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Abstract

The 2021 Nobel Prize in Economics recognized a theory of causal inference that

warrants more attention from philosophers. To this end, I design a tutorial on

that theory for philosophers and develop a dialectic that connects to a traditional

debate in philosophy: the Lewis-Stalnaker debate on Conditional Excluded Mid-

dle (CEM). I first defend CEM, presenting a new Quine-Putnam indispensability

argument based on the Nobel-winning application of the Rubin causal model (the

potential outcome framework). Then, I switch sides to challenge this argument,

introducing an updated version of the Rubin causal model that preserves the

successful application while dispensing with CEM.

1 Introduction

This is an invitation to the Rubin causal model (Rubin 1974), also known as the poten-

tial outcome framework—a framework for causal inference that has been very influential

in health and social sciences but is somewhat under-recognized in philosophy. To make

more philosophers interested, I will explain how the Rubin causal model is related to

some familiar ideas and issues in philosophy, such as causal Bayes nets, intertheory

relations, the Quine-Putnam indispensability argument, the revisability of deductive

logic, and the controversy over a logical principle called:
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Conditional Excluded Middle

It is logically necessary that

- either B would be the case if A were the case,

- or B would not the be case if A were the case.

To make all this more fun, a dialectic will be developed. I will first give a new argument

for Conditional Excluded Middle, using the Rubin causal model and its Nobel-Prize

winning applications (section 3). But then, following the good cop/bad cop approach,

I will challenge that argument with a new theory of causal inference.

Before all that, I will begin with a crash course on the Rubin causal model (next

section). Since an important goal of this paper is to introduce the Rubin causal model

to a broad philosophical audience, I have taken care to distill the essential ideas and

present them accessibly in the main text, which should suffice for most philosophers.

A rigorous presentation is provided in the appendices.

2 A Crash Course on the Rubin Causal Model: A

Card Game

To have a vivid picture of how the Rubin causal model works, imagine that everyone

in the population has such a card:

Card #1: What If You Took the Treatment?

Nature gives every individual a card of this form: the back is printed with

‘if Take = 1’, and the face is printed with ‘Cure = 1’ or ‘Cure = 0’.

The former case means that this person would be cured if they took the treatment;

the latter means that this person would not be cured if they took the treatment. So

this setting builds in Conditional Excluded Middle. Any card given to a person is face

down initially and will be flipped to reveal the (medical) result only when the if-clause

actually holds of that person. Similarly, there is also

Card #2: What If You Didn’t Take the Treatment?

Nature also gives every individual a second card, whose face takes the same

form ‘Cure = . . .’ but the back is printed with ‘if Take = 0’ instead.

2



Each person’s cards #1 and #2 define that person’s individual treatment effect (ITE):

the value of binary variable Cure on card #1 minus that on card #2. So there are

three possible cases:

ITE =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 (= 1− 0) i.e. improvement,

0 (= 1− 1 or 0− 0) i.e. no difference,

−1 (= 0− 1) i.e. deterioration.

The average treatment effect (ATE) in a population is defined as the average of the

individual treatment effects of all individuals in the population.

A bit of algebra shows that the ATE is equal to the difference between two propor-

tions:

ATE = (i) the proportion of ‘Cure = 1’ cards among all cards of the kind #1

− (ii) the proportion of ‘Cure = 1’ cards among all cards of the kind #2.

Term (i) can be estimated by randomly choosing a group of people in the population,

forcing them to flip their first cards, and registering the proportion of the results that

have ‘Cure = 1’. Term (ii) can estimated similarly. This estimation procedure is the

idea behind randomized controlled trials (RCT). But the problem is that RCT is often

ethically impermissible.

Fortunately, there is a Nobel-winning solution. Randomly select people from the

population and flip a coin to assign them to the treatment or the control group. Anyone

in the treatment group is offered the treatment for free—they decide whether to take

it. This creates a new kind of card:

Card #3: What If You Were Assigned to the Treatment Group?

Nature also gives every individual a card of this form: the back is printed

with ‘if Assign = 1’ (where 1 means the treatment group), and the face is

printed with ‘Take = 1’ or ‘Take = 0’.

This determines whether the individual would, or would not, take the treatment under

assignment to the treatment group. Similarly:

Card #4: What If You Were Assigned to the Control Group?

Nature gives every individual a card of this form: the back is printed with
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‘if Assign = 0’ (where 0 means the control group), and the face is printed

with ‘Take = 1’ or ‘Take = 0’.

While seemingly unnecessary in the case of drug test, this fourth card is crucial in

Angrist’s (1990) classic study on the Vietnam War. There,“assignment” is the draft

lottery, “treatment” is military service, and the “medical result” is lifetime earnings.

The fourth card is needed to define volunteers.

Now, let’s distinguish four subpopulations, depending on whether one would (or

would not) take the treatment under assignment to the treatment group (or the control

group):

1. Compilers: those who would take the treatment if they were assigned to the

treatment group, and would not if they were assigned to the control group—

namely, those whose card #3 and card #4 are printed with ‘Take = 1’ and

‘Take = 0’ respectively.

2. Defiers: those who would do the opposite to what compliers would do.

3. Always-Takers: those who would take the treatment anyway.

4. Never-Takers: those who would not take the treatment anyway.

By Conditional Excluded Middle, those four subpopulations exhaust the entire popu-

lation.

An important result in econometrics implies that, in this card game scenario and

in more general settings, if there are no defiers, which seems to be plausible to assume

here, then we can “nicely” estimate a local average treatment effect (LATE), defined as

the average of the individual treatment effects of just the compliers in the population.

This classic result can be informally stated as follows, with a rigorous presentation

provided in Appendix A and a proof in Appendix B:

Theorem 1 (Imbens & Angrist 1994, Informal Version). Under

the eight assumptions are made precise in Appendix A (which are also in-

stantiated by the card game informally designed above), the LATE in the

compliers can be expressed solely by probabilities over the three observable

variables—Assign, Take, and Cure—without counterfactuals. Specifically,

the LATE can be expressed as follows:

LATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.
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An explanation of the probability function Pr is in order. The first conditional

probability on the right-hand side, Pr(Cure = 1 |Assign = 1), is defined standardly as

a ratio:

Pr(Cure = 1 |Assign = 1) =
Pr(Cure = 1 ∧ Assign = 1)

Pr(Assign = 1)
,

which is the probability of drawing an individual from the population who ends up

being assigned to the treatment group (Assign = 1) and then getting cured (Cure = 1),

divided by the probability of drawing one who ends up being assigned to the treatment

group. Thanks to elementary statistics, this probability has a nice1 estimator that

almost all frequentist statisticians agree on: just estimate it by the proportion of the

cured in the treatment group. The other conditional probabilities on the right are also

defined standardly and can be similarly estimated by the observed proportions. This

procedure for estimating the right side, and thus the left side, is called instrumental

variable estimation, with Assign being the instrumental variable.

The above theorem does something important. Recall that the LATE is defined

in terms of the contents of many cards that cannot be flipped to reveal their faces at

the same time. Indeed, within the entire population, all cards of types #3 and #4

are used to define the subpopulation of compliers. Then, within this subpopulation,

all cards of types #1 and #2 are used to define the local average treatment effect,

which is the proportion of ‘Cure = 1’ among cards of type #1 (in this subpopulation)

minus that among cards of type #2. But we cannot flip both card #1 and card #2 of

any particular person’s—it is impossible for a single person to take the treatment and

to not take it. Similarly, we cannot flip both card #3 and card #4 of any particular

person’s. Even if God, or Nature, has the privilege to peek at the contents of all cards,

we don’t. Fortunately, to estimate the LATE, it suffices to estimate the probabilities

on the right-hand side of the equation in Theorem 1. That does not require us to flip

all those cards, but only require us to flip a card only when the if-clause printed on it

actually holds—in accordance with the rule of the card game that Nature imposes on

us as human beings.

Upshot: In the present scenario, the causal effect defined as the LATE (on the left

side) can be identified in terms of some probabilities (on the right) that, in turn, can be

nicely estimated with a simple statistical procedure—despite the fact that causation

1Namely, unbiased and (statistically) consistent.
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cannot be defined in purely statistical terms. So, this theorem is known as an identifi-

cation result. This result and its applications underly one half of the 2021 Nobel Prize

in Economics, awarded to Joshua D. Angrist and Guido W. Imbens.

The proof of Theorem 1 is available in research articles, but may be difficult to

follow for most philosophers. Even a textbook presentation of the proof is often too

terse for most philosophers and, worse, typically occurs only after two hundred pages

of discussion of the Rubin causal model, e.g. Hernán & Robins (2020: Technical Point

16.6), with the presuppositions of the proof somewhat scattered in preceding chap-

ters. So, to make the materials self-contained and accessible for a wider community of

philosophers, an alternative proof is designed in Appendix A, with minimal prerequi-

sites for philosophers (it suffices to have some familiarity with elementary probability

theory). This finishes the first task of this paper—a crash course on the Rubin causal

model and the identification result of the LATE for philosophers.

All proofs of Theorem 1 in the existing literature presupposes that the population

is exhausted by the four subpopulations defined above, and that in turn presupposes

Conditional Excluded Middle, which brings us to:

3 The Lewis-Stalnaker Debate on CEM

Conditional Excluded Middle (CEM) sparks debate in philosophy of language—embraced

by Stalnaker (1968) and rejected by Lewis (1973).

To quickly review an influential argument against CEM (Lewis 1973, Hájek MS),

consider the following pair of sentences:

(A) If i had taken the treatment, i would have been cured.

(B) If i had taken the treatment, i would not have been cured.

CEM says that (A) ∨ (B) is true in every possible world. To find a counterexample,

think about an indeterministic world in which the following holds:

(C) If i had taken the treatment, i would have had a (probabilistic) chance p to be

cured and a chance 1− p to be not cured, where p lies strictly between 0 and 1.

Then argue as follows that the truth of (C) implies the falsity of both (A) and (B):
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Indeterminist Argument Against CEM

1. By (C), if i had taken the treatment, i would have had a nonzero chance to be

cured and a nonzero chance to be not cured.

2. So, by (1), if i had taken the treatment, i could have been cured and could have

been not cured.

3. Then (A) is false, for it contradicts (2).

4. Similarly, (B) is also false, for it contradicts (2).

5. So, by (3) and (4), disjunction (A) ∨ (B) is false.

Hence a counterexample to CEM in such an indeterministic world—or so the Lewisian

concludes.

The above is round one. The next round will feature responses from defenders of

CEM, such as Williams (2010); for a survey of this debate see Mandelkern (2022, sec.

17.3.4). Here is the thing: defenders of CEM should also explore a new argument in

their favor.

Indispensability Argument For CEM

CEM is assumed, and seems to be indispensable, in our best theory of

causal inference in health and social sciences—the theory that led to one

half of the 2021 Nobel Prize in Economics. Indeed, the assumption of this

logical principle has long been made since the early days of this theoretical

framework (Rubin 1974). Moreover, if we take a close look at the proof

strategy for Theorem 1 as presented in Appendix B, it does seem that the

assumption of CEM is essential. So, it seems that we should accept CEM.

This argument is patterned after the Quine-Putnam indispensability argument for the

existence of certain mathematical objects: the mathematical objects that are indis-

pensably posited in our best scientific theories (Quine 1948, Putnam 1971).

So I have finished my second task: helping proponents of CEM see that they have

a new argument to explore in their favor—an indispensability argument from the 2021

Nobel Prize in Economics. To further the dialectic, it is time for me to switch sides

and help Lewisians undermine that argument.
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4 Doing without Conditional Excluded Middle

I think that the above theory of causal inference can be reformulated and even gener-

alized in a way that dispenses with CEM. This will be similar in spirit to what Field

(2016) does to undermine the Quine-Putnam indispensability argument for mathemat-

ical realism when he reformulates Newtonian mechanics without real numbers.

4.1 First Step: The Rubin Causal Mode Made Stochastic

In the original game, everyone is only given a single card printed with ‘if Take = 1’,

whose face determines whether that person would, or would not, be cured under the

treatment. But imagine that you are given not just one card printed with ‘if Take = 1’

but a deck of such cards, in which 80% of the cards are printed with ‘Cure = 1’ on

their faces and the remaining 20% are printed with ‘Cure = 0’. Let this deck be well-

shuffled, all faces down initially. Suppose that you took the treatment. Then Nature

would randomly draw a card from this deck and flip it to reveal your medical result,

and hence you would have an exactly 80% chance to be cured. So you could be cured

and could be not cured—and thus it is not the case that you would be cured, nor is it

the case that you would not cured. CEM is then rendered invalid, or so the Lewisians

would argue. If randomly drawing a card from a deck does not sound chancy enough,

replace it by measuring an observable in a quantum-mechanical system.

Let’s generalize. In the original game, every individual is given four cards that

answer four what-if questions, respectively:

(Q1) What if one took the treatment?

(Q2) What if one didn’t take the treatment?

(Q3) What if one were assigned to the treatment group?

(Q4) What if one were assigned to the control group?

Now, let everyone’s four cards be replaced by four decks, which answer the four what-if

questions in this form: ‘If individual i were . . . , then i would have a probabilistic chance

p to be . . . .’ This p is a counterfactual probability, a probability under a counterfactual

condition.

So we have a stochastic version of the Rubin causal model, thanks to the expansion

pack for the card game. Deterministic outcomes are replaced by counterfactual prob-

abilities, which can be used to redefine several concepts in the original Rubin causal

model.
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Each individual i still has an individual treatment effect (ITE), but now redefined

as the difference between two counterfactual probabilities, or two proportions in decks

of cards:

ITE i =df (i) the proportion of ‘Cure = 1’ cards in i’s deck for ‘if Take = 1’

− (ii) the proportion of ‘Cure = 1’ cards in i’s deck for ‘if Take = 0’.

In the limiting case where each deck contains only one card, the ITE just defined

reduces to the ITE defined earlier.

Every individual i now has a degree of compliance DCi, defined by how one’s chance

of taking the treatment would change if one switched from the control group to the

treatment group:

DCi =df (a) the proportion of ‘Take = 1’ cards in i’s deck for ‘if Assign = 1’

− (b) the proportion of ‘Take = 1’ cards in i’s deck for ‘if Assign = 0’.

A degree of compliance can be positive, zero, or negative, corresponding to three sub-

populations:

• If DCi > 0, then one is called a complier (in the general sense).

• If DCi < 0, then one is called a defier (in the general sense).

• If DCi = 0, then one is called an indifferent-taker.

The LATE is replaced by a more general concept: a weighted average of the individual

treatment effects, in which everyone’s weight wi is proportional to that person’s degree

of compliance DCi. So it is called the degree-of-compliance-weighted average treatment

effect in the entire population, or DATE for short:

DATE =df

󰁛

i

wi ITE i

wi =df
DCi󰁓
j DCj

The denominator
󰁓

j DCj is a normalizing factor, introduced only to ensure that the

weights sum to 1.

Defiers, if any, have negative weights, which make it hard to interpret the weighted

average. But let’s follow the classic result in assuming that there are no defiers, so the
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DATE receives no contributions from defiers. The DATE also receives no contributions

from indifferent-takers, who carry zero weights by definition. It follows that only

compliers make contributions to the DATE. The more compliant one is, the more

weight one carries.

The present setting subsumes the original card game as a limiting case, in which

all decks contain only one card. In this case, the compliers are all equally compliant,

with a maximal degree of compliance: 100% minus 0%. The compliers then have equal

weights in the DATE, which is turned into a simple average over the subpopulation of

compliers, and thus degenerates to the LATE in this special case.

4.2 Second Step: Incorporating Stochastic Rubin into Causal

Bayes

The application of instrumental variable estimation is often presented to rely on an

assumption that can be formulated in plain English as follows: the assignment mech-

anism (to the treatment/control group) causally influences the medical outcome only

through whether an individual takes the treatment. While this assumption has a

standard probabilistic statement in the Rubin causal model (see the Assumption of

Instrumentality in Appendix A), it can be restated in a way closer to the the plain

English formulation, using the causal structure depicted in figure 1.

Figure 1: The causal structure in the instrumentality* assumption

In this causal graph, the Assign variable causally influences the Cure variable only

through the Take variable. The confounding variable, written U , is the most fined-

grained possible, whose value is the individual randomly drawn from the population.
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To turn this causal graph into a causal Bayes net, it suffices to specify the probability

distribution of each exogenous variable (such as U and Assign), and the probability

distribution of each effect variable given its direct cause variables, as presented in figure

2. Everyone in the population has an equal chance of being chosen, so Pr(U = i) =

Figure 2: The causal Bayes net assumed in Theorem 2

1/N , where N is the population size. Once a person i is chosen, a coin is flipped

to decide whether to assign that person to the treatment group or control group, so

Pr(Assign = 1) = 1/2, or more generally, Pr(Assign = 1) is a constant, independent

of the individual chosen.

Here is the crucial step: the conditional probabilities of effects given direct causes

are identified with the appropriate counterfactual probabilities, which come from the

stochastic version of Rubin causal model. In other words, the conditional probabilities

ci, c
∗
i , ti, and t∗i as shown in the figure 2 are given by the counterfactual probabilities

in the stochastic Rubin causal model as follows, using the language of the card game:

• ci is the proportion of the ‘Cure = 1’ cards in i’s deck #1,

i.e., the deck for ‘if Take = 1’.
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• c∗i is the proportion of the ‘Cure = 1’ cards in i’s deck #2.

• ti is the proportion of the ‘Take = 1’ cards in i’s deck #3.

• t∗i is the proportion of the ‘Take = 1’ cards in i’s deck #4.

This new causal modeling can be understood to work as follows. While the original

Rubin causal model only allows an individual to have deterministic outcomes, my

expansion pack for the card game updates it to allow for stochastic outcomes, with

counterfactual probabilities that are plugged into the parameters of an appropriate

causal Bayes net.

4.3 Main Result

Then we have a new identification result:

Theorem 2. Suppose that the following assumptions hold:

1. (Randomization) Individuals in the population are randomly chosen

with equal chances, and then the selected ones are randomly assigned

to the treatment or control group with a constant bias (by, say, flipping

a fair coin).

2. (Instrumentality*) The true causal model is a causal Bayes net

with the causal structure in figure 1.

3. (Existence of Compliers*) There are compliers in the population,

in the sense that someone’s degree of compliance is positive.

4. (No Defiers*) There are no defiers in the population, in the sense

that everyone’s degree of compliance is nonnegative.

Then the DATE can be expressed solely by probabilities over the observable

variables—Assign, Take, and Cure—without counterfactuals. Specifically,

the DATE can be expressed as follows:

DATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

See Appendix C for a proof. Assumptions 2-4 are labeled with asterisks in order

to distinguish them from their counterparts in the original Rubin causal model as
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stated in Appendix A: Assumption 2 (Instrumentality), Assumption 3 (Existence of

Compliers), and Assumption 5 (No Defiers).

Given this more general approach to causal modeling, Lewisians can easily relax

the assumption of CEM by replacing single cards with decks. Moreover, in this new

theorem, the DATE equation’s right-hand side remains identical to the LATE’s in

the classic result (Theorem 1). So, we can still use the same method of instrumental

variable estimation designed originally for the LATE. But now we do this without

assuming CEM—we are simply estimating the more general quantity DATE. This

feature is important for undermining the indispensability argument. Medical and social

scientists using the usual estimation method for the LATE under the logical principle

of CEM can now be reinterpreted as estimating the DATE with the very same method,

but without the assumption of CEM. This suggests that the new theorem allows us

to preserve the Rubin causal model’s successes in (apparently) estimating the LATE,

while discarding the logical principle of CEM. We only need to reinterpret what is

estimated in those successful applications.

This concludes my final task: helping Lewisians reject CEM by undermining the

indispensability argument.

5 Closing

The Rubin causal model, with its underlying deductive logic and its ability to facilitate

causal inference, warrants closer examination by philosophers. To this end, the previous

discussion offered a card-game tutorial to introduce the model, and then developed a

dialectic to connect it to some familiar philosophical ideas. The focus was on the

ongoing debate surrounding a logical principle: Conditional Excluded Middle (CEM).

I delved into both sides of the debate, in turn. First, I explored how the Rubin

causal model could be used to construct a new argument for CEM—a Quine-Putnam

indispensability argument. I then shifted gears and challenged this new argument,

using causal Bayes nets to give a new theorem that seems to render CEM dispensable.

While my heart goes to the Lewisian side of the debate on CEM, that is only

secondary for now. The real takeaway is how the dialectic highlights the intriguing

potential of the Rubin causal model for philosophers. In fact, I see opportunities for

both sides of the debate.

For proponents of CEM, the next step could be arguing that the very use of causal
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Bayes nets presupposes CEM after all. On the other hand, opponents of CEM can

delve deeper into the potential of causal Bayes nets as an improvement for the Rubin

causal model, going beyond the instrumental variable estimation as discussed above.

If health and social scientists can be persuaded to abandon CEM, it would represent

an example in which scientific inquiry drives revisions in deductive logic—precisely the

kind of example Quine (1951) envisaged. This would demonstrate the possibility of

logic revision close to the realm of everyday concerns, like medicine or social issues—a

far more relatable scenario than Putnam’s (1968) case of quantum logic.

So much about deductive logic, but there is something for theorists of induction,

too. When scientists justify inductive methods, they rely heavily on their context

of inquiry, including background assumptions. Past discussions mostly focus on the

background assumptions that are physical (Longino 1979, Christensen 1997), method-

ological, or ethical (Reiss 2020), rather than deductively logical. But is the logical

principle CEM, for instance, needed to justify instrumental variable estimation? The

deductive background deserves attention from theorists of induction.

There is even something for those more interested in modeling rather than inference.

Consider the interplay between three approaches to causal modeling:

(1) nonparametric structural equation models (Pearl 2009),

(2) Rubin causal models (Rubin 1974),

(3) causal Bayes nets (Spirtes et al. 2000).

Pearl (2009) famously argues that the first two are basically equivalent and can produce

everything that we get from the third approach—causal Bayes nets. But the new

theorem suggests a different picture: in at least one application, namely the application

to the LATE, causal Bayes nets seem to be able to generalize the Rubin causal models

with an extended result (Theorem 2). So the questions remain: Which approach is

more general? Which are equivalent, and in what sense? This would be a nice case

study on intertheoretic relations. While initial steps have been taken by Markus (2021)

and Weinberger (2023), they have not considered causal Bayes nets. Much more needs

to be done.

The Rubin causal model clearly presents a rich landscape for further exploration.
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A Rigorous Presentation of the Rubin Causal Model

The second approach is basically the textbook-standard presentation of the Rubin

causal model. The formalism builds on elementary probability theory: ordinary vari-

ables are upgraded to potential outcomes, i.e. variables under counterfactual, subjunc-

tive conditions.

A.1 Counterfactuals & Potential Outcomes

Let Take i = 1 expresses the proposition that the individual i takes the treatment.

Similarly for Cure i = 1 and Assign i = 1. To that notation we can add superscripts to

express counterfactuals, such as the following:

• CureTakei=1
i = 1 means that the individual i would be cured if i took the treat-

ment.

• Cure
Takei=1,Takej=0
i = 0 means that the individual i would not be cured if i took

the treatment but another individual, j, did not.
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The variables like CureTakei=1
i and Cure

Takei=1,Takej=0
i are just ordinary variables under a

counterfactual, subjunctive condition. More generally, XC
i , called a potential outcome,

denotes the value of variable X that individual i would have under the subjunctive

condition C. I love the superscript notation, for it makes vivid the idea of “under

a condition”, although there are other notations. For example, CureTakei=1
i is often

written as Cure i(1) when the context makes clear what’s intended.

A.2 Assumptions about Potential Outcomes

There are also substantive, empirical assumptions:

Assumption 1 (Stable Unit Treatment Value, or SUTVA). The

values of the variables of each individual (or unit) are determined in a way

independent of the values of the variables of any other individuals. That is,

for any variable Xi and any conditions C1, . . . ,Cn about individuals from

1 to n, we have XC1,...,Cn

i = XCi
i , which omits any references to individuals

other than i in the subjunctive condition.

So, to think about whether i would be cured under various conditions, it suffices to

consider potential outcomes of the form Cure
Assigni=a,Takei=t
i , which makes no reference

to any other individuals in the subjunctive condition. This allows us to consider only a

small number of potential outcomes. The next assumption allows us to drop more terms

in the subjunctive conditions and thus consider an even smaller number of potential

outcomes:

Assumption 2 (Instrumentality). For each individual i, Assign i is an

instrumental variable in the following sense: the value of Cure i is deter-

mined once the value of Take i is determined, independently of the value

of Assign i. That is, Cure
Assigni=a,Takei=t
i = CureTakei=t

i , which omits the

assignment Assign i = a in the subjunctive condition.

Thanks to the above two assumptions, now we only need to consider just four poten-

tial outcomes for each individual i: CureTakei=1
i , CureTakei=0

i , Take
Assigni=1
i , Take

Assigni=0
i .

Those four variables correspond to the four cards that i has in the game. In fact, the

faces of the four cards are printed with the values taken by those four potential out-

comes, respectively. When we decide to model each individual by a set of such four

cards, we are already committed to the assumptions of SUTVA and Instrumentality.
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Since the four cards have been replaced formally by four potential outcomes, the

concepts presented above can be redefined formally accordingly. Every individual i is

classified into one of the following categories:

Complier i ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 1 ;

Defier i ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 0 ;

Always-Taker i ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 1 ;

Never-Taker i ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 0 .

The ITE (individual treatment effect) on an individual i is defined by

ITEi =df CureTakei=1
i − CureTakei=0

i .

The local average treatment effect (on the compliers) is defined by

LATE =df
1

#{i : Complier i}
󰁛

i:Complier i

ITEi .

To make this well-defined, the denominator has to be assumed to be nonzero:

Assumption 3 (Existence of Compliers)

Complier i for some individual i.

A.3 Probabilistic Assumptions

Some empirical assumptions are less general, meant to serve the purposes of instru-

mental variable estimation.

Let the subscript-free notation Pr
󰀃
CureTake=0 = 1

󰀄
denote the probability of ran-

domly choosing an individual who would be cured (even) without taking the treat-

ment. If everyone has an equal probability 1/N to be chosen, where N is the popu-

lation size, then Pr
󰀃
CureTake=0 = 1

󰀄
is identical to the proportion of those who would

be cured without taking the treatment—that is, the individuals i with the feature

CureTakei=0
i = 1. Similarly, given that a randomly chosen individual is assigned to the

treatment group, the probability of that person taking the treatment is denoted by

Pr(Take = 1 |Assign = 1).

Assumption 4 (Random Choice). Everyone in the population has an
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equal probability of being chosen for participation of the experiment. So

the actual frequency distribution of the four potential outcomes in the pop-

ulation is the same as the probability distribution of those variables. In

other words:

the proportion of those in the population with features

TakeAssign=0 = x, TakeAssign=1 = y, CureTake=0 = z, and CureTake=1 = u

= Pr
󰀃
TakeAssign=0 = x, TakeAssign=1 = y, CureTake=0 = z, CureTake=1 = u

󰀄

Lemma 1. By the above assumptions, the LATE can be expressed probabilistically:

LATE = Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
− Pr

󰀃
CureTake=0 = 1 |Complier

󰀄
.

Proof. Calculate the LATE as follows; Existence of Compliers is assumed throughout

to make all denominators nonzero:

LATE

=
1

#{i : Complier i}
󰁛

i:Complier i

ITEi

=
1

#{i : Complier i}
󰁛

i:Complier i

󰀃
CureTakei=1

i − CureTakei=0
i

󰀄

=

󰁓
i:Complier i

CureTakei=1
i

#{i : Complier i}
−

󰁓
i:Complier i

CureTakei=0
i

#{i : Complier i}

=
#{i : CureTakei=1

i = 1 ∧ Complier i}
#{i : Complier i}

− #{i : CureTakei=1
i = 0 ∧ Complier i}

#{i : Complier i}

= Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
− Pr

󰀃
CureTake=0 = 1 |Complier

󰀄
.

The last step applies the assumption of Random Choice.

Standard textbooks often define the LATE by the formula in the preceding lemma

or by a slight variant that replaces probabilities by expected values. But I believe that

the present approach enhances conceptual clarity: the LATE is defined solely in terms

of just the individuals and their properties in the population, independently of the

probabilities that come (partly or entirely) from the randomization mechanism that
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scientists set up in order to study the population.

The four assumptions made above, (i) SUTVA, (ii) Instrumentality, (iii) Existence

of Compliers, and (iv) Random Choice have been used to define some concepts and

prove the above probabilistic formula for the LATE. In fact, those assumptions have

finished their jobs and will no longer be cited in this section. There are additional

assumptions, which are needed to prove more lemmas.

A.4 Auxiliary Assumptions

An assumption has been made regarding a subpopulation (Existence of Compliers);

here is an assumption about another subpopulation:

Assumption 5 (No Defiers) Defier i for no individual i.

In addition to the assumption of Random Choice, there is another probabilistic as-

sumption:

Assumption 6 (Random Assignment). Any individual, once chosen for

participation of the experiment, has a fixed probability (say 50%) of being

assigned to the treatment/control group, independently of their identity.

So, Assign is probabilistically independent of the set of all the four potential

outcomes in use, TakeAssign=0, TakeAssign=1, CureTake=0, and CureTake=1; or

in symbols:

Pr
󰀃
TakeAssign=0 = x, TakeAssign=1 = y, CureTake=0 = z, CureTake=1 = u

󰀄

= Pr
󰀃
TakeAssign=0 = x, TakeAssign=1 = y, CureTake=0 = z, CureTake=1 = u |Assign = 0

󰀄

= Pr
󰀃
TakeAssign=0 = x, TakeAssign=1 = y, CureTake=0 = z, CureTake=1 = u |Assign = 1

󰀄
.

There are two assumptions about the logic of counterfactuals:

Assumption 7 (Consistency/Centering). It must be that

Xi = x ⇒
󰀃
Y Xi=x

i = y ⇔ Yi = y
󰀄
;

that is, an antecedent Xi = x in a counterfactual is redundant if it turns

out to be true.
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Assumption 8 (Conditional Excluded Middle). Suppose that Yi is

a binary variable. Then the counterfactual variable Y Xi=x
i , understood to

denote the value that Yi would have under the subjunctive condition that

Xi = x, is still a binary variable; that is,

Y Xi=x
i = 0 ∨ Y Xi=x

i = 1 .

For example, it is assumed that CureTakei=1
i = 0 ∨ CureTakei=1

i = 1, which says that

i would be cured under the treatment, or i would not be cured under the treatment

(with the same if-clause).

Then we have this classic result:

Theorem 1 (Imbens & Angrist 1994). Under the eight assumptions stated in this

section, we have:

LATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

B Proof of Theorem 1

I will begin by explaining the idea of proof. The lemmas in used will then be presented

and proved.

B.1 Idea of Proof: What Can We Learn from Observations

without Manipulations?

By pure observations, we can register the proportion of those taking the treatment

in the treatment (or control) group, and thereby estimate the following conditional

probabilities about observables:

Pr(Take = 1 |Assign = 0) = ?

Pr(Take = 1 |Assign = 1) = ?

Similarly, we can register the proportion of the cured among those who takes (or does

not take) the treatment in the treatment (or control) group, and thereby estimate the
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following conditional probabilities about observables:

Pr(Cure = 1 |Assign = 0,Take = 0) = ?

Pr(Cure = 1 |Assign = 0,Take = 1) = ?

Pr(Cure = 1 |Assign = 1,Take = 0) = ?

Pr(Cure = 1 |Assign = 1,Take = 1) = ?

If any information about counterfactuals is to be learned from pure observations of

the three observables—Assign, Take, and Cure—this information must be in principle

extractable from the above six conditional probabilities. For those conditional prob-

abilities suffice to uniquely determine a joint probability distribution over the three

observables:

Pr(Assign = a,Take = t,Cure = c)

= Pr(Cure = c |Take = t,Assign = a) · Pr(Take = t |Assign = a) · Pr(Assign = a)󰁿 󰁾󰁽 󰂀
= 0.5

.

The question is what information about counterfactuals can be extracted from just

those six probabilities.

It turns out that those six conditional probabilities about observables, once known

or estimated, can tell us a lot about counterfactuals. Assuming no defiers, the first two

can tell us the proportions of some subpopulations (which will be stated officially in

lemma 2 below):

Pr(Take = 1 |Assign = 0) = Pr(Always-Taker) (1)

Pr(Take = 1 |Assign = 1) = Pr(Complier ∨ Always-Taker) (2)

Assuming no defiers (again), it follows that the proportions of three subpopulations
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can all be estimated observationally (to be stated officially in lemma 3 below):

Pr(Always-Taker) = Pr(Take = 1 |Assign = 0) ; (3)

Pr(Never-Taker) = 1− Pr(Complier ∨ Always-Taker)

= 1− Pr(Take = 1 |Assign = 1)

= Pr(Take = 0 |Assign = 1) ; (4)

Pr(Complier) = Pr(Complier ∨ Always-Taker)− Pr(Always-Taker)

= Pr(Take = 1 |Assign = 1)− Pr(Take = 1 |Assign = 0) .(5)

Every term on the right side can be estimated by observations.

The remaining four conditional probabilities also tell us something substantive

about counterfactuals (which will be stated officially in lemma 4 below):

Pr(Cure = 1 |Assign = 0,Take = 0) = Pr
󰀃
CureTake=0 = 1 |Complier ∨ Never-Taker

󰀄
(6)

Pr(Cure = 1 |Assign = 0,Take = 1) = Pr
󰀃
CureTake=1 = 1 |Always-Taker

󰀄
(7)

Pr(Cure = 1 |Assign = 1,Take = 0) = Pr
󰀃
CureTake=0 = 1 |Never-Taker

󰀄
(8)

Pr(Cure = 1 |Assign = 1,Take = 1) = Pr
󰀃
CureTake=1 = 1 |Complier ∨ Always-Taker

󰀄
(9)

This much is already enough to let us observationally estimate the two terms in the

probabilistic expression for the LATE (as in lemma 1):

LATE = Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
− Pr

󰀃
CureTake=0 = 1 |Complier

󰀄
,

To estimate the first term Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
, consider (7) and (9):

they tell us the proportion of those with CureTake=1 = 1 (who would be cured un-

der the treatment) in some subpopulations: in the smaller subpopulation comprising

just always-takers (7), and in the more inclusive subpopulation comprising the com-

pliers and the always-takers (9). We can then derive the proportion of those with

CureTake=1 = 1 in the difference between those two subpopulations, i.e., in the sub-

population comprising just the compliers. This can be done by a routine procedure

in elementary probability theory—by solving for the only unknown in the following
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equation, where B and B′ are mutually exclusive:

Pr(A |B ∨B′) = Pr(A |B)󰁿 󰁾󰁽 󰂀
unknown

Pr(B)
Pr(B)+Pr(B′) + Pr(A |B′) Pr(B′)

Pr(B)+Pr(B′)

To be more specific, let A be CureTake=1 = 1, B be Complier , and B′ be Always-Taker .

Except for the term marked as unknown, which is Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
, every

other term in the above formula can be expressed by the six conditional probabilities

about observables and, thus, estimated by observational data. This explains how a bit

of algebra allows the unknown term Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
to be expressed by

the probabilities about observables.

Once we know how to express the first term Pr
󰀃
CureTake=1 = 1 |Complier

󰀄
by the

probabilities about observables, we can apply the same trick to express the second term

Pr
󰀃
CureTake=0 = 1 |Complier

󰀄
also by the probabilities about observables. Then, by

taking their difference, we get a formula that expresses the LATE by the probabilities

of observables, too. This formula might look a bit ugly initially. But, at this point, it

only takes a bit of calculations in elementary probability theory to obtain a beautiful

formula as stated in Theorem 1:

LATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

This finishes the idea of proof.

B.2 Lemmas and Proofs

Although the four groups of people (compliers, defiers, always-takers, and never-takers)

are defined in terms of counterfactuals, we can still identify them in the right conditions.

Think about an individual i in the control group: If i takes the treatment, then i can

only be an always-taker or a defier (rather than a never-taker or complier), and hence

i must be an always-taker (for defiers have been assumed to be absent). Conversely, if

i is an always-taker, i must take the treatment (despite being assigned to the control

group). It follows that, within the control group, those taking the treatment are exactly

those being always-takers. This result is important, for it implies that we can identify

and observe a sample of always-takers by looking at the people taking the treatment

in the control group. This result is presented as clause (i) of Lemma 2; similar results

are in the other clauses:
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Lemma 2. The reference to individuals i is surpassed throughout for the sake of read-

ability. Under the above assumptions, being assigned to the control group, Assign = 0,

implies

(i) Take = 1 ⇔ Always-Taker,

(ii) Take = 0 ⇔ Complier ∨ Never-Taker.

Similarly, being assigned to the treatment group, Assign = 1, implies

(iii) Take = 0 ⇔ Never-Taker,

(iv) Take = 1 ⇔ Complier ∨ Always-Taker.

It follows immediately that

Pr(Take = 1 |Assign = 0) = Pr(Always-Taker) ; (10)

Pr(Take = 1 |Assign = 1) = Pr(Complier ∨ Always-Taker) . (11)

Proof. Prove part (i) as follows:

Assign = 0 ∧ Always-Taker

⇔ Assign = 0 ∧ (Always-Taker ∨ Defier) by No Defiers

⇔ Assign = 0∧
󰁫 󰀃

TakeAssign=0 = 1 ∧ TakeAssign=1 = 1
󰀄
∨

󰀃
TakeAssign=0 = 1 ∧ TakeAssign=1 = 0

󰀄 󰁬
by definitions

⇔ Assign = 0∧
󰁫
TakeAssign=0 = 1 ∧

󰀃
TakeAssign=1 = 1 ∨ TakeAssign=1 = 0

󰀄
󰁿 󰁾󰁽 󰂀

redundant by Conditional Excluded Middle

󰁬
by De Morgan Rule

⇔ Assign = 0 ∧ TakeAssign=0 = 1 by Conditional Excluded Middle

⇔ Assign = 0 ∧ Take = 1 by Consistency

Part (ii) can be obtained from part (i) by taking the contraposition of the equivalence

‘⇔’ and by applying the assumption that there are no defiers. The remaining parts,

(iii) and (iv), can be proved similarly.

The preceding lemma helps to prove the next one:
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Lemma 3. The proportions of the three subpopulations can be expressed by the condi-

tional probabilities of the three observables:

Pr(Always-Taker) = Pr(Take = 1 |Assign = 0) ; (12)

Pr(Never-Taker) = Pr(Take = 0 |Assign = 1) ; (13)

Pr(Complier) = Pr(Take = 1 |Assign = 1)− Pr(Take = 1 |Assign = 0) .(14)

Proof. The probability of drawing a always-taker can be expressed as follows:

Pr(Always-Taker)

= Pr(Always-Taker |Assign = 0) by Random Assignment

= Pr(Take = 1 |Assign = 0) by Lemma 2

The probability of drawing a never-taker can be expressed similarly:

Pr(Never-Taker)

= Pr(Never-Taker |Assign = 1) by Random Assignment

= Pr(Take = 0 |Assign = 1) by Lemma 2

Since there are no defiers, the probability of drawing a complier is equal to 1 minus

the two probabilities in the above; that is:

Pr(Complier)

= 1− Pr(Always-Taker)− Pr(Never-Taker) by No Defiers

= 1− Pr(Take = 1 |Assign = 0)− Pr(Take = 0 |Assign = 1)

So we are done.

Lemma 4.

Pr(Cure = 1 |Assign = 0,Take = 0) = Pr
󰀃
CureTake=0 = 1 |Complier ∨ Never-Taker

󰀄

Pr(Cure = 1 |Assign = 0,Take = 1) = Pr
󰀃
CureTake=1 = 1 |Always-Taker

󰀄

Pr(Cure = 1 |Assign = 1,Take = 0) = Pr
󰀃
CureTake=0 = 1 |Never-Taker

󰀄

Pr(Cure = 1 |Assign = 1,Take = 1) = Pr
󰀃
CureTake=1 = 1 |Complier ∨ Always-Taker

󰀄
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Proof. The first equation can be proved as follows.

Pr(Cure = 1 |Assign = 0,Take = 0)

= Pr
󰀃
CureTake=0 = 1 |Assign = 0,Take = 0

󰀄
by Consistency

= Pr
󰀃
CureTake=0 = 1 |Assign = 0, (Complier ∨ Never-Taker)

󰀄
by Lemma 2

= Pr
󰀃
CureTake=0 = 1 |Complier ∨ Never-Taker

󰀄
by Random Assignment

The second equation can be proved with the same strategy (in fact, the annotations

have the same contents, even in the same order):

Pr(Cure = 1 |Assign = 0,Take = 1)

= Pr
󰀃
CureTake=1 = 1 |Assign = 0,Take = 1

󰀄
by Consistency

= Pr
󰀃
CureTake=1 = 1 |Assign = 0,Always-Taker

󰀄
by Lemma 2

= Pr
󰀃
CureTake=1 = 1 |Always-Taker

󰀄
by Random Assignment

The third and fourth equations can be proved with the same strategy.

The above lemmas cover all the conditional probabilities of observables discussed

in the previous subsection. As explained toward the end of the preceding subsection

(Appendix B.1), the rest is just a bit of calculations in elementary probability theory

in order to finish a proof of theorem 1.

C Proof of Theorem 2

Proof. Thanks to the background provided in the precious Appendix, each individual

i has an individual treatment effect

ITEi = ci − c∗i

with a degree of compliance

DCi = ti − t∗i .
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Hence the DATE is given by:

DATE =
󰁛

i

󰀣
DCi󰁓
j DCj

󰀤

󰁿 󰁾󰁽 󰂀
= wi

ITEi

=
󰁛

i

󰀣
ti − t∗i󰁓
j

󰀃
tj − t∗j

󰀄
󰀤
󰀃
ci − c∗i

󰀄
,

which is well-defined, i.e., the denominator is nonzero, thanks to the assumption of the

Existence of Compliers*. The goal is to verify the following equation:

DATE
?
=

Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

The terms on the right-hand side are to be calculated in turn. I will leverage a defin-

ing feature of the causal Bayes net, the Causal Markov Assumption: every variable

is probabilistically independent of its non-descendants (non-effects) given its parents

28



(direct causes). Start with the first term in the numerator:

Pr(Cure = 1 |Assign = 1)

=
󰁛

i,j

󰀓
Pr(Cure = 1 |Take = j,U = i,Assign = 1)

× Pr(Take = j |U = i,Assign = 1)

× Pr(U = i |Assign = 1)
󰀔

by Chain Rule

=
󰁛

i,j

󰀓
Pr(Cure = 1 |Take = j,U = i,✭✭✭✭✭✭

Assign = 1)

× Pr(Take = j |U = i,Assign = 1)

× Pr(U = i |✭✭✭✭✭✭
Assign = 1)

󰀔
by Causal Markov

=
󰁛

i

󰀓
Pr(Cure = 1 |Take = 1,U = i)

× Pr(Take = 1 |U = i,Assign = 1)

× Pr(U = i)
󰀔

+
󰁛

i

󰀓
Pr(Cure = 1 |Take = 0,U = i)

× Pr(Take = 0 |U = i,Assign = 1)

× Pr(U = i)
󰀔

=
󰁛

i

󰀓
ci ti

1
N

󰀔
+

󰁛

i

󰀓
c∗i (1− ti)

1
N

󰀔

= 1
N

󰁛

i

󰀓
ci ti + c∗i (1− ti)

󰀔
.

Similarly for the second term in the numerator:

Pr(Cure = 1 |Assign = 0)

= 1
N

󰁛

i

󰀓
ci t

∗
i + c∗i (1− t∗i )

󰀔
.
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Now calculate the first term in the denominator:

Pr(Take = 1 |Assign = 1)

=
󰁛

i

󰀓
Pr(Take = 1 |U = i,Assign = 1) · Pr(U = i | ✭✭✭✭✭✭

Assign = 1
byCausalMarkov

)
󰀔

=
󰁛

i

ti
1
N

= 1
N

󰁛

i

ti .

Similarly for the second term in the denominator:

Pr(Take = 1 |Assign = 0)

= 1
N

󰁛

i

t∗i .

To finish off, plug the four terms just calculated into the following:

Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)

=
✓
✓1
N

󰁓
i

󰀓
ci ti + c∗i (1− ti)

󰀔
−✓

✓1
N

󰁓
i

󰀓
ci t

∗
i + c∗i (1− t∗i )

󰀔

✓
✓1
N

󰁓
i ti −✓

✓1
N

󰁓
i t

∗
i

=

󰁓
i

󰀃
ti − t∗i

󰀄󰀃
ci − c∗i

󰀄
󰁓

j

󰀃
tj − t∗j

󰀄

=
󰁛

i

󰀣
ti − t∗i󰁓
j

󰀃
tj − t∗j

󰀄
󰀤
󰀃
ci − c∗i

󰀄

= DATE ,

as desired.

It is interesting to note that this proof makes no use of the assumption of No

Defiers*, which only serves to make the weights nonnegative and, thus, interpretable

as weights in a weighted average.
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