
means finite binary string.

2.2 Computation
We review some elementary features of the model of computation
introduced in Turing (1936).7 For definiteness we restrict attention to
computing machines consisting of: a two-way infinite tape divided into
squares, each of which always contains exactly one of three symbols, ∗
(=blank), 0, or 1; and a processing unit, capable of reading and writing
these symbols and of moving along the tape one square at a time.

We can think of the specification of a Turing machine as consisting
of two steps. First, one specifies the hardware for the machine, choosing
the number n ≥ 2 of internal states q1, q2, . . . qn that its processor can
be in (q1 is the distinguished initial state and qn is the distinguished
halting state). Then one specifies the software, choosing a consistent set
of commands of the form “if you read this symbol while in such and
such state, replace it by that symbol, move thus and enter that state.”8

7For full treatments, see, e.g., Odifreddi (1989) or Soare (2016).
8So a command is a quintuple of the form (q, s, t, d, r) where q and r are internal
states (q 6= qn), s and t are tape symbols, and d ∈ {−1, 0, 1}. Intuitively, the
command (q, s, t, d, r) tells the machine that if its processing unit is in state q
and positioned over a square of tape containing tape symbol s, then it should
erase this symbol and write t, move one square to the left (d = −1)/stay put
(d = 0)/move one square to the right (d = 1), and enter state r. Because qn is the
distinguished halting state, no command gives the machine an instruction for

A machine M of this kind determines a (possibly merely partially
defined) function ϕ from binary strings to binary strings. For each
string τ, ϕ(τ) is determined as follows: put the machine into state q1

with its processing unit immediately to the left of an inscription of
τ on the tape (all other squares containing blanks); let the machine
run by executing the commands in its software seriatim; if the machine
eventually enters the halting state, then ϕ(τ) is the longest binary
string on the tape immediately to the left of the processing head; if the
machine never enters the halting state, then ϕ(τ) is undefined.9 We say
that M gives output ϕ(τ) on input τ if ϕ(τ) is defined (otherwise we say
that M gives no output on this input). And we say that M computes the
partial computable function ϕ. We call ϕ total if ϕ(τ) is defined for each
string τ (and call it merely partial otherwise). Fixing suitably mechanical
ways of using binary strings to code other countable sets, we can also
think of the function computed by a Turing machine as (say) a function
from strings to natural numbers or as a function from pairs of natural
numbers to rational numbers, and so on.

Let M be a Turing machine. If σ is a k-bit string, then we say that
M computes σ if on input of 1 ≤ j ≤ k, M gives as output the jth bit of
σ. And if S is a sequence, then we say that M computes S if on input of
any k ≥ 1 M gives as output S(k). There are uncountably many binary
sequences but only countably many of these can be computable (since
there are only countably many Turing machines). Roughly speaking,
the computable sequences are those sequences fully characterizable
by finitary means. We will denote by C the set of computable binary
sequences. Following computer science usage, we will often call subsets
of C classes.

We say that the sequences S1, S2, . . . are uniformly computable if there
is a Turing machine that on input of positive natural numbers k and
` gives as output the `th bit of Sk (and we call a class of computable

what to do when in that state. Distinct commands (q, s, t, d, r) and (q′, s′, t′, d′, r′)
are inconsistent if q = q′ and s = s′.

9We allow the cases where τ or ϕ(τ) is the empty string.
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sequences uniformly computable if it admits such a uniformly computable
enumeration). Roughly speaking: to say that some sequences are uni-
formly computable is to say that there is a single Turing machine that
knows the structure of each them.

We can assign each Turing machine M a Gödel number G(M).10

It is a mechanical task to determine whether or not a given natural
number is a Gödel number of a Turing machine. So we can build a
machineM that on input of a natural number k searches through the
natural numbers in order, looking for the kth smallest number that is a
Gödel number of a Turing machine, and then outputs that number—we
denote the machine with this Gödel number Mk and say that it has
index k. So we can think of M as giving us a means to computably
enumerate the Turing machines (i.e., usingM we can build a machine
that prints a list of numbers that includes all and only the code numbers
of Turing machines).

Given the index of a Turing machine, it is a mechanical task to
determine how many internal states it has and what commands are
in its software. As Turing showed, with a little more work one can
establish the existence of a Universal Turing machine T that on input of
a natural number k and a string σ simulates the operation of Mk on
input σ: if Mk halts on input σ and gives τ as output, then T halts on
input (k, σ) and gives τ as output; if Mk does not halt on input σ, then
T does not halt on input (k, σ).

As we noted above, it is possible to computably enumerate the set of
all Turing machines. This set includes many uninteresting specimens—
such as machines that do not halt on any input.11 The set of machines
that compute total functions from strings to strings is much more

10Choose some suitably mechanical method of associating a code number
G(c) to each command c. Then we can assign the Turing machine M with n
states and software consisting of commands c1, c2, . . . , ck (listed in order of

increasing code numbers) the Gödel number 2n pG(c1)
1 pG(c2)

2 . . . pG(ck)
k , where

pj is the jth odd prime.
11According to the scheme of fn. 10 above, for any n ≥ 2 the Turing machine

with Gödel number 2n is such a machine (it has n internal states and software
consisting of the empty set of commands).

appealing. But the set of such machines cannot be computably enu-
merated. For suppose that you have a machine M that when turned
on print out a list of indices of machines that compute total functions.
Using this machine for one subroutine and a universal Turing machine
for another, you could construct a machine M† that on input of any
natural number k gives you as output the number one greater than
that given on the same input by the machine whose index was the kth
entry in the given list. M† computes a total function—but its index
cannot appear in the list of indices printed by M. Moral: even though
(indeed, because) it includes some unattractive characters, the set of all
Turing machines is computationally well-behaved in ways that the set
of machines computing total functions is not.

We will need a magic trick below: the Recursion Theorem. For our
purposes, this tells us that if ψ is a partial computable function from
pairs of natural numbers to natural numbers, then there is a natural
number e such that the partial computable function ψ(e, ·) : N→N is
computed by the Turing machine with index e.12 In particular, if the
sequences S1, S2, . . . are uniformly computable, then there is a natural
number e such that the sequence Se is computed by the Turing machine
with index e.

2.3 Ideals
Recall that an ideal on a set X is a non-empty family of subsets of X
that is closed under taking subsets and unions—and that an ideal that
does not include X itself is said to be proper. If I is a proper ideal on
X, then the complement in X of any set in I is not in I . When, as in
each of the cases we will discuss, a proper ideal on X includes each
finite subset of X, it is often natural to think of it as collecting the sets
that are small or special in some sense: thus, the family of countable
sets of sequences is a proper ideal on 2ω , as is the family of meagre

12This is a special case of Kleene’s Second Recursion Theorem. See, e.g.,
Odifreddi (1989, Theorem II.2.13).
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subsets of 2ω (relative to the topology generated by the basic sets).13 In
what follows, we will be interested in two proper ideals on the class
C of computable sequences, corresponding to two ways that a class of
computable sequences can be computationally special.

A natural computational analog of the condition of being a countable
subset of 2ω is being a uniformly computable subclass of C. But the
family of uniformly computable classes is not an ideal on C: while the
union of two uniformly computable classes is uniformly computable,
a subclass of a uniformly computable class of sequences need not be
uniformly computable.14 But this means that the family of subclasses of
uniformly computable classes of sequences forms an ideal on C. We will
call any subclass of a uniformly computable class effectively countable.15

A diagonalization argument shows that full class C of computable
sequences is not itself effectively countable: if the sequences S1, S2,
. . . are uniformly computable, then the sequence whose kth bit is the
opposite of the kth bit of Sk is a computable sequence that differs from
each Sk. It follows that the complement in C of an effectively countable
set is never effectively countable. According to a classic result of Blum
and Blum (1975), a class of sequences is effectively countable if and
only if there is a sense in which each of its members can be computed
rapidly.16

A second intuitive sense in which a class of sequences can be compu-
tationally special is that it is very easy to diagonalize out of—and this
notion can be precisified to yield an effective analogue of meagreness.
Let A be a class of computable sequences. The Banach-Mazur game for
A is a game between two players that is played in a countably infinite
succession of rounds R1, R2, . . . . In round Rk, Player 1 plays a non-
empty string σk and then Player 2 plays a non-empty string τk. Player 1

13Recall that a meagre subset of a topological space is one that can be written as
a countable union of nowhere dense sets.

14Any infinite uniformly computable class of sequences will have uncountably
many subclasses, only countably many of which can be uniformly computable.

15Warning: this terminology is non-standard.
16That is: A is effectively countable if and only if A is a subclass of an abstract

complexity class in the sense of Blum (1967).

wins if the sequence S := σ1τ1σ2τ2 . . . is in A, otherwise Player 2 wins.
We say that A is effectively meagre if Player 2 has a computable winning
strategy (i.e., there is a computable function for selecting each τk given
σ1,τ1, . . . , σk that results in victory no matter how Player 1 chooses the
σj).17 The family of effectively meagre classes is a proper ideal on C.18

Each effectively countable class is also in effectively meagre: if some
sequences S1, S2, . . . are uniformly computable, then a computable
winning strategy for Player 2 when the Banach-Mazur game is played
for the set of these sequences is to play on round k a single bit that
ensures that the sequence constructed is not Sk. But there are effectively
meagre classes that are not effectively countable.19 We can think of
the effectively meagre classes as being so easy to diagonalize out of,
that one can accomplish this even if forced to work with a malicious
adversary.

Remark 1 (Effective Lebesgue Nullsets). Alongside the families of count-
able and meagre sets of sequences, the family of Lebesgue nullsets
constitutes a third natural proper ideal on 2ω .20 For present purposes,
it can be characterized as follows. A martingale is a map m from strings
to non-negative real numbers such that: (i) m assigns the empty string
the value 1; (ii) for any string σ, m(σ) = 1/2(m(σ0) + m(σ1)). We say
that a martingale m succeeds on a sequence S if limn→∞ m(S�n) = ∞.21

17If we drop the requirements that the sequences in A be computable and that
Player 2’s strategy be computable, then Player 2 has a winning strategy if and
only if A is a meagre subset of 2ω (relative to the topology generated by the
basic sets)—see Oxtoby (1957).

18The notion of effective meagreness was introduced in Mehlhorn (1973) and its
Banach-Mazur characterization in Lisagor (1981). For further discussion and
references, see Ambos-Spies and Reimann (1998).

19This standard fact follows from Proposition 3 and Example 2 below.
20On the relation between these three families, see Oxtoby (1980).
21Imagine that a gambler begins with unit capital and bets on the identity of

each bit in the data stream right before it is revealed. A martingale is a scheme
for choosing such bets in a manner acceptable to a disinterested bookmaker
who thinks that the data stream is being generated by flipping a fair coin.
A martingale succeeds against a sequence just in case the gambler becomes
arbitrarily wealthy in the limit of large data sets.
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We call a set A of sequences a Lebsegue nullset if there is a martingale
that succeeds on every sequence in the set.22

This notion, too, can be effectivized. We say that a class of com-
putable sequences is an effective Lebesgue nullset if there is an exactly
computable martingale m that succeeds against every sequence in the
class (to say that m is exactly computable is to say that it is computed
by a machine that takes strings as input and gives rational numbers
as output).23Like the family of effectively meagre classes, the family of
effective Lebesgue nullsets is a proper ideal of subclasses of C that in-
cludes effectively countable class of sequences. But there are also classes
of sequences that are effective Lebesgue nullsets but not effectively
meagre—and vice versa.

The use of the notions of effecitive meagreness and Lebesgue nullset-
hood in the analysis of computable learners was pioneered in Fortnow
et al. (1998), where a version of Proposition 5 below was proved with
effective Lebesgue nullsethood in place of effective meagreness. It is
not difficult to do the same for Proposition 4 below (and hence also
for 10). It appears to be an open question whether the same is true for
Propositions 2, 7, and 13.

3. The Problem of Extrapolation for Binary Sequences

We are interested in learners who face binary data streams and who
are challenged to predict each data point before it is revealed. If our
learners are anything like us or the machines that we can build, the
learning methods available to them must be implementable by Turing
machines. We focus on the case in which each possible data stream

22This characterization of Lebesgue nullsets is due to Ville (1939, chapter 4). For
a modern treatment, see, e.g., Shen, Uspensky, and Vereshchagin (2017, §9.5).

23Effective Lebesgue nullset were first investigated in Schnorr (1971a,b), using a
more general class of computable martingales and a prima facie more general
notion of success, which, however, jointly determine the same set of effective
nullsets—see, e.g., Downey and Hirschfeldt (2010, Propositions 6.3.8 and 7.1.2).
Warning: in the literature on algorithmic randomness one finds a plethora of
inequivalent effectivizations of the notion of a Lebesgue nullset (ours arises in
the martingale characterization of computable randomness).

is computable: these correspond to finitarily specifiable patterns. Our
learners are aiming to grasp the pattern underlying their data streams:
to eventually be able to correctly predict each new bit—or at least a
suitably large proportion of them.

Definition 1. An extrapolator is a Turing machine that computes a (possi-
bly merely partial) function from strings to bits.24

So if such a machine halts on input of a given string, it always gives
a single bit as output. We call an extrapolator total if it computes a
totally defined function from strings to bits (i.e., it eventually outputs
a bit on input of any string)—otherwise we call it merely partial. We
allow successful learners to fail to give an output when fed some data
sets—but we require that this can happen only finitely often in any case
of successful learning. (Recall that if a1, a2, . . . is a bounded sequence of
real numbers, then lim supn→∞ an—the limit superior of the sequence—
is the maximum of the limits attained by its convergent subsequences.
The limit superior of a bounded sequence is always defined—and for a
convergent sequence, the limit and the limit superior coincide.)

Definition 2. Let S be a sequence and letM be an extrapolator that with
at most finitely many exceptions gives an output on input of any initial
segment of S. For n ≥ 1 let F(n) be the number of k < n such that on
input of the first k bits of S,M does not output the (k + 1)st bit of S.
Then:

a) We say thatM learns S if limn→∞ F(n) < ∞.25

b) We say thatM weakly learns S if limn→∞ F(n)/n = 0.26

24Terminology: machines/functions of this type are also known as prognostication
automata (Bārzdin, š 1972), extrapolating machines (Blum and Blum 1975), pre-
diction methods (Angluin and Smith 1983), and next-value functions (Odifreddi
1999).

25This notion was introduced in Bārzdin, š (1972) and Podnieks (1974). Terminol-
ogy: our learning is standardly called called NV”-learning; our learning by a
total extrapolator is standardly called NV-learning.

26This is a special case of a notion due to Podnieks and Kinber: for any 0 < ε ≤ 1,
an extrapolatorM that eventually always gives an output on input of initial
segments of a computable S NV′′(ε)-learns S if lim supn→∞ F(n)/n ≤ (1− ε)
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c) We say thatM better-than-random learns S if lim supn→∞ F(n)/n <

1/2.27

Picture that an extrapolator is shown longer and longer initial seg-
ments of a sequence and that from a certain point onwards, it always
manages to output a prediction of what the next bit will be. To say
that the extrapolator learns the sequence is to say that it eventually
stops making false next-bit predictions. To say that it weakly learns
the sequence is to say that although it may never stop making false
predictions, its error rate is zero in the limit of large data sets. To say
that it better-than-random learns the sequence is to say, roughly, that
in this limit its error rate is less than one-half.28 Note that ifM learns
S (simpliciter) then it also weakly learns S. But the converse is not true:
the extrapolator that always expects the next bit to be 0 weakly learns
the sequence that is all 0’s except in the first slot, the tenth slot, the
one-hundredth slot, etc.—but it does not learn this sequence. Similarly,
if an extrapolator weakly learns a sequence, then it better-than-random
learns that sequence (but the converse is not true).

Definition 3. For X=any of the above notions of learning, we say that an
extrapolator is a universal X-learning machine just in case it X-learns each
computable sequence.

Proposition 1 (Podnieks 1975). There exists a universal weak learning
machine.

Proof. Consider the extrapolatorM that proceeds as follows: on input
of an n-bit string σ it dovetails computations of the Turing machines M0,
M1, . . . M` with indices no greater than log2 n, searching for a machine
that outputs the bits of σ on input of 1, 2, . . . n, and which also outputs

(NV′′(ε) learning by a total extrapolator is also called NV(ε) learning). See
Podnieks (1974, 80 f.).

27So a (total) extrapolator better-than-random learns S just in case there is some
ε > 1/2 such that it NV′′(ε)-learns (NV(ε)-learns) S.

28This is only roughly accurate because we can have lim supn→∞ F(n)/n < 1/2
even in cases where the proportion of false predictions bounces around
without settling down to a limit.

a bit b on input of n+ 1. If such a machine is found, thenM predicts the
next bit will be b.29 Otherwise, it continues computation andM(σ) is
undefined. Now suppose that S is a sequence computed by the machine
MN with index N. Then it is clear that on input of initial segments of
S of 2N or more bits, M will always give an output. Further, for any
n,M can have made at most log2 n incorrect predictions in processing
the first n bits of S (since at most log2 n machines have been considered
and any machine that has been used to make a false prediction will
never be used again). So 2N + log2 n is an upper bound on the number
of times that M fails to make a correct prediction as it is shown the
first n bits of S—so the proportion of failures to predict correctly goes
to 0 as n→ ∞.

Proposition 2. Let A be a dense class of computable sequences and
let M be an extrapolator that learns each sequence in A. Then A is
effectively meagre.

Proof. The following is a computable winning strategy for Player 2

when the Banach-Mazur game is played for A. Fix an enumeration σ1,
σ2, . . . of the strings. On any round, find the string σ that results from
concatenating the strings played so far, and dovetail computations of
M on input of σσ1, σσ2, . . . searching for a σk such thatM outputs a
bit b on input σσk (such a σk must exist, since by assumption A includes
sequences that extend σ andM learns each sequence in A). Then play
σk followed by the opposite of b and hand play back to Player 1. In this
way, Player 2 guarantees that the sequence constructed cannot be in A
(sinceM errs in its predictions infinitely often when fed this sequence
as a data stream).

Corollary 1 (Podnieks 1974). No extrapolator is a universal learning
machine.

29Here and below: to dovetail a countable set of computations is to perform the
first step of the first computation; then to perform the second step of the first
computation and the first step of the second computation; then to perform the
third step of the first computation, the second step of the second computation,
and the first step of the third computation; and so on.
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Proof. This follows immediately from the preceding proposition (since
C is dense but is not effectively meagre).

4. Learning by Total Machines

Total extrapolators are much more limited in their learning power than
merely partially defined extrapolators.

Proposition 3 (Bārzdin, š 1972). Let A be a class of computable sequences.
There exists a total extrapolator that learns A if and only if A is effec-
tively countable.

Proof. Fix a computable enumeration of the binary strings, σ1, σ2, . . . .
Let M be a total extrapolator. For each k, Let Sk be the sequence

that begins with σk, with subsequent bits being chosen to agree with
what M predicts when shown the bits generated so far. The map
(k, `) 7→ Sk(`) is computable. And if S is learned byM, then S is one
of the Sk (to see this, let σ be the shortest initial segment of S such that
M makes correct next-bit predictions on each longer initial segment of
S and note that σ = σk for some k). So if every member of a class of
sequences is learned by M, then that class must be a subclass of the
uniformly computable class of the Sk.

Suppose that S1, S2, . . . are uniformly computable. And for each
k ≥ 1, let Ŝk be the sequence that begins with σk, followed by all 0’s.
The Ŝ1, Ŝ2, . . . are uniformly computable. So the S∗1 , S∗2 , . . . that result
from interleaving the Sk and the Ŝk are uniformly computed by some
machine. Let M be the extrapolator that on input of a n-bit string τ

searches for the least k such that S∗k has τ as an initial segment and then
outputs S∗k (n + 1) (there must be such a k because the Ŝj are dense).
This is a total extrapolator that learns each of the Sj.

In Fortnow et al. (1998) it was shown that if there is a total extrapola-
tor that learns each member of a given class, then that class must be
effectively meagre. That result can be strengthened.

Proposition 4 (Belot 2020). Let A be a class of computable sequences.
If there is a total extrapolatorM that better-than-random learns each

sequence in A, then A is effectively meagre.

Proof. The following is a computable winning strategy for Player 2 if
the Banach-Mazur game is played for A. On each round, concatenate
the strings played so far to give a string σ. Then choose a string τ such
that whenM is fed the initial segments of στ as its data stream, its rate
of successful predictions falls below 1/3 (choose the first bit of τ to be
the opposite of whatM expects to see on input σ; in general, each bit
of τ is chosen to be the opposite of what M expects to see given the
bits of στ determined so far).

Example 1 (Bārzdin, š 1971, Blum and Blum 1975). We call a sequence S
self-describing if its first 1 is preceded by k 0’s and it is computed by the
Turing machine Mk with index k. It is easy to construct an extrapolator
MSD that learns each self-describing sequence: on input of an n-bit
string σ,MSD outputs 0 if σ does not contain any 1’s; otherwise,MSD

finds the number k of 0’s preceding the first 1 in σ and then attempts to
use Mk to predict the next bit (i.e.,MSD runs Mk on input n + 1 and if
Mk outputs 0 or 1,MSD gives the same output, otherwiseMSD gives
no output). If fed a self-describing sequence as a data stream,MSD will
make a prediction on each input, making only one mistake (failng to
predict the first 1 in the sequence). SoMSD learns each self-describing
sequence. Note thatMSD is not a total machine: if k is the index of a
Turing machine that does not halt on any input, then MSD will not
succeed in making any predictions after it sees the first 1 in a sequence
that begins with k 0’s followed by a 1.

Proposition 5 (Fortnow et al. 1998). The class of self-describing sequences
is not effectively meagre.

Proof. Consider any computable strategy β that Player 2 might use for
the Banach-Mazur game: such a strategy is a computable map that takes
as input all the strings played so far and which gives as output the
string to be played. We will show that β is not a winning strategy when
the game is played for the set of self-describing sequences. For each k,
consider the strategy αk that Player 1 might adopt: in each round, play
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k 0’s followed by a 1. Let Sk be the sequence that results when Player 1
plays strategy αk and Player 2 plays strategy β. The map (k, `) 7→ Sk(`)

is computable so the Recursion Theorem guarantees that one of the Sk

is self-describing. So there is no winning strategy for Player 2 for this
version of the Banach-Mazur game.

There is a large gap in learning power between total extrapolators
and merely partial extrapolators. In particular, while some merely par-
tial computable extrapolators weakly learn each computable sequence,
no total extrapolator can even better-than-random learn each member
of a class of sequences, unless that class is effectively meagre.

Remark 2. As we have seen, there is also a gap between total extrap-
olators and merely partial extrapolators when it comes to learning
simpliciter: if a total extrapolator learns every sequence in a given class,
that class must be effectively meagre—but Example 1 and Proposition
5 show that merely partial extrapolators are not restricted in this way.
But there are of course many acceptable ways to assign Gödel numbers
to Turing machines—and the extrapolatorMSD of Example 1 can be
expected to perform well only if it sees sequences that wear on their
sleeves that indices of machines computing them relative to the system
of Gödel numbering thatMSD is built to exploit. Since many results
concerning in this field exploit variants on this sort of phenomenon
(see, e.g, the surveys Odifreddi (1999) and Zeugmann and Zilles (2008)),
it is natural to ask to what extent the extra learning power of partial
extrapolators depends on their ability to exploit coding tricks:.30 For
present purposes, it suffices to note that since there exist universal weak
learning machines that successfully extrapolate each computable se-
quence, it is certainly not the case that all of the learning gaps between
total and merely partial extrapolators involve the exploitation of coding
tricks.

30This question has been extensively investigated for the problem of
identification—see, e.g., Fulk (1990), Jain and Stephan (2003), and Case et
al. (2004).

5. Learning by Enumeration

Let U be a uniformly computable family of sequences, S1, S2, . . . Ẇe
denote by EU the extrapolator that on input of any string τ, searches
for the least k such that Sk begins with the bits of τ, and if it finds such
a k, gives the next bit in Sk as output. We call an extrapolator of this
form a learner by enumeration.

According to the following folklore result, learning by enumeration
is a fully general strategy within the class of total extrapolators.

Proposition 6. LetM be a total extrapolator. Then there is a learner by
enumeration E that gives the same output on every input asM.

Proof. We slightly modify the construction of the first half of the proof
of Proposition 3 above. We enumerate the strings σ1, σ2, . . . in order of
increasing length; first comes the empty string; then the 1-bit string that
M expects to see on empty input followed by the other 1-bit string; in
general, at the (k + 1)st stage, we consider the k-bit strings in the order
already determined, in each case adding first the string that extends the
given string by the bitM expects to see on that input, then the other
1-bit extension. For each k > 0, construct the sequence Sk by beginning
with the bits of σk, then iteratively extending by repeatedly choosing
the bit thatM expects to see, given what it has seen so far. Then the
S1, S2, . . . are uniformly computable and the learner by enumeration E
based on the Sk gives the same output asM on every input.

The learner by enumeration E based on the uniformly computable
sequences S1, S2, . . . is total if and only if the Sk form a dense subclass
of C. A total learner by enumeration, like any totally defined extrapo-
lator, can learn each sequence in a class only if that class is effectively
countable and can weakly learn—or even better-than-random learn—
each member in a class only if that class is effectively meagre. As we
have seen, partially defined extrapolators can transcend these limits. So
it is natural to ask to what extent learners by enumeration can reap the
benefits of being merely partial.

If E is a (not necessarily total) learner by enumeration based on the
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uniformly computable sequences S1, S2, . . . , then E of course learns
each of the Sk. And E does not learn any other sequences: if S is not one
of the Sk, then either there is a longest initial segment of S that overlaps
with one of the Sk (in which case E will give no output when fed yet
longer initial segments of S) or there is no such longest initial segment
(in which case E will make infinitely many false predictions when fed
S as a data stream). It follows that any class of sequences each member
of which can be learned by enumeration must be effectively countable.
For learners by enumeration, being merely partially defined brings no
dividend when it comes to learning simpliciter.

Proposition 7. If a learner by enumeration better-than-random learns
each member of a dense class of computable sequences, then that class
is effectively meagre.

Proof. Let E be a learner by enumeration. If E fails to give an output on
input of some string σ, then it likewise fails to give an output input of
on any extension of σ. So if E better-than-random learns each member
of a dense class of computable sequences, then E must be total.

Corollary 2. No learner by enumeration is a universal better-than-
random learning machine.

So learning by enumeration is not a fully general strategy for ex-
trapolation: indeed, in light of the most recent corollary and the fact
that there exist universal weak learning machines, it can be seen to
be a highly limiting strategy. Further, the following example shows
that there exists a meagre class of sequences such that no learner by
enumeration can better-than-random learn each member of the class.31

Example 2. We call a string legit if it does’t contain 100 as a substring. We
call a computable sequence legit if all of its initial segments are legit. Let
A be the class of computable sequences that are either self-describing
and legit or consist of a legit initial segment, followed by all 0’s. The

31For another example, see the construction in the proof of Lemma 2 in Podnieks
(1975).

following algorithm learns every sequence in A: output 0 on every
input—unless the input string begins with k 0’s followed by a 1, with
no consecutive 0’s occurring after that first 1, in which case use the
machine with index k to predict the next bit.
A is meagre (a winning strategy for Player 2 is to play 1001 on the

first round) but not dense (no sequence in A begins with 1001). But no
learner by enumeration better-than-random learns each sequence in A.
To see this, let E be a learner by enumeration and consider the partial
computable function ψ : N×N→N defined as follows: for any (k, `),
ψ(k, `) (if defined) is the `th bit (if defined) arrived at by first listing k
0’s followed by a 1, with subsequent bits determined by the rule that if
the preceding bit is a 0, the next bit is 1 while if the preceding bit is 1
then the next bit is (1− b) where b is the output of E on input of the
string constructed so far. The recursion theorem tells us that there is an
e such that the machine Me with index e computes the (possibly merely
partial) function ψ(e, ·). If Me computes a sequence (as it will if E is total
but may not otherwise) then that sequence is legit and self-describing
but E cannot better-than-random learns it (.5 is an upper bound for E ’s
limiting rate of correct predictions against this sequence). If Me does
not compute a sequence that is because although it outputs a bit for
each number in some initial segment of the natural numbers, there
is eventually a (least) natural number j on input of which it gives no
output. Let σ be composed of the bits that Me outputs on input of the
natural numbers less that j. Then σ is legit and the result of extending
σ by all 0’s is a sequence in A that E does not learn (since E fails to
give any output on σ or any extension of it).

6. Bayesian Learning

6.1 Motivation
As noted in Section 1 above, if we abstract away from computational
considerations, it is easy to design learners by enumeration that are
guaranteed to succeed at our extrapolation problem: a learner who lists
the hypotheses in order of decreasing a priori plausibility (or in any
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other order), then at each stage selects the first hypothesis consistent
with the data and uses it it predict the next data point will eventually
end up correctly predicting each new data point. And, in this setting,
Bayesian learners who put positive prior probability on each hypothesis
are likewise guaranteed of success.

But, as we have just seen, the situation for learners by enumeration
is quite different when computational considerations are taken into
account: there are classes of hypotheses each of which can be learned
by some computable agent, but which cannot all be learned by any
computable agent who learns by enumeration. We will see that the
story is interestingly different for computable Bayesians. There is a
sense in which computable Bayesian learners can successfully handle
any extrapolation problem that can be handled by any computable
learner. But in order to handle problems that cannot be handled by
learning by enumeration, Bayesians must employ priors that, in a certain
sense, fail radically to exhibit the sort of confidence in their predictions
that one normally expects from Bayesian learners—and which will in
some situations ignore known background information.

6.2 Framework
Recall that for any binary string τ, we write JτK for the basic set of
binary sequences whose initial bits are given by τ.

Definition 4. A probability measure on 2ω is a function µ from basic sets
to the closed unit interval such that µ(J∅K) = 1 and for any string τ we
have µ(JτK) = µ(Jτ0K) + µ(Jτ1K).32

Henceforth, for any probability measure µ, string τ, and bit b we will
just write µ(τ) instead of µ(JτK), µ(b | τ) instead of µ(JτbK | JτK), and

32Equivalently, we could define a Borel probability measure on 2ω to be a
countably additive set function µ̃ from the σ-algebra generated by the basic
sets to the closed unit interval such that µ̃(2ω) = 1. The restriction of any such
map to the basic sets yields a probability measure as defined in the main text.
And the Carathéodory Extension Theorem guarantees that every µ satisfying
the conditions in the main text can be uniquely extended to such a Borel
probability measure µ̃ on 2ω—see, e.g., Klenke (2020, Theorem 1.53).

so on.

Example 3. For any r ∈ (0, 1), the Bernoulli measure with parameter r is the
probability measure νr such that νr(τ) = rk(1− r)` where k and ` are
the number of 0’s and the number of 1’s in τ. We call ν.5 the Lebesgue
measure.

Example 4. Let S be a sequence. The delta-function concentrated on S is
the probability measure δS that assigns a basic set JτK probability one if
τ is an initial segment of S and which otherwise assigns JτK probability
zero.

Definition 5. A real number z in the unit interval is computable if there
is a Turing machine that on input of any natural number k outputs a
rational number q that differs from z by no more than 2−k.

Definition 6. A probability measure µ on 2ω is computable if there is a
Turing machine that on input of any string τ and natural number k
outputs a rational number q that differs from µ(τ) by no more than
2−k.

A delta-function δS is computable if and only if the sequence S that
it is concentrated on is. A Bernoulli measure νr is computable if and
only if its parameter r is.

Definition 7. We call a probability measure µ on 2ω discrete if there exist
sequences S1, S2, . . . and positive numbers c1, c2, . . . summing to one
such that µ = ∑ ck · δSk .

Example 5. For any sequences S1, S2, . . . , µ := ∑∞
k=1

9
10k · δSk will be a

discrete probability measure (and if the Sk are uniformly computable,
then µ will be computable).33 No Bernoulli measure is discrete.

We are interested in Bayesian agents who know that their binary
data streams are computable but have no other relevant background
knowledge about them. It is natural to assume that any agent of this

33If a discrete probability measure µ = ∑ ck · δSk is computable, then each Sk is
computable. But it is possible that the Sk may not be uniformly computable—
thanks to Chris Porter for this observation.
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kind will assign positive probability to each basic set.

Definition 8. A prior is a probability measure on 2ω that assigns positive
probability to each basic set.

If µ is a prior and S is a sequence, then for each n, µ(0 | S�n) is
well-defined (it is the probability that an agent whose initial credal state
is represented by µ will assign to the next bit being a 0, given that the
first n bits are given by the initial bits of S).

6.3 Confident Bayesian Learning
Discussions of the strengths of the Bayesian account of rationality tend
to focus on success stories like the problem of determining the bias
of a coin from knowledge of the outcomes of a sequence of tosses.34

And with good reason: as Savage (1972, p. 50) notes in summarizing
his treatment of problems of this kind,

it has now been shown that, with the observation of an abundance
of relevant data, the person is almost certain to become highly
convinced of the truth, and it has also been shown that he himself
knows this to be the case.

With examples like this in mind, it may well seem natural to take as the
criterion of success for Bayesian learning the asymptotic approach to
certainty in the truth in the limit of large data sets.35

Definition 9. Let µ be a prior and S a sequence. We say that µ confidently
learns S if limk→∞ µ(S(k + 1) | S�k) = 1.

Example 6. As in Example 5, consider countably many sequences S1,
S2, . . . and let µ := ∑(9/10k) · δSk . Then µ confidently learns each Sj:
for suppose that µ is fed Sj as a data stream; after a finite number of

34See, e.g., Savage (1972, Chapter 3), Earman (1992, §6.3), and Diaconis and
Skyrms (2018, Chapter 10). In philosophy of science more generally, the
Bayesian treatment of this problem is often taken to provide a good model
of the strengths and limits of a Bayesian account of scientific reasoning—see,
e.g., Strevens (2020, p. 305).

35Earman (1992, §9.3) could be read as taking this approach.

data points, for each k < j, Sk will be ruled out by observation; from
then on, the prior will always assign probability between .9 and 1 to
its predictions (which will always be correct); and you can force these
probabilities to be as close to 1 as you like by choosing data sets large
enough to rule out a sufficient number of Sj+1, Sj+2, and so on.36

Of course, things are not so easy when computational considerations
are taken into account. In order to see why, it helps to introduce a further
technical notion and a lemma.

Definition 10. Let µ be a computable prior and let κ be a computable
real number in the unit interval. We say that µ avoids κ if there is no
string τ such that µ(0 | τ) = κ.

Proposition 8 (Belot 2024). Let µ be a computable prior and let I be a
non-empty open subinterval of [0, 1]. Then there is a computable real
number κ ∈ I such that µ avoids κ.

Proof. Fix a computable enumeration σ1, σ2, . . . of the strings. Then we
can use a machine computing µ to build a machine that on input of
natural numbers k and ` gives us a rational number that approximates
µ(0 | σ`) to within 1/2k. We can then take κ to be a real number with
a decimal expansion of the following type: chose the initial digits to
ensure that κ ∈ I no matter how the expansion continues; choose the
next digit by looking at the corresponding digit in the µ(0 | σ1) and
adding two (mod 10); choose the following digit by looking at the
corresponding digit in µ(0 | σ2) and adding two (mod 10); and so on.
Then κ is a computable number in I that is never used by µ as the
conditional probability that the next bit will be 0.

Definition 11. Let µ be a prior and let κ be a computable number in the

36As noted in fn. 32 above, any prior µ induces a Borel probability measure µ̃ on
2ω—so we can ask what probability µ̃ assigns to the set Sµ of sequences that
µ confidently learns. For the µ of this example, we find that µ̃(Sµ) = 1. On
the other hand, for any r ∈ (0, 1) the Bernoulli measure νr fails to confidently
learn any sequences, so we have ν̃r(Sνr ) = 0—this is not one of those settings
where each Bayesian agent is subjectively certain of successful learning.
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unit interval. We denote by Mκ
µ the extrapolator that on input σ: (i)

outputs 0 if µ(0 | σ) > κ, (ii) outputs 1 if µ(0 | σ) < κ, and (iii) gives no
output when µ(0 | σ) = κ.

Note that if µ avoids κ, thenMκ
µ is a total extrapolator.

Proposition 9. Let A be a class of computable sequences. There is a
computable prior µ that confidently learns each sequence in A if and
only if there is a total extrapolator that learns each sequence in A.

Proof. Suppose, on the one hand, that there is a total extrapolator that
learns each sequence in A. Then the proof of Proposition 3 guarantees
that there is some uniformly computable sequences S1, S2, . . . that form
a dense set that includes every sequence in A. Then as noted above in
Example 5, the prior µ := ∑(9/10k) · δSk is computable (because the Sk

are uniformly computable). And as noted in Example 6, µ confidently
learns each of the Sk and hence confidently learns each sequence in A.
Suppose, on the other hand, that µ is a computable prior that confidently
learns each sequence in A. Then as in Proposition 8, we can choose a
computable κ in (.5, 1) that µ avoids. SoMκ

µ is a total extrapolator that
learns each sequence confidently learned by µ: if for any small ε, there
is an N such that for each n > N, µ(S(n + 1) | S�n) > 1− ε, then, in
particular, there is an Nκ such that for all n > Nκ ,Mκ

µ predicts the next
bit correctly when fed S as a data stream from stage Nκ onwards.

Corollary 3. If a class of computable sequences is confidently learned by
some prior, then it is effectively countable.

Definition 12. We say that µ confidently learns S with redaction rate less
than .5 if there is a set R of natural numbers of density r < .5 such
that limk→∞ µ(S(k + 1) | S�k) = 1 where the limit is taken over k in the
complement of R.

Arguing as in the proof of the preceding proposition, we can show
that if each member of a class of computable sequences is confidently
learned with redaction rate less than .5 by some computable prior µ,
then there is some total extrapolator that better-than-random learns
each of these sequences. By appeal to Propositions 4 we then have:

Proposition 10. If A is a class of computable sequences and µ is a
computable prior that confidently learns each sequence in A with
redaction rate less than .5, then A is effectively meagre.

6.4 Diffident Bayesian Learning
Definition 13. Let µ be a prior and let S be a sequence. We say that µ

diffidently (weakly) learns S if the extrapolatorM.5
µ (weakly) learns S.

There is a sense in which every extrapolator is Bayesian in behaviour.

Proposition 11. LetM be any extrapolator. Then there is a computable
prior µ suchM andM.5

µ are functionally equivalent (i.e., on any input,
either neither gives an output or they both give the same output).

Proof. We show how to construct the desired prior µ given an extrapo-
latorM. We need to define a procedure that allows us to calculate µ(σ)

to any degree of accuracy, for each string σ. Since the set of computable
numbers is closed under addition, subtraction, multiplication, and divi-
sion, it suffices to show how to calculate µ(0 | σ) to any desired degree
of accuracy, for each string σ: setting σ equal to the empty string allows
us to calculate µ(0) and thence µ(1); with these in hand, if we know
how to calculate µ(0 | 1) and µ(0 | 0), we will then be able to calculate
µ(00), µ(01), µ(10), and µ(11)—and so on.37

Fix a string σ. Set the first approximation of µ(0 | σ) equal to 1/2. The
second approximation takes the same value—unless the computation of
M on input σ halts and gives an output after one stage of computation,
in which case we set the second approximation equal to 1/2 + 1/100 or
equal to 1/2− 1/100, depending on whether the output of the computa-
tion was a 0 or a 1. In general: the (k + 1)st approximation to µ(0 | σ) is
the same as the kth, unless the computation ofM on input σ first halts
and gives an output after k stages of computation, in which case we set
the (k + 1)st approximation equal to 1/2 + 1/10k+1 or 1/2− 1/10k+1,
depending on whether the output of the computation was a 0 or a 1.

37We will have µ(σ) > 0 for each σ, so next-bit conditional probabilities will
always be defined.
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This ensures that µ(0 | σ) > .5 if M(σ) = 0, that µ(0 | σ) < .5 if
M(σ) = 1, and that µ(0 | σ) = .5 if M(σ) is undefined. So M and
M.5

µ give the same output on any input for which either gives an
output.

Even among merely partial computable extrapolators, then, Bayesian
learning is a fully general strategy: if our standard for Bayesian learning
is is diffident learning (rather than confident learning) then for com-
putable learners facing our extrapolation problem, Bayesianism (unlike
learning by enumeration) does not restrict learning power. Indeed, there
are priors that diffidently learn each self-describing sequence and priors
that diffidently weakly learn every computable sequence (although of
course the extrapolatorM.5

µ corresponding to such a prior cannot be
total).

It is hard not to feel, though, that the construction employed in
the proof just given yielded a prior that was a little . . . peculiar. For
one thing, conditional on any finite data set, this prior has credence
very near .5 that the next bit will be 0. Even if the agent eventually
always chooses correctly, we will not have the sort of satisfying Bayesian
learning that we are used to. The following example suggests, however,
that we cannot hope to do too much better.

Example 7. Let µ be a prior that for each string, says that the probability
of the next bit being 0, conditional on that string, is .9, .5, or .1. This
prior will induce an (in general) merely partially defined extrapolator
M.5

µ . But this extrapolator will not be able to learn any sequences that
are not learned flat-out by the totally defined extrapolator M.6

µ . So
any class of computable sequences diffidently learned by µ must be
effectively countable.

More generally, let µ be any computable prior. Let κ a computable
number that µ avoids (as in Proposition 8), so that Mκ

µ is a total
extrapolator. It follows that ifM.5

µ andMκ
µ both learn every sequence in

some class A of computable sequences, A must be effectively countable.
Let S be a computable sequence learned byM.5

µ but not byMκ
µ. Then

there must be infinitely many initial segments of S that lead µ to give

a next-bit probability of 0 in the interval (.5, κ) (no matter small this
interval). And of course a similar picture obtains if we take κ < .5. So
we have the following.

Proposition 12. Let µ be a computable prior, let ε > 0, and let A be a class
of computable sequences. Suppose that for any S in A, µ diffidently
learns S and there are only finitely many n such that µ(0 | S�n) ∈
(.5− ε, .5 + ε). Then A is effectively countable.

Recall from Example 5 above that we call a prior discrete if it can be
written as a convex combination of a countable family of delta-functions.
More generally, we call a prior µ atomic if it can be written in the form
µ = (1− c) · ν + c · δS for some probability measure ν, delta-function
δS, and c ∈ (0, 1] (we then call S an atom of µ). Note that if S is an atom
of µ, then limn→∞ µ(S(n + 1) | S�n) = 1.38 The prior that appeared in
the proof of Proposition 11 is clearly not atomic, then. And again we
cannot hope to do too much better.

Proposition 13. If a discrete prior diffidently learns each sequence in a
class A of computable sequences, then A is effectively meagre.

Proof. Suppose that µ is a discrete prior with atoms S1, S2, . . . . Then the
Sk must be dense in 2ω (otherwise, µ would not assign each basic set
positive probability). And, for the reason just noted,M.5

µ learns each Sk.
So by Proposition 2, the class of sequences learned byM.5

µ (= the class
of sequences diffidently learned by µ) must be effectively meagre.

Corollary 4. A computable prior that diffidently learns each self-
describing sequence cannot put probability one on the set of computable
sequences.

Bayesian learners who know that they will face computable data
streams face a dilemma. They can work with priors that incorporate this
knowledge, putting probability one on the set of computable sequences.
But each such prior is incapable of achieving many learning tasks

38This follows from the fact that Borel probability measures are continuous from
above—see, e.g., Klenke (2020, Theorem 1.36).
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achievable by computable learners. Or they can use priors capable of
more impressive feats of learning. But such priors cannot put probability
one on any countable set of sequences—so, in particular, each such prior
fails to incorporate the agents’ knowledge that they face a computable
data stream.

7. The Bottom Line

Learning Weak Learning Better-than-Random
Extrapolators Universal: No Universal: Yes Universal: Yes

Supra-Meagre: Yes Supra-Meagre: Yes Supra-Meagre: Yes
Learners by Universal: No Universal: No Universal: No
Enumeration Supra-Meagre: No Supra-Meagre: ? Supra-Meagre: ?
Total Universal: No Universal: No Universal: No
Extrapolators Supra-Meagre: No Supra-Meagre: No Supra-Meagre: No

Table 1: The learning capacities and limitations of extrapolators.

Confident Diffident Diffident Weak
Bayesian Learning Bayesian Learning Bayesian Learning

Computable Universal: No Universal: No Universal: Yes
Priors Supra-Meagre: No Supra-Meagre: Yes Supra-Meagre: Yes
Discrete Universal: No Universal: No Universal: ?
Comp. Priors Supra-Meagre: No Supra-Meagre: No Supra-Meagre: ?

Table 2: The learning capacities and limitations of computable Bayesians.

The tables above summarize the learning powers and limits of
various types of extrapolators and computable priors, focusing for
simplicity on the questions under which conditions there exist universal
learners that extrapolate every computable sequence and under which
conditions there exist supra-meagre learners, capable of successfully
extrapolating every sequence in at least one class that is not effectively
meagre. The question marks in these tables indicate open questions—it
is natural to conjecture each of these should be given a negative answer.

We see, in particular that totally defined extrapolators, which give an
output on input of any binary string, are of modest learning power in
comparison with arbitrary extrapolators (which may be merely partially
defined). We also see that at least some of the limitations of totally
defined extrapolators extend to learners by enumeration (a class that
includes those learners who use the simplest hypothesis consistent with
the data to make their predictions).

The picture is interestingly different for computable Bayesian learn-
ers. If we require successful Bayesian learners to eventually become
arbitrarily confident in their predictions about future data points, then
Bayesian learners are saddled with the same limitations of learning
power as total extrapolators are. But if we require of successful Bayesian
learners only that they be more confident than not in their predictions,
then Bayesianism is a fully general strategy for extrapolation: if there
is an extrapolator that (weakly) learns each member of some class of
computable sequences, then there is a computable Bayesian who does
so. But in order to transcend the limits faced by total extrapolators,
computable Bayesian agents must consign themselves to being occa-
sionally very nearly uncertain about what to expect next (no matter
how much data they see)—and they must employ priors that do not
put probability one on any countable set of sequences (even when they
know that their data stream will be drawn from the countably infinite
family of computable sequences).
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