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Preface

This book concerns the metasemantics of quantum mechanics (QM). Roughly,
it pursues an investigation at the intersection of philosophy of physics and phi-
losophy of language, and it offers a critical analysis of rival explanations of the
semantic facts of standard QM. Such facts, about the meaning of its formal-
ism, are typically taken to be grounded in language-world relations or in the
rule-based linguistic practices of scientific communities. These relations and
practices raise a series of important questions, two of which are taken up and
discussed at length. The problem of completeness, understood as a concern
with the categoricity of rules, is one focus of the book, and it is discussed
not only as a problem for standard QM, but also for quantum logic (QL).
The problem of permanence, understood as a concern with the preservation of
rules, as for instance in the transition from classical physics to QM, is another
focus.

Both of these problems are analyzed in their historical contexts, but it
should be clear that their philosophical significance transcends these contexts.
The new results of this analysis include a rigorous reconstruction of Einstein’s
incompleteness argument, which concludes that a local, separable, and categor-
ical QM cannot exist; a reinterpretation of Bohr’s principle of correspondence,
grounded in a conception of permanence as a metatheoretical principle; also,
an improved meaning-variance argument about QL, which follows a line of
critical reflections that was initiated by Weyl; and an argument concerning
semantic indeterminacy, raised against a recent version of inferentialism about
QM, and inspired by Carnap’s categoricity problem for inferentialism about
classical logic. Some of these arguments are drawn from my previous papers,
as indicated further below, but most of that material has been rewritten here.
Any remaining errors are, of course, entirely my responsibility.
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1 The metasemantics of quantum mechanics

One cannot fully understand a theory – any theory – without knowing how
its meaning is determined, without figuring out the purported relationship
between the language of the theory and its semantic attributes. Explaining
this relationship is the main task of metasemantics. This chapter introduces
this task, in general terms, and then presents representationalism and non-
representationalism as rival metasemantic views about quantum mechanics
(QM). The analysis of the overall hypothesis of the book, that metasemantics
contributes to an adequate philosophical understanding of QM, will focus on
two problems for these views: categoricity and permanence.

1.1 Hilbert’s question

The metasemantics of QM, as understood in this book, is concerned with clar-
ifying the relationship between the formalism of the physical theory and its
semantics, quite apart from the nature or existence of the reality that the
theory might be supposed to describe. In this sense, it is an attempt to ad-
dress a particular case of a general question formulated by David Hilbert in his
“Axiomatic Thinking”, a lecture delivered in 1917 at the ETH in Zurich. He
described there two development strategies that he took to characterize the ax-
iomatic method: a progressive strategy, which leads from a system of axioms to
what can be logically derived from them, and a regressive strategy, which leads
to deeper axioms, uncovered by a critical examination of the system. Hilbert
further mentioned a series of “difficult epistemological questions”, such as the
questions about the internal and external consistency, the independence, and
the decidability of an axiomatic system, then he also specified “the question
of the relationship between content and formalism in mathematics and logic.”
(Hilbert 1918, 1113) Although this question expresses a concern with classical
mathematics and logic, it can be extended to physics as well. Indeed, Hilbert
himself would later become very much concerned with the relationship between
content and formalism in QM (Hilbert et al. 1928).

In the present book, I take up Hilbert’s question by pursuing an investi-
gation of the metasemantics of standard QM and quantum logic (QL). This
investigation should be expanded, I believe, to the numerous interpretations
and extensions, the information-theoretic reconstructions, and the various re-
formulations of QM, but these projects will not be considered here.1 I will
begin with a few introductory remarks on metasemantics (in section 1.2), as

1The only place where I will tentatively go beyond this scope is in section 5.3.3, in which
I put forward some exploratory ideas about a metasemantics for QBism. I will also touch
upon the relation between interpretations and reconstructions of QM, in section 5.2.1, where
I consider several arguments that reconstructionists have proposed against the rational ac-
ceptability of realist interpretations, like the many-worlds, hidden variables, or spontaneous
collapse interpretations. For an overview of these interpretations, with a special metaphys-
ical knack, see Lewis 2016. For all things interpretational, see Freire Jr. et al. 2022.
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understood in philosophy of language, and then present two rival views on
the metasemantics of QM in philosophy of physics: representationalism and
non-representationalism. Afterwards, I will describe the structure of the book
(in section 1.3) and the way I plan to address the two problems for these views
that I will be concerned with.

1.2 Representationalism vs. non-representationalism

What is metasemantics? Roughly, just as metaethics is the philosophy of
ethics, and metaphilosophy is the philosophy of philosophy, and perhaps just
as metaphysics is (or ought to be, at least in part) philosophy of physics,
so metasemantics is the philosophy of semantics. Here is how David Kaplan
characterized it:

The fact that a word or phrase has a certain meaning clearly be-
longs to semantics. On the other hand, a claim about the basis for
ascribing a certain meaning to a word or phrase does not belong to
semantics. “Ohsnay” means snow in Pig-Latin. That’s a seman-
tic fact about Pig-Latin. The reason why “ohsnay” means snow
is not a semantic fact; ... because it is a fact about semantics, as
part of the Metasemantics of Pig-Latin (or perhaps, for those who
prefer working from below to working from above, as part of the
Foundations of semantics of Pig-Latin). (Kaplan 1989, 573sq)

Working from below, Robert Stalnaker considered the explanation of se-
mantic facts as an essentially foundational investigation:

First, there are questions of what I will call “descriptive seman-
tics”. A descriptive-semantic theory is a theory that says what the
semantics for the language is, without saying what it is about the
practice of using that language that explains why that semantics is
the right one. ... Second, there are questions ... of “foundational
semantics”, about what the facts are that give expressions their
semantic values, or more generally, about what makes it the case
that the language spoken by a particular individual or community
has a particular descriptive semantics.2

Quite generally, semantics assigns semantic attributes, i.e., content, mean-
ing, and truth values, to expressions in a language (singular terms, sentences,
etc.). To put it differently, semantics states or describes semantic facts, such
as the fact that “oshnay” means snow, or the fact that “snow” means snow, for

2Cf. Stalnaker 1997, 903. Both quotations, from Kaplan and Stalnaker, are given in
Garćıa-Carpintero 2012a (see also Garćıa-Carpintero 2012b) and in Burgess and Sherman
2014, which also describe other possible approaches to metasemantics.
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that matter. Metasemantics is the part of philosophy concerned with what ex-
plains such assignments, with what determines semantic facts. It is concerned,
more exactly, with understanding the nature of the relationship between lin-
guistic expressions and their semantic attributes, with uncovering the grounds
of semantic facts.

Typical questions in metasemantics ask for reasons why expressions have
the meaning they have: what exactly makes it the case that they have that
meaning, or as I prefer to put it, in virtue of what do they have that mean-
ing? Two general answers to such questions are formulated in terms of a
language-world relation of representation or, alternatively, in terms of rule-
based linguistic practices.

According to one answer, expressions have meaning in virtue of their rep-
resentational properties. Why does “Findus is on the mat” mean that Findus
is on the mat? It is because “Findus is on the mat” represents a state of affairs
in which Findus is on the mat. Semantic facts are determined by representa-
tion relations. This answer characterizes what I will call a representationalist
metasemantics.

According to the alternative answer, expressions have meaning indepen-
dently of their representational properties (if they have any), only in virtue of
their use properties. Why does “Findus is on the mat” mean that Findus is on
the mat? It is because “Findus is on the mat” is used in accordance with the
communication protocols and practices of a community that shares the rele-
vant language. Semantic facts are determined by communicational uses. This
answer characterizes what I will call a non-representationalist metasemantics.

The difference between representationalist and non-representationalist metase-
mantics can also be explicated in terms of rules, if one takes representation
relations to be specified by semantic rules that postulate correspondences be-
tween linguistic expressions and extra-linguistic states of affairs, while com-
municational uses are specified by non-semantic rules which state conditions
for the proper employment of expressions within a community of speakers.

Note, however, that a non-representationalist metasemantics, according to
which non-semantic rules do all the metasemantic work that is to be done,
need not require that there be no semantic rules specifying the representa-
tional properties of expressions. For a semantic fact, e.g., “Findus is on the
mat” means that Findus is on the mat, might be determined by use in accor-
dance with communication protocols and practices, even though “Findus is on
the mat” does actually represent a state of affairs in which Findus is on the
mat. But the further exploration of this apparent gap between semantics and
metasemantics falls beyond the scope of this book.

The two metasemantic views just presented can be easily identified in the
case of QM. In a Schrödinger’s cat scenario, the semantic fact that “Findus
is both dead and alive” means that Findus is both dead and alive may be
understood in virtue of that expression’s representing a superposition of my

8



cat’s states.3 A representationalist metasemantics of QM, just like a repre-
sentationalist metasemantics of natural language, is intended to explain the
relationship between expressions and their semantic attributes via representa-
tional properties. Semantic rules that specify representational properties for
quantum expressions have been sometimes insistently demanded especially by
philosophers who defend realist metaphysical views.

For example, Tim Maudlin has maintained that “The mathematical ob-
ject [i.e., the ψ-function] must be supplemented with a physical ontology and
semantic rules specifying how the physical ontology is represented by the wave-
function.” (Maudlin 2016, 8) Similar statements can be found in his recent
book on quantum theory: “a wavefunction is a mathematical item – as ‘func-
tion’ testifies – and the quantum state is whatever real physical feature of
an individual system (if any) obtains iff the system is represented by a given
wavefunction.” (Maudlin 2019, 81) On this view, semantic rules postulate
a correspondence between physical states and ψ-functions, between physical
magnitudes and self-adjoint operators, etc.

But what explains the semantic attributes of these mathematical expres-
sions? In virtue of what do they have the meaning they are supposed to have?
One way in which the representationalist can attempt to answer this question
is by pointing to the representational properties specified by semantic rules.
These rules are then taken to do double work: they both assign semantic at-
tributes to expressions and explain in virtue of what these expressions have
such attributes.

A non-representationalist metasemantics of QM, like a non-representationalist
metasemantics of natural language, understands the relationship between ex-
pressions and their semantic attributes via use properties. In the Schrödinger’s
cat scenario above, the fact that “Findus is both dead and alive” means that
Findus is both dead and alive is determined in virtue of the communicational
use of this expression, rather than in virtue of its representing a superposition
of cat states. A version of non-representationalism, dispensing with any se-
mantic rules for quantum concepts, was arguably endorsed by Niels Bohr and
then adopted by neo-Bohrians, implicitly or explicitly, ever since.

For example, Richard Healey has declared that “All our concepts, includ-
ing those of physics, derive their content from use in human communication.”
(Healey 2017, 203) On this view, the semantic attributes of mathematical ex-
pressions involving ψ-functions and self-adjoint operators are determined in
virtue of their inferential properties, rather than any purported representa-
tional capacities of quantum models. Semantic rules, if they are formulated
at all, are simply idle: they neither assign semantic attributes to quantum ex-
pressions, nor explain in virtue of what these expressions have such attributes.

As in the case of natural language, a third view about the formalism of QM
seems possible. Although semantic rules do not do any metasemantic work,
they are not entirely idle, either, for they specify the representational properties

3With thanks and apologies to Sven Nordqvist.
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of quantum concepts even if non-semantic rules are needed to explain in virtue
of what these concepts have such properties. Some mixture of Healey’s and
Maudlin’s views might illustrate this third view, which allows a significant gap
between the semantics and metasemantics of QM. But I will not be particularly
concerned with such special mixtures (e.g., Bohmian inferentialism, Everretian
QBism, etc.).

In the philosophy of language, as explained above, metasemantics concerns
the factors that determine the meaning of linguistic expressions in the natural
language. These often include expressions with evaluative communicational
uses, such as deontic modals (“should”, “ought”, etc.) As already noted, I
will focus on the meaning of expressions in the standard formalism of QM,
as well as the meaning of the QL connectives. But if QM is reformulated so
as to include expressions that have evaluative communicational uses, then a
metasemantics of QM must further consider the factors that would explain
the semantics of this reformulation. Again, I will not attempt to do this here
in detail, although I will say something about it towards the end of the book
when I envisage how a non-representationalist metasemantics for QBism might
be developed, and explain why it should be developed in that way.

The two explanations of the semantic facts of standard QM described
above, the representationalist and the non-representationalist metasemantics,
raise some important philosophical questions. A good grasp of their features,
their problems, and their implications is beneficial, I would say even indispens-
able, to a philosophical understanding of at least some aspects of QM. Two
particular problems that I will be concerned with in this book are the prob-
lem of categoricity and the problem of permanence, the descriptions of which
I include in the presentation of the structure of the book, in the next section.
A detailed consideration of these problems will throw some new light on, e.g.,
Einstein completeness as a notion of descriptive completeness, and on Bohr’s
correspondence principle as a metatheoretical principle. It will also help re-
ject some deficient reasons against Putnam’s quantum logical revisionism, and
formulate new challenges for more recent views about QM.

1.3 Two problems: categoricity and permanence

Categoricity has been extensively discussed in philosophy of mathematics and
philosophy of logic, though not so much in philosophy of science, and almost
not at all in philosophy of physics. As we will see, Hermann Weyl under-
stood categoricity as the expression of a certain limitation of the descriptive
completeness of a theory, a limitation that was intended to prevent epistemic
commitment to non-relational properties of objects in the domain of the the-
ory. A categorical theory, i.e., a theory the models of which belong to one and
the same isomorphism class, constrains the rules or axioms of the theory such
that the semantic attributes of all linguistic expressions in its language can be
precisely determined. Thus, I will say that a theory has a categoricity problem
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when its language is semantically indeterminate, i.e., the semantic attributes
of its vocabulary cannot be precisely determined because the theory allows
non-isomorphic models. The problem of categoricity, in the case of standard
QM, is the main focus of chapter 2.

Adopting a distinction between global and local models that a scientific
theory can admit of, I will address the question whether, for any physical sys-
tem, standard QM can admit of local models, i.e., models that are assigned
to that individual system relative to a given physical location, such that all of
them belong to the same isomorphism class. This makes the question about
the categoricity of QM significantly different than the question about the cat-
egoricity of mathematical theories like, say, arithmetic. To address the former,
I will first discuss some worries about whether the question is well posed, or
whether its well posedness requires an interpretation of QM, where the notion
of interpretation is understood as in the foundations of physics. But I will also
discuss worries about whether well posedness demands a rational reconstruc-
tion of QM, i.e., a reformulation (or as some like to put it, less sympathetically,
a regimentation) of the theory within a formal (ideally, first-order) language.
Then I will turn to a critical discussion of the intuitive claim that the Stone-
von Neumann theorem can be understood as a categoricity result. I will argue
that this claim remains unjustified, if some of the assumptions behind the
relation (of unitary equivalence) established by the theorem are not properly
discharged. Another reason against the intuitive claim might be that only that
relation, but not its relata, can be formalized in a first-order language.

Following up on an earlier suggestion by Don Howard that one could read
Einstein completeness as categoricity, I will subsequently give a rigorous recon-
struction of Einstein’s incompleteness argument that clarifies the assumptions
behind that suggestion and shows that his no-go result may be interpreted as
claiming that a local, separable, and categorical QM cannot exist. The idea
that the Stone-von Neumann theorem expresses a necessary, but not a suffi-
cient, condition for categoricity, and the algebraic reasoning which supports
the claim that, for the EPR system originally considered by Einstein, this con-
dition fails, are central to my reconstruction. I take this to imply, as against
a representationalist metasemantics, that the semantic attributes of a local
and separable QM cannot be precisely determined by semantic rules because
this theory allows non-isomorphic models. This suggests, at the very least, a
new perspective on the Bohr-Einstein controversy, but in fact it offers a bet-
ter understanding of Einstein completeness than others have provided. The
implications of my reconstruction for other debates in the foundations of QM,
e.g., concerning the significance of Bell’s theorem, are to be drawn elsewhere.

The main focus of chapter 3 is the problem of permanence. This is con-
cerned with the application of the principle of permanence in the development
of QM. This principle, which stipulates the preservation of central elements of
theories (such as their rules or laws) when the theories and their domains are
to be extended, has been almost exclusively a topic for the history of philoso-
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phy of mathematics. It expresses a type of methodological conservatism that
still needs to be properly understood. However, in philosophy of physics, the
principle of permanence has been largely ignored. Conceived of as a problem
in metasemantics, its application raises concerns about the explanation of the
semantic attributes of a theory developed in accordance with this principle. I
will say that a theory has a permanence problem if preserving its predecessor’s
rules obscures the explanation of semantic facts.

There is good reason to believe that Bohr provided a solution to this prob-
lem. For, as we will see, he appears to have understood his own correspondence
principle as grounded in a version of the principle of permanence that had been
crucial to the development of 19th century mathematics, e.g., in the works of
Hermann Hankel and many others. The analysis of the latter, and the emphasis
on its metasemantic implications, and in particular the claim that preserving
the rules of a theory plays a role in determining the meaning of its successor
theory, will help explain why Bohr believed that QM should be regarded as a
“rational generalization” of classical physics. Even more importantly, it will
clarify, to the extent that this can be done, why he said that the meaning of
QM is to be determined by its rules, and what he may have meant by that.
Tersely expressed in his reply to the EPR paper, the non-representationalist
metasemantics that I attribute to Bohr, as a solution to the permanence prob-
lem of QM, exposed his related doctrine of the necessity of classical concepts
to a type of criticism that, I will argue, can be understood if one pays at-
tention to the relationship between the principle of permanence and Bohr’s
correspondence principle.

The principle of permanence was also applied in the transition from finite-
to infinite-dimensional QM, in von Neumann’s work with Garrett Birkhoff
leading to their introduction of QL. Although partly justified by this principle,
the preservation of QL rules was not taken to imply a non-representationalist
metasemantics. Thus, von Neumann’s solution to the problem of permanence
is different than Bohr’s. This points to a fundamental difference between their
approaches to QM, beyond the usual observation that they were almost op-
posite figures: Bohr, well known for his physical insight and his (alleged) lack
of mathematical rigor; von Neumann, highly regarded for his mathematical
genius, despite his (alleged) lack of physical insight. It turns out that a signif-
icant difference between them concerns the way in which they appear to have
understood the relationship between rules and meaning in QM.

Like the problem of permanence, the problem of categoricity arises not
only for mathematical and physical theories; it arises also for logical theories.
Here, instead of asking whether the models of a theory are all mutually iso-
morphic, the issue is whether a logical calculus admits of truth valuations that
are all mutually isomorphic (or, more precisely, whether all valuations are ho-
momorphisms from the set of sentences in the language to the two-element
set {0, 1} of possible truth values). The fact that this is not the case for the
standard systems of classical logic (CL), i.e., finitary and single conclusions
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calculi, was proved by Carnap, who solved this categoricity problem by intro-
ducing a rejection rule and allowing valid arguments with multiple conclusions
for propositional logic, and infinitary rules for first-order logic. But the fact
that it is not the case for the QL introduced by Birkhoff and von Neumann
had been already shown, as we will see, by Weyl.

The line of critical reflection initiated by Weyl will be further pursued in
chapter 4, where I focus on arguments developed after Hilary Putnam enrolled
QL in the service of realist metaphysics, which was intended to oust what
he took to be some unpalatable metaphysical hypotheses, e.g., the existence
of hidden variables. One of these arguments, leveled against Putnam’s logical
revisionism by Geoffrey Hellman, is based on an assumption about the meaning
of logical connectives and their truth-functionality. I will explain how, on the
same assumption, one can significantly improve the argument and explain
why the semantic attributes of QL connectives are indeed different than the
semantic attributes of their CL counterparts. Putnam’s revisionism, i.e., the
view that QL is an alternative to CL, in the sense of asserting different truths
about the same connectives, can finally be buried, metasemantically.

When properly taken into account, the improved argument also takes the
steam out of Ian Rumfitt’s more recent claim that Putnam’s revisionism is not
only unnecessary but impossible on rational grounds. The claim is based on the
observation that the proof against distributivity in QM is rule-circular, which
arguably shows that it cannot be used to rationally adjudicate against CL.
But this conclusion can be resisted, and I will demonstrate that it remains
possible to rationally adjudicate against CL in QM even if QL connectives
were considered semantically equivalent to their CL counterparts. I will then
explain how to solidly withstand Timothy Williamson’s imperious attack on
non-classical logics, in the particular case of QL, by recalling the simple, though
seemingly forgotten fact that QL is not inconsistent with the application of
classical mathematics in QM. Rather, QL was actually introduced as a result
of this application.

In chapter 5, I will return to a non-representationalist metasemantics for
QM. For the case of natural language, non-representationalism was defended by
Wilfried Sellars, who proposed a global inferentialist metasemantics: “There is
nothing to a conceptual apparatus that isn’t determined by its rules.” (Sellars
1953, 337) Drawing on Robert Brandom’s further development of Sellars’ view,
Healey has embraced inferentialism, as already noted above, as a metaseman-
tics for standard QM. After describing his version of quantum inferentialism
in some detail, and then comparing it with the more encompassing expres-
sivist view defended by Huw Price for the whole of science, I will present two
preliminary objections to Healey’s view, one from recent information-theoretic
reconstructions of QM, and the other from relativistic extensions of Wigner’s
friend scenario.

The first objection points out that the metasemantics of reconstructed
QM cannot be inferentialist, since without correspondence rules that assign
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information-theoretic properties to quantum concepts the semantic attributes
of the latter cannot be explained. Thus, further work would be required to
show that inferentialism and reconstructionism are compatible. The second
objection shows that Healey’s attempt to make the relativistic extensions of
Wigner’s friend scenario compatible with the objectivity of QM weakens his
inferentialism, since it adds a semantic constraint on truth valuations, rather
than one that is strictly based on inferential rules. Likewise, the quantum
inferentialist has further work to do to save objectivity inferentially.

Inspired by the categoricity problem identified by Carnap, I will then formu-
late a potentially more devastating problem for Healey’s inferentialism. This
new categoricity problem, I will argue, is raised by the failure of the rules of
material inference in standard QM to determine, relative to a system and a
physical location, a quantum state assignment – a local model – that is unique
up to isomorphism. Against inferentialist metasemantics, I take this to im-
ply that the semantic attributes of the standard formalism of QM cannot be
precisely determined by its inferential rules because the theory allows non-
isomorphic models. The problem shows that the objection according to which
inferentialism is “unable to nail down a claim’s content sufficiently to explain
how this may be unambiguously communicated in public discourse” (Healey
2017, 211) has not been successfully addressed. To overcome this semantic
indeterminacy, the inferentialist should address the categoricity problem in a
way that is fully compatible with inferentialism.

The semantic indeterminacy of standard QM may, of course, be inconse-
quential for the scientific practice, just like it is negligible for our daily ar-
gumentative practice that logical connectives are semantically indeterminate.
But for inferentialism as a metasemantics of QM, it is a serious problem, since
it points out that the meaning of quantum concepts fails to be articulated
in just the way the inferentialist claims it is in fact articulated. However, I
will further make a suggestion, on behalf of the inferentialist, as to how the
problem might be solved. The suggestion is to reformulate both Schrödinger’s
equation and decoherence explicitly as inferential rules.

I will also discuss another possible answer to the categoricity problem,
which is to simply ignore it precisely because it seems inconsequential for
the scientific practice. But I will argue that, even if one is willing to bite
the bullet of semantic indeterminacy, as a QBist might be inclined to do on
practical grounds, one would still need to develop a metasemantics, on philo-
sophical grounds. Further, I will propose and motivate the development of a
non-representationalist, non-inferentialist metasemantics for the QBist refor-
mulation of standard QM, which purports to explain the meaning of quantum
expressions on the basis of their decision-theoretic properties, rather than their
representational or inferential properties.

In the concluding chapter of the book, I will describe two projects of my
own, which I regard as very much worth pursuing. The first project starts from
the observation that categoricity can, and perhaps should, be conceptualized
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as the expression of an ideal of logical perfection. Historically, this indicates
a line that still needs to be carefully drawn from Einstein’s characterization
of principle theories to a recent development due to Boris Zilber. The latter
illustrates and defends the view that first-order languages should not be dis-
counted in the metasemantic analysis of QM, despite their Löwenheim-Skolem
properties. This will demand a reconceptualization of the very notion of cat-
egoricity, but this looks like a small price if the gain might be, among other
things, the semantic determinacy of quantum expressions.

The second project reconsiders the seemingly unworkable project of a Car-
napian rational reconstruction of QM, to show that it can be rescued from the
deadly confines of 20th century criticism, and that it could be taken as a basis
for the metasemantic analysis of QM after all. One of the major obstacles to
be overcome in this project, beside the (in)famous division between observa-
tional and theoretical terms to which any rational reconstruction is usually
taken to be committed, is the implications of Gödel’s second incompleteness
theorem. For the theorem implies that the consistency of any viable rational
reconstruction cannot be proved in an informative way, which seems to fur-
ther imply that a viable rational reconstruction of QM cannot even be given.
Nonetheless, progress in this direction can be made, I believe, if one weakens
the epistemic goals associated with, and the epistemic claims derived from,
this Carnapian project.

The book ends by emphasizing that a metasemantic analysis of scientific
theories, which was here motivated by Hilbert’s question about the relation-
ship between the content and formalism of classical logic and mathematics,
should also take into account his own views on the matter. The claim that
metasemantics, conceived of as a foundational investigation, contributes to an
adequate philosophical understanding of theories could, thus, ultimately be
credited to Hilbert.
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2 The problem of categoricity

This chapter introduces the categoricity problem for a representationalist metase-
mantics of QM. Some intended limitations of the descriptive completeness of
scientific theories are first presented, motivated by the view advocated by Hertz
and Weyl, that some things are beyond what a complete theory ought to tell us
about its domains of application. After specifying a proper notion of categoric-
ity for standard QM, and responding to some possible objections, an intuitive
reading of the Stone-von Neumann theorem as a categoricity result is critically
discussed. Drawing on this, a new reconstruction of Einstein’s incompleteness
argument is proposed.

2.1 Intended limitations of descriptive completeness

Various types of completeness were formulated, before and after the early
1930s, when von Neumann presented his system of axioms for QM in his
Mathematical Foundations of Quantum Mechanics. For instance, Russell and
Whitehead had stated that a system of axioms for pure mathematics, like the
one presented in their Principia Mathematica, is complete just in case it is able
to capture “as much as may seem necessary” of the domain that it aims to
describe, or more precisely, just in case it logically derives the whole class of
theorems of ordinary mathematics. Similarly, von Neumann maintained that
a system of axioms for QM is complete just in case it is able to derive all
statistical formulas of QM.

There are, of course, limitations to the kind of descriptive completeness that
Russell and Whitehead, and von Neumann had in mind, limitations that are
clearly unintended by the proponent of an axiomatic system. Gödel proved, on
some arguably reasonable assumptions, that there are statements in the class
of theorems which cannot be derived in the system of Principia Mathematica,
and he took this to show that system necessarily incomplete.4 Likewise, von
Neumann noted that the statistical nature of QM formulas could be thought
to betray “an ambiguity (i.e., incompleteness) in our description of nature”,
and this could motivate the elimination of this incompleteness by the addition
of statements about hidden dynamical variables to the theory.5

There are also intended limitations of descriptive completeness. This is
indicated not by statements that are provably impossible to derive in a sys-
tem of axioms, but by those that are epistemically defective or illegitimate,
and thus ought not to be derivable in a system of axioms. One argument
to this effect (presented in section 2.1.1) was given by Hermann Hertz, who

4For discussion of Russell and Whitehead’s notion of descriptive completeness, and an
argument that Gödel’s own understanding of completeness, as negation-completeness, is in
fact relevantly different than their descriptive variety, see Detlefsen 2014.

5Nevertheless, von Neumann rejected such additions as inconsistent with his system of
axioms. See Acuña 2021 and Mitsch 2022 for recent re-evaluations of (the debate on) von
Neumann’s proof of the descriptive completeness of QM.
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justified an intended limitation of descriptive completeness on the basis of a
notion of epistemic comfort. Another argument to a similar effect (discussed
in section 2.1.2) was offered by Hermann Weyl, who thought that descriptive
completeness should be constrained by an invariantist notion of objectivity.
Both arguments concern the nature of the representation relation between the
language of a scientific theory and the phenomena within its domain of appli-
cability. Even a cursory look at these arguments will help us better appreciate,
when we later (in sections 2.2.1 – 2.3.2) turn to QM, the significance of the
question about its categoricity.

2.1.1 Hertz on illegitimate questions

Hertz famously diagnosed a certain tendency to ask what he called “illegimate
questions” in science, e.g., questions asked in mechanics about the essence
(Wesen) of force or electricity, expressed his skepticism that they can be prop-
erly answered, and offered a solution as to how to avoid asking such questions
in the first place. Here is the relevant passage in full:

Weighty evidence seems to be furnished by the statements which
one hears with wearisome frequency, that the essence of force is
still a mystery, that one of the chief problems of physics is the
investigation of the essence of force, and so on. In the same way
electricians are continually attacked as to the essence of electricity.
Now, why is it that people never in this way ask what is the essence
of gold, or what is the essence of velocity? Is the essence of gold
better known to us than that of electricity, of the essence of velocity
better than that of force? Can we by our conceptions, by our words,
completely represent the essence of any thing? Certainly not. I
fancy the difference must lie in this. With the terms “velocity”
and “gold” we connect a number of relations to other terms; and
between all these relations we find no contradictions which offend
us. We are therefore satisfied and ask no further questions. But we
have accumulated around the terms “force” and “electricity” more
relations than can be reconciled amongst themselves. We have an
obscure feeling of this and want to have things cleared up. Our
confused wish finds expression in the confused question as to the
essence of force and electricity. But the answer which we want is
not really an answer to this question. It is not by finding out more
and fresh relations and connections that it can be answered; but by
removing the contradictions existing between those already known,
and thus perhaps by reducing their number. When these painful
contradictions are removed, the question as to the essence of force
will not have been answered; but our minds, no longer vexed, will
cease to ask illegitimate questions.6

6Cf. Hertz 1899, 7sq. I have replaced the term “nature” in the translation of “Wesen”
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Contradictions are identified when the relations between the statements
of science, including statements about force, are carefully attended to. Once
identified, they are perceived as painful because, as Hertz assumed, they create
a certain kind of mental vexation. But since, as seems natural to believe,
one desires epistemic comfort, and since introducing more relations by adding
statements about the essence of force cannot remove those contradictions, one
should instead focus primarily on removing the contradictions. And one should
continue to remove contradictions until epistemic comfort is achieved, to the
extent that the very tendency to ask illegitimate questions is eliminated.7

This argument, it seems to me, can be best understood on the background
of a 19th century view according to which the removal of contradictions is a
necessary and sufficient goal of scientific inquiry. Peirce expressed this view
when he characterized consciousness as perceived consistency: “Again, con-
sciousness is sometimes used to signify the I think, or unity in thought; but
the unity is nothing but consistency, or the recognition of it.” (Peirce 1868, CP
5.313) He argued that scientific inquiry lacks proper motivation when there is
no doubt that is caused by inconsistencies: “When doubt ceases, mental action
on the subject comes to an end; and, if it did go on, it would be without a
purpose.” (Peirce 1877, CP 5.376) Once contradictions are removed, mental
vexation ceases, belief settles, and purpose-driven inquiry stops.

Unlike Peirce, however, Hertz thought that epistemic comfort was not the
end of scientific inquiry, but just a precondition for asking only legitimate
questions. It is worth emphasizing how Hertz believed one may achieve such
epistemic comfort in science. His proposal, as I see it, is not to remove con-
tradictions by reducing the number of relations between the statements of a
theory, but rather the other way around, to reduce the number of such relations
by eliminating contradictions.8 For by eliminating all identified contradictions,
the number of relations between the statements about force and other state-
ments in the axiomatic system of mechanics would be reduced. And it could
in principle be reduced to such an extent that a precise meaning for the term
“force” would be determined. Having determined, in this way, a precise mean-
ing for all scientific terms, illegitimate questions about essences would not arise
any more. The real question remained, of course, whether consistency would
be enough for a precise determination of meaning.

by “essence”.
7See Eisenthal 2021, for an interesting discussion of a particular ambiguity in Newton’s

laws of motion, which appears to be due to the use of a slightly different notion of force in
the third law than the notion used in the first and second laws, and which Hertz thought
created mental vexation with respect to the meaning of “force”.

8On this point, one commentator writes: “The solution is to remove the contradictions by
reducing the number of relations in which the term ‘force’ stands – in effect by determining
a single meaning for the term ‘force’.” (Kremer 2012, 204sq) But it seems to me that this
gets Hertz’s “solution” backwards. Indeed, how could a precise meaning determination,
even assuming that this can be achieved by a reduction of the number of relations between
statements, be enough for consistency? In any case, the removal of contradictions requires
a delicate consideration of essential and inessential relations (cf. Hüttemann 2009).
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2.1.2 Weyl’s universal boundary

Like Hertz, but on rather different grounds, Weyl later justified a similar lim-
itation of descriptive completeness. He gave an argument to the effect that,
in science, statements about the essence (Wesen) of any objects are epistemi-
cally insignificant to such an extent that science should not really care about
such statements at all. Also like Hertz, Weyl further expressed skepticism
that questions about essence could actually be answered in scientific terms,
and then offered a solution as to how science could stop or avoid asking such
questions:

A science can determine its domain only up to an isomorphic map-
ping. In particular it remains entirely indifferent as to the ‘essence’
of its objects. That which distinguishes the real points in space
from number triples or other interpretation of geometry one can
only know by immediate, living intuition. ... The idea of isomor-
phism designates the natural insurmountable boundary of scientific
cognition. This thought has clarificatory value for the metaphysi-
cal speculations about a world of things in themselves behind the
phenomena. ... Thus, even if we do not know the things in them-
selves, still we have just as much cognition about them as we do
about the phenomena. (Weyl 1949, 26)

Unlike Hertz, however, Weyl did not build his argument on a notion of
epistemic comfort. Rather, he started from an invariance-based conception of
scientific objectivity, which he imposed as a constraint on a theory’s descrip-
tive completeness. According to him, a scientific theory is objective only if
it does not ask questions about the essence of objects, about their intrinsic
or non-relational properties. All possible answers to such questions would re-
quire immediate intuition, but this violates the objectivity constraint. This is
because such answers can be true in one interpretation of a theory, but false
in another interpretation of the same theory. If objectivity is taken as the
primary epistemic ideal of science, and so if objectivity gives the measure of
epistemic significance, all statements ascribing intrinsic properties to objects
must be rejected as epistemically insignificant.

But they are not only epistemically insignificant, for in science all questions
concerning the essence of objects are actually illegitimate. Weyl thought the
notion of isomorphism indicated a way of demarcating science from pseudo-
science. In a lecture titled “Scientific Method”, he noted:

Before any closer discussion I should like to point to that universal
boundary of all theories as revealed in the idea of isomorphism.
... With science thus proclaiming its own barriers, we must always
be afraid that some high-sounding soothsayers may come along
and attempt to settle with their pseudo-science beyond the border.
They believe they have the arcanum disclosing to them the essence
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of things, which science is admittedly unable to grasp. However,
the border which we have pointed out here is not a border towards
a different brand of knowledge; it is rather a border beyond which
there is nothing. (Weyl 1953)

Since relations can remain invariant across the interpretations of a theory,
science can offer objective knowledge only about the structure of relations, i.e.,
about the structure of relational properties of all objects in a domain. It is
exactly this intended limitation of descriptive completeness that led Weyl to
identify categoricity as a more appropriate notion of completeness for scientific
theories:

One might have thought of calling a system of axioms complete
if the meaning of the basic concepts present in them were uni-
vocally fixed through the requirement that the axioms be valid.
But this ideal cannot be realized, for the isomorphic mapping of a
contentual interpretation is surely just another contentual interpre-
tation. The final formulation is therefore this: a system of axioms
is complete, or categorical, if any two contentual interpretations of
it are necessarily isomorphic. (Weyl 1949, 25)

In light of the unintended limitations of descriptive completeness, already
mentioned above, one must ask whether Weyl’s universal boundary can be
reached at all, and if so, under what conditions exactly. Can any scientific
theory describe the relations between objects in its domain as Weyl thought
should be described, i.e., uniquely up to isomorphism? Is it possible to charac-
terize QM, in particular, as a categorical theory? How should the very notion
of categoricity be understood to make it applicable to a theory like QM? And
what might QM, thus characterized, tell us about the relationship between its
formalism and its semantics?

In the remainder of this chapter, I will start addressing these questions. But
let me note here that, on Weyl’s view, non-categoricity, that is the existence of
mutually non-isomorphic interpretations of a theory, has primarily epistemo-
logical implications. If QM, for example, failed to be categorical, then it would
fail to be objective, since there would be statements in its language that are
true in one interpretation of the theory, and false in another interpretation.9

While it is not clear what his view on the categoricity of QM was, Weyl seems
to have thought that at least some physical theories are non-categorical and,
as a consequence, lack objectivity. Towards the end of his life, he lamented
the failure to achieve scientific objectivity:

Objective Being, reality, becomes elusive; and science no longer
claims to erect a sublime, truly objective world above the Slough

9Note that here (but only here) I am following Weyl’s use of “interpretation” to designate
what we would call a model of a theory.
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of Despond in which our daily life moves. ... the objective Being
that we hoped to construct as one big piece of cloth each time tears
off; what is left in our hands are – rags.10

The remainder of this chapter deals with the question about the categoricity
of standard QM, raised as a problem for a representationalist metasemantics,
that is one in which semantic rules do all metasemantic work. I will be primar-
ily interested in how to formulate an appropriate notion of categoricity for QM,
and I will then respond to several possible objections, before assessing whether
QM might be considered categorical or not. Unlike Weyl, however, I do not
propose to support a structuralist view of science.11 My focus will remain on
metasemantics, rather than the epistemology or metaphysics of science.

2.2 The categoricity of quantum mechanics

A theory is categorical with respect to an isomorphism class of models if and
only if all models of the theory are in that class. A model is a relational
structure on a particular domain, the elements of which can be assigned by
an interpretation function to elements of the language of the theory. The
language, together with the rules for manipulating its symbols, constitute the
syntax of the theory, while models constitute its semantics. Thus, I will say
that a categorical theory has a unique semantics up to a suitable isomorphism.
In this sense, for example, first-order Peano arithmetic is not categorical and,
thus, it does not have a unique semantics because it allows both standard and
non-standard models. Likewise, classical logic is not categorical and, thus,
it does not have a unique semantics, either, since it allows both normal and
non-normal models, or more exactly, valuations which yield truth tables that
are strikingly different than the usual ones for some logical connectives.12

10Cf. Weyl 1954, 627. For my analysis of what might have motivated this view, see Toader
2018. Part of that analysis assumes that it is the failure of the Stone-von Neumann theorem
(discussed further below, in section 2.2.3) in quantum field theory that led Weyl to think
that science remains unable to achieve objectivity. It is unclear what his view was about
the relationship between this theorem and the categoricity of QM.

11For such views, more or less following Weyl, see, e.g., van Fraassen 2008, on the anti-
realist side, and French 2016, on the realist side.

12See Carnap 1943 for the construction of non-normal valuations of classical logic (to
which I will return in section 5.3.1), and Skolem 1955 for the construction of a non-standard
model of arithmetic. The close relationship between model theory and the study of semantics
goes back to Tarski, and was then widely adopted: e.g., “The modern form of semantics
is the theory of models.” (Mostowksi 1965, 115) and “The name ‘model theory’ obviously
refers literally to any discussion of the relationship: (structure A) is a model of (sentence σ).
Thus it is more or less synonymous with ‘scientific semantics’.” (Vaught 1974, 153) More
recently, however, Wilfrid Hodges professed to challenge this relationship, arguing that “the
three areas of research – model theory, the definition of logical consequence and model-
theoretic semantics – are quite different and they have hardly anything in common beyond
a connection with models in the sense associated with Alfred Tarski.” (Hodges 2016, 174)
For a book-length discussion of the philosophical significance of model theory, including the
metasemantic significance of categoricity, see Button and Walsh 2018.
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But is QM categorical? Can the notion of categoricity be applied to its
standard axioms? In the historical development of quantum theory, categoric-
ity concerns appear to have been first raised in two particular contexts, or so I
will argue: one is Einstein’s 1935 argument for the incompleteness of QM, and
the other is Weyl’s 1940 argument for the incompleteness of QL. A rigorous
reconstruction of the former, which identifies the assumptions behind an un-
derstanding of Einstein completeness as categoricity, will be given in section
2.3.2. An analysis of the latter will be offered in section 3.3.2.

I shall start with a few preliminary considerations (in section 2.2.1) about
the kind of categoricity that can be attributed to QM, and then specify a
proper notion of categoricity for its standard axioms (in section 2.2.2). My
main interest, for the moment, is to point out that the well posedness of the
categoricity problem for QM depends on what one takes the theory to be, as
well as on what one takes its models to be. Related to this, I also respond to
two immediate objections: that QM cannot be categorical because it incorpo-
rates first-order Peano arithmetic, which as just noted is not categorical; and
that if QM were categorical, it could not have the wide applicability that the
scientific practice tells us it actually does have. Then I will take up (in section
2.2.3) the question whether the Stone-von Neumann theorem can be read as a
categoricity result for QM, and if so, in what sense.

2.2.1 Preliminary considerations

The general problem of categoricity, formulated independently of any particu-
lar theory, has been indicated by Tarski already in the 1930s:

A non-categorical set of sentences (especially if it is used as an
axiom system of a deductive theory) does not give the impression of
a closed and organic unity and does not seem to determine precisely
the meaning of the concepts contained in it. (Tarski 1934, 311)

Thus, a theory has a categoricity problem when the meaning of expres-
sions in its language is not determined precisely by its axioms because the
latter admit of non-isomorphic models. As I see it, the problem is, thus, a
metasemantic one. Whatever Tarski might have meant by “closed and organic
unity”, such an impression would be given, I take it, by a precisely determined
semantics. But the language of a non-categorical theory is, or at least seems to
be, semantically indeterminate, i.e., indeterminate with respect to the seman-
tic attributes of its linguistic expressions. It is also semantically indeterminate
with respect to the truth values of its sentences: some sentences are true in
some models, but false in others. In contrast, a categorical theory determines
(or seems to determine) the meaning of its concepts precisely, and its models
agree on all theorems in its language.

For example, the meaning of arithmetical expressions is precisely deter-
mined if arithmetic is categorical with respect to the isomorphism class of an
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omega sequence, that is if it allows only models in which arithmetical vocab-
ulary is used in a natural way, i.e., in agreement with the natural numbers.
Likewise, the meaning of classical logical connectives (such as disjunction and
negation) is precisely determined if classical logic is categorical with respect
to the isomorphism class of a two-element Boolean algebra, that is if it allows
only models in which the connectives are used in the normal way, i.e., in agree-
ment with the normal truth tables. Categoricity appears, therefore, to be a
strongly desirable property of theories. At least one reason for this is that it
blocks semantic indeterminacy by allowing us to pin down a unique semantics
for the language of a theory, like the natural numbers for arithmetic and the
normal truth tables for classical logic.

However, in the case of first-order theories with infinite models, metathe-
oretical properties like compactness or Löwenheim-Skolem, as well as Gödel
incompleteness, frustrate the attempt to establish categoricity. Therefore, any
success in this respect requires either augmenting the language of a theory
or adjusting its logic. Full second-order logic, for example, proves the cate-
goricity of arithmetic, although there are strong and well-known arguments
against such proofs, e.g., based on the fact that second-order logic is not a
deductively complete logic. Furthermore, since second-order quantification is
non-categorical, in this case the categoricity problem just gets pushed up a
level: in order to pin down the natural numbers up to isomorphism, one must
first be able to pin down a unique semantics for the second-order quantifiers
up to isomorphism. Furthermore, it also turns out that any attempt to prove
the categoricity of arithmetic by means of a logic weaker than second-order,
but stronger than first-order, similarly presupposes the categoricity of that
underlying logic (Read 1997).

Such considerations suggest that, despite its desirability, categoricity must
remain beyond reach for most theories: one can never actually pin down the
unique semantics of a theory without first having to pin down the unique
semantics of a background theory. Linguistic expressions must, therefore, re-
main semantically indeterminate. But is categoricity really indispensable?
Some argued that the existence of non-standard models for first-order Peano
arithmetic is no real concern, because any two of its non-isomorphic models
are arithmetically indiscernible, in the sense that the application of induction
within the language of the theory yields arithmetical results that hold in any
model. Thus, all models of arithmetic agree on all theorems in its language
(Resnik 1996). Arguably, this would be enough for a precise determination of
the semantic attributes or arithmetical expressions as well. But the fact that
provability obliterates some differences between non-isomorphic models does
not guarantee that one pins down a unique semantics for arithmetic. For there
necessarily exist unprovable sentences in the language of the theory on which
non-isomorphic models would in fact disagree. Semantic indeterminacy might
remain a problem.

More importantly, it has also been noted that some other mathematical
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theories, like the theories of fields, rings, groups, algebras, etc., do not actually
have any categoricity problem. For their non-categoricity is a result of design
and mathematical acumen, and as such, it should not be considered a failure,
but a theoretical success. No unique semantics is typically supposed to exist
for such theories, and no unique semantics can be intended in such cases.
Normally, these theories have a variety of distinct non-isomorphic models, and
they may all be thought of as intended. Of course, this does not mean that
categoricity, if it can be obtained, would necessarily be a disadvantage. Some
categorical algebraic theories have some rather nice features like quantifier
elimination. But the semantic indeterminacy of their linguistic expressions
does not seem to be considered a problem, although the reasons for this are
not always clear. This view, which has been extended also to arithmetic and set
theory, stems from considerations put forth by logicians and mathematicians
in the early part of the 20th century, who believed that non-categoricity is a
theoretical virtue, rather than a liability, and that one should formulate axioms
that are weak enough to admit a multitude of non-isomorphic models (see, e.g.,
Zermelo 1930).

Now, I think it’s fair to say that, by comparison to philosophy of math-
ematics and philosophy of logic, the problem of categoricity does not loom
large in philosophy of science, and is unfortunately rather absent in philos-
ophy of physics. Is categoricity a desirable feature of scientific theories, as
Weyl took it to be, even if perhaps for different reasons than he emphasized?
Should philosophers of science be concerned with what Tarski called the “closed
and organic unity” of a theory? Are metatheoretical properties like the ones
mentioned above (i.e., compactness, Löwenheim-Skolem, and Gödel incom-
pleteness) relevant for purported attempts to establish categoricity in this
context? Might categoricity be dispensable? Is the physical indiscernibility
of the non-isomorphic models of a physical theory, if it has such models, all
one should care about? Should non-categoricity be regarded as a theoretical
success, rather than a problem? Or would the existence of non-isomorphic
models of a physical theory be enough reason to be concerned about the se-
mantic indeterminacy of its language? Such questions, as far as I can tell, have
remained largely unexamined.

To the extent that they have been noted, however, they have been treated
rather inadequately. On the one hand, categoricity has been rejected by
philosophers of science as a kind of “rigidity or inflexibility” that should have
no place in physics (see, e.g., Bunge 1973). I will return to this general idea
below, when I discuss the objection from the wide applicability of QM. But
on the other hand, non-categorical scientific theories have been considered too
abstract, or more abstract than categorical ones. This is because the class of
models of the former is too large and diverse to allow a simple mental image
of a typical model (like the natural numbers, say) despite dropping some of its
complex properties. Such level of abstractness should arguably be avoided in
science (Suppes 1993, 74). As I am especially interested in the particular case
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of QM, I can only begin to address the questions above with respect to this
theory. And the first thing that needs to be clarified is what we might mean
to say when we say that QM is a categorical theory.

What does it mean to say that QM has a unique semantics up to iso-
morphism? Does it mean to say that it has a unique interpretation, where
this notion is understood as in the foundations of physics? Since there are so
many mutually non-isomorphic interpretations of QM, such as ψ-ontic and ψ-
epistemic interpretations, the categoricity problem would turn out to be really
trivial: QM is a non-categorical theory, admitting models as distinct as, e.g.,
the pilot wave model, dynamical reduction models, etc. My answer to this
question is that it is actually misleading to consider any of the ψ-ontic and
ψ-epistemic interpretations of QM as models, since such interpretations are
typically extensions of QM, extensions that add, for example, extra dynamical
laws to the Schrödinger equation. But the extensions of a theory are surely not
its models, although these extensions – as theories in their own right – may
admit as models some suitable expansions of the models of QM. The pilot wave
model, dynamical reduction models, etc., are precisely such expansions. They
are models of QM’s dynamical extensions.

Furthermore, is the categoricity problem well posed in the case of standard
QM? Is it possible to even ask whether its formalism can give the impression
of a “closed and organic unity”? Shouldn’t this require, at the very least,
interpretation? My answer is that surely categoricity would be a well posed
problem even if QM were only “a very effective and accurate recipe for making
certain sorts of predictions” (Maudlin 2019, 2), not a full-fledged theory, but
rather “a general method, a framework in which many theories can be devel-
oped” (Laloë 2019, 13). This view of QM is typically motivated by the belief
that a full-fledged physical theory must provide a physical ontology, which im-
plies that QM can be considered a theory in its own right only if QM has been
given an appropriate interpretation. However, this view is highly controversial
(see, e.g., Fuchs and Perez 2000). It is, therefore, contentious to say that only
after an ontology has been given can the categoricity problem be well posed
for QM. Actually, in chapter 5, I will formulate a categoricity problem for a
neo-Bohrian approach to QM that rejects any quantum ontology. In any case,
and perhaps more importantly, shouldn’t the well posedness of the categoricity
problem require, if not an interpretation, then a rational reconstruction of QM,
i.e., its reformulation in a formal (ideally, first-order) language? I will come
back to this question in section 2.2.3, where I discuss the Stone-von Neumann
theorem.

2.2.2 The standard axioms and their local models

The categoricity problem, as understood here, concerns the standard axioms
or rules of QM, which can be stated as follows:

1. The state space of a physical system corresponds to an infinite-dimensional
complex Hilbert space H, such that the quantum state of a physical system
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is a mathematical function ψ : T → H (or an equivalence class of unit-norm
vectors of H), defined at each time instant t ∈ T , where T ⊆ R denotes a time
interval.

2. The set A of dynamical quantities of a physical system (e.g., position,
momentum, spin, polarization, etc.) corresponds to the set of self-adjoint op-
erators acting on H, such that the possible values of any variable are contained
in the spectrum of its corresponding operator.

3. The unitary time evolution of a physical system is described by the
Schrödinger equation i∂t |ψ〉t = H |ψ〉t, for some operator (the Hamiltonian)
H ∈ A.

4. For each unit-norm vector |φ〉 ∈ H, µφ is a measure on the set of
subspaces of H such that for an arbitrary subspace S ⊆ H: µφ(S) = 〈φ|PS |φ〉,
where PS is the projector on S.

The language of these axioms includes terms for physical concepts like
“state space”, “quantum state”, “dynamical quantities”, etc., as well as sym-
bols for their associated mathematical objects like “Hilbert space”, “func-
tions”, “self-adjoint operators”, etc. What explains their semantic attributes?
In virtue of what do they have the meaning they are naturally supposed to
have? Even if we ignore the semantic rules that a ψ-ontic or a ψ-epistemic
interpretation of QM would seek to formulate, rules that would specify the rep-
resentational properties of quantum terms, an explanation can nonetheless be
provided by a representationalist metasemantics. Indeed, representationalism
does not require any interpretation of QM.

For example, as Howard Stein once suggested, one could take quantum
terms to have “the status of theoretical terms, whose empirical application
has to be given by some sort of ‘correspondence rules’.” (Stein 1970, 96) On
this view, correspondence rules can do metasemantic work by explaining the
semantic attributes of quantum terms via the representational properties of
observational terms, rather than the representational properties of the quan-
tum terms themselves. This view assumes, however, a distinction between
theoretical and observational vocabulary that has been long considered prob-
lematic by philosophers (for more on this, see section 6.2 below). But there are
more recent accounts of the representational capacities of QM, which do not
require an interpretation, or a solution to the measurement problem (such as,
e.g., the account given in van Fraassen 2008). Whatever the account, I think
that representationalism cannot avoid the categoricity problem.

More importantly, in order to be able to address this problem, and thereby
assess whether the meaning of quantum expressions can be precisely deter-
mined, one needs to further clarify exactly what the models of the standard
axioms are. An influential view in the philosophy of quantum physics, which
I will adopt here, is the following: “Quantum mechanics, we may say, uses the
models supplied by Hilbert spaces.” (Hughes 1989, 79) Similarly, and more
recently: “The models of NRQM [i.e., non-relativistic quantum mechanics] are
Hilbert spaces, along with a suitable subalgebra of the bounded operators on

26



that Hilbert space.” (Weatherall 2019, 7) This view suggests that one should
take a model of QM to be a representation on the Hilbert space H of the
algebra generated by the canonical commutations relations holding between
the operators in the set A, which represent the dynamical quantities of an
individual physical system. Postponing rigorous definitions until the next sec-
tion, let me note that since Hilbert space representations are taken to describe
individual physical systems, then this justifies the view that they are to be
understood as local, rather than global, models (Hughes 2010).

Two immediate objections can now be raised against the claim that QM
can be a categorical theory. The first objection goes as follows:

[A] corollary of Gödel’s first incompleteness theorem asserts that
any theory as powerful as or more powerful than Peano arithmetic –
in first-order formulation – will be not only deductively incomplete
but also non-categorical, which is to say that it will have models
that are not isomorphic to one another. And since any moderately
sophisticated theory in physics will incorporate a mathematical
apparatus as powerful as or more powerful than arithmetic, the
same will be true of our physics. (Howard 2012)

According to this objection, even if the question of categoricity is well
posed for standard QM, one can only settle it in the negative: QM cannot
be categorical because, like most physical theories, it implicitly incorporates
first-order Peano arithmetic, which allows non-isomorphic models and is, thus,
non-categorical. More generally, the categoricity of QM would seem to require
that all mathematical theories, including its background logic, incorporated
as components in the physical theory, must be categorical. While a lot more
needs to be said about this, I think that this objection assumes a questionable
transfer of non-categoricity from the mathematical (and the logical) compo-
nents to the physical theory. Conversely, it assumes a questionable transfer of
categoricity from the physical theory to all of its mathematical (and logical)
components. It is doubtful that a categorical physical theory could entail the
categoricity of its mathematics (or its logic): in the case of QM, this would
require that the isomorphism that holds between its local models, relative to a
physical system, could define an isomorphism that holds between the models
of its mathematics (as well as one that holds between the models of its logic).
But this requirement obviously fails even within mathematics itself: there are
categorical theories, like second-order arithmetic, that incorporate first-order,
and so non-categorical, arithmetic. In other words, the requirement fails be-
cause the isomorphism that holds between second-order models cannot define
one that holds between the first-order models of arithmetic.

The second objection states that if QM were categorical, then it would be
incapable of application to the wide variety of physical systems to which in fact
it can be, and has been, successfully applied. The wide applicability of QM
seems to require that the Hilbert space representations, taken as models for
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its axioms, be non-isomorphic to one another. Indeed, even if representations
were constructed on infinite-dimensional Hilbert spaces, which are indeed mu-
tually isomorphic, the algebras of operators corresponding to the dynamical
magnitudes of different physical systems must still have different structures.

This objection is in line with the general idea noted above that a categorical
theory would be too rigid or inflexible to be acceptable as a physical theory.
But I think that the objection simply calls for a more exact specification of the
notion of categoricity that can be properly attributed to standard QM. The
specification is as follows: QM is categorical with respect to an isomorphism
class of models if and only if all models of the theory, relative to an individual
physical system, are in that class. The relativity clause is justified by the fact,
already emphasized above, that any representation of canonical commutation
relations on the Hilbert space – any algebra of operators – always describes
the dynamical magnitudes of an individual physical system. This is why in
QM, as already noted, the relevant notion of a model is that of a local model,
which always specifies the algebra of operators and the Hamiltonian for an
individual system. One could, of course, dispense with the relativity clause,
and instead introduce a new notion, absolute categoricity, defined as follows.
Let QM be an abstract quantum theory, which leaves the algebra of opera-
tors and the Hamiltonian unspecified. Let QM(A, H) be a concrete quantum
theory, which specifies the algebra of operators and the Hamiltonian for any
individual system. Then we can say that QM is absolutely categorical if and
only if, for any algebra of operators and any H ∈ A, QM(A, H) is categorical.
Obviously, if categoricity fails, then absolute categoricity fails as well. But for
my purposes, the specification that includes the relativity clause will do.

I turn now to the main question: for any physical system, is there an
isomorphism class of Hilbert space representations such that all representations
of the canonical commutation relations associated to that individual system
are in that class? The existence of such an isomorphism class is usually taken
to be established by the Stone-von Neumann theorem, first conjectured by
Marshall Stone in 1930 and then proved by von Neumann in the following
year. Whether one is justified to interpret this theorem as a categoricity result
is discussed in the next section. The outcome will be used in my subsequent
analysis and reconstruction of Einstein’s argument for the incompleteness of
QM.

2.2.3 The Stone-von Neumann theorem

The Stone-von Neumann theorem states that any irreducible, faithful, and reg-
ular Hilbert space representation of the Weyl algebra, which describes a quan-
tum mechanical system (or, more generally, any system with a finite number
of degrees of freedom), is uniquely determined up to a unitary transforma-
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tion.13 A Weyl algebra A is a C∗-algebra generated by the Weyl form of the
canonical commutation relations. A Hilbert space representation (H, π) is a
∗-homomorphism π : A → B(H), where B(H) is the set of bounded linear
self-adjoint operators on an infinite-dimensional complex Hilbert space H. A
representation is irreducible if no (nontrivial) subspace of H is invariant under
the operators in π(A). If π is a ∗-isomorphism, then the representation is also
faithful. A faithful and irreducible representation is also regular if the operators
in π(A) are weakly continuous. In the representation theory of C∗-algebras,
the Stone-von Neumann theorem entails that any two irreducible, faithful, and
regular representations (H1, π1) and (H2, π2) of A are unitarily equivalent if
and only if there is an element U ∈ A which acts as an operator U : H1 → H2

such that UU∗ = U∗U = 1 and π1(A) = Uπ2(A)U
∗ for all elements A ∈ A.

If H1 and H2 are separable, infinite-dimensional spaces, so their orthonormal
bases are both countably infinite, U intertwines all bounded linear self-adjoint
operators on the two spaces. Thus, there is an isometric isomorphism between
H1 and H2 that underlies the unitary equivalence of (H1, π1) and (H2, π2).

Unitary equivalence is typically taken to entail physical equivalence, in
the sense that the quantum states described as density matrices in unitarily
equivalent representations assign the same expectation values to correspond-
ing physical observables (Weyl 1930, 407; Ruetsche 2011, 24sq). This is, for
example, the sense in which one has come to speak of the physical equivalence
of the Schrödinger and the Heisenberg representations of a quantum mechani-
cal system: time evolution on states, in the Schrödinger representation, is the
same as time evolution on observables, in the Heisenberg representation.14 For
this reason, the Stone-von Neumann theorem has been sometimes intuitively
read as proving the categoricity of standard QM.15

But in what sense can this theorem be read in this way, if at all? More pre-
cisely, is the relation of unitary equivalence sufficient for constraining all local
models of QM, relative to an individual physical system, such as (H1, π1) and
(H2, π2), into one isomorphism class? The central question is if the kind of iso-
morphism that underlies unitary equivalence might be enough for categoricity,
understood as in the previous section. This question is raised here for standard
QM, and will be answered negatively, but I will presently consider the point
that the very consideration of the question would actually require a rational
reconstruction of QM, i.e., a reformulation of the theory in a formal language.
More specifically, I will argue that, on the one hand, the Stone-von Neumann
theorem could be intuitively read as establishing categoricity only if all its as-
sumptions, including regularity, could be unproblematically justified. On the

13Cf. Stone 1930 and von Neumann 1931. For more details, see Ruetsche 2011, esp.
section 2.3.

14See Perovic 2008 for discussion of the sense and scope of the equivalence before von
Neumann’s 1931 proof of Stone’s 1930 conjecture.

15Cf. Stöltzner 2002, 45. More recently, I also maintained that the Stone-von Neumann
theorem “can be naturally read as a categoricity result.” (Toader 2018, 21; see also Toader
2021a) The present section offers a more nuanced view on the matter.
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other hand, if one insisted on rational reconstruction, the theorem could be
rigorously read as establishing categoricity only if all components of standard
QM could be formalized, ideally within a first-order language. However, this
is at least prima facie questionable.

The intuitive reading of the theorem, just mentioned, fails to take into
account a crucial assumption concerning the nature of Hilbert space represen-
tations: the regularity assumption. Thus, it ignores the existence of repre-
sentations of the Weyl algebra, e.g. the position representation (with position
eigenstates, but no operator for momentum) and the momentum representa-
tion (with momentum eigenstates, but no operator for position), for which
there is no intertwiner, and thus no isometric isomorphism exists between
them. These are the so-called non-regular representations, which are unitar-
ily inequivalent to the Schrödinger representation, as well as to one another.
The expectation values of corresponding physical observables are different in
such representations than in the Schrödinger representation. The existence
of non-regular representations strongly suggests that the Stone-von Neumann
theorem cannot be understood as a categoricity result for standard QM: if
non-regular representations are allowed by the standard formalism, and they
are considered as non-isomorphic local models of the theory, this would be
enough to make QM non-categorical.

Can non-regular representations be eliminated in standard QM? Arguably,
these representations have physical significance, and despite their non-regularity,
position and momentum representations can be taken to describe the behavior
of a physical system with a finite number of degrees of freedom. Actually,
they have been used to rigorously articulate Bohr’s notion of complementarity
(Halvorson 2004). Against this view, the objection has been recently raised
that, if non-regular representations describe a physical system, then its dy-
namics cannot be the unitary dynamics governed by Schrödinger’s equation.
This is because non-regular states, i.e., the states on the Hilbert spaces of
these representations in which positions or momenta have determinate values,
are unitarily inaccessible from regular states (as well as mutually inaccessi-
ble). The claim that non-regularity is incompatible with unitarity builds on
an unpublished result by David Malament, which states that if a free dynamics
is assumed in the position representation, then exact localizability is violated
(Feintzeig et al. 2019, 127). Thus, one either changes the standard formalism
of QM by replacing the Weyl algebra with a different mathematical structure
that does not allow non-regular representations,16 or one eliminates non-regular
representations in standard QM as physically insignificant on account of their
incompatibility with the unitarity of quantum dynamics. If the latter option

16Cf. Feintzeig and Weatherall 2019. The introduction of a different structure than the
Weyl algebra may nevertheless allow the recovery of non-regular states as approximations or
idealizations of regular ones: “non-regular quantum states should be considered unphysical
for essentially the same reasons that classical states at infinity are considered unphysical.”
(Feintzeig 2022, 472)
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turned out to be unproblematic, then we would have a sense in which the
Stone-von Neumann theorem could be intuitively read as a categoricity result
for standard QM.

The intuitive reading is, however, further questionable if one insists that
the well posedness of the categoricity problem actually demands a formal ax-
iomatization of QM, or what Carnap called a rational reconstruction. For it
might seem doubtful that categoricity, as a notion of mathematical logic, can
be applied to QM, since the language of its standard axioms (as formulated
in the previous section) is not strictly speaking a formal language. But if one
demands that, before the problem can be even properly discussed, one should
provide a rational reconstruction of standard QM as a formal system in which
a consequence relation is defined and logical rules and the quantum-mechanical
rules are formally expressed, then the trouble is of course that there exists no
such reconstruction of QM yet, and even worse, that no such reconstruction
seems possible.

I will return to the question whether a rational reconstruction of QM is pos-
sible, in chapter 6, where I will argue against the two most usual philosophical
objections to the Carnapian project of rational reconstruction, pointing out
that if one assumes a global non-representationalist metasemantics, then a vi-
able rational reconstruction of QM seems entirely possible. But here I want to
make two related points.

The first point is that I see no reason against specifying a notion of cat-
egoricity for standard QM – the notion that I have actually specified in the
previous section – even in the absence of a rational reconstruction of the the-
ory. After all, the concept of categoricity, and even the term “categoricity”,
historically predate the emergence of formalized languages and theories. So in
this book I will continue to say that QM is categorical with respect to an iso-
morphism class of models if and only if all local models of the theory, relative
to an individual physical system, are in that class. And I will take standard
QM as a basis for metasemantic analysis, rather than waiting until a rational
reconstruction becomes available.

One might, of course, consider the notion I have specified as a mere ana-
logue of the “legitimate” notion of categoricity, and allow the latter to be
strictly applied to formalized theories only. In this case, I suggest that the
relationship between the two notions, in the case of interest, should be un-
derstood as follows: a formalized QM is not categorical, in the strict sense, if
standard QM is not categorical, in the sense I have specified. This is because
any two mutually non-isomorphic models of the standard axioms, i.e., any two
unitarily inequivalent Hilbert space representations, must be formalized as
non-isomorphic models of a rational reconstruction of QM. For otherwise, one
would be committed to the unacceptable claim that formalization can make
unitarily inequivalent representations, including non-regular position and mo-
mentum representations, indistinguishable (from one another, as well as from
the Schrödinger representation).
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However, one might also be unfazed by the possibility that a formalization
of QMmakes unitarily inequivalent representations indistinguishable as models
of a formalized QM. Then one might perhaps argue that formalized QM can
be categorical, in the strict sense, even if standard QM is non-categorical, in
the sense I have specified. In this case, I would say that standard QM is weakly
non-categorical (adopting a notion from Bernays 1966). But this would surely
not change what I have to say about the metasemantics of standard QM,
although (as Bernays maintained, for the case of mathematical theories) it
might provide some insight into formalization.

The second point is this. Even if one accepts my suggestion that a formal-
ized QM is categorical, in the strict sense, only if standard QM is categorical,
in the sense I have specified, there might be additional reasons to suspect that
one cannot show a formalized QM categorical, beside the existence of non-
regular Hilbert space representations in standard QM. Put differently, even
if standard QM would allow just regular representations, and would thus be
categorical, in the sense I specified, that is not enough to establish the cate-
goricity of formalized QM. This is because it is impossible to formalize QM
in first-order logic: while the relation of unitary equivalence established by
the Stone-von Neumann theorem can be formalized as a first-order relation,
representations cannot be formalized as first-order models.

It is worth developing this argument in a bit more detail. Consider the claim
that the relation of unitary equivalence makes the Heisenberg representation
of the Weyl algebra of a quantum system, and its Schrödinger representation,
intertranslatable. More specifically, let’s assume that intertranslatability is
meant to account for the fact that these representations are physically equiv-
alent. How should one understand intertranslatability more precisely? And
what could be its semantic counterpart?

What intertranslatability may be taken to mean is that “[a]ny data which
elements of the [one representation] accommodate, counterpart elements of the
[other representation] accommodate as well – and mutatis mutandis for falsify-
ing data”.17 The data accommodated by unitarily equivalent representations,
as also noted above, are the expectation values assigned to corresponding phys-
ical observables in states described as density matrices in those representations.
Thus, taking the statements about expectation values as theorems (Clifton and
Halvorson 2001, 430), we can say that representations are intertranslatable in
the sense that they agree on all theorems. More exactly, they are intertranslat-
able in the sense that they have a “common definitional extension” (Glymour
1970, 279), i.e., they have definitional extensions that derive the same theo-

17Cf. Ruetsche 2011, 45. Note that Ruetsche speaks of Heisenberg and Schrödinger
theories, rather than representations. Their intertranslatability is understood in the more
general sense that had been articulated by Clark Glymour: “[The intertwiner of represen-
tations] provides the translation manual [Glymour] is after.” (loc. cit.) Glymour’s manual
helps translating between theories and it “guarantees that all and only theorems of [one
theory] are translated as theorems of [another theory], and conversely.” (Glymour 1970,
279)

32



rems. In other words, unitarily equivalent representations are intertranslatable
in the sense that they are definitionally equivalent.

Note that since I consider Hilbert space representations qua local models
of QM, the semantic counterpart of intertranslatability, whatever relation that
might turn out to be, can obtain only if the representations have expansions
that satisfy the same theorems. This implies that the semantic counterpart
cannot be understood as categoricity, since non-isomorphic structures can sat-
isfy the same theorems. Furthermore, if understood as definitional equivalence,
intertranslatability is a first-order relation, which implies that its semantic
counterpart could hold between Hilbert space representations qua local mod-
els only in the sense that they satisfy all and only first-order theorems. But
representations cannot be formalized as first-order models, on account of the
metric completeness of the Hilbert space, a property that cannot be expressed
in a first-order language. If some higher-order statements have physical sig-
nificance, and there is no immediate reason to think that they cannot have
such significance, then unitary equivalence, when reconstructed as definitional
equivalence, is insufficient to account for physical equivalence.

Alternatively, one might want to reconstruct unitary equivalence as Morita
equivalence, rather than definitional equivalence, as suggested by Jonathan
Rosenberg: “The ‘modern’ approach to the Stone-von Neumann Theorem,
which is somewhat more algebraic, is due to Rieffel ... The key observation of
Rieffel is that the theorem is really about an equivalence of categories of rep-
resentations, or in the language of ring theory, a Morita equivalence.” (Rosen-
berg 2004, 342) The Stone-von Neumann theorem, as formulated by Marc Ri-
effel, states the following: “Every irreducible Heisenberg G-module is unitarily
equivalent to the Schrödinger G-module.” (Rieffel 1972) Unitary equivalence
is reconstructed as the Morita equivalence of G-modules, which are Hilbert
space representations together with the collection of all intertwining operators
between them. But this does not fare better than the previous one, if one
looks for a reconstruction of unitary equivalence that can account for physical
equivalence within the confines of a first-order language.

Note that the semantic counterpart of Morita equivalence could obtain be-
tween G-modules considered qua local models of QM only if they have Morita
expansions that satisfy the same theorems. However, for the same reason
as above, this implies that the semantic counterpart cannot be categoricity.
Moreover, Morita equivalence is actually a generalized definitional equivalence
relation (Barrett and Halvorson 2016), and thus it is also first-order, but Rief-
fel’s G-modules, just like the Hilbert space representations, and for the same
reason, cannot be formalized as first-order models. This suggests, once more,
that while the Stone-von Neumann theorem might be intuitively read as a
categoricity result for standard QM, in the sense and under conditions that I
specified above, this reading could hardly be maintained if one demanded a
first-order formalization of QM.18

18This raises further questions about the possibility and, of course, the acceptability of
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Nevertheless, as in the case of mathematical theories (discussed in section
2.2.1), one might be inclined to respond by insisting that the categoricity of
QM, formalized or not, is not really indispensable. Indeed, one might be in-
clined to adopt the attitude that logicians and mathematicians have adopted
in the case of set theory and arithmetic, learn to appreciate non-categoricity
as a theoretical virtue of QM, and simply ignore or otherwise minimize its
metasemantic consequences. Although he considered the categoricity of set
theory a desirable property (von Neumann 1925, 412), von Neumann himself
never considered the Stone-von Neumann theorem (as far as I have been able
to determine) as a result that established the categoricity of his QM. More-
over, when he later developed his axiomatic theory of games, for example, he
expressly noted that this is intended as non-categorical (von Neumann and
Morgenstern 1944, section 10.2).

Along quite similar lines, Miklós Rédei has recently introduced the apt
notion of “intended non-categoricity” to characterize the objective to construct
physical theories that allow for multiple non-isomorphic models (Rédei 2014,
80). This objective is typically exemplified by theories like quantum field
theory (QFT), which clearly invalidates the Stone-von Neumann theorem, and
so allows for unitarily inequivalent representations (e.g., representations of the
C∗-algebra on a free field, but also representations on an interacting field).
This failure of the Stone-von Neumann theorem for quantum systems with an
infinite number of degrees of freedom has been correctly, I think, considered
as an indication that theories describing such systems, like quantum statistical
mechanics (in the thermodynamic limit) and QFT, are not categorical:

Our best current theory is QFT. It is a relativistic theory (in the
sense of special, not general relativity), and it is a theory of systems
with an infinite number of degrees of freedom. As such, in its most
natural algebraic form, it can be shown to possess representations
that are, of necessity, unitarily inequivalent. This is the algebraist’s
way of saying that the theory is not categorical, that it does not
constrain the class of its models up to the point of isomorphism.
(Howard 2011, 231)

As I have argued in this section, it appears to be the case that QM is
not categorical, either. More exactly, due to the existence of non-regular rep-
resentations of the Weyl algebra in standard QM, which are also necessarily
unitarily inequivalent, the Stone-von Neumann theorem cannot be understood
as a categoricity result for standard QM, unless such representations are un-
problematically eliminated. If this cannot be done, on account of their physical
significance, then the theorem makes no metasemantic difference between QM

higher-order formalizations of QM, but these are questions that I will not address here.
Nevertheless, in section 6.1, I will point to one contemporary project, which attempts to
formalize QM in continuous first-order logic (which can express the completeness of the
Hilbert space).
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and QFT. In particular, one cannot claim that the meaning of standard, non-
relativistic QM is more precisely determined than that of QFT.

In the next section, drawing on my analysis so far, I will provide a new,
rigorous reconstruction of Einstein’s argument for the incompleteness of QM,
which is one of the few historical contexts in which categoricity concerns appear
to have been raised about QM. As I will explicate it, the argument establishes
that a local, separable, and categorical QM cannot exist. If this is correct,
then one of the most famous no-go results in the history of the theory turns
out, rather intriguingly, to have metasemantic significance.

2.3 Einstein completeness as categoricity

Einstein’s argument for the incompleteness of QM, which did not make it
into the EPR paper (Einstein, Podolski, and Rosen 1935) in the way Einstein
thought it should have, was clearly formulated in letters to Schrödinger and
Popper, as well as in several publications (e.g. Einstein 1936). After Arthur
Fine brought it to philosophical attention (Fine 1981), Don Howard suggested
that the argument might be understood as deploying a notion of complete-
ness known as categoricity (Howard 1990). This suggestion was motivated
by Einstein’s claim that QM fails to assign a unique wavefunction to the real
state of one subsystem of an EPR system, since the assignment depends on
the measurement that could be performed on the other subsystem. If multiple
wavefunctions can be assigned to the same subsystem, and if one is justified
in considering them as (parts of) non-isomorphic models, then this would be
enough to show QM non-categorical. If Howard’s suggestion is taken seri-
ously, then Einstein completeness turns out to be a rather different type of
completeness than the one articulated in the EPR paper.

In this section, I will provide a reconstruction of Einstein’s argument, which
I think can clarify the assumptions underlying an understanding of Einstein
completeness as categoricity. The key idea to be rigorously articulated is the
following: “if one understands a theoretical state as, in effect, a model for
a set of equations plus boundary conditions ..., then Einstein’s conception of
a completeness requirement should really be understood as a categoricity re-
quirement.” (Howard 1992, 208) To stay as close as possible to Einstein’s
own argument, I will focus on the original EPR state, with observables hav-
ing a continuous spectrum, suitably defined within an algebraic framework
(Arens and Varadarajan 2000, Werner 1999), and I will explain under what
conditions one would be justified to read Einstein completeness as categoricity.
On my reconstruction, the argument assumes that representations on (tensor
products of) Hilbert spaces are the models of QM of (composite) systems. It
assumes as well that the unitary equivalence of such representations is a nec-
essary, though not sufficient, condition for categoricity.19 The argument then
points out that there are representations of the (tensor product of) algebras

19For a discussion of these assumptions, see sections 2.2.2 and 2.2.3 above.
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describing a subsystem of an EPR system that are not unitarily equivalent.
As such, Einstein’s argument concludes that categoricity is inconsistent with
separability and locality.

It is, of course, difficult to say that the reconstruction I propose is actually
entirely faithful to Einstein’s own thought. One worry one might raise is that
while my reconstruction works for the original EPR state, it does not work
for entangled spins, since on finite-dimensional Hilbert spaces there are no
unitarily inequivalent representations. But Einstein, as is well known, never
cared much about Bohm’s version of the EPR argument.20 Focusing on the
infinite-dimensional case is thus historically reasonable. Moreover, for Ein-
stein’s objection to stand, it is of course sufficient that his argument goes
through in one case; it is not required that it should do so in all cases. In any
event, I will argue that my reconstruction is preferable to others, according
to which Einstein’s argument should be taken to establish “overcompleteness”
(Lehner 2014) or unsoundness (Gömöri and Hofer-Szabó 2021), rather than
non-categoricity.

Furthermore, I will suggest that my reconstruction sheds some new light on
the Bohr-Einstein controversy. As mentioned in the previous section, Bohr’s
doctrine of complementarity has been rigorously interpreted in terms of the
unitary inequivalence of non-regular Hilbert space representations, which vin-
dicates the view that Bohr’s notion of completeness was significantly distinct
from the descriptive completeness articulated in the EPR paper.21 On my
reconstruction, Einstein completeness fails precisely due to this unitary in-
equivalence. Thus, from an algebraic point of view, it appears that the sense
in which Bohr thought QM was complete is exactly the sense in which Einstein
argued it wasn’t. From a metasemantic perspective, their views are precisely
antithetical: whereas Einstein deplored QM’s non-categoricity and the ensuing
semantic indeterminacy, Bohr embraced non-categoricity as a theoretical asset
and arguably ignored semantic indeterminacy as insignificant.22

2.3.1 Misconstruals of Einstein completeness

Recall the completeness condition that the EPR paper purported to argue it is
not satisfied by QM: “Whatever the meaning assigned to the term complete, the
following requirement for a complete theory seems to be a necessary one: every
element of the physical reality must have a counterpart in the physical theory.”
(Einstein, Podolski, and Rosen 1935, 777) This condition has typically been
understood to formulate a type of descriptive completeness, since it applies to
a physical theory just in case that theory is able to describe all of the physical
reality that it aims to describe. The EPR paper argued that QM does not
satisfy the completeness condition because in the case of a system in an EPR

20The only place where Einstein formulated a spin version of his argument appears to be
in a late manuscript from around 1955. For discussion, see Sauer 2007.

21For an expression of this view, see, e.g., Norsen 2017, 148.
22As we will see in section 5.3.3, QBism seems to be closest to Bohr on this matter.
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state there are elements of physical reality, i.e., properties of a subsystem of
that system, that the theory aims to describe, but fails to do so.

Crucial to the EPR argument is the following criterion of reality: “If, with-
out in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.” (loc. cit.;
italics removed) The role and character of this criterion, as well as the formal
structure of the argument, have been often addressed.23 But what has been
often ignored is the fact that EPR completeness and Einstein completeness are
not the same type of descriptive completeness.24

In one widely quoted passage from his letter to Schrödinger, Einstein ex-
plained his notion of completeness in the following way:

In the quantum theory, one describes a real state of a system
through a normalized function, ψ, of the coordinates (of the configuration-
space). ... Now one would like to say the following: ψ is correlated
one-to-one with the real state of the real system. ... If this works,
then I speak of a complete description of reality by the theory.
But if such an interpretation is not feasible, I call the theoreti-
cal description ‘incomplete’. (Letter to Schrödinger, 19 June 1935;
translated in Howard 1985, 179)

Einstein completeness can thus be attributed to QM if and only if there
exists a one-to-one correlation between a ψ-function and the real state of a
system the theory aims to describe. Einstein’s point that a one-to-one correla-
tion does not exist in the case of an EPR system is meant to be supported by
his separability and locality assumptions, so his argument can be formulated
in the following way:

1. Spacelike separated physical systems have real states, which cannot
causally influence one another.

2. Consider a system with two subsystems, A and B, in an EPR state.
3. Thus, each subsystem has a real state, no matter what measurements

can be carried out on its other subsystem.
4. QM assigns different ψ-functions to A, depending on which observable

one can choose to measure on B.
5. But if QM is complete, these ψ-functions should be identical.

23Perhaps the most detailed formal reconstruction of the EPR argument has been given in
McGrath 1978, where the following is also noted: “Regrettably EPR equate two notions of
completeness: ‘complete representation by a wave function’ and ‘complete theory’ are used
interchangeably.” (560) See also Gömöri and Hofer-Szabó 2021, for a nice discussion of the
EPR criterion of reality, its indispensable role within the EPR argument for incompleteness,
and its absence from Einstein’s own argument.

24The fact that EPR completeness and Einstein completeness are not the same type of
completeness has been, to my knowledge, first explicitly noted by Arthur Fine: “Einstein
does not give [the latter] a catchy name, but ... [we can] call this more technical conception
bijective completeness.” (Fine 1981, 72)
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6. Thus, QM is incomplete.

Most of my discussion below will be focused on premises 4 and 5. It should
be clear that the notion of completeness in premise 5 is directly implied by
that defined in the letter to Schrödinger. In a letter to Pauli, Schrödinger put
it in the following metaphorical terms: “He [i.e., Einstein] has a model of that
which is real consisting of a map with little flags. To every real thing there
must correspond on the map a little flag, and vice versa.” (Schrödinger to
Pauli, July 1935, translated in Howard 1990, 106) It immediately follows that
a map with little flags is an Einstein complete description of physical reality
only if the map is essentially unique, in the sense that there is a bijection
between any two maps describing that reality. In the case of QM, by analogy,
Einstein completeness requires that the ψ-function representing the real state
of a system be essentially unique.

Howard’s suggestion, that Einstein completeness is rather similar to cate-
goricity, was first offered in a footnote to his presentation of Einstein’s argu-
ment, in the following passage:

A complete theory assigns one and only one theoretical state to
each real state of a physical system. [Footnote: This is a curious
conception of completeness, more akin to what is called in formal
semantics “categoricity.”] But in EPR-type experiments involving
spatio-temporally separated, but previously interacting systems,
A and B, quantum mechanics assigns different theoretical states,
different ‘psi-functions,’ to one and the same real state of A, say,
depending upon the kind of measurement we choose to carry out
on B. Hence quantum mechanics is incomplete. (Howard 1990, 64)

The same suggestion, a bit more provocatively formulated (hence, I take it,
the “outrageous” qualification), was then uplifted to the main text of a later
paper:

Let me conclude with one really outrageous suggestion. ... the
operative criterion of completeness in Einstein’s thinking was this:
a theory is complete if and only if it assigns a unique theoretical
state, such as a psi-function, to every unique real physical state.
But if one understands a theoretical state as, in effect, a model for
a set of equations plus boundary conditions ..., then Einstein’s con-
ception of a completeness requirement should really be understood
as a categoricity requirement. In other words, Einstein is saying
that a ‘complete’ (read ‘categorical’) theory is one that determines
a unique (eindeutige) model for the reality it aims to represent.
(Howard 1992, 208; my emphasis)

The conception of completeness that Howard came to think should be cred-
ited to Einstein is that according to which a theory is Einstein complete if and
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only if all its models belong to one and the same isomorphism class. In or-
der to intuitively grasp this suggestion, starting from my reconstruction of
Einstein’s argument, it will be enough to motivate, informally, an algebraic
requirement for categoricity, and then argue that Einstein can be understood
to have doubted that QM satisfies that requirement. It will then follow that
what Einstein argued for is that QM is descriptively incomplete in the sense
that, roughly, even though it may be able to describe all of the physical reality
that it aims to describe, it ends up describing a lot more besides that as well.

My reconstruction of Einstein’s argument, in an algebraic framework, will
be given further below. That will require a preliminary consideration of
premise 2, in particular, a properly algebraic definition of the original EPR
state, for continuous observables. It will also require a discussion of premise 4,
that is an algebraic account of the difference between the ψ-functions assigned
to susbsystem A. The outcome of all that will, I hope, be three-fold: (i) a
good understanding of the assumptions behind Howard’s suggestion to read
Einstein completeness as categoricity, (ii) an explanation of what makes Ein-
stein completeness different from EPR completeness as a type of descriptive
completeness, and (iii) an unequivocal sense of where some of the misreadings
of Einstein completeness have gone wrong. Although my real emphasis will
be on (i), let me briefly address (iii) right away, in order to candidly raise the
reader’s interest in what is to come later.

Einstein’s argument for incompleteness is sometimes considered too con-
fused to take seriously. Klaas Landsman, for example, maintained that it is a
“muddled” argument (Landsman 2006, 234) for the following reason:

Unfortunately, Einstein (and EPR) insisted on a further elabora-
tion of this disjunction [i.e., completeness or separability], namely
the idea that there exists some version of quantum mechanics that
is separable ... at the cost of assigning more than one state to
a system (two in the simplest case). It is this unholy version of
quantum mechanics that Einstein (and EPR) called ‘incomplete’.
Now, within the formalism of quantum mechanics such a multiple
assignment of states (except in the trivial sense of wave functions
differing by a phase factor) makes no sense at all, for the entangle-
ment property lying at the root of the non-separability of quantum
mechanics is so deeply entrenched in its formalism that it simply
cannot be separated from it. (op. cit., 227)

However, if it implies that Einstein’s argument requires that entanglement
be relinquished, this is simply missing the point. One would have thought
it obvious that, quite the contrary, the argument is essentially based on en-
tanglement. Clearly, Landsman’s criticism fails insofar as it neglects the fact
that Einstein separability (expressed in premise 1 above) and entanglement
(implicit in premise 2) are compatible.25 The alleged reason why multiple as-

25See Murgueitio Ramı́rez 2020, for the point that Einstein’s argument would be trivially
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signment of states is nonsensical doesn’t stand: there is no “unholy version”
of QM, i.e., a version of the theory without entanglement, and Einstein did
not think otherwise.

Furthermore, and this is a more significant problem, Landsman seems to
misconstrue Einstein’s view on the difference between the ψ-functions assigned
to subsystem A as a trivial phase difference. As we will see further below, the
multiple assignment of ψ-functions that Einstein actually considered can be
aptly interpreted algebraically in terms of the unitary inequivalence of non-
regular Hilbert space representations. Were this nonsensical, Bohr’s comple-
mentarity doctrine would appear to be nonsensical as well, but this is a doctrine
that Landsman professes to defend.

Einstein completeness, and Einstein’s argument that this cannot be at-
tributed to QM, have been characterized by Christoph Lehner in these terms:
“Einstein ... concludes that the quantum mechanical description is not biu-
nique because it is incomplete. ... This conclusion is not warranted logically.”
(Lehner 2014, 334) A description that is not biunique is one that assigns to sub-
system A a ψ-function which is not correlated one-to-one with its real state.
On this reconstruction, Einstein’s second half of the argument would be as
follows:

4L. QM assigns different ψ-functions to A, depending on which observable
one can choose to measure on B.

5L. Thus, QM is incomplete.
6L. Thus, QM is not biunique.

Lehner maintained that the inference from 5L to 6L is not justified. But
this clearly puts Einstein’s cart before his horse: the one-to-one correlation
does not fail because of incompleteness; rather, its failure is the actual reason
for incompleteness, just as the reason why the one-to-one correlation fails is
provided by the possible assignment of different ψ-functions to A (expressed
by 4L). Moreover, since a ψ-function is just a theoretical description and
such “a description that is not invariant is not necessarily incomplete ... it
is ‘overcomplete’ or nonabsolute” (loc. cit.), i.e., it assigns to A a theoretical
state that is correlated many-to-one with its real state, then what Einstein
should have allegedly argued is the following (statements 1-3 in the argument
are, again, unchanged):

4L. QM assigns different theoretical states to A, depending on which ob-
servable one can choose to measure on B.

5L. Thus, QM is overcomplete.
6L. Thus, QM is not biunique.

unsound, if separability and entanglement were not compatible. Landsman argued that,
as a consequence of Raggio’s theorem, Einstein separability is mathematically equivalent
to Bohr’s doctrine of the necessity of classical concepts. But his argument takes Einstein
separability as state decomposability, which according to Murgueitio Ramı́rez it was not
what Einstein actually had in mind.
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The inference from 5L to 6L is immediate, but trivial. However, Lehner
appears to reduce Einstein’s incompleteness to a quite uninteresting case of
empirical underdetermination. Jos Uffink has recently pointed out that read-
ing Einstein incompleteness as overcompleteness is “surprising”, since “cases
of overcompleteness are ubiquitous in physics... Indeed one might wonder
whether overcompleteness is a worrisome issue at all in theoretical physics.”
(Uffink 2020, 557) In QM, as Uffink emphasized, such cases of overcomplete-
ness as illustrated by phase differences between ψ-functions are not worrisome
at all.

But, of course, Einstein did not think otherwise. As already noted, we will
see presently that the essential differences between ψ-functions that Einstein
did think worrisome can be aptly interpreted algebraically in terms of the
unitary inequivalence of non-regular Hilbert space representations. If this is
enough to conclude that QM is not categorical, then Lehner’s reconstruction
of Einstein’s argument turns out to conflate the problems of categoricity and
empirical underdetermination.

Along different lines, Márton Gömöri and Gábor Hofer-Szabó argued for
a similar conclusion, that Einstein’s argument should not really be taken to
establish incompleteness: “According to Einstein’s later [than the EPR] argu-
ment, the Copenhagen interpretation is committed to the existence of elements
of reality that cannot be out there in the world — under the assumptions
of locality and no-conspiracy. Hence, given these assumptions, the Copen-
hagen interpretation is unsound — as opposed to being incomplete.” (Gömöri
and Hofer-Szabó 2021, 13453) Supposing it right that Einstein intended his
argument against the Copenhagen interpretation of QM, the second half of
Einstein’s argument would change as follows:

4G. QM assigns different ψ-functions to A, depending on which observable
one can choose to measure on B.

5G. Thus, at least some ψ-functions represent states of A that cannot exist.
6G. Thus, QM is unsound.

Gömöri and Hofer-Szabó readily acknowledge that their reconstruction of
Einstein’s argument is in conflict with his own understanding of complete-
ness. Pursuing “logical reconstruction” in spite of what “Einstein actually
thought to argue”, they find his own notion “not quite apt”, in part because
it is not identical to the EPR notion of completeness (loc. cit.). But one
would have thought that the difference between EPR completeness and Ein-
stein completeness cannot be sufficient to deny the latter as an apt notion,
since there is nothing to indicate that EPR completeness is the only possible
type of descriptive completeness attributable to physical theories. Still, their
main reason for having Einstein’s argument conclude that QM is unsound,
rather than incomplete, is the incompatibility of the different ψ-functions as-
signed to subsystem A of an EPR system. This is correct as an understanding
of the essential difference between ψ-functions, expressed by premise 4G. In
the next section, this incompatibility will be precisely interpreted algebraically
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as the unitary inequivalence of non-regular Hilbert space representations. If
my interpretation is adequate, I do not see why that incompatibility would
make QM unsound, rather than sound but non-categorical. To argue that my
interpretation is adequate, I turn now to reconstruct Einstein’s argument in
the framework of C∗-algebras.

2.3.2 Reconstruction of Einstein’s argument

Taking Howard’s suggestion seriously requires that one consider the theoretical
states assigned to a system by QM as (parts of the) models of the physical
theory. But it’s not immediately clear how a ψ-function, and in particular
one that represents the EPR state of a system, can be considered in this way.
For one thing, such a ψ-function cannot be construed as a unit-norm vector in
an infinite-dimensional Hilbert space H. This is for multiple related reasons,
such as that the ψ-function has infinite norm, and the (operators associated
to) observables (like position and momentum) of the subsystems of an EPR
system have continuous spectra, so their probability distribution will have a
probability density that cannot be concentrated on a single point in H. This
is why the definition of the EPR state for a system composed of subsystems A
and B as a unit vector in HA ⊗HB for observables in subalgebras B(HA)⊗I
and I ⊗B(HB) is not adequate (Arens and Varadarajan 2000, 638). But that
definition has been generalized, and the EPR state has been identified with a
normalized positive linear functional on AA ⊗ AB for observables in the von
Neumann algebras π(AA⊗I)′′ and π(I⊗AB)

′′ (Werner 1999, Halvorson 2000).
The generalized definition will be used below to reformulate premises 4 and 5
in Einstein’s argument. The essential difference between the theoretical states
assigned to subsystem A of the EPR system will be interpreted in terms of the
unitary inequivalence of non-regular representations of AA ⊗ I on HA ⊗ I.

Let’s start by considering observables OA ⊗ I ∈ B(HA)⊗ I and I ⊗ OB ∈
I ⊗B(HB). As defined by Richard Arens and Veeravalli S. Varadarajan, ω is
an EPR state if and only if the joint distribution of OA ⊗ I and I ⊗ OB is a
measure on R2 concentrated on the diagonal, µOA⊗I,I⊗OB

ω ({(x, x)|x ∈ R}) = 1.
Such pairs of observables are typically called EPR-doubles: the outcome of
measuring one predicts with certainty the outcome of measuring the other.
These EPR-doubles form type I factors (isomorphic to von Neumann algebras
B(HA)⊗I and I⊗B(HB) respectively), so they have a discrete spectrum (their
distributions relative to ω take discrete values only; see Arens and Varadarajan
2000, 647). Thus, this definition is not enough to characterize the original EPR
state – the state that Einstein was concerned with.

In order to overcome this limitation, Reinhard F. Werner considered AA⊗I
and I ⊗ AB as the mutually commuting subalgebras of AA ⊗ AB, and took
π(AA⊗I)′′ as a self-adjoint unital subalgebra of B(HA)⊗I, and π(I⊗AB)

′′ as
a self-adjoint unital subalgebra of I⊗B(HB), both closed in the weak operator
topology. Then π(OA ⊗ I) ∈ π(AA ⊗ I)′′ and π(I ⊗ OB) ∈ π(I ⊗ AB)

′′ are
EPR-doubles and have continuous spectra, since π(AA ⊗ I)′′ and π(I ⊗ AB)

′′
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are type II1 factors (cf. Werner 1999).
Now, consider the representations (π,HA⊗ I) and (π, I⊗HB) of AA⊗AB .

If ω is an original EPR state and π is faithful, then there is a state τ in each of
these representations such that for any element OA ⊗ OB ∈ AA ⊗ AB , we will
have ω(OA⊗OB) = τ(π(OA⊗OB)) (cf. Halvorson 2000, 327). This entails, on
the same conditions, that for any two representations (π1,HA⊗I) and (π2,HA⊗
I) of AA ⊗ I, there are different states τ1 and τ2 in these representations,
respectively, such that for two different elements O1

A⊗ I, O2
A⊗ I ∈ AA⊗I, we

have the corresponding restrictions of ω, that is ω(O1
A ⊗ I) = τ1(π1(O

1
A ⊗ I))

and ω(O2
A⊗ I) = τ2(π2(O

2
A⊗ I)). This suggests the following reformulation of

the second half of Einstein’s argument:

4T . QM assigns different states, τ1 or τ2, to subsystem A, depending on
which EPR-double, π1(I ⊗ O1

B) or π2(I ⊗ O2
B), one can choose to measure on

B.
5T . But if QM is complete, τ1 and τ2 should be identical.
6T . Thus, QM is incomplete.

How should we understand premise 4T? Within this framework, what
makes τ1 and τ2 different states? As we have seen above, some commentators
took Einstein’s argument to be confused on this very point, for the reason that
the only differences between such states allowed by standard QM are “trivial”
phase differences. But this is not what Einstein actually had in mind, as
Howard already pointed out:

Might there not be situations in which the differences between two
ψ-functions (phase differences, for example) are inessential from the
point of view of the system whose real state they aim to describe?
Einstein’s completeness condition would, indeed, be too strong if it
required that literally every difference between ψ-functions mirror
a difference in the real state of the system in question; but such
was not Einstein’s intention. (Howard 1985, 181)

But what are then the non-trivial differences between theoretical states
that Einstein did have in mind? Here is Howard, again:

The kind of difference with which Einstein was concerned is clear
from his argument: [τ1] and [τ2] differ in the predictions they yield
for the results of certain objective, local measurements on A. ...
(For example, if [τ1] attributed a definite position to [A], but not
a definite momentum, it would be incomplete in its description
of [A]’s momentum; but, of course, Einstein’s argument does not
require any such reference to specific parameters or ‘elements of
reality’.) (loc. cit., modified for uniform notation)

The essential differences between τ1 and τ2 concern their predictions of
the measurement outcomes for A’s observables. For instance, τ1 and τ2 are
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essentially different if one of them “lives” in (π1,HA ⊗ I), say a position rep-
resentation, and the other in (π2,HA ⊗ I), say a momentum representation.
More generally then, τ1 and τ2 are essentially different if (π1,HA ⊗ I) and
(π2,HA ⊗ I) are unitarily inequivalent representations of AA ⊗ I. Taking this
into account, one obtains the following reconstruction of the second half of
Einstein’s argument:

4T . QM allows unitarily inequivalent representations of AA⊗I, depending
on which EPR-double, π1(I ⊗ O1

B) or π2(I ⊗ O2
B), one can choose to measure

on subsystem B.
5T . But if QM is complete, the representations (π1,HA⊗I) and (π2,HA⊗I)

should be unitarily equivalent.
6T . Thus, QM is incomplete.

I believe that there is a good chance that this reconstruction captures
exactly what Einstein thought on the matter. But one immediate criticism
against this reconstruction concerns the apparent conflict between premise 4T

and the Stone-von Neumann theorem (discussed in section 2.2.3), a theorem
that Einstein was no doubt fully aware of by 1935. This asserts, recall, that
any irreducible, faithful and regular Hilbert space representation of the Weyl
algebra describing a quantum-mechanical system is uniquely determined up to
a unitary transformation, and in fact unitarily equivalent to the Schrödinger
representation. The theorem applies, of course, to EPR systems. But the
conflict with my reconstruction is merely apparent, since the representations
mentioned in premise 4T are non-regular and, therefore, not in the range of
the Stone-von Neumann theorem.

This reply, however, just seems to have opened the door to further criticism.
For if Einstein’s argument required that regularity be dropped, then one might
seem justified to consider it muddled after all, for it is not at all clear what
physical meaning can be given to non-regular representations.26 But in fact, I
think that this adequately captures precisely the sense of incompatibility that
Gömöri and Hofer-Szabó, as we have seen above, associate with the multi-
ple assignment of ψ-functions to subsystem A. The dynamical incompatibility
between (regular and) non-regular representations not only does not muddle
Einstein’s argument, but rather helps clarify his justification for rejecting the
completeness of QM.

Now, even if my algebraic reconstruction is correct, one might insist that
in order to fully support Howard’s suggestion, a formalization in a suitable
language should be given. Until we consider more closely the challenges for a
rational reconstruction of QM, an informal version of the reconstructed argu-
ment should be enough here:

4H . QM allows non-isomorphic models of its theoretical description of A,
depending on which EPR-double one can choose to measure on subsystem B.

26As pointed out in section 2.2.3, section, if position and momentum representations are
taken to be physically significant despite their non-regularity, then unitary dynamics must
be given up (cf. Feintzeig et al. 2019).
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5H . But if QM is categorical, these models should be isomorphic.
6H . Thus, QM is not categorical.

As noted already, this version of the argument assumes that unitarily in-
equivalent representations (featuring in premise 4T ) can be construed as non-
isomorphic models of the quantum mechanical description of subsystem A
(mentioned in premise 4H). More exactly, it assumes that unitary equivalence
is a necessary, but not a sufficient, condition for categoricity. On this assump-
tion, which I consider unproblematic, if the validity of the argument is to be
preserved, premise 5T must be reformulated as premise 5H . Thus, Einstein
completeness can be understood as categoricity. I think that this clarifies and
supports, at least in part, Howard’s suggestion that it should be so understood.
Einstein’s no-go result may indeed be taken to say that a local, separable, and
categorical QM cannot exist.

Reconstructing Einstein’s argument in this way points to a series of gen-
eral consequences often discussed, in other theoretical contexts, throughout
the rich history of philosophical concerns with the categoricity of logic and
mathematics. For instance, as noted in the preliminary considerations above
(section 2.2.1), the meaning of arithmetical terms is precisely determined only
if Peano arithmetic is categorical with respect to the isomorphism class of an
omega sequence. And the meaning of classical logical connectives is precisely
determined only if classical logic is categorical with respect to the isomorphism
class of a two-element Boolean algebra. Quite similarly, the meaning of quan-
tum expressions like “state”, “observable”, etc. is precisely determined only
if QM is categorical with respect to the relevant isomorphism class of models.
Thus, Einstein’s argument, reconstructed as I proposed above, attributes to
QM a kind of semantic indeterminacy that may help explain the difference
between EPR completeness and Einstein completeness as types of descriptive
completeness. The question is what kind of descriptive failure is the incom-
pleteness that Einstein attributed to QM? As a non-categorical theory, QM
is descriptively incomplete, just not in the sense that it fails to describe all
of the physical reality that it aims to describe, but rather in the sense that
it describes more than the physical reality that it aims to describe. This
does not necessarily imply that the theory describes states that cannot exist;
rather, it describes dynamically incompatible states, construed as elements of
non-isomorphic models.

Before I conclude this chapter, let me briefly note some implications I take
my reconstruction of Einstein’s argument to have for our understanding of
his debate with Bohr. Recall that one important point in Bohr’s reply to
the EPR paper, as was well understood by Einstein, is to deny separability
(Howard 2007). Thus, it also applies to Einstein’s own argument (by rejecting
the first half of premise 1). Einstein famously commented on this point as
follows:

By this way of looking at the matter it becomes evident that the
paradox forces us to relinquish one of the following two assertions:
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(1) the description by means of the ψ-function is complete. (2) the
real states of spatially separated objects are independent of each
other. (Einstein 1949, 682)

Einstein thought that relinquishing assertion (2), i.e., denying that spatially
separated objects have real states, would make physics impossible. But a
second important point made by Bohr is that EPR-doubles are complementary.
What does this point amount to, when considered in the algebraic framework
described above?

As noted above, Hans Halvorson has rigorously interpreted Bohr’s comple-
mentarity in terms of the unitary inequivalence of non-regular Hilbert space
representations. Since Einstein’s argument, on my algebraic reconstruction,
points out that there are representations describing subsystem A of an EPR
system that are unitarily inequivalent (premise 4T ), Bohr’s reply to the EPR
paper can be understood as a rejection of premise 5T : a complete QM does
not require unitary equivalence. Furthermore, if one is justified to reformulate
premise 5T as premise 5H , as I have done above, then the whole controversy
can be seen in a different, arguably clearer light: while Einstein deplored the
non-categoricity of QM, Bohr embraced it as a theoretical asset. As a conse-
quence, the metasemantic contrast between them could not have been more
stark: the semantic indeterminacy of the standard formalism was considered
a serious problem by Einstein, but was ignored as insignificant by Bohr.

In any case, my discussion in this section has clarified, I hope, at least some
of the assumptions behind Howard’s suggestion that Einstein completeness
should be read as categoricity. But I also pointed to some of the misconstruals
of Einstein completeness in the literature, and provided an explanation of the
sense in which Einstein completeness, as a type of descriptive completeness, is
different than EPR completeness. Finally, I suggested that the Bohr-Einstein
controversy may be considered as a debate in the metasemantics of QM.

At this point in my narrative, I want to go back to an even earlier stage
in the history of mathematical science – more precisely, to the development
of symbolic algebra in the 19th Century – in order to then return to QM and
explain the nature and metasemantic implications of another central piece in
its conceptual development: Bohr’s correspondence principle.
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3 The problem of permanence

This chapter offers a reinterpretation of Bohr’s correspondence principle as
grounded in the principle of permanence, which is presented in its historical
context. This elucidates his claim that QM is a rational generalization of clas-
sical physics, and justifies the attribution to him of a non-representationalist
metasemantics. Further, von Neumann’s use of the principle of permanence,
in QL and infinite-dimensional QM, is discussed. This shows that a signifi-
cant difference between Bohr’s and von Neumann’s views concerns semantic
facts. An analysis of Weyl’s argument that QL is not categorical, because its
connectives are not truth-functional, is also offered.

3.1 Historical roots and metasemantic implications

The problem of permanence concerns the metasemantic implications of the
principle of permanence. This principle stipulates that central elements of a
scientific theory, e.g., its rules or laws, should be preserved when extending or
generalizing the theory, or when expanding its domain. It expresses a method-
ological conservatism that has long been presupposed and often tacitly applied
by scientists. In the history of mathematics, the principle played a crucial role
in the development of algebra, e.g., in the works of De Morgan and Boole. It
was instrumental in articulating formalism – a cluster of philosophical views on
the foundations of mathematics, including views expressed in the 19th century
by George Peacock and Hermann Hankel, but also that defended by Hilbert
in the 20th century. Furthermore, as I will show in this chapter, the prin-
ciple of permanence is centrally connected with the development of modern
physics as well, especially in the work of Bohr, where it was taken to support
the transition from classical physics to QM, and von Neumann, where it was
used in further generalizations of the latter. Before I can do so (in sections
3.2.1 – 3.2.3), I give an overview (in sections 3.1.1 – 3.1.2) of the emergence of
the principle of permanence in the works of Peacock and Hankel, emphasizing
what I take to be their views on its metasemantic implications.

3.1.1 Peacock’s principle of permanence

While the actual roots of the principle of permanence may lie deep into the
philosophy and science of the 18th century, or even earlier ones, its first explicit
formulation – as the principle of permanence of equivalent forms (PPF) – is
due to Peacock, mathematician and theologian at Cambridge:

Direct proposition: Whatever form is algebraically equivalent to
another when expressed in general symbols, must continue to be
equivalent whatever those symbols denote.

Converse proposition: Whatever equivalent form is discoverable in
arithmetical algebra considered as the science of suggestion, when
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their symbols are general in their form, though specific in their
value, will continue to be an equivalent form when the symbols are
general in their nature as well as in their form. (Peacock 1833,
198sq, emphasis removed)

Peacock’s arithmetical algebra, or what had also been called “specious or
universal arithmetic”, is a theory the language of which includes not only con-
stants and signs for operations, like elementary or common arithmetic, but
also variables ranging over the domain of positive integers. He contrasted this
theory with what he called “symbolical algebra”, the language of which further
includes variables that are allowed to range over any domain of objects what-
soever, but most importantly over negative, rational, and imaginary numbers
such as the “impossible” roots of equations of second or higher degree.

The direct proposition of the PPF was taken to be rather self-evident:
“The direct proposition must be true, since the laws of combination of sym-
bols by which such equivalent forms are deduced, have no reference to the
specific values of the symbols.” (op. cit., 199) But the converse proposition
stipulates that some equivalent forms, i.e., at least the ones that can be discov-
ered and expressed in the language of arithmetical algebra, will be preserved
as equivalent forms when expressed in the language of symbolical algebra. A
prime example of such forms are the “laws of combination”, which Peacock
indiscriminately also considered as the principles or the rules of a theory. For
instance, the rule of distributivity in arithmetical algebra, which he wrote as
ma+ na = (m+ n)a, is to be preserved in symbolical algebra as such. But he
intended the notion of equivalent forms to be more general, so what is to be
preserved in passing from one theory to another are not only such rules, but
theorems as well. In any case, as I read him, he clearly rejected the universal
validity of the PPF, for he saw that those equivalent forms of arithmetical al-
gebra that are “essentially arithmetical” cannot be preserved when passing to
symbolical algebra.27 Whenever the PPF could be applied, however, it was so
useful for solving problems and proving theorems that other mathematicians,
such as De Morgan, came to regard it not merely as a heuristic principle, but
as a necessary mathematical truth.28

The sense in which arithmetical algebra can be considered as a “science of
suggestion” seems, however, rather obscure, so a brief explanation is in order.
Peacock’s main concern in his “Report” was the clarification of the nature of
the principles of symbolical algebra, which he thought had been misunderstood

27For this point, see Toader 2021b, 80. Similarly, the rule of commutativity will be later
considered an essentially classical rule, since it cannot be preserved as a relation between
operators corresponding to physical variables when passing from classical physics to QM.
For discussions of Peacock’s algebra and his PPF, see e.g. Pycior 1981, and more recently,
Lambert 2013.

28For De Morgan’s 1837 formulation of the principle of permanence, and for his discussion
of this with Ada Lovelace, who questioned the validity of the principle and his insistence on
“the necessity of its truth”, see Hollings et al. 2017.
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as being founded on, i.e., deduced from, arithmetical principles – a misunder-
standing that he took to be responsible for the view of symbolical algebra as
a mere generalization of arithmetical algebra. The PPF, and in particular the
notion of a science of suggestion, was meant to help with Peacock’s refuta-
tion of this view. On his own view, the principles of symbolical algebra are
suggested by, rather than deduced from, the principles of arithmetical algebra
and, as a consequence, the former is something other than a mere generaliza-
tion of the latter. To say otherwise was, to him, an abuse of terminology, for
the following reason:

The operations in arithmetical algebra can be previously defined,
whilst those in symbolical algebra, though bearing the same name,
cannot: their meaning, however, when the nature of the symbols is
known, can be generally, but by no means necessarily, interpreted.
The process, therefore, by which we pass from one science to the
other is not an ascent from particulars to generals, which is properly
called generalization, but one which is essentially arbitrary, though
restricted with a specific view to its operations and their results
admitting of such interpretations as may make its applications most
generally useful. (op. cit., 194)

Peacock dismissed the view according to which one arrives at symbolical
algebra from arithmetical algebra via generalization, properly so called, for
he thought this would entail that the operations in symbolical algebra must
admit of an interpretation over the domain of arithmetical algebra. On his
view, one reaches the former from the latter via what he called suggestion,
which would not entail that the operations in symbolical algebra must admit
of an interpretation over the domain of arithmetical algebra. Indeed, they
need not admit of any interpretation at all. Intriguingly, he then added that
arithmetical algebra “necessarily suggests” the principles of symbolic algebra.
This might be interpreted to say that arithmetical algebra is indispensable as a
science of suggestion for symbolical algebra. But actually Peacock considered
arithmetical algebra as merely the “most convenient” science of suggestion for
symbolical algebra, rather than an indispensable one.

As I understand Peacock’s view here, his intriguing addition should be in-
terpreted to say that it is the intertheoretical relation of suggestion that is
necessary. In general, on his view, any “arbitrary assumptions” that are logi-
cally consistent, or as he put it, “as far as they can exist in common”, could be
stipulated as principles of symbolical algebra. But since any useful application
of symbolic algebraic operations and results requires their interpretation over
the domain of the application, the arbitrary assumptions must be restricted
such that symbolic operations and results can admit of such an interpretation.
This restriction is satisfied by necessarily assuming some subordinate science
of suggestion, like arithmetical algebra. Thus, for example, if the principles
of symbolic algebra are not entirely arbitrary, but they are both consistent
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with and actually suggested by the principles of arithmetical algebra, then
the operations of symbolic algebra and their results can be interpreted over
the positive integers. More generally, without satisfying this interpretability
condition, no useful application of symbolical algebra would be possible.

Peacock’s view is, therefore, that when arithmetical algebra is actually
taken as a science of suggestion, although it is not the case that the operations
in symbolical algebra must admit of an arithmetical interpretation, it must
be the case that they can admit of an arithmetical interpretation. The arith-
metical interpretation is not necessary; it is only necessarily possible. This
condition of necessary interpretability is dictated by the requirement of use-
fulness in applications. But it allows that other sciences of suggestion might
be considered instead, and consequently that other interpretations of the sym-
bolic operations are admissible. Peacock’s point is that some such particular
interpretation must be possible and, as is clear from the direct proposition of
the PPF, any such interpretation is admissible. Moreover, if one does take
the PPF as a proper guide for the development of symbolical algebra, then
its principles, albeit not deducible from the principles of arithmetical algebra,
are deducible from the conjunction of the principles of arithmetical algebra
and the PPF. This is why Peacock said the PPF is the “real foundation” of
symbolical algebra. But this also explains why the latter’s principles, despite
their character as arbitrary assumptions, are also “necessary consequences” of
the PPF.

What are the metasemantic implications of Peacock’s principle? Could one
recover, from his reflections on the PPF, an answer to Hilbert’s question about
metasemantics (see above, section 1.1), the question about the relationship
between the language of a theory and its semantic attributes? If the operations
in symbolical algebra cannot be “previously defined”, if their meaning cannot
be determined before its principles or rules are determined, then what is it that
gives meaning to the operations afterwards? Peacock’s answer is as follows:

In arithmetical algebra, the definitions of the operations determine
the rules; in symbolical algebra, the rules determine the meaning of
the operations, or more properly speaking, they furnish the means
of interpreting them (op. cit., 200)

I take this answer as an expression of the metasemantic revolution brought
about by the PPF, a revolution in the metasemantics of 19th century math-
ematics. This is a revolution insofar as it represents a radical change from a
traditional view, according to which the meaning of mathematical operations
is determined by their definitions relative to a particular domain, as is the case
in arithmetical algebra, to a novel view, according to which the meaning of
operations is determined by their very rules, as in the case of Peacock’s sym-
bolical algebra. One way to understand his claim that the rules of symbolical
algebra determine the meaning of its operations, in the more proper sense that
these rules “furnish the means of interpreting” the operations, is to say that
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the rules determine the interpretation of the operations. But if arithmetical
algebra is taken as a science of suggestion, and if one understands this notion
as I proposed above, then an interpretation over the positive integers of the op-
erations of symbolical algebra is necessarily possible, without being necessary.
Thus, to say that the rules of symbolical algebra determine the meaning of
its operations is to say that the rules determine their interpretability, or more
precisely, the interpretability of the results obtained by those operations.29

3.1.2 Hankel’s principle of permanence

A view that is similar to Peacock’s would be later defended by Hankel, and will
be discussed in this section, before I turn to Bohr’s and von Neumann’s appli-
cations of the PPF in QM. Hankel adopted Peacock’s view of the PPF when
he set up to develop the formal theory of complex numbers. He formulated
his own version of the principle, which he initially characterized as a method-
ological or heuristic principle – “das hodegetische Princip der Permanenz der
formalen Gesetze” (Hankel 1867, vii) – as follows:

If two forms expressed in general signs of the universal arithmetic
are equal to one another, they should remain equal if the signs cease
to denote simple quantities and the operations thereby receive some
different content as well. (op. cit., 11)

This corresponds, roughly, to Peacock’s converse proposition of the PPF.
For example, the rule of (left and right) distributivity in universal arithmetic,
a(b+ c) = ab+ ac and (b+ c)a = ba+ ca, where the quantities denoted by its
variables are the positive integers, should be preserved when they denote any
other objects, like the negative, rational, or imaginary numbers. Just what
rules (forms or formal laws) are exactly to be preserved when extending the
number domain is a question that Hankel carefully considered. Like Peacock,
Hankel also warned against the universal application of the PPF, emphasiz-
ing that certain rules that hold for the real numbers are essentially real, and
as such cannot be extended to complex and hypercomplex numbers.30 This
justified his initial characterization of PPF as a methodological or heuristic

29Peacock’s view was endorsed, among others, by William Whewell, who emphasized that
the PPF should not be considered only heuristically, as a useful guide for developing new
mathematical theories, but as a principle that characterizes the interpretability relation
between theories (cf. Whewell 1840, 143). See also Gregory 1840, 323. For discussion of
the PPF in the context of formalism, see Detlefsen 2005. More needs to be said about this
metasemantic revolution, and in particular about the kind of conservatism expressed by
the PPF. I offer a comprehensive discussion in my current book-in-progress, Mathematical
Conservatism.

30Cf. Hankel 1867, 195. Furthermore, he proved that there can exist no extension beyond
the complexes that preserves the commutativity of basic operations (Detlefsen 2005, 286).
For recent discussions of Hankel’s philosophy of mathematics, especially in connection to
Frege’s criticism of it, see Tappenden 2019 and Lawrence 2021.
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(hodegetisches) principle. By stipulating that forms should be preserved as
much as possible when generalizing an arithmetical theory, Hankel also took
the PPF to characterize the relations between theories. Thus, this was not
merely a heuristic principle, but a metatheoretical one as well. Furthermore,
as we will presently see, he came to think of it as a “metaphysical” principle,
a view that was suggested to him by his envisaged application of the PPF to
the physics of mechanical quantities (forces, momenta, etc.).

Before we can identify in Hankel’s writings the same revolutionary metase-
mantics noted above in Peacock’s, an account of his view of numbers should be
in order. As Hankel remarked, the question about whether certain numbers,
like the imaginary ones, are possible should first clarify the assumed notion of
possibility. He understood this notion in terms of logical consistency: numbers
exist only if their concept is clearly and distinctly defined without any con-
tradiction. The question about the existence of numbers, he then suggested,
reduces to the question about the existence of the thinking subject or the ob-
jects of thought, since numbers represent the relations between such objects.
He then distinguished, in Kantian terms, between two main types of numbers:
on the one hand, what he called “transcendent, purely mental, purely intellec-
tual or purely formal” numbers are those representing relations between objects
of thought that cannot be constructed in intuition. On the other hand, actual
numbers, or what Hankel called “actuelle Zahlen”, are those representing re-
lations between objects of thought that are constructed in intuition. However,
he considered this distinction to be “not a rigid, but a blurred distinction”
(“kein starrer, sondern ein fliessender”, op. cit., 8). Indeed, he further char-
acterized as “potentielle Zahlen” those numbers that, although initially taken
as transcendent, incapable of any construction in intuition, eventually become
actual numbers, just as the complexes did after receiving a geometrical repre-
sentation. Potential numbers formally represent relations between objects of
thought, which are such that an intuitive construction of them turns out to be
nevertheless possible.

With his classification of types of numbers in place, Hankel characterized
formal mathematics as a pure doctrine of forms (reine Formenlehre):

The condition for the establishment of a general arithmetic is there-
fore a purely intellectual mathematics, detached from all intuition,
a pure doctrine of form, in which it is not quantities or their repre-
sentations [Bilder ], the numbers, that are combined, but intellec-
tual objects, objects of thought, to which actual [actuelle] objects
or relations thereof can, but do not have to, correspond. (op. cit.,
10)

Thus, Hankel’s formal mathematics stipulates rules of combination for po-
tential numbers, i.e., for numbers representing relations an intuitive construc-
tion of which is possible, though not necessary. These rules are arbitrary to an
extent limited solely by logical consistency, which one could ascertain, Hankel
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thought, by establishing their mutual independence. But nothing like Pea-
cock’s intertheoretical relation of suggestion seems to be explicitly required to
impose further restrictions on the rules of formal mathematics.

Nevertheless, Hankel believed that a system of operations obeying formal
rules remains “empty”, if no applications of results are possible. An empty
system allows no relations between objects of thought to be constructed in in-
tuition. Thus, Hankel understood formal mathematics as a theory of potential
numbers, conceived of as purely formal representations of relations, for which
it must be the case that a construction in intuition – an interpretation – of
its formal results can be given. While he also thought that no such particu-
lar interpretation was necessary, he took the interpretability (or, more exactly,
constructibility) of formal results to be a crucial requirement. He believed that
it must be the case, for practical reasons, that formal mathematics can be in-
terpreted over the domain of actual numbers. In this, Hankel closely followed
Peacock’s view.

Indeed, more traces of the latter can be identified in Hankel’s writings,
including statements that endorse Peacock’s rejection of generalization:

The purely formal mathematics, whose principles we have stated
here, does not consist in a generalization of the usual arithmetic;
it is a completely new science, the rules of which are not proved,
but only exemplified, insofar as the formal operations, applied to
actual numbers, give the same results as the intuitive operations
of common arithmetic. In the latter the definitions of the opera-
tions determine their rules, in the former the rules [determine] the
meaning of the operations, or to put it another way, they give the
instruction for their interpretation and their use. (op. cit., 12)

Hankel clearly embraced Peacock’s revolutionary metasemantics. One way
to understand the claim that the rules of formal mathematics determine the
meaning of its operations, in the sense that they give instructions for their
interpretation and application, is by taking the formal rules to provide in-
structions for the interpretation of formal operations over the domain of actual
numbers, where these instructions include a condition of numerical identity.
Thus, formal operations are meaningful only if the actual results obtained by
interpreting the results of formal mathematics over the domain of common
arithmetic are numerically identical with the actual results derivable by the
actual operations of arithmetic. This view is similar to that expressed by
Peacock. The interpretability of formal results is necessary for applications,
and sufficient to render the formal operations meaningful, provided that the
numerical identity condition is generally satisfied.

But Hankel went, in fact, further than Peacock. He considered PPF not
only as a guide or a heuristic principle, and not only as a metatheoretical
principle characterizing interpretability relations, either. Rather, Hankel came
to think that it was a “metaphysical” principle (op. cit., 12), a claim that he
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attempted to justify by pointing to non-arithmetical interpretations of formal
mathematics, e.g., geometrical and physical interpretations. Indeed, Hankel
took classical mechanics to be a theory of actual relations between physical
quantities that is, just like universal arithmetic, merely subordinate to the
pure doctrine of forms. And he took the PPF to stipulate that the relations
between physical quantities – the physical laws or forms, as it were – should
be preserved as much as possible in passing from classical mechanics to the
pure doctrine of forms. The operations of the latter are meaningful only if the
actual results derivable by means of the operations of mechanics are the same
as the actual results obtained by interpreting formal results over the domain
of physical quantities. On this ground, he criticized Peacock’s conception of
the PPF as “too narrow” (op. cit., 15). Investigations in the natural science,
Peacock had maintained, proceed in two directions: from principles to results,
but also towards deeper principles, in a series that terminates only in the
“mystery of the first cause”.31 Since he thought that the first cause could
not be understood as a set of ultimate natural facts, he believed that the
deepest principles of the natural sciences could not be conceived of in relation
to any formal principles. According to Hankel’s view, by contrast, mechanics,
just like arithmetic, is another necessarily possible interpretation of the pure
theory of forms. Without this possibility, formal operations could have no
physical meaning.

As we will see presently, this view had a deep influence on Bohr’s conception
of the relation between classical physics and QM: the latter, he believed, is
meaningful only if any description of its experimental results is “essentially
equivalent” with their classical description, where essential equivalence is just
Hankel’s condition of numerical identity.

3.2 Bohr’s correspondence principle

The relationship between the PPF and Bohr’s correspondence principle (CP)
has been so far rather neglected in the literature. Having looked at the histor-
ical and theoretical context of the former, I now want to revisit the latter. In
particular, without attempting to provide an exhaustive analysis, I will recall
(in section 3.2.1) the emergence of CP in the old quantum theory and some
relevant changes that occurred in Bohr’s thinking until the application of CP
in his approach to quantum mechanics.32 But I should note that it is not clear
when Bohr actually became aware of PPF: it is possible that he knew about
it from the very beginning of his articulation of CP, but it is also possible that
he found out about PPF only later, when as we will see he shared it with

31Cf. Peacock 1833, 186. I will return to Peacock’s view on principles in the natural
sciences in section 6.1, in my brief discussion of Russell’s regressive method.

32For more comprehensive accounts of CP, see e.g. Darrigol 1997, Tanona 2004, Bokulich
and Bokulich 2005, Bokulich 2008, Jähnert 2019, and Perovic 2021. For a succinct account,
see Bokulich and Bokulich 2020.
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his students.33 It is quite remarkable, nevertheless, that the development of
CP in Bohr’s thinking matches rather accurately the views about PPF that
we have seen Peacock and Hankel to have, respectively, developed. In any
case, let me stress here already the expected benefits of my point, in order
to properly motivate this inquiry. If CP is understood as grounded in PPF,
then one can explain several aspects of Bohr’s thinking, including his claim
that QM is a “rational generalization” of classical physics. As we will see (in
section 3.2.2), Bohr’s notion of rational generalization is based on Hankel’s
notion of generalization, which was essentially based on Peacock’s concept of
suggestion. Furthermore, if CP is understood as grounded in PPF, then one
can also explain a crucial element of Bohr’s approach to QM, i.e., his view that
the meaning of QM is determined by its rules, a view rather tersely expressed
in his reply to the EPR paper. As a bonus, we will also be able to make sense
of a seemingly strange criticism directed by Feyerabend and Bohm against
this approach, and to show (in section 3.2.3) that Howard’s reconstruction of
Bohr’s doctrine of the necessity of classical concepts can avoid a conflict with
CP.

3.2.1 The nature of the correspondence principle

Bohr’s early use of CP was related to his analysis of radiation into harmonic
components. The analysis was concerned with the description of the so-called
quantum jumps, i.e., the kind of transitions an electron undergoes between
stationary states, which unlike its motion in a particular stationary state,
could not be accounted for by classical electrodynamics. The radiation emit-
ted during such transitions allows, according to Bohr’s analysis, values of the
frequencies in the harmonic components different from the classical values. But
he noted an approximate agreement between quantum and classical frequency
values and stipulated such an agreement between transition probabilities and
the amplitudes of the harmonic components of the classical motion, in the
limit of large quantum numbers. He also stipulated an agreement between
transition probabilities and the amplitudes of the harmonic components, in
the case of small quantum numbers. Bohr appears to have included all these
possible relations in his early notion of correspondence:

This correspondence between frequencies determined by the two
methods must have a deeper significance and we are led to antici-
pate that it will also apply to the intensities. This is equivalent to
the statement that, when the quantum numbers are large, the rel-
ative probability of a particular transition is connected in a simple
manner with the amplitude of the corresponding harmonic compo-
nent in the motion.

33I should note here that one very plausible source on PPF could have been Bohr’s brother,
Harald, who would have been aware of this principle and its importance in the history of
mathematics. But clearly, more work on the actual sources for Bohr’s CP would be required.
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This peculiar relation suggests a general law for the occurrence of
transitions between stationary states. Thus we shall assume that
even when the quantum numbers are small the possibility of transi-
tion between two stationary states is connected with the presence of
a certain harmonic component in the motion of the system. (Bohr
1920, 249sq.)

As Bohr emphasized here clearly enough, however, the correspondence be-
tween transition probabilities and the amplitudes of harmonic components,
when quantum numbers are large, is anticipated on the basis of the corre-
spondence between frequencies, and should be preserved even when the quan-
tum numbers are small. Note that, as a general law, one that is valid for all
quantum numbers, this correspondence is not deduced from, but is said to be
suggested by the correspondence that holds for large quantum numbers. Thus,
even though CP may have emerged in Bohr’s thinking about radiation and
his atomic model, as “a result of gradual bottom-up hypothesis-building from
the experimental context within the confines of the model” (Perovic 2021, 89),
and even though it was concerned primarily with the relation between physical
quantities, it seems fair to say that here it was also assumed as a guide in the
development of Bohr’s radiation theory, as a heuristic principle instrumental
for his generalization to the case of all quantum numbers.

Furthermore, the stipulated preservation of the relation between transition
probabilities and the amplitudes of harmonic components underscores a rela-
tion between the classical theory of radiation and Bohr’s own radiation theory,
a metatheoretical relation that he denoted as a “formal analogy”, despite his
suspicion that the idea of correspondence as formal analogy “might cause mis-
understanding”. Indeed, it’s difficult to see how a formal analogy between the
classical and the quantum theory could be justified, if one took CP to concern
exclusively a relation between physical quantities. But what he meant, I think,
is that it is the stipulated preservation of this relation that justifies the formal
analogy. Of course, it is a further question what else and precisely how much
of the classical theory can be preserved in the transition to quantum theory,
and I will return to this question below.

Now, if CP is also understood as stipulating the preservation of certain
relations between physical quantities, and if it justifies Bohr’s claim of formal
analogy, then it further justifies a conception of the quantum theory as a
certain kind of generalization of the classical theory. Bohr, himself, implied as
much at the third Solvay Congress in 1921, when he noted

on the one hand, the radical departure of the quantum theory from
our ordinary ideas of mechanics and electrodynamics as well as,
on the other hand, the formal analogy with these ideas. ... [T]he
analogy is of such a type that in a certain respect we are entitled in
the quantum theory to see an attempt of a natural generalisation
of the classical theory of electromagnetism. (quoted in Bokulich
and Bokulich 2005, 348)
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What did Bohr mean here by a “natural generalization” of a classical the-
ory? And did he mean the same thing when he later referred to quantum
mechanics (QM) as a “rational generalization” of classical physics? After QM
received a coherent mathematical formulation, did Bohr consider this as a gen-
eralization justified by a formal analogy between classical physics and QM, in
turn justified by CP, understood to require the preservation of correspondences
between physical quantities? An answer to such questions would require a de-
tailed analysis of Bohr’s writings after 1925, and especially of the development
of his conception of CP, which I cannot give here. But I should, nevertheless,
note that the view that there is a correspondence in the sense of formal analogy
between classical mechanics and QM was expressed by Dirac:

The correspondence between the quantum and classical theories
lies not so much in the limiting agreement when h → 0 as in the
fact that the mathematical operations on the two theories obey in
many cases the same laws. (Dirac 1925, 649)34

Dirac appears to have justified the formal analogy via the preservation of
laws (many, though not all of them) rather than, like Bohr, via the preservation
of correspondences between physical quantities. Despite differences in their
views, such as they were, Bohr also came to characterize the metatheoretical
relation between classical mechanics and QM in terms of preservation of rules
(many, though not all of them):

In this formalism, the canonical equations of classical mechanics ...
are maintained unaltered, and the quantum of action is only intro-
duced in the so-called commutation rules... for any pair of canon-
ically conjugate variables. While in this way the whole scheme
reduces to classical mechanics in the case h = 0, all the exigencies
of the correspondence argument are fulfilled also in the general
case... (Bohr 1939, 14)

Bohr clearly indicates that this characterization is in accordance with his
CP, which suggests that, as recent commentators aptly put it, “Bohr is not sim-
ply saying that the quantum theory should ‘go over’ to the classical theory in
the appropriate limit. Rather, he is maintaining that that quantum mechanics
should be a theory that departs as little as possible from classical mechanics.”
(Bokulich and Bokulich 2005, 349, emphasis added) The suggestion is that CP,
and more precisely the inherent notion of generalization, should be understood
as the requirement that QM should preserve as many classical rules as possible.
It is this very notion of generalization, then, that Bohr thought characterized
the relation between classical physics and QM. Obviously, this does not imply

34Later, Dirac attempted to rigorously justify this view of the correspondence between
classical mechanics and Heisenberg’s QM by setting up a general theory of functions of
non-commuting variables (see Dirac 1945).
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that classical physics is just a particular case of QM, which would be implied
if QM were a mere or properly called generalization of classical physics.

Having focused on Bohr’s notion of rational generalization, I now want
to suggest further that this is exactly the notion of generalization that Pea-
cock and Hankel had thought characterized the relation between arithmetic
and arithmetical algebra, on the one hand, and symbolical algebra and formal
mathematics, on the other hand. If this is true, then it is only in part correct
to say that “Through his rational generalization thesis, Bohr is offering us a
new way of viewing the relationship between classical and quantum mechan-
ics.” (Bokulich and Bokulich 2005, 354) Bohr’s notion of a natural or rational
generalization was new only in the sense that it had not been applied, before
him, to the relation between classical and quantum physics. Before I present
evidence for the connection between Bohr’s view and that of Hankel, I want
to defend the viability of my suggestion.

Recall that Peacock rejected the view that symbolical algebra is a gen-
eralization of arithmetical algebra, for he thought this would imply that the
principles of symbolical algebra could then be deduced from, rather than just
suggested by the principles of arithmetical algebra. He also thought that the
relation of suggestion between these theories implied that an arithmetical inter-
pretation of symbolical algebraic results is not necessary, but only necessarily
possible. Later, Hankel held a similar view and maintained that the laws of
formal mathematics cannot be proved by the rules of arithmetic, but must
nevertheless be interpretable in arithmetical language, in the sense that for-
mal results must, when arithmetically interpreted, be numerically identical
with the results of arithmetic. This shows that, on both of these 19th century
views, their notion of generalization implied a certain interpretability relation
between the theories they were concerned with. In order to test the viability
of my suggestion to understand Bohr’s notion of rational generalization in the
same vein, even before I adduce any evidence for the connection between his
view and that of Hankel, one should ask whether Bohr’s notion also implies a
certain interpretability relation between QM and classical physics.

But the fact that it actually does so is, of course, well known. A crucial
element of Bohr’s approach to QM, which will be discussed further below, is
the requirement that any description of experimental results must be “essen-
tially equivalent” to their classical description. This requirement was taken
to have metasemantic implications: the necessarily classical description of ex-
perimental results settled, on Bohr’s view, the question about the meaning of
QM, which became puzzling in the context of the measurement problem. As
he put it in his reply to the EPR paper, “there can be no question of any
unambiguous interpretation of the symbols of quantum mechanics other than
that embodied in the well-known rules which allow to predict the results to be
obtained by a given experimental arrangement described in a totally classical
way.” (Bohr 1935, 701) This sounds a lot like Peacock and Hankel: rules deter-
mine the meaning of symbols, rather than the other way around. However, for
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the rules of QM to determine, or “embody”, its meaning, Bohr demanded that
experimental results must be classically interpreted. Here he deviated from
Peacock and Hankel in a significant way, and this exposed him to criticism
from Feyerabend and Bohm, as we will see. But before that, let me turn to
the imminent question about textual evidence.

3.2.2 Correspondence as permanence of rules

Is there any textual evidence that Bohr understood CP as an expression of
PPF? If there is, then it has remained by and large unnoticed by Bohr scholars,
so far as I have been able to determine. Max Jammer, who seems to have been
the first commentator to read CP as a metatheoretical principle, though not
also as a quantum law, mentioned PPF in one of his “digressions” from a
streamlined presentation of the conceptual development of QM:

[M]atrices, multidimensional vectors, and quaternions are exten-
sions of the concept of real numbers. Beyond the domain of com-
plex numbers, however, extensions are possible only at the expense
of Hankel’s principle of permanence, according to which general-
ized entities should satisfy the rules of calculation pertaining to
the original mathematical entities from which they have been ab-
stracted. Thus, while associativity and distributivity could be pre-
served, commutativity had to be sacrificed. It was the price which
had to be paid to obtain the appropriate mathematical apparatus
for the description of atomic states. (Jammer 1966, 217, emphasis
added)

Jammer implied that the mathematical description of atomic states in QM,
just like the extension of mathematics beyond the complexes, was possible only
at the expense of PPF, which suggests that he thought PPF was invalidated
by the development of QM. But this would assume that it is a universally valid
principle, a view that we have seen both Peacock and Hankel had rejected. At
the same time, Jammer thought that “there was rarely in the history of physics
a comprehensive theory which owed so much to one principle as quantum
mechanics owed to Bohr’s correspondence principle.” (op. cit., 118) A proper
understanding of CP would show that there is a “logical rupture” between
classical mechanics and QM, which he described in the following terms:

[T]he correspondence principle, while leading to numerical agree-
ments between quantum mechanical and classical deductions, af-
firmed no longer a conceptual convergence of the results but estab-
lished merely a formal, symbolic analogy between conclusions de-
rived within the context of two disparate and mutually irreducible
theories. It only showed that under certain conditions (for instance,
for high quantum numbers or, in classical terms, for great distances
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from the nucleus) the formal treatments in both theories converge
to notationally identical expressions (and numerically equal results)
even though the symbols, corresponding to each other, differ strik-
ingly in their conceptual contents. (op. cit., 227)35

A logical connection or harmony (or whatever the opposite of logical rup-
ture might be) between QM and classical mechanics would establish, Jammer
believed, a conceptual convergence of their experimental results, by which he
meant an identity of conceptual contents, rather than the numerical identity of
results. He took CP to imply that only the latter must obtain between the two
theories, while presumably thinking that PPF would require the former. How-
ever, as we have seen above, Hankel had rejected this understanding of PPF,
when (following Peacock’s view on symbolic algebra) he denied that formal
mathematics is a generalization of universal arithmetic. Recall that, accord-
ing to the reading I proposed, Hankel emphasized that PPF implies only that
formal mathematics must be interpretable in the language of arithmetic, and
when thus interpreted, all formal results should be numerically identical with
results derived in arithmetic. What Jammer wrote about CP is correct then,
provided that one takes CP as a version of PPF properly understood.

The fact that Bohr did take CP as a version of PPF has been reported
by Paul Feyerabend, who reminisced that, some time between 1949–1952, in
some of his seminars,

Bohr ... talked about the discovery that the square root of two can-
not be an integer or a fraction. To him this seemed an important
event, and he kept returning to it. As he saw it, the event led to
an extension of the concept of a number that retained some prop-
erties of integers and fractions and changed others. Hankel, whom
Bohr mentioned, had called the idea behind such an extension the
principle of the permanence of rules of calculation. The transition
from classical mechanics to quantum mechanics, said Bohr, was
carried out in accordance with precisely this principle. That much
I understood. The rest was beyond me. (Feyerabend 1995, 76-78,
emphasis added)

Note that, according to Feyerabend, Bohr’s reading of PPF did not assume
the universal validity of the principle. In accordance with Hankel’s own for-
mulation, Bohr knew well that when domains are extended in mathematics,
the rules of calculation are always preserved as far as this is possible. He also

35Others appear to have followed Jammer in making a similar point, that CP could not
and was not meant to close the conceptual gap between classical physics and QM. To give
just two examples: Olivier Darrigol claimed that “permanent formal schemes allow trans-
fers of knowledge between successive theories even if their basic concepts appear to be
incommensurable.” (Darrigol 1986, 198sq) Also, Hans Radder wrote: “Generally speaking,
intertheoretical correspondence is primarily of a formal-mathematical and empirical but not
of a conceptual nature.” (Radder 1991, 195)
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explicitly emphasized the significance of PPF for the development of QM as he
saw it: it was the very transition from classical mechanics that he saw carried
out in accordance with PPF, a significance that he typically attributed, in
print, to CP. It is in fact utterly remarkable that, in his published works, Bohr
always maintained that this transition was carried out in accordance with CP,
and as far as I have been able to determine, he never mentioned PPF or Hankel
at all. In any case, as Feyerabend’s reminiscence indicates, Bohr also knew
too well that, as in mathematics, classical rules are preserved in QM as far as
this is possible. The same point is clearly made in his 1938 Warsaw conference
talk, already quoted above:

In the search for the formulation of such a generalization [of the
customary classical description of phenomena], our only guide has
just been the so-called correspondence argument, which gives ex-
pression for the exigency of upholding the use of classical concepts
to the largest possible extent compatible with the quantum postu-
lates. (Bohr 1939, 13; emphasis added)

After one seminar meeting, Feyerabend confessed his lack of understanding
to Bohr’s assistant, Aage Petersen. In a decade or so, Feyerabend returned to
that conversation:

As Aage Petersen has pointed out to me, Bohr’s ideas may be
compared with Hankel’s principle of the permanence of rules of
calculation in new domains... According to Hankel’s principle the
transition from a domain of mathematical entities to a more em-
bracing domain should be carried out in such a manner that as
many rules of calculation as possible are taken over from the old
domain to the new one. For example, the transition from natu-
ral numbers to rational numbers should be carried out in such a
manner as to leave unchanged as many rules of calculation as pos-
sible. In the case of mathematics, this principle has very fruitful
applications. (Feyerabend 1962, 120)

What Bohr had surely explained to his students, Feyerabend now finally
understood correctly: PPF should not be taken to hold universally. It stipu-
lates, just like Peacock and Hankel emphasized, that rules or laws are to be
preserved to the largest extent possible. Thus, if applied to QM under the guise
of CP, as I take it to have been the case, then PPF allows that those classical
laws that are essentially classical, like the commutativity of operations, can be
given up.

As already noted in the previous section, this evidence, based on Feyer-
abend’s recollections of Bohr’s lectures and Petersen’s explanations, does not
tell us precisely when Bohr actually became aware of the connection between
PPF and CP: it is possible that he knew about it from the very beginning of
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his articulation of CP, in his theory of radiation, but it is also possible that
he found out about PPF only later, maybe after 1925, or even later than that
in the late 1930s or early 1940s. But I find it quite remarkable that Bohr’s
characterizations of CP as a methodological principle or a guide – the “only
guide”, as he specified in Warsaw in 1938 – as well as as a metatheoretical
principle concerning the “rational generalization” of classical physics in QM,
match rather accurately the views about PPF that we have seen Peacock and
Hankel to have, respectively, developed in 19th century mathematics. The
evidence supports at least the claim that Bohr’s notion of rational general-
ization was grounded in Hankel’s notion of generalization, which in turn was
grounded, as we have seen, in Peacock’s notion of suggestion. This clarifies, I
hope, what so far has been a rather enigmatic detail in Bohr’s works.

In fact, more can be explained on the basis of my interpretation of the
connection between PPF and CP. For Feyerabend had, of course, a lot more to
say about Bohr’s approach to QM. One particular weakness with this approach
that he immediately identified was described as follows:

A complete replacement of the classical formalism seems therefore
to be unnecessary. All that is needed is a modification of that
formalism which retains the laws that have found to be valid and
makes room for those new laws which express the specific behav-
ior of the quantum mechanical entities. ... [The new laws] must
allow for the description of any conceivable experiment in classical
terms – for it is, in classical terms that results of measurement and
experimentation are expressed; ... [this requirement] is needed if
we want to retain the idea... that experience must be described in
classical terms. (Feyerabend 1962, 120; emphasis added)

As Feyerabend correctly observed, Bohr insisted that the classical descrip-
tion of experimental results, i.e., presumably their interpretation in the lan-
guage of classical physics, is necessary. But Feyerabend rejected this necessity
claim, which might seem rather strange. His criticism, further elaborated in
the same paper, emphasizes the point that in principle a different language
could be developed at least as adequate for the description of experimental
results as the language of classical physics. Feyerabend’s point, that a classi-
cal description is not necessary, allows however that this may be necessarily
possible. In light of the view articulated by Peacock and Hankel, Feyerabend’s
criticism appears to be justified. It clearly emphasizes that Bohr’s view devi-
ated from that of Peacock and Hankel, for whom interpretability, though no
particular interpretation, was necessary. But it is this deviation precisely that
exposed Bohr to Feyerabend’s criticism.36

This very criticism was later pressed by Bohm as well: “What is called for,
in my view, is therefore a movement in which physicists freely explore novel

36To be sure, Feyerabend’s opinions about Bohr’s approach to QM have also evolved over
time (see Kuby 2021).
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forms of language, which take into account Bohr’s very significant insights
but which do not remain fixed statically to Bohr’s adherence to the need for
classical language forms.” (Bohm 1985, 159; quoted in Bokulich and Bokulich
2005, 368). That the description of experimental results must be given in a
classical language, Bohm might have added, just because they are in practice
presented in this language is not merely a static fixation, but a downright
fallacy.

Having offered some evidence that Bohr understood CP as a version of
PPF, or at least that he (and some of his assistants and, eventually, Feyer-
abend) thought that a comparison of the former with the latter would be fruit-
ful for understanding the transition from classical physics to QM, and having
also admitted that this could only justify the necessary possibility of inter-
preting experimental results in classical terms, rather than Bohr’s insistence
on its necessity, I want to turn to the question of what exactly Bohr meant
by “classical”. Some commentators think that he took such concepts to be
simply concepts of classical mechanics and electrodynamics (cf. Bokulich and
Bokulich 2005, 351), but others maintain that, for Bohr, a classical descrip-
tion meant “a description in terms of what physicists call ‘mixtures”’ (Howard
1994, 203). I want to argue that, despite appearances, if the connection be-
tween CP and PPF is taken seriously, then one can rather nicely accommodate
the latter view.

3.2.3 Howard on Bohr’s essential equivalence

In his reconstruction of Bohr’s philosophy of physics, Don Howard emphasized
that the doctrine of the necessity of classical terms was upheld by Bohr in an
attempt to overcome a problem for objectivity that arises in QM. The problem
is that what is generally considered a necessary condition for objectivity – the
metaphysical independence of observer and observed reality, and more pre-
cisely their separability, which Einstein thought was indispensable to the very
formulation and testing of physical laws – cannot be preserved when passing
from classical physics to QM. As Howard presented it, Bohr’s doctrine was
meant as a purported solution to this problem. Classical terms are necessary
because they “embody” the separability condition, which despite being false
in QM allows for an unambiguous communicability of experimental results.37

Further, Howard distinguished two ways of understanding Bohr’s doctrine:
one of them “leaves open the possibility that, as our language develops, we

37Cf. Howard 1994, 207. Note that separability is understood as state decomposability.
To say that classical concepts “embody” the separability condition is taken to mean that
separability is mathematically equivalent to Bohr’s doctrine of the necessity of classical
concepts (see Landsman 2006 for a proof of this equivalence). This entails that separability
and entanglement are incompatible. As Howard emphasized, this is precisely the reason
Bohr’s solution to the problem of objectivity is unacceptable. But note also that separability,
as Einstein himself appears to have conceived of it, may be a weaker condition than state
decomposability and, thus, compatible with entanglement (see Murgueitio Ramı́rez 2020 for
an argument to this effect).
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might outgrow this dependence” on classical concepts; the other, which is con-
sidered preferable, takes “the necessity of classical concepts to be an enduring
one, not to be overcome at a later stage in the evolution of language.” (Howard
1994, 209) However, barring the potential fallacy mentioned in the previous
section, it is not clear why the latter view should be preferred. What exactly
might explain Bohr’s insistence on the enduring character of classical language?
What reasons did he have, and what reasons might anyone have, for excluding
the possibility that other languages, as both Feyerabend and Bohm suggested,
could at least in principle be developed to communicate quantum-mechanical
results unambiguously and at least as adequately as the language of classical
physics? If CP is understood as grounded in PPF, as I have suggested, then
it is the interpretability, rather than any particular interpretation, of experi-
mental results that should be required by Bohr’s doctrine. This would leave
open the possibility envisaged by Feyerabend and Bohm.38

More importantly, however, Howard argued that, in demanding a classical
description of experimental results, Bohr’s doctrine does not require that a
measuring instrument must be described entirely in classical terms. Rather,
only some of its properties are to be described classically, i.e., those that are
correlated with the properties of the quantum system undergoing measurement
(op. cit., 216). Howard took this to imply that what Bohr meant by a classical
description should be most plausibly reconstructed as a description in terms of
mixtures, rather than pure states; mixtures that must always be appropriate
to a given experimental context. The reason for this is that, unlike pure states,
mixtures are considered to “embody” the separability condition, in the sense
that they allow the separability of measuring instrument and measured object
with regard to exactly those properties of the object one is looking to determine
in a particular measurement.

What is the role of CP on this reconstruction of Bohr’s doctrine? As
Howard noted, this doctrine requires an “essential equivalence”, i.e., an equiv-
alence between, on the one hand, the QM description of the properties of
the measuring instrument that are correlated with the measured properties
of the system undergoing measurement and, on the other hand, the classical
description of those properties of the measuring instrument. Indeed, the main
goal of Bohr’s 1938 Warsaw conference paper was to discuss “certain novel
epistemological aspects” involved in what he called “the observation problem”
and, more specifically, certain aspects regarding “the analysis and synthesis of
physical experience.” (Bohr 1939, 19) What were these aspects? The main
outcome of the analysis was an emphasis on the necessity of taking the whole
experimental arrangement, i.e., measured object plus measuring instrument,
into consideration. Without this, said Bohr, no unambiguous meaning could
be given to the QM formalism (op. cit., 20). The outcome of the synthesis
was presented as follows:

38It is of course also possible that Bohr had other unstated reasons, unrelated to CP’s
grounding in PPF, that he took to justify his doctrine (see Faye 2017).
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In the system to which the quantum mechanical formalism is ap-
plied, it is of course possible to include any intermediate auxiliary
agency employed in the measuring process. Since, however, all
those properties of such agencies which, according to the aim of
the measurement, have to be compared with the corresponding
properties of the object, must be described on classical lines, their
quantum mechanical treatment will for this purpose be essentially
equivalent with a classical description. (op. cit., 23sq)

Thus, Bohr’s insight was that giving a classical description of experimental
results can only mean establishing the essential equivalence of the two descrip-
tions of the relevant subset of properties of the measuring instrument. But
establishing such an equivalence, Howard maintained, is at odds with Bohr’s
CP:

[W]hat kind of “classical” description could be ... “essentially
equivalent” to a quantum mechanical description. In the sense in-
tended by the correspondence principle, quantum mechanics might
agree with Newtonian mechanics or with Maxwell’s electrodynam-
ics in the limit of large quantum numbers, but that is not an “es-
sential” equivalence. Moreover, the kind of convergence between
quantum and classical descriptions demanded by the correspon-
dence principle is a wholesale convergence, not an equivalence be-
tween selected sets of properties. ...

How can a classical description be ‘essentially equivalent’ to a quan-
tum mechanical one? Bohr’s correspondence principle is what first
comes to mind, but it cannot provide the answer, for two reasons.
First, the correspondence principle asserts that quantum and clas-
sical descriptions agree in the limit of large quantum numbers, that,
is, in phenomena where the quantum of action is negligible. ...

Second, what the correspondence principle says about the relation-
ship between classical and quantum descriptions is that they give
approximately the same predictions in the limit of large quantum
numbers. But approximate agreement is hardly essential equiva-
lence. The appropriate mixtures model gives a quite different an-
swer. A quantum mechanical description, in terms of a pure case,
and a ‘classical’ description, in terms of an appropriate mixture,
give exactly the same predictions for those observables measurable
in the context that determines the appropriate mixture.39

As we have seen above, there is evidence (and an apparent consensus to-
day) that CP should be read as asserting not merely an approximate agreement

39Cf. Howard 1994, 217-225. See also Howard 2021, 166 for a more recent iteration of
this view.
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that holds in the limit of large quantum numbers, but an agreement that also
holds more generally, for small quantum numbers as well. But I think that this
poses no problem for Howard’s reconstruction of Bohr’s doctrine of classical
concepts. This is because my account of CP as grounded in PPF entails that
there is no conflict at all between CP and Bohr’s demand of an essential equiv-
alence. Quite the opposite, this account can nicely accommodate the fact that
a “wholesale convergence”, i.e., an equivalence between the QM description
of all properties of the measuring instrument and their classical description,
cannot be established, and that an essential equivalence, as reconstructed by
Howard, is necessary for the classical interpretability of experimental results.

This point can be succinctly clarified by appeal to Landsman’s Bohrification
strategy.40 Quantum measurement results, considered as physically significant
aspects of a noncommutative algebra of observables (NAO), are accessible
only if they can be described classically, i.e., only if they can be considered
as aspects of a commutative algebra (CA). But NAO should be considered as
a rational generalization of CA, in Bohr’s sense. This kind of generalization
requires exactly the essential equivalence that Bohr demanded, which can be
established if and only if the elements of CA are a proper subset of the elements
of NAO – the subset determined by the particular experimental context. A
wholesale convergence, which would require that CA and NAO be coextensive,
is mathematically impossible.

In any case, I hope that my analysis above goes at least some of the way to-
wards placing “Bohr’s views on the role of classical concepts ... in their proper
historical context, especially as regards the relevant philosophical context.”
(Howard 1994, 227) As always, this is merely part of the whole story, more
details of which await to be uncovered. But as I will show in the next section,
a careful consideration of the PPF can help place also von Neumann’s views
about the logic of QM in their proper historical and relevant philosophical
context.

3.3 The permanence of the rule of modularity

QL was the outcome of Birkhoff and von Neumann’s project “to discover what
logical structure one may hope to find in physical theories which, like quantum
mechanics, do not conform to classical logic” (Birkhoff and von Neumann 1936,
823). The project was motivated by what they saw as the “novelty of the logical
notions“ of QM, e.g., the fact that logical operations cannot be defined for
all pairs of experimental propositions, independently of experimental context.
More specifically, Birkhoff and von Neumann argued (as recalled below in
section 3.3.1) that the rule of distributivity must be considered essentially
classical, and that due to the non-distributive lattice structure of the closed

40Cf. Landsman 2017. Howard’s own formal explication of what it means for a classical
description to be essentially equivalent to a QM description is based on his 1979 theorem
concerning context-dependent mixtures. For details, see Howard 2021, 162-170.
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linear subspaces on Hilbert space, the rule of modularity must instead be
adopted in the logic of QM.

But the preservation of modularity in von Neumann’s generalization of
QM to an infinite number of dimensions, i.e., in the transition from QMn

to QM∞, was explicitly justified by an appeal to the PPF. This justification
raises the question about its metasemantic implications: what does the use of
PPF entail about the semantic attributes of the formalism of QM∞, and in
particular about the meaning of its logical connectives? Was the meaning of
connectives in logic of QM∞ to be determined by the rules of the calculus or
by appropriately formulated semantic rules? Was von Neumann committed,
like Bohr seems to have been, to a non-representationalist metasemantics?

3.3.1 Birkoff and von Neumann’s quantum logic

In their 1936 joint paper, Birkhoff and von Neumann followed the latter’s own,
then recent axiomatization of QM, and assumed a relation of correspondence
between the mathematical terms in the axioms and the physical variables of a
system: “Before a phase-space can become imbued with reality, its elements
and subsets must be correlated in some way with ‘experimental propositions’.”
(op. cit., 825) More exactly, “closed linear subspaces of Hilbert space corre-
spond one-many to experimental propositions, but one-one to physical qual-
ities.” (op. cit., 828) The main goal of their paper was to show that the
experimental propositions describing the possible values of the physical vari-
ables of the system form a non-distributive lattice, and thus cannot admit a
classical logical calculus.

Let me start by revisiting their semantic proof against classical logic (CL)
for the case of QMn, that is, finite-dimensional QM. The quantum logical cal-
culus, QL, that Birkhoff and von Neumann envisaged includes a sentential
language with variables for atomic sentences, p, q, ..., and symbols for logical
connectives, ¬,∧,∨, such that the set SQL of sentences is defined, as usual,
by induction: for any sentences p and q in the set, ¬p, p ∧ q, and p ∨ q are
also in the set. QL also includes some of the rules of the classical calculus
CL, such as double negation and De Morgan. But unlike the semantics of CL,
which they took to be a Boolean algebra, BA (op. cit., 826), the semantics
of QL is a non-Boolean lattice, LA, i.e., a partially ordered set SLA of ele-
ments, together with operations ⊥,∩,∪, for orthocomplementation, meet, and
join, respectively. Meet is set-theoretic intersection, join is the operation that
yields the smallest element containing the joined elements, i.e., their span,
and orthocomplementation is defined in terms of a map h : SQL −→ SLA as
set-theoretic complementation plus partial order reversal:

h(p) = h(q)⊥ iff {x : x ⊆ h(p)} = {x : x⊥h(q)}.

To say that LA is the semantics of QL is to say that h is a homomor-
phism, with the following statements as definitions of the connectives, i.e.,
their semantic rules:
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h(¬p) = h(p)⊥

h(p ∧ q) = h(p) ∩ h(q)
h(p ∨ q) = h(p) ∪ h(q).

The relation of logical consequence for QL is defined in terms of partial
order:

Γ |=QL q iff ∩{h(p) : p ∈ Γ} ⊆ h(q).

As Birkhoff and von Neumann noted, the mathematical structure of LA
is that of the set of closed linear subspaces of a finite-dimensional Hilbert
space, and can thus be taken to represent the physical properties of a quantum
system. This implies that sentences in SQL are interpreted as “experimental
propositions”, i.e., statements that specify the possible values of the physical
variables of a quantum system when this is in an appropriate state. However,
LA does not validate the rule of distributivity. Their semantic proof that
distributivity breaks down in QMn is formulated as follows (op. cit., 831):

if a denotes the experimental observation of a wave-packet ψ on
one side of a plane in ordinary space, a⊥ correspondingly the ob-
servation of ψ on the other side, and b the observation of ψ in a
state symmetric about the plane, then (as one can readily check):
b∩ (a∪a⊥) = b∩1 = b > 0 = (b∩a) = (b∩a⊥) = (b∩a)∪ (b∩a⊥).

This means that if the quantum system is observed in a state represented
by a vector (in a finite-dimensional Hilbert space) contained in the subspace
b∩ (a∪a⊥), that vector cannot be contained in the subspace (b∩a)∪ (b∩a⊥).
The fact that there are such elements a, b ∈ SLA entails that there are sentences
p, q ∈ SQL such that

h(p) ∩ (h(q) ∪ h(q)⊥) * (h(p) ∩ h(q)) ∪ (h(p) ∩ h(q)⊥),

which, given the stipulated semantic rules and the relation of logical conse-
quence, invalidates the rule of distributivity: p∧ (q∨¬q) 2QL (p∧q)∨ (p∧¬q).

Birkhoff and von Neumann further mentioned as “a salient fact” that a
“generalized” rule of distributivity is invalidated also by the lattice of the
closed subspaces of an infinite dimensional Hilbert space, i.e., for the case of
QM∞. This was then explained in more detail by von Neumann at a conference
in Warsaw in 1938, in his remarks following Bohr’s lecture mentioned already in
the previous section. The generalized rule was formulated as follows (modified
for uniform notation):

(a ∪ b ∪ c ∪ ...) ∩ (a⊥ ∪ b⊥ ∪ c⊥ ∪ ...) =
(a ∩ a⊥) ∪ (a ∩ b⊥) ∪ (a ∩ c⊥) ∪...∪
(b ∩ a⊥) ∪ (b ∩ b⊥) ∪ (b ∩ c⊥) ∪ ...∪

(c ∩ a⊥) ∪ (c ∩ b⊥) ∪ (c ∩ c⊥) ∪ ... ∪ ...
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This rule breaks down, von Neumann explicitly pointed out, as a conse-
quence of Heisenberg’s Uncertainty Principle. Here is his argument. Let the
elements a, b, c, ... be such that their corresponding sentences p, q, r, ... state
“m∆p ≤ p < (m+1)”, for p the momentum of a system andm = 0,±1,±2, ...,
and such that their negations ¬p,¬q,¬r, ... state “n∆q ≤ q < (n+ 1)”, for q
the position of that system and n = 0,±1,±2, .... It follows then that

a ∪ b ∪ c ∪ ... = a⊥ ∪ b⊥ ∪ c⊥ ∪ ... = 1,

but since ∆p∆q << h, then

a ∩ a⊥ = a ∩ b⊥ = a ∩ c⊥ = ... =
b ∩ a⊥ = b ∩ b⊥ = b ∩ c⊥ = ... =
c ∩ a⊥ = c ∩ b⊥ = c ∩ c⊥ = ... = 0.

The conclusion of von Neumann’s argument is this:

The ‘principle of indeterminacy’ means that the ‘distributive law’
of logics fails. The current view of quantum mechanics therefore
forbids us to form both a ∪ b ∪ c ∪ ... and a⊥ ∪ b⊥ ∪ c⊥ ∪ ... in the
same consideration. We have freed ourselves of such restrictions,
but had to sacrifice the ‘distributive law‘ of logics instead. (Bohr
1939, 37)

Already in 1936, Birkhoff and von Neumann maintained that QL is a mod-
ular calculus, since the lattice of “the finite dimensional subspaces of any
topological linear space such as Cartesian n-space or Hilbert space” (op. cit.,
832 ) satisfies the rule of modularity (i.e., a version of Dedekind’s rule of mod-
ular identity, first formulated in 1871). This is a weaker form of distributivity,
since it must satisfy an additional condition, i.e., b ⊆ a⊥ (for the case illus-
trated in their semantic proof). But they provided a counterexample to the
generalized rule of modularity in QM∞, by arguing that the lattice of closed
linear subspaces of an infinite-dimensional Hilbert space cannot be modular,
and then suggesting the following two possibilities:

One can ... construct for every dimension-number n a model Pn(F )
[that is, a projective geometry isomorphic to the modular lattice
LA], having all of the properties of the propositional calculus sug-
gested by quantum-mechanics. One can also construct infinite-
dimensional models P∞(F ) whose elements consist of all closed
linear subspaces of normed infinite-dimensional spaces. But philo-
sophically, Hankel’s principle of the ‘perseverance of formal laws’
(which leads one to try to preserve [modularity]) and mathemat-
ically, technical analysis of spectral theory in Hilbert space, lead
one to prefer a continuous-dimensional model Pc(F ).
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The generalization to infinite dimensions, that is the transition from QMn

to QM∞, could be done in two different ways, but only one of them preserves
the rule of modularity in the logical calculus. This is because while Pc(F ),
as a semantics of QL, is isomorphic to a modular lattice, the other semantics
they mentioned, P∞(F ), preserves the Hilbert space but is not isomorphic to
a modular lattice. One reason they specified in support of their choosing the
model Pc(F ) rather than P∞(F ) explicitly invokes Hankel’s principle of per-
manence. The more explicit reasoning behind this choice had been explained
by von Neumann in a 1935 letter to Birkhoff:

I would like to make a confession which may seem immoral: I do
not believe absolutely in Hilbert space any more. ... (as far as
quantum-mechanical things are concerned) ... footing on the prin-
ciple of ‘conserving the validity of all formal rules’, Hilbert space is
the straightforward generalization of Euclidean space, if one con-
siders the vectors as the essential notions. Now we begin to believe,
that it is not the vectors which matter but the lattice of all linear
(closed) subspaces. Because: (1) The vectors ought to represent the
physical states, but they do it redundantly, up to a complex fac-
tor, only. (2) And besides the states are merely a derived notion,
the primitive (phenomenologically given) notion being the quali-
ties, which correspond to the linear closed subspaces. But if we
wish to generalize the lattice of all linear closed subspaces from a
Euclidean space to infinitely many dimensions, then one does not
obtain Hilbert space, but that configuration, which Murray and
I called ‘case II1’ [i.e., the modular lattice isomorphic to Pc(F )].
... And this is chiefly due to the presence of the rule [of modular-
ity]. This ‘formal rule’ would be lost, by passing to Hilbert space!”
(quoted in Rédei 1998, 112)

This confession has been extensively discussed in the literature. For exam-
ple, Miklos Rédei wrote: “[T]he moral of the presented story of von Neumann’s
intellectual move from the Hilbert space formalism towards the type II1 (and
even more general) algebras is that what drove him was not the desire to have a
mathematically unobjectionable theory – there was nothing wrong with Hilbert
space formalism as a mathematical theory. What von Neumann wanted was
conceptual understanding.” (Rédei 1998, 116) But how exactly does Hankel’s
PPF, which is invoked not only in the Hilbert space generalization of Euclidean
space, but also as a philosophical justification for the preservation of the rule
of modularity in the transition from QMn to QM∞, help in this pursuit of what
Rédei called conceptual understanding? To be sure, modularity was taken by
Birkhoff and von Neumann to allow a well-defined dimension function d(a),
which they noted to be formally equivalent to a finite probability measure.41

41Cf. Birkhoff and von Neumann 1936, 832. See Rédei 1998 for extensive discussion of
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As Rédei further pointed out, modularity excludes not only infinite, and thus
“pathological”, probability measures, but pathological operators as well, i.e.,
unbounded operators on Hilbert space. But was this enough for reaching the
kind of understanding that von Neumann was looking for? How did his pur-
suit relate to the overall project of discovering not only the non-classical logical
structure of QMn, but that of QM∞ as well?

As avowed from the very outset, I think that one cannot reach a full under-
standing of a scientific theory without knowing what determines the meaning
of its linguistic expressions, including both its logical and non-logical terms.
I also think, more particularly, that von Neumann’s move against the Hilbert
space formalism in QM∞ can be better understood if one considers the metase-
mantics of QM∞, and in particular, what he thought determined the semantic
attributes of its non-distributive logical calculus. The relevant question here is
whether the application of Hankel’s PPF to what von Neumann took to be a
“proper” generalization of QMn led him to believe that the meaning of QM∞ is
determined by its rules, and in particular, that the rules of its logical calculus
determine the meaning of its connectives.

As we have seen above, in QMn, the logical connectives are defined by
semantic rules in terms of operations in the modular lattice LA of the closed
linear subspaces of finite-dimensional Hilbert space, via the homomorphism h :
SQL −→ SLA. But these semantic rules cannot remain in place in QM∞, since
preserved modularity eliminates the possibility of defining logical connectives
in terms of operations on the lattice of the closed linear subspaces of infinite-
dimensional Hilbert space. This is because, as we will see in chapter 4, this
lattice turns out to be orthomodular, rather than modular. In other words, no
homomorphism h∞ : SQL −→ P∞(F ) can be constructed that can help define
the logical connectives and the relation of logical consequence, while at the
same time having P∞(F ) validate the generalized rule of modularity. But if
the semantic rules that define the connectives in QMn cannot remain in place
in QM∞, then what determines the meaning of its connectives?

Had von Neumann embraced what Hankel (following Peacock) thought
were the metasemantic implications of the PPF, he would have argued, I think,
that it is the rules of the logical calculus that determine the meaning of con-
nectives in QM∞. However, despite his invoking the PPF to select Pc(F ) in
the transition to infinite dimensions, von Neumann argued differently: the log-
ical connectives in QM∞ must be defined by stipulating new semantic rules in
terms of operations on the algebra that he called “type II1”. In other words,
a new homomorphism must be constructed, hc : SQL −→ Pc(F ) such that the
generalized rule of modularity is validated by Pc(F ) and the connectives are
then defined by semantic rules:

hc(¬p) = hc(p)
⊥

von Neumann’s conception of probability. The assumption of the well-definedness of d(a)
was questioned by Weyl in 1940, as we will see in the next section.
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hc(p ∧ q) = hc(p) ∩ hc(q)
hc(p ∨ q) = hc(p) ∪ hc(q),

This raises important metasemantic questions. Do these new semantic rules
determine the meaning of connectives precisely? Is the logical calculus of QM∞
categorical? More exactly, are its logical connectives truth-functional under
all truth valuations v : SQL −→ {0, 1}? In a paper that has unfortunately
drawn less attention than it deserves, Weyl argued that this was not shown to
be the case even for the logical calculus of QMn (Weyl 1940). As we will see
presently (section 3.2.2), he argued that the connectives of the latter, although
they may be truth-functional under some valuations, it is doubtful that they
are truth-functional under all valuations. Although he could have made the
same argument with respect to the logical calculus of QM∞, that argument
had to wait 40 years to be made explicitly. This will be critically discussed
further below (in section 4.2). Before I do so, I want to close this section with
a brief historical note concerning what I take to be an important difference
between Bohr’s and von Neumann’s views of QM.

It is well known that, while many criticized Bohr’s CP, von Neumann de-
scribed it as a “striking point” of QM, “which played a decisive role in the final
clarification of the problem” of a coherent formulation of the theory (von Neu-
mann 1932, 6). He also regarded the CP as a not fully quantum-mechanical
principle, “belonging half to classical mechanics and electrodynamics” (loc.
cit.). Returning the favor, Bohr praised von Neumann’s “elegant axiomatic
exposition” and even pointed out the “evident” character of his completeness
proof (Bohr 1939, 16). However, although their views on QM were, for some
time, considered parts of the same interpretation – the Copenhagen interpre-
tation – Bohr never endorsed or even mentioned (in print) von Neumann’s col-
lapse postulate (Bokulich and Bokulich 2005, 367sq). Bohr did speak against
collapse at a 1938 Warsaw conference, where he deftly remarked, in the discus-
sion following his talk, that it was “a question of choosing the most adequate
description of the experiment.” (Bohr 1939, 45) The implication was that the
collapse postulate failed to provide such a description.

Beyond this, the difference between Bohr’s and von Neumann’s view on QM
is usually characterized in terms of their personal abilities. A meeting between
them was described by Léon Rosenfeld in a 1963 interview by Thomas Kuhn
and John Heilbron as “rather disastrous”, and Bohr’s (private) comments on
a talk by von Neumann as “very disparaging”. In 1968, in his letters to Jef-
frey Bub, Bohm portrayed them as almost opposite figures: Bohr, well known
for his physical insight and his (alleged) lack of mathematical rigor; von Neu-
mann, highly regarded for his mathematical genius, despite his (alleged) lack
of physical insight. Such characterizations may express significant and com-
plex aspects of their science. Nevertheless, I think that the difference in the
conception of metasemantics that can be attributed to each of them is no less
important. While Bohr followed Hankel in adopting a non-representationalist
metasemantics, von Neumann did not do so. They had different solutions to
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what I called the permanence problem. If I am right to think that metaseman-
tics has consequences for our philosophical understanding of QM, then this
difference can help us grasp what might have well been the real rift between
Bohr and von Neumann.

In any case, in the next section, I will reconstruct Weyl’s argument against
Birkhoff and von Neumann’s non-distributive QL, which clearly shows that
metasemantics has consequence for our understanding of the logic of QM.

3.3.2 Weyl’s objections to quantum logic

Weyl’s paper, ominously titled “The Ghost of Modality”, deals with the ques-
tion whether a universal logic of modality exists. Although overlooked, the
paper did not go completely unnoticed. Bas van Fraassen mentioned it as an
antecedent to the semantic approach to scientific theories that, on his view,
only began in earnest with Evert Willem Beth’s 1948 Natuurphilosophie (van
Fraassen 1987, 105). Likewise, he later wrote: “Weyl gave in rudimentary
but prescient form the outline of the semantic analysis that would eventually
unify modal, quantum, and intuitionistic logic.” (van Fraassen 1991, 129) To
answer the question whether a universal logic of modality exists, Weyl did
indeed carefully examine several “models” in which modal operators combine
“unambiguously” with logical connectives. Given the existence of different
sets of axioms for different such models, among which was Birkhoff and von
Neumann’s QL, Weyl concluded, however, that (as one might already guess
from the title of the paper) there is no universal logic of modality.

In his analysis of QL, Weyl took up one of the questions that Birkhoff and
von Neumann had asked at the very end of their paper: “What experimen-
tal meaning can one attach to the meet and join of two given experimental
propositions?” (Birkhoff and von Neumann 1936, 837) Weyl’s answer to this
question was negative: no experimental meaning can be given to the meets
and joins of any two experimental propositions of QM. This is because, he
maintained, QL was not shown to be a complete calculus. By this he may be
taken to have meant two things: first, it was not shown to be a categorical
calculus, i.e., it may allow for non-isomorphic valuations, including valuations
that would make the logical connectives non-truth-functional; and secondly,
but relatedly, despite what von Neumann believed to be the case, the modular
lattice, LA, was not shown to admit of a well-defined probability measure.

In the first step of his argument for the incompleteness of QL, Weyl con-
sidered classical logic (CL):

In classical logic there is no doubt about the meaning of any com-
bination of arbitrary propositions p, q, r, ... by the operators
¬,∧,∨,... however complicated the structure may be, and we have
a perfectly clear combinatorial criterion by which to decide whether
such a combined proposition is generally (analytically) true: if its
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value turns out to be 1 whatever combination of values 1, 0 one
assigns to the arguments p, q, r, ... .42

The combinatorial criterion for identifying classical tautologies would seem
to imply that the CL connectives are truth-functional, i.e., they are such that
for any truth valuation v:

v(¬p) = 1 if and only if v(p) = 0,
v(p ∧ q) = 1 if and only if v(p) = v(q) = 1,
v(p ∨ q) = 0 if and only if v(p) = v(q) = 0.

The truth-functionality of CL connectives requires the existence of a ho-
momorphism f : SCL −→ SBL where, as Birkhoff and von Neumann noted, BL
is a Boolean algebra, as well as that of a homomorphism g : SBL −→ {0, 1}.
If these two conditions were met, then the CL connectives would be truth-
functional because the valuation v : SCL −→ {0, 1} is a homomorphism, too,
since v = g ◦ f . Weyl must have thought that no other valuations are pos-
sible, and in particular, no valuation that would make the CL connectives
non-truth-functional while obeying the combinatorial criterion for identifying
classical tautologies.43

In the second step of the argument, when Weyl compared CL with QL, he
claimed that what he referred to as a “parallelism” holds in the former but
not in the latter:

The classical logic of propositional functions with its variables p,
q, ... has a much greater flexibility, due to the parallelism between
the operators ∼,∩,∪ for sets and for (truth or probability) values,
a feature prevailing in classical logic which breaks down completely
in quantum logic.44

Weyl’s view is that, unlike g, the following two maps, g′ : SLA −→ {0, 1}
and g′′ : SLA −→ [0, 1], are not homomorphisms. Therefore, even if h :
SQL −→ SLA is a homomorphism, there may be at least one truth valuation
v′ : SQL −→ {0, 1}, with v′ = g′ ◦ h, which would not be a homomorphism. In
this case, the QL connectives would not be truth-functional under valuation
v′. This may not exclude the possibility that there are other valuations under
which QL connectives are truth-functional, but Weyl was right that if g′ is
not a homomorphism, then this is enough to justify the claim that Birkhoff

42Cf. Weyl 1940, 288. I have modified the text of this quotation for uniform notation.
For simplicity, I have also ignored the conditional.

43As it turned out, Weyl was not right about this, but the reason why he was not right
would only become better known a few years after his paper was published, when Carnap
constructed what he called “non-normal interpretations” of the classical logical calculus
(Carnap 1943). I will have more to say about these interpretations, in section 5.3.1.

44Cf. Weyl 1940, 299. I modified the text of this quotation for uniform notation, and I
ignored the quantifiers for simplicity.
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and von Neumann did not establish that QL is a complete, i.e., categorical
calculus.

To see why Weyl thought that g′ was not, or at least was not shown to be
a homomorphism, consider any elements a, b ∈ SLA. What is the truth value
that g′ assigns to their meet and join? Weyl thought that what Birkhoff and
von Neumann said about the modular lattice LA provided no reason to believe
that

g′(a ∩ b) = 1 if and only if g′(a) = g′(b) = 1;
g′(a ∪ b) = 0 if and only if g′(a) = g′(b) = 0,

and so, no reason to believe that, for any p, q ∈ SQL,

g′(h(p ∧ q)) = 1 if and only if g′(h(p)) = g′(h(q)) = 1;
g′(h(p ∨ q)) = 0 if and only if g′(h(p)) = g′(h(q)) = 0.

Therefore, Weyl had no reason to believe that QL conjunction and QL
disjunction are truth-functional, i.e., no reason to believe that

v′(p ∧ q) = 1 if and only if v′(p) = v′(q) = 1;
v′(p ∨ q) = 0 if and only if v′(p) = v′(q) = 0.

Birkhoff and von Neumann seem to have assumed precisely the parallelism
that Weyl saw broken. For not only they believed that LA admits of a well-
defined probability measure, which will be presently discussed, but they also
maintained that, for any system whose physical variables are described by
sentences A and B, it is natural to assume that when A is true at precisely
the states in h(A), and when B is true at precisely the states in h(B), then
A∧B is true at precisely the states in their meet h(A)∩h(B).45 More exactly,
this assumption says that, for any valuation v, if v(A) = 1 precisely when A

is mapped to h(A), and v(B) = 1 precisely when B is mapped to h(B), then
v(A ∧ B) = 1 precisely when A ∧ B is mapped to h(A ∧ B). This entails
that there is a map g′ such that if g′(h(A)) = 1 and g′(h(B)) = 1, then
g′(h(A ∧ B)) = 1. But as just discussed, Weyl pointed out that Birkhoff and
von Neumann had given no reason that would justify this condition on g′.

Furthermore, Weyl also argued that the modular lattice, LA, does not, or
at least was not shown to admit of a well-defined probability measure. Let
v′′ : SQL −→ [0, 1] be a probability valuation. He noted that v′′ = g′′ ◦ h
cannot be a homomorphism, even if h : SQL −→ SLA is a homomorphism.
This is because g′′ : SLA −→ [0, 1] is not a homomorphism. To see that g′′ is
not a homomorphism, consider again any elements a, b ∈ SLA. What is the
probability value that g′′ assigns to their meet and join? Weyl pointed out
that the values of a∩ b and a∪ b are not uniquely determined by the values of
a and b. Instead,

45Cf. Birkhoff and von Neumann 1936, 829n. They also probably believed, although never
stated explicitly, that it would be as natural to assume that when A is true at precisely the
states in h(A), and when B is true at precisely the states in h(B), then A ∨ B is true at
precisely the states in their span h(A) ∪ h(B).
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g′′(a ∪ b) ∈ [0, max(g′′(a), g′′(b))],
g′′(a ∩ b) ∈ [0, min(g′′(a), g′′(b))].

This immediately implies that a probability measure on LA is not well-
defined. Recall that Birkhoff and von Neumann maintained that it is precisely
its modularity that guarantees the existence of a probability measure, which
is formally identical to their dimension function d(a). But Weyl’s criticism
clearly entails that one property of this function,

d(a) + d(b) = d(a ∩ b) + d(a ∪ b))

fails to hold. This is because, since d(a∩ b) + d(a∪ b) lacks a unique value,
d(a) + d(b) lacks a unique value. He also thought that it would be simply
arbitrary to fix a unique value by merely stipulating that

g′′(a ∪ b) = max(g′′(a), g′′(b)),
g′′(a ∩ b) = min(g′′(a), g′′(b)).

As he put it, “by enforcing the arbitrary rules ... we sold our birthright
of reality for the pottage of a nice formal game.” (Weyl 1940, 299) As a
consequence of this analysis, Weyl concluded that QL has very little extrinsic
significance, for quantum physics, despite its attractive intrinsic mathematical
features.

Weyl’s criticism is a clear answer to that important question from the very
end of Birkhoff and von Neumann’s paper: the meets and joins of any two
experimental propositions of QM can be given no experimental meaning be-
cause it has not been shown that such a meaning can be precisely determined.
More exactly, it has not been shown that the semantic attributes, i.e., truth
values and probability values, of the conjunctions and disjunctions of any two
sentences in SQL are precisely determined by the stipulated semantic rules.

This is important for the metasemantics of QL, for the following reason.
While it would later be established that an orthomodular lattice admits a well-
defined (essentially unique) probability measure,46 this development, i.e., the
replacement of the rule of modularity by the weaker rule of orthomodularity,
fails to address Weyl’s worries about the truth-functionality of QL connectives.
In fact, it shows his extraordinary prescience, for after the rule of modular-
ity was replaced by that of orthomodularity, QL turned out to be provably
non-categorical. This was established by Hellman, who demonstrated that
QL disjunction and conjunction are non-truth-functional connectives (Hellman
1980).

Wrapping up, I hope to have shown in this chapter that the significance of
the PPF for the development of QM is undeniable. In one case, I have argued
that Bohr’s CP was grounded in the PPF as a metatheoretical principle. This

46Cf. Gleason 1957, but see also Beltrametti & Cassinelli 1981, ch. 11 for a concise
presentation.
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explains why he thought that QM was a rational generalization of classical
physics, and that this notion should be understood in the sense of generaliza-
tion that had been articulated by Peacock and Hankel in the 19th century.
I have also attributed a non-representationalist metasemantics to Bohr, who
maintained that the physical meaning of symbolic expressions in QM is deter-
mined by its rules of calculation. In the other case, I have argued that Birkhoff
and von Neumann’s work on QL, and especially the latter’s generalization of
QMn to QM∞, despite being driven by an application of the PPF, does not
challenge their representationalist metasemantics. This reveals what I take to
be a significant difference between Bohr’s and von Neumann’s views on QM.
Finally, I have presented Weyl’s metasemantic reasons for rejecting modular
QL as a “formal pottage”.

In the second half of the book, my investigation will split in the following
way. Chapter 4 will follow the line of critical reflections on QL initiated by
Weyl and will analyze more recent arguments concerning orthomodular QL.
Chapter 5 will then return to non-representationalism about QM, and consider
the inferentialist metasemantics proposed by Healey, as well as the project of
a non-inferentialist metasemantics for QBism.
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4 The logic of quantum mechanics

This chapter focuses on the logical revisionism initiated by Putnam’s rejection
of CL in QM. One argument, due to Rumfitt, denies the very possibility of
revisionism, on rational grounds. Another, due to Williamson, claims that re-
visionism is either inconsistent or explanatorily too costly. Both of these recent
arguments are shown to be unsound, although neither QL, nor revisionism is
thereby supported. An older argument, due to Hellman, opposes revisionism
on semantic grounds, related to the non-truth-functionality of QL connectives.
But only a significantly improved version of this argument is shown to provide
a sufficient reason to bury Putnam’s revisionism.

4.1 Rational adjudication against classical logic

The transition from classical physics to QM was taken by Birkhoff and von
Neumann to require a replacement of classical logic (CL) by a non-distributive
quantum logic (QL). The present chapter follows the line of critical reflection on
QL initiated by Weyl, focusing on arguments developed after Putnam enrolled
QL in the service of realist metaphysics (Putnam 1968). One important argu-
ment, right along that line, was developed by Hellman, who proved (as recalled
in section 4.2.3) that QL disjunction is not truth-functional, and took this to
justify the claim that QL connectives are semantically inequivalent to their CL
counterparts (Hellman 1980). Rather than a revision of CL, as Putnam saw
it, QL is therefore just an alternative to CL, as Birkhoff and von Neumann
appear to have intended it. An objection recently raised by Rumfitt against
Putnam’s revisionism contends that the proof that the rule of distributivity
fails in QM (henceforth referred to as “the Proof”) is rule-circular: it cannot
justify the claim that distributivity fails because it actually assumes this very
rule in the metalanguage (Rumfitt 2015). This objection thus purports to re-
ject the claim that quantum logicians can rationally adjudicate against CL. I
will describe in detail a way to resist this objection by minimally revising the
so-called eigenstate-eigenvalue link of standard QM, although an immediate
response could also be that the objection actually equivocates on the meaning
of “distributivity”.

This response is based on Hellman’s argument: if one takes semantic in-
equivalence seriously, then distributivity in the metalanguage is a classical rule,
while that which the Proof shows to fail in QM is not. Thus, there really is no
rule-circularity. But then, of course, the real problem with the Proof is that,
despite Putnam’s intention, it fails to justify the claim that it is classical dis-
tributivity that fails in QM. I will start by presenting the Proof (section 4.1.1),
discussing Rumfitt’s objection (section 4.1.2), and explaining how this can be
resisted (section 4.1.3). Turning to Hellman’s argument, I will focus on his as-
sumption that QL negation is truth-functional and, thus, classical. He justified
this by noting that quantum logicians already accept CL in mathematics and
in the language about the macro-physical world, rather than by appeal to any
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realist metaphysical grounds. However, we will see (in sections 4.2.1 – 4.2.3)
that there are strong reasons for taking QL conjunction to be truth-functional,
which entails that QL disjunction and negation are non-truth-functional. This
backs the claim, first made by Arthur Fine in 1972, that the Proof does not
actually justify the failure of classical distributivity. But one might claim, as
Williamson has, that if quantum logicians accept CL in mathematics, then the
application of classical mathematics to QM leads to an inconsistency with the
use of QL in the language about the micro-physical world (Williamson 2018).
However, as we will see (in sections 4.3.1 – 4.3.3), no such inconsistency exists.

4.1.1 Putnam’s logical revisionism

Birkhoff and von Neumann’s argument for replacing the package QM & CL
by the alternative package QM & QL does not explicitly say anything about
metaphysics. Taking this up in the late 1960s, Putnam argued for replacing
QM & CL & IM by QM & QL & TM, where intolerable metaphysics is part
of the former package and tolerable metaphysics part of the latter. He pointed
out that QM & QL & TM is preferable to QM & CL & IM, since the absence of
worldly indeterminacy is more tolerable than its presence, just as the absence
of hidden variables is more tolerable than their presence, on any measure
of tolerance for realist metaphysical hypotheses. In addition, QM & CL &
IM makes stronger logical assumptions, since it demands that conjunction
distribute over disjunction. On this basis, Putnam defended the view that
CL must be revised by QL, holding on to this view for almost 25 years.47

Later on, Putnam came to acknowledge packages that preserve CL and include
realist metaphysical hypotheses that are not that intolerable: “Surely, before
we accept views that require us to revise our logic, we need to be sure that
it is necessary to go that far to make sense of quantum phenomena. And we
now know that it is not. ... I was wrong to think that a tenable realistic
interpretation must give up classical logic.“ (Putnam 2012, 175-177)

However, it remains unclear whether Putnam was ready to concede more
than this, and in particular that he was perhaps also wrong to think that it is
even possible to go that far, that a tenable realist interpretation of quantum
mechanics can give up CL and adopt QL instead. Of course, one might think
that the possibility of adopting QL in QM should not hang on the tenability
of a realist interpretation, especially if – as some philosophers claim – a QL
realist interpretation of QM has already been shown untenable and is now of
merely historical interest (Maudlin 2010, 2022). Indeed, as announced above,
my focus in this section will be on Rumfitt’s objection, which can be analyzed

47Putnam also allowed a bivalent semantics for QL, so his favorite package was actually
QM & BQL & TM. Putnam 1991, written in Italian and never translated, may be the first
paper where he retracted his view on QL, following criticism by Michael Dummett. See
also Putnam 1994, where his retraction is triggered by Michael Redhead’s criticism. For an
analysis of Putnam’s views on QL, see Bacciagaluppi 2009. For more on QL, see e.g. Dalla
Chiara et al. 2004.
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independently of the issue of the tenability of a realist interpretation, that
Putnam was wrong to believe that the rule of distributivity can be ditched.
To facilitate the analysis of this objection, this section offers a formal proof that
distributivity fails in QM, as well as its validation by the semantics assumed
by Putnam.

Let QL be the quantum logical calculus, which includes a sentential lan-
guage, L, with variables for atomic sentences, p, q, ..., and symbols for logical
connectives, ¬,∧,∨, such that the set SQL of sentences is defined inductively.
Let QL have most rules of a classical natural deduction system, such as double
negation, De Morgan rules, as well as introduction and elimination rules for
all connectives (with the exception of unrestricted ∨-elimination).48 For any
i ∈ {1, ..., n}, let Ai be sentences in SQL stating the possible positions of a
quantum system P, and for any j ∈ {1, ..., m}, let Bj be sentences in SQL
stating its possible momenta. Assume that the state space associated with
P is a finite-dimensional Hilbert space, and assume the standard eigenstate-
eigenvalue link (EEL), i.e., that P ’s observables can have precise values only
at their eigenstates. Suppose P is in a position eigenstate, and Az states P ’s
measured position. Then the Proof is given by the following formal derivation:

1. Az ∧ (B1 ∨ ... ∨ Bm) premise
2. ¬(Ai ∧Bj) premise
3. Az 1,∧-elimination
4. ¬(Az ∧ B1) ∧ ... ∧ ¬(Az ∧Bm) 2, 3, substitution,∧-introduction
5. ¬((Az ∧ B1) ∨ ... ∨ (Az ∧ Bm)) 4, de Morgan

The Proof provides us with a counterexample to the rule of distributivity in
L, which can be stated as pAz∧ (B1∨ ...∨Bm)q 0 p(Az∧B1)∨ ...∨ (Az ∧Bm)q.
To see why Putnam took this counterexample to be validated by L’s semantics,
let’s have a look at the semantics he considered.49

Let OO be an orthomodular ortholattice, i.e., a partially ordered set SOO
of elements, such as the closed subspaces of the Hilbert space associated with
P, together with operations ⊥,∩,∪, for orthocomplementation, meet, and join
(or span), respectively. This lattice satisfies the rule of orthomodularity – an
even weaker form of distributivity than modularity – which states that, for
any a, b ∈ SOO,

if a ⊆ b, then b = a ∪ (a⊥ ∩ b).

48One could further let QL include a conditional defined, say, as follows: p → q iff
¬p∨ (p∧ q). This is a counterfactual conditional, and it is weaker than the classical one, as
for example it does not admit strengthening the antecedent. But again, for simplicity, the
conditional will be ignored.

49In his 1968 paper, Putnam also suggested an operational semantics, where the logical
connectives of the calculus are defined in terms of tests that can in principle be performed
in a lab, rather than abstract operations on the elements of a lattice. More details about
this are given in section 4.3.2.
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We say that OO is a model of QL if and only if there is a map h : SQL −→
SOO such that h is a homomorphism:

h(¬p) = h(p)⊥

h(p ∧ q) = h(p) ∩ h(q)
h(p ∨ q) = h(p) ∪ h(q)

On the basis of this homomorphism and the partial order of OO, one
can then define orthocomplementation as set-theoretic complementation plus
partial order reversal, and logical consequence:

h(p) = h(q)⊥ iff {x : x ⊆ h(p)} = {x : x⊥h(q)}
Γ |=QL q iff ∩{h(p) : p ∈ Γ} ⊆ h(q).

The question is whether OO verifies the Proof. Does it validate the above
counterexample to distributivity? Indeed, let ∅ be the empty space and 1 be
the entire Hilbert space. Then the validation goes as follows:

h(Az) ∩ (h(B1) ∪ ... ∪ h(Bm)) * (h(Az) ∩ h(B1)) ∪ ... ∪ (h(Az) ∩ h(Bm))
h(Az) ∩ 1 * ∅ ∪ ... ∪∅

h(Az) * ∅.

The failure of distributivity is a direct consequence of the fact that the sen-
tences in SQL, interpreted as experimental propositions in QM, form the non-
distributive lattice OO, which can be arguably understood as a consequence
of the non-commutativity of the algebra of quantum-mechanical observables.
The most important thing to note, for present purposes, is that OO makes the
QL connectives non-truth-functional.50 But Putnam does not seem to have
been worried at all about non-truth-functionality, or in any case did not think
that this had any implications with respect to the semantic attributes of QL
connectives, for he famously, though controversially, claimed that “adopting
quantum logic is not changing the meaning of the logical connectives, but
merely changing our minds about the [distributive] law”.51

Non-truth-functionality is, however, the very reason why Rumfitt rejects
OO as a semantics without any logical significance:

The operations of intersection, span, and orthocomplement on the
subspaces of a Hilbert space indeed form a non-distributive lattice,

50For more discussion of the non-truth-functionality of QL connectives, see section 4.2
below. Non-truth-functionality arguably follows from the Kochen-Specker theorem as well,
which guarantees that the partial Boolean algebra of the Hilbert space has no homomorphic
Boolean extension, i.e., there is no homomorphism from the partial Boolean algebra to the
two-valued Boolean algebra {0, 1}, on the assumption that the space is of dimension d > 2
(Kochen and Specker 1967). For some discussion, see Dickson 1998, especially section 4.1.2.

51Cf. Putnam 1968, 190. This controversial claim will be also further discussed in section
4.2 below.
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and that non-distributive lattice is useful in quantum-theoretic cal-
culations. But we have as yet been given no reason to assign any
logical significance to the lattice. To do so, it would need to be
argued that, when the statement A is true at precisely the states
in h(A), and when the statement B is true at precisely the states
in h(B), then the disjunction pA∨Bq is true at precisely the states
in the span of h(A) and h(B). Putnam gives no such argument, so
his claim that the proposed rules have any logical significance is
unsupported.” (Rumfitt 2015, 176; modified for uniform notation)

But to argue, as Rumfitt demanded, that when A is true at precisely the
states in h(A), and when B is true at precisely the states in h(B), then their
disjunction pA∨Bq is true at precisely the states in the span of h(A) and h(B)
is to argue exactly for the existence of the parallelism that already Weyl in
1940 saw was broken, in the case of modular QL, and Hellman in 1980 proved
cannot exist, in the case of orthomodular QL. For Rumfitt would have liked
Putnam to argue not only that h : SQL −→ SOO is a homomorphism, but also
that g : SOO −→ {0, 1} is a homomorphism as well. But this would entail that
any truth valuation is a homomorphism v : SQL −→ {0, 1}, since v = g ◦ h. In
the case of QL disjunction, this would entail that

v(A ∨ B) = 1 if and only if v(p) = v(q) = 1.

Thus, what Rumfitt would have wanted Putnam to argue is that QL dis-
junction is truth-functional. Since Putnam did not so argue, for it is actually
impossible to do so, Rumfitt rejected OO as a logically insignificant semantics.
But this raises a difficult question in the philosophy of logic: what justifies the
assignment of logical significance to a certain semantics? More specifically,
why should logical significance be dictated, as Rumfitt appears to assume, by
our pre-theoretic intuitions about truth-functionality, as opposed to our most
successful scientific theories? Leaving this for later, I want now to discuss his
objection against the Proof.

4.1.2 Rumfitt’s rule-circularity objection

While simplicity and strength are significant, perhaps even predominant cri-
teria for choosing between rival scientific theories, such criteria are not indis-
pensable when it comes to choosing between rival logics. This view, recently
defended by Rumfitt, adopts Dummett’s stability condition for the mutual
understanding between logicians of different denominations: “How can the
classical logician and the non-standard logician come to understand one an-
other? Not, obviously, by defining the logical constants. They have to give a
semantic theory; and they need one as stable as possible under changes in the
underlying logic of the metalanguage.” (Dummett 1987: 254) Rumfitt takes
Dummett to have “pointed the way” towards identifying what is necessary for
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rational adjudication between logics (Rumfitt 2015: 9). Thus, in the case of
interest here, if QL were given a classical semantics, then the Proof cannot
adjudicate against CL, for a classical semantics would not be stable enough
if one adopted QL (rather than CL) in the metalanguage. If one did adopt
CL in the metalanguage, the Proof still cannot adjudicate against CL, because
a non-classical semantics for QL would be also unstable (for reasons we are
about to discuss).

These violations of Dummett’s stability condition justify the classical logi-
cian’s rejection of the Proof on rational grounds, or so Rumfitt believes. But I
don’t think that his view is correct, and in this section I want to provide some
reasons for doubting it’s tenability.

Let T G1 be a non-classical semantics, what Rumfitt calls a truth-ground
semantics. The basic notion of this semantics is that of a truth-ground for a
statement, that is a closed set of possibilities at which the statement is true. A
set of possibilities, U, is closed if and only if it is its own closure, Cl(U), where
this is “the smallest set of possibilities at which every statement that is true
throughout U is true.” (Rumfitt 2015: 162) Let ST G1

be a set of truth-grounds,
together with operations ⊥,∩,∪, for orthocomplementation, intersection, and
union, respectively. Then T G1 is a model of QL if and only if the truth-
grounds can be taken as the closed subspaces of a finite-dimensional Hilbert
space associated with our physical system P and there is a homomorphism
r1 : SQL −→ ST G1

such that:

r1(¬p) = r1(p)
⊥

r1(p ∧ q) = r1(p) ∩ r1(q)
r1(p ∨ q) = Cl(r1(p) ∪ r1(q))

The closure operation, Cl, which is taken here as a primitive relation, has
some nice lattice-theoretic properties such as

r1(p) ⊆ Cl(r1(p)),
ClCl(r1(p)) = Cl(r1(p)), and

if r1(p) ⊆ r1(q), then Cl(r1(p)) ⊆ Cl(r1(q))

Importantly, however, Cl does not have the following topological property:

Cl(∅ ∪ ... ∪∅) = Cl(∅) = ∅,

so as a consequence, it cannot verify that a disjunction of false sentences
is false (Rumfitt 2015: 135-6, 162-3). It turns out that, precisely because it
lacks this property, T G1 by itself cannot validate our above counterexample to
distributivity:

r1(Az)∩Cl((r1(B1)∪...∪r1(Bm)) * Cl((r1(Az)∩r1(B1))∪...∪(r1(Az)∩r1(Bm)))

r1(Az) ∩ Cl(∅ ∪ ... ∪∅) * Cl(∅ ∪ ... ∪∅)
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In order to be able to validate the counterexample, T G1 must be supple-
mented by a metalogical proof that a disjunction of false sentences is false,
i.e., a proof in the metalanguage to the effect that, on line 5 of the Proof,
disjunction is truth-functional. As Rumfitt puts it, one needs a proof of “the
semantic principle that a true disjunction must contain at least one true dis-
junct” (Rumfitt 2015: 174-5). This is supposed to make up for T G1’s missing
the above topological property.

However, Rumfitt notes, the metalogical proof requires the unrestricted
rule of ∨-elimination and, thus, assumes CL.52 The Proof is, therefore, rule-
circular (since the unrestricted rule of ∨-elimination is logically equivalent to
distributivity). Because of this rule-circularity, Rumfitt rejected T G1 as an
unacceptable semantics for QL on rational grounds. For convenience, here is
the metalogical proof (including a tacit correction of Rumfitt’s justification for
its last step):

1. T r(pA ∨ Bq) premise
2. T r(pA ∨ Bq) −→ A ∨ B principle about truth
3. A ∨ B 1, 2, modus ponens
4. A assumption
5. A −→ Tr(pAq) principle about truth (side premise)
6. T r(pAq) 4, 5, modus ponens
7. T r(pAq) ∨ Tr(pBq) 6, ∨ -introduction
8. B assumption
9. B −→ Tr(pBq) principle about truth (side premise)
10. T r(pBq) 8, 9, modus ponens
11. T r(pAq) ∨ Tr(pBq) 10, ∨ -introduction
12. T r(pAq) ∨ Tr(pBq) 3, 5, 9, ∨ -elimination

Note, first, that since the calculus QL is not, itself, a quantum system,
there can be no surprise that the metalanguage has a truth-functional and,
thus, classical disjunction. Assuming that L is a countable language, one
could also prove that the semantics of the metalanguage of L is a distributive
lattice, based on Dunn’s classical recapture of distributivity as an arithmetical
theorem in PA1

QL, i.e., first-order Peano arithmetic with QL (Dunn 1980).
Of course, one would expect the classical logician to insist that, despite such
classical recapture results, one should still not use CL in an argument against
CL. Secondly, recall that we only needed a classical metalogical proof because
T G1 was unable, by itself, to validate Putnam’s proof. But a quantum logician
can, and I think should, reject this semantics.

Rumffit assumes that T G1 is “acceptable to adherents of many rival logical

52Putnam allowed the restricted form of ∨-elimination in QL in order to support the claim
that its connectives have the same meaning as their classical counterparts since they have
the same introduction and elimination rules (Putnam 1968, 189) So he may perhaps be
taken to have implicitly acknowledged that the unrestricted form of the rule is valid only in
classical logic.
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schools; these principles [i.e., the three semantic rules for logical connectives],
then, have a good claim to articulate the commonly understood senses of the
sentential connectives.” (Rumfitt 2015: 167) But they do not have a good
enough claim. In order to have a better claim to articulate the semantic
attributes of QL connectives, and in particular those of QL disjunction, T G1

must be revised. In particular, instead of being taken as a primitive, the Cl
operation on the set of truth-grounds must be defined in terms of quantum
incompatibility, i.e., the relation that obtains between quantum observables in
virtue of the fact that the operators representing them on the Hilbert space
associated with P do not commute. I turn now to consider Rumfitt’s second,
revised truth-ground semantics for QL.

Let T G2 be the revised truth-ground semantics, with a set ST G2
of truth-

grounds and operations on them, ⊥,∩,∪, for orthocomplementation, intersec-
tion, and union, respectively. Then T G2 is a model of QL if and only if the
truth-grounds are the closed subspaces of a finite-dimensional Hilbert space
associated with system P and there is a map r2 : SQL −→ ST G2

such that r2
is a homomorphism:

r2(¬p) = r2(p)
⊥

r2(p ∧ q) = r2(p) ∩ r2(q)
r2(p ∨ q) = (r2(p) ∪ r2(q))

⊥⊥

Orthocomplementation and logical consequence are, as before, defined lattice-
theoreticly in terms of partial order. But the Cl operation is now defined as
double orthocomplementation: Cl(r2(p)) = r2(p)

⊥⊥. Furthermore, orthocom-
plementation has the topological property that was lacking in the previous
T G1 semantics:

(∅ ∪ ... ∪∅)⊥⊥ = ∅⊥⊥ = ∅

It would seem that precisely because orthocomplementation has this prop-
erty, the truth-functionality of disjunction on line 5 of the Proof can be justi-
fied, so then T G2 could validate our counterexample to distributivity:

r2(Az)∩(r2(B1)∪...∪r2(Bm))
⊥⊥ * ((r2(Az)∩r2(B1))∪...∪(r2(Az)∩r2(Bm)))

⊥⊥

r2(Az) ∩ (∅ ∪ ... ∪∅)⊥⊥ * (∅ ∪ ... ∪∅)⊥⊥

r2(Az) * ∅

Yet, Rumfitt argues that this is still not the case, despite the fact that no
metalogical proof of the truth-functionality of disjunction is needed any longer,
so that rule-circularity is now avoided. The reason given for T G2’s inability
to validate the counterexample to distributivity is that, on the first line of the
Proof, Az is false, since r2(Az) = ∅.

In order to see why Rumfitt maintains that r2(Az) = ∅, a justified revision
of the Proof is needed. What he believes justifies the revision are some features
of standard QM that Putnam professed to ignore (Putnam 1968: 178). More
exactly, Rumfitt notes the following:
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The truth principle [i.e., the eigenstate-eigenvalue link] tells us that
a statement ... that attributes a precise value to an observable
quantity, will be true only at eigenstates of that observable. In
a finite-dimensional Hilbert space, any self-adjoint operator will
possess eigenstates, so in such a space there will be a state at
which [such a statement] is true. In an infinite-dimensional space,
however, even self-adjoint operators need have no eigenstates at
all. ... once an infinite-dimensional Hilbert space is endowed with
observables for position and momentum, there are no eigenvalues
for position. (Rumfitt 2015: 180)

Indeed, on an infinite-dimensional Hilbert space, those operators corre-
sponding to observables with continuous spectra, like position and momentum,
have no eigenstates in a Schrödinger representation, and thus such observables
can have no precise values. (As discussed in chapter 2, position and momen-
tum do have eigenstates, but only in the so-called non-regular representations.)
Consequently, the Proof has to be revised. Needless to say, the revision does
not make the (unrevised) Proof superfluous. Since QM makes extensive use
of finite-dimensional Hilbert spaces in modeling observables like spin, which
have discrete spectra, the Proof is enough to provide a counterexample to dis-
tributivity. The revision is only needed if one looks for a counterexample that
involves observables with continuous spectra.

4.1.3 Revising the eigenstate-eigenvalue link

Let QL be our calculus, as before. Assume, again, that the EEL is true,
but let the state space associated with our quantum system P be an infinite-
dimensional Hilbert space. For any i ∈ {1, ..., n, ...}, let Ai ∈ SQL be sentences
that state the possible positions of P, and for any j ∈ {1, ..., m, ...}, let Bj ∈
SQL be sentences that state its possible momenta. Then the revised Proof is
the following derivation:

1. Az ∧ (B1 ∨ ... ∨ Bm ∨ ...) premise
2. ¬(Ai ∧Bj) premise
3. Az 1, ∧ -elimination
4. ¬(Az ∧ B1) ∧ ... ∧ ¬(Az ∧Bm) ∧ ... 2, 3, substitution, ∧ -introduction
5. ¬((Az ∧ B1) ∨ ... ∨ (Az ∧ Bm) ∨ ...) 4, de Morgan

This derivation provides us with a counterexample to distributivity in L,
which can be stated as pAz∧(B1∨...∨Bm∨...)q 0 p(Az∧B1)∨...∨(Az∧Bm)∨...q.
This counterexample is, however, not validated by T G2:

r2(Az) ∩ (r2(B1) ∪ ... ∪ r2(Bm) ∪ ...)
⊥⊥ *

((r2(Az) ∩ r2(B1)) ∪ ... ∪ (r2(Az) ∩ r2(Bm)) ∪ ...)
⊥⊥

r2(Az) ∩ 1 * (∅ ∪ ... ∪∅ ∪ ...)⊥⊥

∅ * ∅
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As already pointed out, r2(Az) = ∅ because P ’s position has no eigenstates.
This entails that Az is false and, thus, that the revised Proof is unsound with
respect to T G2.

However, the soundness of the revised Proof might easily be restored by
simply denying the EEL. This is not unheard of, and some have contended
that denying the EEL is fully justified, since it “has nothing much to do with
quantum theory. ... It’s an interpretive assumption. Its motivation (I think)
comes from the idea that measurement must be discovering some preexisting
measured value, in which case that value must be possessed by a system iff
it is certain to give that value as a result of measurement. But this isn’t
realized in any realist interpretation of quantum mechanics ... And it is anyway
incompatible with the actual physics of quantities with continuously many
measurement outcome possibilities, like position and momentum.” (Wallace
2013: 215) Of course, this view conflicts with the Kochen-Specker theorem,
and the conflict resolves by dropping distributivity (Demopoulos 1976). But
this solution is not available here, since whether distributivity can be dropped
is the very problem that denying the EEL attempts to address.

Less radically perhaps, one could also just revise the EEL, so that instead
of allowing that observables have precise values at all states, one modifies the
notion of a state such that observables like position and momentum have pre-
cise values even though the state space of the system is an infinite-dimensional
Hilbert space. This could be implemented, for example, by coarse-graining
the state space, an operation which allows that, for system P, an observable
O with a continuous spectrum can have precise values when the state of P
assigns probability 1 to some cells or regions, rather than to points, in that
space. For any such observable, these regions are determined, say, by the in-
terval [x−ǫ, x+ ǫ], for some ǫ > 0 and for any possible value x in the spectrum
of that observable. The revised EEL then stipulates that a physical system
P has a precise value for observable O if and only if P is in a coarse-grained
state of O.53 Consequently, the statement Az on line 1 of the revised Proof
will be true at some coarse-grained position state. Thus, the revised Proof is
not unsound after all.

Rumfitt considers a similar revision of the EEL, but rejects it as an “un-
satisfactory constraint on truth” (Rumfitt 2015: 180). Mutatis mutandis, the
revision of the EEL that I just suggested would also be considered unsatisfac-
tory, on the ground that having a precise position at a coarse-grained state
really amounts to nothing else than having an imprecise position. For if the
statement Az is taken to describe a precise position of P, then it can be only
approximately true. But since logic is concerned with the preservation of truth,
not that of approximate truth, revising the EEL in the way coarse-graining
allows would change the subject of logic. However, in response to this, one can
surely revise the EEL even further, so that it stipulates that an observable O of

53For a defense of this kind of revision, see Halvorson 2001, which critically discusses Teller
1979. Such a revision has been first considered in Fine 1971.
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P has a coarse-grained value if and only if P is in a coarse-grained state of O.
In this case then, when Az is taken to describe a coarse-grained position of P,
the statement Az will be true, rather than approximately true, at some coarse-
grained position states. Therefore, coarse-graining the infinite-dimensional
Hilbert space and then revising the EEL accordingly can successfully block
Rumfitt’s argument against the revised Proof. This is done without changing
the subject of logic, just as he correctly demands.

My response admittedly requires some slight changes to the standard for-
malism of QM, e.g., an application of mathematical notions from coarse ge-
ometry on metric spaces.54 But one might object that the response is beside
the point, since the (revised) Proof assumes standard QM. However, my goal
is not to defend standard QM. Rather, it is to show that rational adjudication
against CL in QM is possible. If this requires moving beyond standard QM,
that’s fine by me. After all, classical logicians, too, usually go beyond stan-
dard QM, invoking one of its dynamical extensions or interpretations, when
they insist that distributivity need not be dropped, as indeed Putnam himself
ultimately did.

Two more points, before I move on to discuss Hellmann’s argument. The
first point concerns Rumfitt’s claim, noted in section 4.1.1, that the ortho-
modular ortholattice OO should be rejected as logically insignificant because
it makes disjunction not-truth-functional. This raises a fundamental question:
What is a proper justification of our attribution of logical significance to a
given semantics? Should such a justification turn to our intuitions and dis-
positions or to our theories and theorems? Should our considered reasons for
assigning logical significance then necessarily align with truth-functionality,
or not? My take on this comes close to the view on logic suggested, in the
following passage, by Michael Dickson:

What counts as an example of good reasoning, and how do we come
to know what those examples are? Do we ‘just know’ one when
we see it? No. We must have some way to assign intersubjectively
available truth values to sentences involving logical connectives.
In other words, we need some way to determine whether a given
form of logical inference is ‘successful’. Given the principle that the
world (or, a correct theoretical description of the world) does not
‘disobey’ the correct rules of reasoning, we may hope to determine
which inferences are correct by determining how to relate propo-
sitions involving logical connectives to empirical facts. (Dickson
2001, S283)

If this view were adopted, then one should not reject OO as logically in-
significant, but rather take the non-truth-functionality of QL connectives seri-
ously. But note that this need not entail a commitment to the claim that QL

54For an introduction to coarse geometry on metric spaces, see Roe 2003.
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is universally true, which would in turn entail that the rule of distributivity
must be dropped. Dickson is, in fact, committed to this claim:

Quantum logic is the ‘true’ logic. It plays the role traditionally
played by logic, the normative role of determining right-reasoning.
Hence the distributive law is wrong. It is not wrong ‘for quantum
systems’ or ‘in the context of physical theories’ or anything of the
sort. It is just wrong, in the same way that ‘(p or q) implies p’ is
wrong. (op. cit., S275)

However, this is not the view that I have been arguing for. In this section, I
have been interested only in making the point, against Rumfitt, that distribu-
tivity can be dropped, or in other words, that rational adjudication against
CL, even though not necessary, is nonetheless possible.

The second point is the following. Rumfitt’s objection might appear to be
a particular instance of what came to be called the adoption problem (Kripke
1974). But I think that if one looks more closely, one can see that it is not.
Although this is a longer discussion, which belongs elsewhere, here is very
briefly how I see this matter. Take the following formulation of the adop-
tion problem: “certain basic logical principles cannot be adopted because, if a
subject already infers in accordance with them, no adoption is needed, and if
the subject does not infer in accordance with them, no adoption is possible.”
(Birman 2024: 39) Thus, QL cannot be adopted because, if a subject already
infers non-distributively, no adoption of QL is needed, and if the subject does
not infer non-distributively, no adoption of QL is possible. In particular, if the
subject infers classically, no adoption of QL is possible. However, Rumfitt’s
reasons for the impossibility of adopting QL are not simply based on commit-
ment to CL: classicality is not, for him, a sufficient condition for rejecting the
possibility of adopting QL. In fact, as we have seen above, Rumfitt adjusts
the commitment to classicality, as he proposes two non-classical semantics for
the evaluation of the Proof. In contrast to Kripke, Rumfitt’s reasons for the
impossibility of adopting QL are based on commitment to Dummett’s stability
condition: for Rumfitt, stability is a necessary condition for the possibility of
adopting QL.

4.2 Quantum logic and meaning

Hellman proved that the disjunction and conjunction of an orthomodular QL
are non-truth-functional, and he took this to imply that their meaning is differ-
ent than that of their CL counterparts (Hellman 1980). As already mentioned,
this argument was directed against Putnam’s revisionist claim that the classi-
cal distributive law must be dropped in QM. Arthur Fine had given an intuitive
response of this claim, maintaining that “the sense of the distributive law in
which it is said to fail is not the sense in which, as the distributive law, it
is supposed to hold.” (Fine 1972, 19) As a consequence, the transition from
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classical physics to QM does not require a revision of CL. Hellman’s argument
attempted to rigorously justify this intuitive response.

This section revisits his argument. The main claim that I will defend is that
if truth-functionality is used as a semantic constraint on logical revisionism,
then if Hellman’s argument is to succeed, it has to be significantly improved.
To show how it should be improved, an abstract presentation of QL will first be
given, one that does not interpret sentences as experimental propositions, but
allows a clearer analysis of the semantic attributes of its connectives. This will
be followed by a discussion of bivalent semantics for QL, which is shown to be
perfectly tenable provided that one is willing to give up the truth-functionality
of some of its connectives. Afterwards, an analysis of Hellman’s argument will
be offered and an improved argument formulated, which reinforces and makes
more precise the conclusion that some QL connectives are semantically in-
equivalent to their CL counterparts. This new argument still depends on the
meaning-variance principle originally suggested by Hellman, but fully justifies
Fine’s intuitive response that classical and quantum distributivity mean differ-
ent things. What is thereby achieved is a refutation of Putnam’s revisionism
on semantic, rather than empirical or metaphysical, grounds.

4.2.1 Abstract formulation of quantum logic

In this section, QL will be presented more abstractly than in the previous sec-
tions, by means of a formalism introduced by Michael Dunn and Gary Harde-
gree in their classic study of algebraic methods in logic (Dunn and Hardegree
2001). The advantage of this presentation – a rational reconstruction of ortho-
modular QL – is that the interpretation of sentences is not completely fixed,
like in the more standard presentation of QL given so far, where sentences
are taken to express experimental propositions about magnitudes associated
to quantum systems. The abstract presentation is intended to erase all such
“intensional vestiges” in the language of QL, thereby allowing a more precise
analysis of its semantic attributes, and in particular, of the truth-functionality
of its connectives.

Let L be a sentential language containing variables for atomic sentences
and symbols for logical connectives, ¬, ∧, ∨, and let SL be the set of sentences
generated inductively in the usual way. Then S ≡ (SL, O¬, O∧, O∨) is the
algebra of sentences whose operations on the carrier set SL are defined, for
any p, q ∈ SL, as follows:

O¬(p) = ¬p

O∧(p, q) = p ∧ q

O∨(p, q) = p ∨ q.

A logical atlas A is a pair (P, 〈Dj〉), where P is a non-empty algebra
and 〈Dj〉 is a family of proper subsets of the carrier set of P. Sets Dj are
designated sets. Logical atlases can be used to provide a semantics for L.
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Indeed, an interpretation of L in A is any homomorphism h : S → P. The
elements of the carrier set of P can be thought of as propositions, and each
designated set Dj can be thought of as a possible set of true propositions.
An interpretation of a language into an atlas thus homomorphically assigns
propositions to sentences, in accord with the principle of compositionality.
Since an atlas can contain multiple designated sets, an interpretation does not
need to fully determine which propositions are true and which are not. A
triple (L,A, I), where I is the set of all interpretations of L in A, is called an
interpretationally constrained language.

Let a truth valuation on L be any function v : SL → {0, 1}. This is
assumed to be bivalent by definition: each sentence in the language is assigned
either 0 (‘false’) or 1 (‘true’), thereby excluding third values or value gaps and
gluts. But there are no compositional restrictions on truth value assignments to
compound sentences, i.e. truth-functionality is not assumed. In other words,
v is not assumed to be a homomorphism. (I will come back to this later.)
The identification of designated sets with sets of true propositions suggests a
natural way of defining a class of valuations induced by an atlas. For each
interpretation i ∈ I and index j, one can define a valuation v

(i)
j as:

v
(i)
j (p) = 1, if and only if i(p) ∈ Dj.

Then, a class of valuations, C∗
A
, induced by A, is the set of all such valua-

tions:
C∗

A =
{

v
(i)
j , ∀i ∈ I, ∀j

}

.

To introduce a logical consequence relation, also induced by A, we say
that a set of premises Γ ⊆ S A-implies a conclusion p ∈ SL, or Γ �A p, if the
following holds:

∀v ∈ C∗
A
: if (∀γ ∈ Γ, v(γ) = 1) then v(p) = 1.

Thus, a sentence is A-valid, or �A a, if v(a) = 1 for all valuations v in C∗
A
.

Having defined the relevant formal notions, let us turn to QL. Let SH be
the set of closed subspaces of a Hilbert space H, and the algebra associated
to it be AH ≡ (SH,

⊥ ,∩,∪), where ⊥, ∩, and ∪ are orthocomplementation,
set-theoretic intersection, and linear span, respectively. Let AH = (AH, 〈DH〉)
be a quantum atlas, where the family of designated subsets 〈DH〉, whose index
ranges over all 1-dimensional subspaces K ∈ SH, is defined as

∀Q ∈ SH : Q ∈ DK if and only if K ⊆ Q.

A quantum interpretationally constrained language is any triple (L,AH, I),
where L is a sentential language, AH is a quantum atlas, and I is the set
of all interpretations of the language into AH. In particular, since they are
homomorphisms, the interpretations i ∈ I satisfy

i(¬p) = i(p)⊥

i(p ∧ q) = i(p) ∩ i(q)

i(p ∨ q) = i(p) ∪ i(q),
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for any sentences p, q ∈ SL. Further, we can associate to any atlas AH an
induced class of valuations C∗

AH
and an induced logical consequence relation

�AH
, which will help us define the relation of QL consequence.55

Let � be a consequence relation on a set of sentences SL. We say that �

is a QL consequence relation if there exists a quantum atlas AH, such that
� and �H coincide. QL consequence relations can also be given the following
characterization, in terms of the partial order on the algebra AH associated to
H, reminiscent of the one originally introduced by Birkhoff and von Neumann:
for a Hilbert space H, a set of premises Γ H-implies conclusion p ∈ SH if for all
homomorphisms i from the algebra of sentences into AH, the following holds

⋂

γ∈Γ
i(γ) ⊆ i(p).

Since the operations ∩ and ∪ on SH are non-distributive, it follows that
QL consequence relations violate distributivity.56 The failure of distributivity
in QL is due to the fact that experimental propositions in QM form a non-
distributive lattice, arguably as a consequence of the fact that AH is non-
commutative.

Note that we have defined the QL consequence relations �H relative to a
Hilbert space H: there may, in principle, be as many QL consequence relations
as there are (non-isomorphic) Hilbert spaces. As noted above, already Birkhoff
and von Neumann argued that modularity holds only in finite-dimensional
Hilbert spaces (1936, 832). There is thus more than one QL consequence re-
lation depending on the Hilbert space on which the semantics is built, which
justifies keeping the index ‘H’ in ‘�H’. However, since infinite-dimensional
Hilbert spaces are all mutually isomorphic, then there is only one QL conse-
quence relation for QM∞. This violates distributivity because experimental
propositions in QM∞ form a non-distributive, orthomodular lattice.

Since I will be presently concerned with the question about the truth-
functionality of QL connectives, let us now introduce an H-class C as a class
of valuations on L that obeys, for all Γ ∪ {p} ⊆ SL, the following:

Γ �H p iff [∀v ∈ C : if (∀γ ∈ Γ : v(γ) = 1) then v(p) = 1] ,

where �H is induced by some quantum atlas AH. Any H-class thus defines
the same consequence relation as the class C∗

H induced by AH: in fact, C∗
H is

just one particularH-class. This raises the following question: are allH-classes
isomorphic, i.e. are they all equivalent to C∗

H, for a given atlas AH? In other
words, does the collection of all H-classes have more than one member (up to
isomorphism)? The answer is that there is more than one class of valuations
compatible with one and the same QL consequence relation: for any quantum

55To simplify notation, C∗
H

and �H will henceforth replace C∗
AH

and �AH
.

56See above section 3.3.1 for Birkhoff and von Neumann’s semantic proof of this violation,
and see section 4.1.1 for a formal version of the proof.
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atlas AH, there are at least two H-classes. For consider a valuation ṽH given
by:

ṽH(p) = 1, if and only if p is an H-tautology (i.e. �H p).

The two different classes of valuations, that is C∗
H and C∗

H ∪ {ṽH}, both
determine the same relation �H, and are thus both H-classes.57 But does any
of these H-classes make all connectives truth-functional (TF)?

Let us say, quite generally, that C makes conjunction TF if there exists a
function f∧, such that for all v ∈ C, and any p, q ∈ SL:

v(p ∧ q) = f∧(v(p), v(q)).

Analogously, for the truth-functionality of disjunction and negation. Let us
also say that C is a TF class of valuations if it makes all three connectives in
{¬,∧,∨} TF. We will now see that, for any quantum atlas AH, the induced
class C∗

H makes conjunction TF, but negation and disjunction non-TF.
The truth-functionality of ∧ follows immediately from the fact that, in any

Hilbert space, a 1-dimensional subspace is contained in two other subspaces if
and only if it is contained in their intersection. Since the conjunction of two
sentences is interpreted as the intersection of the subspaces associated (under
the same interpretation) to those sentences, this implies that a conjunction is
true if and only if both its conjuncts are true, in accord with the normal truth
table for conjunction.

In order to illustrate the non-truth-functionality of disjunction and nega-
tion, take the following example. Consider three 1-dimensional subspaces
K1, K2, K ∈ SH, for H an arbitrary Hilbert space. Suppose that K1, K2, K

respectively contain vectors ψ1, ψ2 and 1√
2
(ψ1 + ψ2), where ψ1 and ψ2 are or-

thogonal. Take an arbitrary sentence p ∈ SL and an interpretation i ∈ I, such
that i(p) = K1 and i(¬p) = K2. It is easy to see that for the induced valuations

v
(i)
K , we have v

(i)
K (p) = v

(i)
K (¬p) = 0 and v

(i)
K (p ∨ ¬p) = 1. On the other hand,

if K ′ is a 1-dimensional subspace containing a vector which does not lie in the
span of ψ1 and ψ2, then we have v

(i)
K ′(p) = v

(i)
K ′(¬p) = 0 and v

(i)
K ′(p ∨ ¬p) = 0.

This shows that disjunction is not TF, because some false disjuncts combine
into a true disjunction, whereas others combine into a false disjunction. Sim-
ilarly, some false sentences, when negated, become true, whereas others stay
false. Therefore, the H-classes induced by quantum atlases are not TF, for
they make only conjunction TF.

Can there be any TF H-classes? As proved by David Malament (2002), not
only is the answer negative, but anyH-class must make at least two connectives
non-TF: there is no H-class that makes more than one connective in {¬,∧,∨}
truth-functional. Thus, there is no truth-functional H-class of valuations on
L. Notice that the classes C∗

H induced by atlases AH accordingly make only
conjunction TF. Are there any H-classes that make disjunction or negation
TF?

57See below, section 5.3.1, for an analogous situation in the case of CL, which was presented
already in Carnap 1943.
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Perhaps surprisingly, the answer is negative. To see this, it is enough to
notice that for any Hilbert space H, the induced QL consequence relation
�H validates the following arguments, which are the semantic versions of the
∧-introduction and ∧-elimination rules: for any p, q ∈ SL,

p ∧ q �H p, p ∧ q �H q, and {p, q} �H p ∧ q.

It is easy to see that the validity of these three arguments implies that for
any H-class, p ∧ q is true if and only if both p and q are true, thus forcing
conjunction to behave classically, in accordance with its normal truth table.
Since, as just noted, at most one connective can be TF, and since in QL only
conjunction can be TF, since it must be TF, there is no H-class that makes
either disjunction or negation TF. Thus, every H-class makes conjunction TF,
but negation and disjunction non-TF.

The abstract presentation of QL, in this section, can be easily compared
with the more standard, less abstract one in section 3.3.1 above. Whereas
the homomorphic map h : SQL → SLA assigns, as we have seen there, a fixed
meaning to each sentence in SQL thereby enabling an interpretation as an
experimental proposition about a quantum system, a quantum interpretation-
ally constrained language (L,AH, I) contains all homomorphic interpretations
i ∈ I of the sentential language L in the quantum atlas AH ≡ (AH, 〈DK〉).
Each designated set DK in turn contains all those propositions that are true
under the valuation vψ, for ψ ∈ K. The main difference between the two
presentations of QL is thus that the abstract one constrains only partially the
association between sentences and propositions, rather than completely fixing
it. But clearly, if one takes the closed subspaces of H to represent “experi-
mental propositions” about a quantum system, as Birkhoff and von Neumann
did, and the elements of H (or its 1-dimensional subspaces) to represent its
possible quantum states, then I contains all ways of compositionally assign-
ing experimental propositions to the sentences of L, and the induced class of
valuations C∗

H contains “ψ-relative” valuations that make true exactly those
propositions that can be verified with certainty in an appropriate measurement
of the system prepared in state ψ.

4.2.2 Bivalence and metaphysical realism

We are now in a position to analyze Hellman’s meaning-variance argument,
and show exactly how it should be improved, to defeat Putnam’s logical re-
visionism. But before embarking in this analysis, it is worth revisiting briefly
the often misunderstood issue of bivalence and realism in QM.

It is well known that a realist understanding of QM – that is, roughly,
one that considers it as a true, or at least approximately true, theory about
physical reality – is still an open issue in contemporary philosophy of science.
As noted in section 4.1.1 above, an important attempt at settling this issue
was famously put forward by Putnam, who deemed the adoption of QL as a
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necessary ingredient for a tenable realist view of the quantum world, devoid
of unpalatable metaphysical hypotheses supposedly implied by theories that
concord with CL (such as non-local hidden-variable theories). Putnam’s ini-
tial proposal, that all interpretational conundra of QM would disappear upon
acceptance of QL, and in particular that QL would allow one to think of all
observables in QM as having definite values at all times, underwent exten-
sive and serious scrutiny. In particular, concerns have been raised about the
possibility of providing the language of QL with a bivalent semantics.

Indeed, bivalence can be considered as a prerequisite for metaphysical real-
ism, at least in the present context, since it maintains that any fact expressed
by a sentence either obtains or does not obtain in the physical reality: for in-
stance, it is either the case or not the case that exactly 1971.7 × 1021 hydrogen
atoms are currently in my room. However, as pointed out by Michael Fried-
man and Clark Glymour (1972), Putnam’s proposal is faced with immediate
difficulties due to the Kochen-Specker (KS) theorem, which states that, for
Hilbert spaces of dimension d > 2, there is no valuation that assigns a definite
value to all magnitudes, while respecting the functional relationships among
the latter (Kochen and Specker 1967). This entails that there is no homomor-
phism from any Hilbert lattice – the lattice of all closed subspaces on a Hilbert
space – to the two-element Boolean algebra {0, 1}, when d > 2. Nevertheless,
Friedman and Glymour made it clear that, while the KS-theorem does present
problems for realism, at least as Putnam had conceived it, it certainly does
not entail that the language of QM fails to admit a bivalent semantics. This
was also expressed even more clearly by William Demopolous:

There are two different accounts of indeterminism which are his-
torically important. The first, which apparently goes back to Aris-
totle, rejects bivalence: A theory is indeterministic if it assumes
that there are propositions whose truth value is indeterminate.
The second, represented by the quantum theory, retains bivalence
while rejecting semi-simplicity [i.e., a property equivalent to truth-
functionality]. ... This [latter] form of indeterminism implies that
there is no Boolean representation of the properties obtaining at
a given time; yet for any property P it is completely determinate
whether or not P holds. (Demopoulos 1976, 76sq)

Thus, for example, it is one thing to say that it is true that “This photon
will decay tomorrow or this photon will not decay tomorrow”, while each of the
disjuncts is neither true nor false, and another thing to say that it is true that
“This photon passed through the upper slit or this photon passed through the
lower slit”, when each of the disjuncts is false. But the two different accounts
of indeterminism, noted by Demopoulos, and illustrated by this example, have
often been conflated.58

58See, e.g., Bell and Hallett 1982, 368. Others are led to make the same conflation by their

95



That a bivalent semantics for QL is actually unproblematic also follows
from the previous section, where a bivalent semantics for QL has been explic-
itly constructed. While any such semantics must, with respect to its support
to realism about QM, be restricted by the KS-theorem, some bivalent seman-
tics may actually fare better than others in this respect. In fact, Friedman and
Glymour, after presenting potential candidates for a realist bivalent semantics,
immediately dismissed the ones that make negation non-classical, for “derelic-
tion of duty” (1972, 20). They deemed it unacceptable for a realist semantics
to ascribe the same truth value both to a sentence and to its negation: on their
view, a bivalent semantics is compatible with realism only if negation obeys
the classical truth table, i.e. for any valuation v and any sentence p in the
language, v(p) 6= v(¬p).

However, one can raise doubts about this requirement, especially in the
present context, in which the truth-functionality of connectives is precisely
what is at stake. It is not clear why one should endorse this view about
negation without also endorsing parallel ones that would require any realist
semantics to make conjunction and disjunction classical as well, thereby con-
flating realist and classical semantics.59 Why is it unpalatable for a realist to
hold that both a sentence and its negation have the same truth value, while
at the same time being at ease with false disjuncts making true disjunctions
or true conjuncts making false conjunctions? What makes negation special?
What makes its classicality an essential aspect of realism?

Following up on our discussion in the previous section, note that since
any H-class of valuations makes only conjunction TF, it necessarily makes
negation non-TF and, thus, non-classical. Therefore, if one endorsed Friedman
and Glymour’s view that negation must be classical, as Hellman did in his
argument to be presently discussed, then no H-class could provide a semantics
compatible with realism. In other words, a bivalent semantics that could
support realism about QM would require different classes of valuations than
the H-classes introduced above.

Taking stock, since QL can be considered as the logic of experimental
propositions in QM, and bivalence is widely understood as a prerequisite for
realism, a bivalent semantics for QL is necessary for the possibility of realism
about QM. Even though the KS-theorem presents difficulties for a “naive”
realist understanding of QM, one can preserve bivalence, and thereby advocate
a weaker form of realism, by giving up the truth-functionality of some QL
connectives. And even if one assumes that the truth-functionality of negation
is a necessary condition for a semantics compatible with realism, realism could
still be maintained if one introduced classes of valuations other than the H-

reading of the Jauch-Piron theorem: “Jauch and Piron show that any so-called orthomodular
lattice (in particular any Hilbert lattice) admits total homomorphisms onto {0, 1} iff it is
distributive. Note that this means that any form of quantum logic must give up bivalence”
(Bacciagaluppi 2009, 56).

59Some ideas along these lines can be found in Dummett 1976.
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classes. Thus, although realism about QM and bivalence in QL may not look
like an ideal couple, their marriage can nevertheless be saved, although many
would consider it rather costly from a semantic point of view.

4.2.3 Hellman’s meaning-variance argument

The main point of Hellman’s argument is that QL cannot be considered a revi-
sion of CL, in the sense of asserting different truths about the same connectives,
since the two logics are semantically inequivalent, i.e., their corresponding con-
nectives do not mean the same thing:

[T]he opponent against whom Putnam argued was a rather dog-
matic conventionalist who was rather prone to put more weight on
the notion of ‘meaning’ than scientific scrutiny should allow. What
I want to do here is focus on a more precise ‘meaning-change’ ar-
gument, one which makes absolutely minimal reliance on the prob-
lematic word, ‘meaning’, and which, as far as I can see, a proponent
of Putnam’s view can neither defeat nor bypass. (Hellman 1980,
494)

In the remainder of this section, I will first give a careful reconstruction of
Hellman’s argument, followed by the observation that his argument actually
falls short of a refutation of Putnam’s revisionism. Afterwards, in light of the
discussion in the previous sections, I will explain how the argument should be
improved, and why, in a way that finally clarifies the semantic grounds for a
successful refutation of revisionism.

Note that Hellman stipulated a condition for meaning invariance, which
would presumably be acceptable to a conventionalist without dogmas:

If α and β are synonymous sentential connectives, then (a) if one
is a truth-functional connective, then so is the other, and (b) if α
and β are truth-functional, they have the same truth tables. (op.
cit., 495)

Hellman went on to prove that if QL negation is TF, then QL disjunction
and QL conjunction are non-TF, which, due to clause (a) in the condition just
stated implies that at least some QL connectives and their classical counter-
parts are not synonymous, i.e., not semantically equivalent.60

Hellman’s argument can then be reconstructed as follows:

1. Two connectives have the same meaning only if they are either both TF
or both non-TF.

60Helmann actually gave a semantic proof only for the claim that if QL negation is TF,
then QL disjunction is non-TF, and stated that the claim that if QL negation is TF, then
QL conjunction is non-TF can be proved analogously.
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2. If QL negation is TF, then QL disjunction and QL conjunction are
non-TF.

3. Thus, QL negation and CL negation differ in meaning, or CL disjunction
(conjunction) and QL disjunction (conjunction) differ in meaning.

4. Thus, some QL connectives differ in meaning from their CL counterparts.

Importantly, besides having the benefit of relying minimally on the prob-
lematically vague notion of ‘meaning’, Hellman maintained that his argument
is independent of the issues concerning realism, in that it is based on a purely
formal semantic result that exhibits the difference in the TF status of the
classical and quantum connectives: “the non-truth-functionality argument is
entirely distinct from [those that] argued that QL could not satisfy the de-
mands of realism.” (op.cit., 496)

Note that while the argument establishes that at least some QL connectives
differ in meaning from their CL counterparts, it does not specify which ones
do so unconditionally. Moreover, conclusion 3 is compatible with QL negation
being non-TF and thus differing in meaning from CL negation, while leav-
ing QL conjunction and QL disjunction TF and, thus, possibly semantically
equivalent with their CL counterparts. Consequently, since the distributive
law concerns conjunction and disjunction, but not negation, Hellman’s argu-
ment does not refute Putnam’s revisionist claim that classical distributivity
fails in QM. In other words, the argument does not justify Fine’s claim quoted
in the introduction to section 4.2. But the results from section 4.2.1 can help
us improve on the above argument and finally properly justify Fine’s claim.

First, note that if one assumes QL negation to be TF, then premise 2 is an
immediate consequence of the theorem discussed above, due to Malament, that
any viable class of valuations can make at most one QL connective TF. Now,
while the antecedent of premise 2, stating that negation is TF, can arguably be
justified for semantics that are intended to support realism – as we have also
seen already in section 4.2.2 – this assumption is not warranted in the present
context. For here, CL connectives and their QL counterparts are contrasted
on purely semantic, non-metaphysical grounds. Moreover, the antecedent of
premise 2 cannot be maintained without invalidating the quantum-logically
valid ∧-introduction argument, {a, b} � a ∧ b. Indeed, recall that any viable
H-class of valuations makes conjunction TF, but disjunction and negation non-
TF. Therefore, the antecedent of premise 2, whose truth would be needed if
Hellman’s argument were to back Fine’s claim against Putnam’s revisionism,
is not only unwarranted, but also false.61

Secondly, there is another qualification that needs to be made here: namely,
it is not entirely clear what is meant in the above argument by saying that
a sentential connective ‘c’ is TF. Does it mean that (i) there exists a viable

61Note that this point is distinct from Rumfitt’s rule-circularity objection (discussed in
section 4.1) that the quantum logician should not assume CL in the metalanguage of the
Proof (i.e., the proof that distributivity fails in QM). For in this case, Hellman’s proof for
the non-truth-functionality of QL disjunction (and conjunction) would not go through.
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class of valuations that makes ‘c’ TF, or that (ii) any viable class of valuations
makes ‘c’ TF? Since the argument tacitly assumes that classical connectives
are TF, option (ii) is automatically excluded, since the existence of Carnap’s
non-standard class C∗

CL∪{ṽCL} would make even CL disjunction and CL nega-
tion non-TF.62 Therefore, the only chance for a Hellman-type argument to
convincingly establish meaning-variance on the basis of a difference in the TF
status of QL connectives and their CL counterparts is to stick to option (i).

Having noted all this, one can formulate an improved argument, which
nevertheless assumes the same condition for meaning invariance stipulated by
Hellman, but is better than his argument since it provides a definite verdict
concerning Putnam’s and Fine’s antithetical claims. Let us say that a senten-
tial connective ‘c’ is TF if there is at least one viable class of valuations that
makes ‘c’ TF. Here is the argument:

1’. Two connectives have the same meaning only if they are either both
TF or both non-TF.

2’. QL disjunction and QL negation are non-TF.
3’. Thus, CL disjunction (negation) and QL disjunction (negation) differ

in meaning.
4’. Thus, some QL connectives differ in meaning from their CL counter-

parts.

This argument can be understood as a completion of Hellman’s, in that,
while it maintains the same general conclusion (i.e. the one expressed in 4’),
it also specifies which QL connectives are not semantically equivalent with
their CL counterparts: in particular, since disjunction – which figures in the
distributive law – is among these connectives, the argument fully justifies Fine’s
claim.

Note, however, that this assumes that the only viable classes of valuations
for QL are H-classes. Dropping this assumption would raise a problem both
for Hellman’s argument and for the argument just given. Alternative classes
of valuations might make it the case that there is no difference anymore in
the TF status of CL and QL connectives, at least at the level of individual
connectives. Putnam’s revisionism would remain standing, for then the sense
of the distributive law in which it is said to fail might well be the very sense in
which it is supposed to hold. Thus, the soundness of a Hellman-type argument
that implies the semantic inequivalence of CL and QL connectives depends on
whether one accepts onlyH-classes as viable classes of valuations for QL. If one
does, then a sound argument that establishes meaning-variance can be given:
in particular, an argument that establishes a difference in meaning between
CL and QL negation, and between CL and QL disjunction.63

Nevertheless, this new argument, as presented in this section, fares clearly

62See section 5.3.1 for a presentation of this non-standard class of valuations for CL.
63See Horvat and Toader 2023, for some preliminary thoughts on an alternative class

of valuations for QL, and its possible consequences for a Hellman-type meaning-variance
argument against Putnam’s revisionism.

99



better than Hellman’s own. Granted all the required assumptions, Putnam’s
revisionism is finally rebutted for semantic reasons: the sense of the distributive
law in which it is said to fail is not the sense in which it is supposed to hold.
Fine was right about it. Now we know the reason why he was right.

Furthermore, we now can easily see how this deflates Rumfitt’s own ob-
jection against Putnam’s revisionism – the objection according to which the
Proof that the distributive law fails in QM is rule-circular. Granted all the
required assumptions, including Hellman’s condition for meaning invariance,
the Proof turns out to be not rule-circular, and this is precisely because the
semantic attributes of QL disjunction are different than those of CL disjunc-
tion. But then, of course, the Proof fails to establish what Putnam took it to
establish, in the first place. In any case, as I have already argued in section
4.1.3, Rumfitt’s objection can be successfully addressed even if the Proof were
taken to establish what Putnam thought it did.

4.3 Applied classical mathematics and quantum logic

A more general attempt to defeat logical revisionism has been made, more
recently, by Timothy Williamson, who has argued that a wide class of deviant
logics faces undesirable consequences due to the applicability of classical math-
ematics in the natural and social sciences (Williamson 2018). This applica-
bility would provide abductive support for classical logic over its non-classical
competitors.

The class that is specifically targeted by Williamson’s argument (hence-
forth, WA) includes logics motivated by reasons external to mathematics, as
exemplified by QL and many-valued logics, which indeed have their origins in
empirical considerations. The logics that reject some classically-valid argument
or law due to issues that are internal to mathematics – like the intuitionist’s re-
jection of the law of excluded middle, motivated by constructivist views about
mathematics – are not within the targeted class. So called pure logics, that is,
unapplied mathematical objects that carry ‘logic’ in their name only because
they resemble the mathematical structures of classical logic, are not in that
class, either.

The goal of this section is to show that WA is unsound and explain why
this is so. WA picks up on an apparent tension between applying classical
mathematics to a certain domain (e.g. an empirical domain) and simultane-
ously endorsing a non-classical logic in reasoning about that same domain.
It then purports to elevate this tension to an actual inconsistency, which is
supposed to corner the deviant logician into a freezing dilemma: either she is
to rebuild mathematics in her own logic, or she is forced to forgo the applica-
bility of mathematics to empirical domains, thereby losing (at least some of)
the explanatory power characteristic of the natural and social sciences. As this
outline already suggests, the hard work in WA lies in elevating that tension to
an inconsistency. But it is precisely at this point that WA fails: the alleged
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tension, and thus the alleged inconsistency, does not exist.
After reconstructing WA and clarifying what exactly would be the undesir-

able consequences threatening deviant logics, and then Williamson’s reasons
for believing that these threats are significant, I will focus on QL as a par-
ticular logic targeted by WA. In this case, a crucial premise of WA will turn
out to be false. The same premise arguably fails also in the case of a logic of
vagueness, so the criticism could be generalized, but this generalization is not
attempted here.

4.3.1 Williamson’s attack on deviant logics

A typical deviant logician’s response to the fact that mathematical practice
seems to involve a constant appeal to CL principles is well expressed in the
following passage, quoted by Williamson as well: “[M]athematical practice
is consistent with these reasoning steps [i.e. the ones present in mathemat-
ical reasoning] being instances of mathematical principles of reasoning, not
generalizable to all other discourses. A fortiori, they may very well be princi-
ples of reasoning that are permissible for mathematics, but not for theorizing
about truth.” (Hjortland 2017, 652–3) This response suggests that just be-
cause certain reasoning principles are validated in mathematical discourse, the
deviant logician may contend that the same principles do not need to extend to
other regions of discourse, e.g. those concerned with truth or, for that matter,
mountains or quantum-mechanical phenomena. While this is tenable as long
as the mathematical and the non-mathematical are kept mutually isolated,
Williamson believes that the applicability of mathematics to non-mathematical
domains, as exemplified in the natural and social sciences, raises the following
problem.

Let D be a set of terms denoting the non-mathematical objects that the de-
viant logician takes to require a non-classical treatment, e.g. heaps, electrons,
or metalinguistic terms. Also, suppose the deviant logician wants to keep
mathematics classical. Williamson argues that this is problematic for several
reasons. First of all, the deviant logician cannot consistently substitute el-
ements of D for variables in the statements of some classical mathematical
theorems. For example, the many-valued logician cannot apply the theorem
∀x, y(x = y ∨ x 6= y) to, say, mountains without contradicting her thesis that
the identity of mountains is possibly undetermined. Secondly, the same rea-
son prevents the deviant logician from appealing to an isomorphism holding
between the objects denoted by D, on the one hand, and some classical purely
mathematical objects, on the other hand: e.g. an isomorphism between a
collection of mountains and a pure set (as defined by ZFC set theory).

Furthermore, not only does the deviant logician have trouble with the appli-
cation of classical mathematical theorems, but she also faces problems with the
use of mathematical reasoning in science, for she cannot substitute elements of
D for variables used in classical derivations from scientific hypotheses. Since
Williamson takes such limitations to imply the impossibility of applying classi-
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cal mathematics to the non-mathematical objects denoted by the terms in D,
and since he also takes it to be uncontroversial that classical mathematics can
be applied - and is routinely applied - to the world outside pure mathematics,
he concludes that “in a non-classical world, pure mathematics is no safe haven
for classical logic.” (Williamson 2018, 21)

As a consequence, the deviant logician would be forced to rebuild mathe-
matics within her own logic. For example, a quantum logician would have to
recover classical mathematics in a quantum-logical framework in order to make
sense of the applicability of classical mathematics to quantum phenomena.
However, the task of rebuilding mathematics within a new logic is notoriously
difficult, and Williamson thinks it would rather unavoidably lead to ad hoc
premises.64 This would, in turn, make the scientific explanations that involve
applications of classical mathematics – and it is hard to find many that do
not – more costly, since they must include extra assumptions, e.g., the ad-hoc
premises required for classical recapture (op. cit., 19).

Therefore, Williamson concludes, even though the path of rebuilding math-
ematics within a non-classical logic is the one that a staunch deviant logician
ought to take, it nevertheless leads to an abductively implausible view – im-
plausible, because the usual path trodden by the classical logician offers an
elegant and less explanatorily costly alternative.

WA can be reconstructed as follows. Again, D is a set of terms denoting
non-mathematical objects that are tentatively taken to require a non-classical
logic LD. Suppose mathematics can be (or even has been) successfully applied
to the objects referred to by D. Then WA takes the form of the following
dilemma:

1. LD can be taken either to extend to mathematics or not to extend to
mathematics.

2. If LD is taken not to extend to mathematics, then it is inconsistent to
hold that mathematics can be applied to the objects referred to by D.

3. If LD is taken to extend to mathematics, then most explanations in
science become more costly.

4. Therefore, maintaining that reasoning about the objects referred to
by D can be adequately captured by LD is either inconsistent or abductively
implausible.

However, this argument is not sound, because Premise 2 turns out to be
false, at least when WA is restricted to the case of QL.65

64Examples of such ad-hoc premises appear in Hartry Field’s recapture of the least number
principle in a logic without the law of excluded middle (Field 2008). Williamson finds
Field’s recovery strategy unacceptable for a couple of reasons: unlike the least number
principle, which is routinely derived from mathematical induction, Field’s recovered version
of that principle is a postulate; also, that version is underivable from a suitable schema for
mathematical induction. Such reasons for blocking classical recapture are inconsequential
for my analysis in this section.

65Neil Tennant has recently defended a similar position regarding WA, by arguing that
premise 3 fails in the case of his preferred substructural logic (Tennant 2022). Let us also
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QL satisfies the presuppositions of WA, and is thus allegedly threatened by
the argument. Williamson, himself, suggests this much: “[S]ince quantum me-
chanics applies mathematics ubiquitously, those who propose non-distributive
quantum logic as a serious alternative to classical logic are not excused from
the need to reconstruct mathematics on the basis of their quantum logic.”
(op. cit., 20) Obviously, he is here pushing the second horn of WA against
the quantum logician, while at the same time noting, in all fairness, the best
attempt so far, by Michael Dunn, to classically recapture mathematics within
non-distributive QL (Dunn 1980). Presumably, Williamson assumes that the
quantum logician could stand no chance against the first horn of WA. That is,
he appears to assume as established already that it is inconsistent to maintain,
on the one hand, that reasoning about quantum phenomena can be adequately
captured by QL, and to believe at the same time, on the other hand, that clas-
sical mathematics can be applied to quantum phenomena.

But as we will presently see, this alleged inconsistency is clearly dissolved
once a closer look is taken at both of these hands.

4.3.2 Quantum models and idealized tests

It is a matter of scientific practice that, in their modelling of quantum phe-
nomena, physicists regularly apply mathematical tools from linear algebra,
functional analysis, group theory, probability theory, and other classical math-
ematical theories. Before looking at how these are applied in practice, recall
the characterization of quantum models that I have given in chapter 2, as or-
dered collections of classical mathematical objects referred to in the standard
axioms:

1. The state space of a physical system corresponds to an infinite-dimensional
complex Hilbert space H, such that the quantum state of a physical system
is a mathematical function ψ : T → H (or an equivalence class of unit-norm
vectors of H), defined at each time instant t ∈ T , where T ⊆ R denotes a time
interval.

2. The set A of dynamical quantities of a physical system (e.g., position,
momentum, spin, polarization, etc.) corresponds to the set of self-adjoint op-
erators acting on H, such that the possible values of any variable are contained
in the spectrum of its corresponding operator.

3. The unitary time evolution of a physical system is described by the
Schrödinger equation i∂t |ψ〉t = H |ψ〉t, for some operator (the Hamiltonian)
H ∈ A.

4. For each unit-norm vector |φ〉 ∈ H, µφ is a measure on the set of
subspaces of H such that for an arbitrary subspace S ⊆ H: µφ(S) = 〈φ|PS |φ〉,

note that WA may as well be countered by maintaining, as Quine suggested, that changing
the logic changes the meaning of the logical constants, a view that I discussed in the previous
section. On this understanding of deviant logics and of how they relate to CL, it is clear
that no tension with classical mathematics can arise in the first place. However, Williamson
is not concerned with such a view (op. cit., 12).
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where PS is the projector on S.

How, more exactly, are these mathematical objects used in the practice of
QM? When a physicist is confronted with the task of constructing a local quan-
tum model for a certain experiment of duration T , she will start by assigning
a Hilbert space H, a set of self-adjoint operators A and an “initial” quantum
state |ψt0〉 ∈ H to the system involved in the experiment. These assignments
are of course not arbitrary, but highly constrained by the conditions set up in
the given experiment, conditions that are taken to justify the “introduction”
of a quantum model. For example, if at the beginning of the experiment, a
device is activated that is capable of emitting a single electron of a certain
energy, this warrants an assignment of particular objects H,A and |ψt0〉 to the
electron.

Furthermore, in order to characterize the dynamical evolution of the target
system, the modeler assigns a particular Hamiltonian operator H ∈ A that
generates the function ψ according to the Schrödinger equation. Up to this
point, the physicist has been merely assigning mathematical objects to her
experiment, according to the rules and constraints of standard QM. The im-
portant step that brings the model closer to empirical reality is provided by
the Born rule, briefly explained as follows.

Suppose that at a certain “final” time tf , the physicist performs a measure-
ment of a collection of dynamical variables associated to the system of interest
(e.g. the position and the spin of an electron). Let A ≡ {A1, ..., An} ⊂ A,
for some n ∈ N, be the set of self-adjoint operators that correspond to these
variables. But note, importantly, that according to standard QM, there is
no possible experiment that could implement a simultaneous measurement of
so-called “incompatible” variables, i.e. variables associated to mutually non-
commuting operators (e.g., a particle’s position and momentum). As a conse-
quence of this impossibility, the operators in A obey canonical commutation
relations [Ai, Aj ] = 0, for all i, j = 1..., n.

Next, for each i, let MAi

∆(i) ⊆ H be the eigenspace corresponding to a subset

∆(i) ⊆ Spec(Ai) of Ai’s spectrum. The Born rule then predicts (or prescribes)
the probability PrAtf (∆

(1), ...,∆(n)) for the outcomes of the measurement of the
n dynamical variables performed at time tf to be contained respectively in
subsets ∆(1), ...,∆(n):

PrAtf (∆
(1), ...,∆(n)) = µψtf

(MA1

∆(1)...M
An

∆(n)) =
〈

ψtf
∣

∣PA1

∆(1) ...P
An

∆(n)

∣

∣ψtf
〉

,

where PAi

∆(i) is the projector on subspace MAi

∆(i), for each i. The Born rule
thus enables the physicist to use the quantum model – and more precisely, its
Hilbert space measures µφ – to generate (classical) probability distributions
PrAtf that can then be compared to statistical data models extracted from
actual experiments. In other words, the application of the Born rule justifies
the “elimination” of the quantum model.

Despite the empirical success of QM, i.e., the fact that quantum-mechanical
modeling of the sort just described yields unprecedented predictive and ex-
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planatory power with respect to the microscopic world, various problems (such
as the measurement problem, Bell’s nonlocality, contextuality, etc.) leave the
interpretational problems of QM still far from being resolved. Some realist
interpretations urge us, for instance, that the lesson we ought to take from the
empirical success of QM is that physical interaction can be non-local, or that
our “world” is just one among the many worlds that partake in the Everettian
“multiverse”.66 As I noted in section 4.1, others have argued that what QM
is primarily teaching us is that the “one true logic”, or at least the logic we
ought to adopt in our reasoning about the microscopic world, is Birkhoff and
von Neumann’s non-distributive QL (or some of its variants).67

Indeed, QL looks like a perfect target for WA, since it is typically taken to
violate the classical distributive law due to the peculiarities of standard QM.
There are, admittedly, many formulations and presentations of QL, and albeit
most of them agree in their core rejection of the distributive law, some of them
yield different relations of logical consequence, which makes it more accurate
to speak of QLs, in the plural (cf. Rédei 1998). For simplicity, the focus
here will be on one QL, and so on a particular relation of logical consequence.
In contrast to the abstract presentation given in section 4.2.1, here the QL-
consequence relation will be constructed on the basis of an “operationalist”
semantics (Putnam 1968, 192-197, Bacciagaluppi 2009, 54-55). This should be
sufficient to convince us that there is no inconsistency between adopting QL
in the quantum domain and applying classical mathematics therein as well,
thereby refuting premise 2 of WA.

Consider once again an experiment involving a quantum system, say a
particle s, and its corresponding quantum model Θ. Since in what follows the
dynamical aspects of the model, i.e. those aspects that have to do with time
dependence, will be irrelevant, let us turn our attention to its “kinematical”
part, Θ̃ ≡ 〈H,A, µφ〉. As stated already, each element A of A corresponds to
a dynamical variable (e.g., position or momentum) associated to the system
under consideration, and each of these variables can take values in its operator’s
spectrum Spec(A). Now, roughly speaking, the quantum logician urges us that
there is something peculiar about the logical relations that obtain between
certain sentences that refer to the dynamical variables associated to our system.
The canonical set of sentences that the quantum logician asks us to focus on is
SQL, i.e., the set that can be generated by conjoining, disjoining and negating
so-called elementary sentences, each of which takes the form sA∆ and specifies
the range of values taken by a variable associated to our quantum system:
“The value of the variable corresponding to operator A lies in interval ∆”, with
A ∈ A and ∆ ⊆ Spec(A). As we known already from our discussions above, the

66Cf., again, Lewis 2016 for a useful review of QM interpretations and their metaphysical
problems.

67Cf. Birkhoff and von Neumann 1936. For more recent presentations, see e.g. Dalla
Chiara et al. 2004. Some physicists continue to assert that “real quantum mechanics is
not so much about particles and waves as it is about the nonclassical logical principles that
govern their behavior.” (Susskind and Friedman 2014, 236)
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quantum logical relations that obtain between these sentences disobey the rule
of distributivity of conjunctions over disjunctions. Let’s see how this informal
semantics can be articulated in operationalist terms.

An operationalist semantics for QL can be explicitly defined in terms of
idealized operational procedures that may in principle be carried out in a
laboratory. First, let T be a possibly uncountable set, whose elements are
taken to denote idealized tests, i.e. idealized operational procedures that may
hypothetically be applied to physical systems. We assume that the application
of any test to any physical system may result in only one of the two mutually
exclusive outcomes: either the system passes the test or it does not. Further,
let a function τ : SQL → T associate one idealized test to each sentence in
the canonical set. In particular, each elementary sentence of the form sA∆ is
mapped to the test that consists in an idealized measurement of the dynamical
variable associated to A, such that if the test is applied, it is passed by a system
if and only if the outcome of the measurement is contained in ∆. Furthermore,
all tests associated to compound sentences are determined via the following
algorithm, with p, q ∈ SQL henceforth being arbitrary sentences:

• τ(¬p) is passed by a system with certainty (i.e. unit probability) if and
only if the same system would certainly fail to pass τ(a);

• τ(p ∧ q) is passed by a system with certainty if and only if the same
system would certainly pass both τ(p) and τ(q);

• τ(p ∨ q) is passed by a system with certainty if only if the same system
would certainly pass either τ(p) or τ(q).

Now, let us define the relation of logical consequence on the sentences
in SQL relative to their associated tests: informally, we will say that a set
of premises, Γ, QL-implies conclusion p, if it is the case that any quantum
system that passes each test τ(γ) with certainty, for all γ ∈ Γ, also passes τ(p)
with certainty. In order to formalize this, let us introduce a set of valuations
V ≡ {vφ|∀φ ∈ H, s.t. 〈φ|φ|φ|φ〉 = 1}, where H is the Hilbert space assigned to
the quantum system under consideration. Each vφ : SQL → {0, 1} is a bivalent
truth valuation that assigns one of the two truth values to any experimental
sentence p, as follows: vφ(p) = 1 if and only if a quantum system prepared
in quantum state |φ〉 would pass test τ(p) with certainty. Whether a system
passes a certain test with certainty is in turn determined by the outcome of
hypothetical applications of quantum models to idealized tests. This means
that the value of vφ(p) is determined by the probability distribution generated
from an appropriate quantum model of the test τ(p) performed on a system
in state |φ〉.

Without getting into more details about the relation between tests, val-
uations and quantum models, once the definition of valuations is in place,
the logical consequence relation follows canonically. For any Γ ∪ {p} ⊂ SQL,
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Γ �QL p if and only if:

∀v ∈ V : if (∀γ ∈ Γ, v(γ) = 1) then v(p) = 1.

Having revisited some basic details about the application of classical mathe-
matics in constructing quantum models, and the operationalist semantics for
QL, we are ready to get back to WA, and in particular ready to challenge its
second premise.

4.3.3 Withstanding the attack on quantum logic

When restricted to the case of QL, premise 2 of WA can be paraphrased as fol-
lows: “It is inconsistent to simultaneously hold that (i) QL adequately captures
reasoning about quantum phenomena, and that (ii) classical mathematics can
be applied to quantum phenomena.” But I think that this premise is false,
and in this section I will explain why I take this to be the case.

As discussed above, the sentences in the canonical set SQL are obtained by

logically compounding elementary sentences, such as S
(X)
[1,2], which reads “The

value of an electron’s position lies in the interval [1, 2].” The quantum logician
claims, recall, that the logical relations between such sentences require a non-
distributive logic. Can this claim lead to an inconsistency with the application
of classical mathematics in the construction of quantum models, and if so,
how?

Note that, on the basis of the informal semantics of QL, no clear answer
can be given to this question, since this semantics does not precisely deter-
mine the meaning of a sentence like S

(X)
[1,2]. Does this sentence, for example,

specify the electron’s location, just like the statement “We are currently in Vi-
enna” specifies our location? Or is it rather just shorthand for the conditional
statement “If a measurement were performed, its output would indicate the
electron’s position somewhere in the interval [1, 2]”? Needless to say, these two
possible readings do not have the same empirical significance: the former may
be understood as a metaphysical claim about instantiated properties, without
any implications on what we may observe in a performed experiment, whereas
the latter, as a conditional statement, has a bearing on possible observations
in experiments that may be carried out in a laboratory. But the operationalist
semantics fares better in this respect, since it equates the meaning of exper-
imental statements with tests that can, at least in principle, be performed
in a laboratory. Hence, we can now clearly consider the possibility that the
quantum logician may be exposed to an inconsistency with the applicability of
classical mathematics in QM. For it may now appear that the non-distributive
logical relations between sentences in SQL are in tension with the classicality
of the mathematics applied in quantum modeling.

First, we need to determine what exactly the applicability of classical
mathematics in QM implies with respect to the logical relations between
the sentences in SQL. Consider a generic class of quantum models Θα =
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〈H,A, T, ψ, µφ〉, where the index α indicates that the “initial” quantum state
of its corresponding model is |α〉 ∈ H, i.e. that |ψt0〉 = |α〉. With the help
of the Born rule, each of these models can be used to describe a variety of
experiments, as already explained above. Further, consider a particular exper-
iment TA

α , which consists of the measurement of a set of dynamical variables
associated to operators A ≡ {A1, ..., An} ⊂ A on a quantum system prepared
in state |α〉. Recall that according to QM, any set of operators corresponding
to simultaneously measurable variables is necessarily commutative, which im-
plies that [Ai, Aj ] = 0, for all i, j = 1, ..., n. Finally, let PrAα be the classical
probability distribution generated from a quantum model by an application to
TA

α .
Here is why the classicality of PrAα implies that the logical relations among a

certain subset of sentences in SQL obey CL. Let s
(i)
∆ be the elementary sentence

“The value of the variable associated to Ai lies in ∆”, where ∆ is an arbitrary
subset of Spec(Ai). Furthermore, let SAQL ⊂ SQL be the subset of sentences

generated by logically compounding the elementary sentences s
(i)
∆ . The exper-

iment TAα can now be used to furnish idealized tests τ(s
(i)
∆ ) for the elementary

sentences s
(i)
∆ . Indeed, saying that a system prepared in state |α〉 ∈ H passes

test τ(s
(i)
∆ ) with certainty is equivalent to asserting that

PrAα (G
(i)
∆ ) = 1,

where G
(i)
∆ is shorthand for (Ω1, ...Ωi−1,∆,Ωi+1, ...,Ωn), with Ωj ≡ Spec(Aj).

Furthermore, the operationalist semantics for disjunction and conjunction
implies the following relations between the idealized tests associated to these
connectives and the probability distribution PrAα : a quantum system prepared
in state |α〉

passes test τ(s
(i)
∆i

∧ s
(j)
∆j
) if and only if PrAα (G

(i)
∆i

∩G
(j)
∆j
) = 1,

passes test τ(s
(i)
∆i

∨ s
(j)
∆j
) if and only if PrAα (G

(i)
∆i

∪G
(j)
∆j
) = 1,

for arbitrary i, j = 1, ..., n, and for ∆i ⊆ Spec(Ai) and ∆j ⊆ Spec(Aj).
Note that, as a classical probability distribution, PrAα obeys the distributive
identity

PrAα (G
(i)
∆i

∩ (G
(j)
∆j

∪G
(k)
∆k

)) = PrAα ((G
(i)
∆i

∩G
(j)
∆j
) ∪ (G

(i)
∆i

∩G
(k)
∆k

)),

which immediately implies

τ(s
(i)
∆i

∧ (s
(j)
∆j

∨ s
(k)
∆k

)) = τ((s
(i)
∆i

∧ s
(j)
∆j
) ∨ (s

(i)
∆i

∧ s
(k)
∆k

))

which in turn, given the operationalist definition of the QL-consequence
relation, implies the validity of the following argument

s
(i)
∆i

∧ (s
(j)
∆j

∨ s
(k)
∆k

) �QL (s
(i)
∆i

∧ s
(j)
∆j
) ∨ (s

(i)
∆i

∧ s
(k)
∆k

).
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Thus, by assuming the operationalist semantics, the quantum logician is
forced to assert the validity of the classical law of distributivity. This follows
as a consequence of the classicality of the probability distributions used in
quantum modeling. However, lest there be any misunderstanding, note that
the quantum logician is forced to assert the validity of the classical law of
distributivity only for the subset of sentences SAQL generated by logically com-

pounding the elementary sentences s
(i)
∆ , which refer exclusively to dynamical

variables associated to elements in the set of commutative operators A ⊂ A.
Does this raise an inconsistency problem for the quantum logician?

Definitely not! It is perfectly consistent to maintain that the set SQL of
all experimental statements requires a non-classical logic, while admitting that
there are subsets like SAQL, which nonetheless validate classical logic. Impor-
tantly, it is no accident that the argument started by considering a set of com-
mutative operators: had we considered instead a non-commutative set, such
as {X,P} ⊂ A, where X and P are operators corresponding to, say, a parti-
cle’s position and momentum, the argument would have been blocked from the
get-go. This is because there is no (idealized) experiment, adequately modeled
by a joint classical probability distribution, that could simultaneously measure
variables whose corresponding operators are mutually non-commuting. Briefly
put, since any application of a quantum model can only be used to generate
probability distributions over values of quantum-mechanically compatible vari-
ables, it follows that the classicality of such distributions can force only some
subsets of sentences SAQL ⊂ SQL, for any set of commutative operators A, to
obey CL. This is the case, indeed, according to QL. Therefore, the alleged in-
consistency between QL and the applicability of classical mathematics in QM
does not exist.

But the fact that this inconsistency does not exist is not surprising at all.68

To insist that it does, as Williamson has suggested in his WA, is actually a
curiosity of sorts. For recall that QL-consequence has been defined relative to
the operationalist semantics, which has itself been constructed on the basis of
QM and its mathematical formalism. The logical relations between sentences
in the language of the theory concern the properties of tests performable in
principle on quantum systems. But these tests and their properties are not
freely posited by a speculative logician: they are instead explicitly defined in
terms of quantum models! This is why it is rather odd that an argument
such as WA has been leveled against QL, in the first place, for this logic has
been explicitly motivated by, and formally constructed on the basis of, the
standard formalism of QM. That WA is unsound in the case of QL is, thus,
not an accident. A further question, which will however not be discussed here,
is whether there is any non-classical logic for which WA is sound.69

68Indeed, that QL does not conflict with the classicality of QM models has already been
suggested by Putnam (1968), and more recently by Dickson (2001, S283), Bacciagaluppi
(2009), and others.

69It can be argued that WA fails, for the same reason, i.e., because premise 2 is false, also
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5 Quantum inferentialism

Quantum inferentialism, as a metasemantics of standard QM, holds that the
meaning of expressions in the language of the theory is determined by their
inferential properties. This rejects the widespread view that meaning is de-
termined by representational properties. After some conceptual background,
two objections are formulated, from information-theoretic reconstructions and
from extensions of Wigner’s friend scenario. Then the chapter focuses on the
categoricity problem for quantum inferentialism. It also motivates the project
of a non-inferentialist metasemantics for QBism, according to which meaning
is determined by decision-theoretic properties.

5.1 Inferentialist approaches to physics

The most detailed version of quantum inferentialism, to date, has been advo-
cated by Richard Healey in his book, The Quantum Revolution in Philosophy
(Healey 2017). This denies that the semantic attributes of quantum expres-
sions are determined by their representational properties, articulated by cor-
respondence or semantic rules. It also denies that quantum expressions have
any representational properties. As a pragmatist, Healey is committed to the
ontological claim that QM has no beables of its own, so there are no physical
entities that could be represented by QM’s formalism. This entails that super-
position, entanglement, and nonlocality, i.e., some of the most characteristic
features of QM, are not physical, but mathematical phenomena. One might
think that this commitment is the very reason why he believes that QM is a
revolutionary theory. But although truly attractive since it does not conflate
semantics and ontology, Healey’s view is no quantum fictionalism. As will
become clear in this chapter, his view is that what makes QM philosophically
revolutionary – a radical change from classical physics – is neither its ontology
(or lack thereof), nor its logic, but its (meta)semantics. In a nutshell, Healey’s
quantum inferentialism is a non-representationalist (meta)semantics for stan-
dard QM, conjoined with a representationalist semantics for all non-quantum
expressions, including expressions in the language of classical physics.

The early articulation of inferentialism by Wilfrid Sellars, as a critical reac-
tion to some of Carnap’s views expressed in Logical Syntax of Language (1934),
and Robert Brandom’s later reflections and developments constitute the his-
torical and conceptual background that will help us to understand Healey’s
pragmatist view, so that is where I will start below (section 5.1.1). I will then
compare (in section 5.1.2) his quantum inferentialism to Huw Price’s global
expressivism, which embraces inferentialism for all scientific theories (Price
2013), and I will do so especially with regard to the following dilemma: either
the representational success of singular terms in a language can be accounted
for inferentially, or representationalist semantics must be allowed for at least

in the case of a logic of vagueness. See Horvat and Toader 2024 for more details.
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some expressions in that language. But my main interest in this chapter is
to formulate some new objections to Healey’s quantum inferentialism: two of
them are from information-theoretic reconstructions of QM (in section 5.2.1),
and from recent extensions of Wigner’s friend scenario (in section 5.2.2). Af-
ter considering some possible ways in which the inferentialist might respond
to these objections, I will formulate (in section 5.3.2) what I think is a more
serious problem with quantum inferentialism, a categoricity problem similar to
that faced by its metasemantic cousin – logical inferentialism (section 5.3.1).
But I shall also make some suggestions, on behalf of the quantum inferentialist,
as to how this problem might be solved in ways that are fully compatible with
inferentialism. The chapter ends with some admittedly programmatic remarks
(in section 5.3.3) on how a non-inferentialist metasemantics for QBism might
be developed, and why.

5.1.1 Global inferentialism

This is, of course, not the place for a comprehensive critical account of infer-
entialism as a metasemantics of natural language. But a couple of notions are
central to this view and must be clarified before we embark on an analysis
of quantum inferentialism. Such is Sellars’ notion of material inferences, but
also the notion of inferential conservativity, which is applicable to the rules of
these inferences. In this section, I will first present Sellars’ argument, which
he directed against Carnap, to the effect that material inferences are irre-
ducible to logical inferences. Then, I will explain the significance of inferential
conservativity, and in particular Brandom’s argument against the inferential
conservativity of the material rules for the introduction and elimination of
non-logical, scientific terms. Both of these central notions, and these two ar-
guments, will help us later to better understand certain aspects of Healey’s
quantum inferentialism.

Sellars’ paper “Inference and Meaning” (1953) is the only one of his works
cited in Healey’s book, and we do well to start there, also because Carnap’s
Syntax is not only the inspiration, but also sole target of that paper, so Sel-
lars’ criticism is particularly poignant. In his preface to the Syntax, Carnap
wrote: “Let any postulates and any rules of inference be chosen arbitrarily;
then this choice, whatever it may be, will determine what meaning is to be
assigned to the fundamental logical symbols.” (Carnap 1934, xv, emphasis re-
moved) Sellars further proposed that not only logical symbols, but non-logical
expressions as well, have their meaning determined by their linguistic use, and
more specifically, by the rules of inference. As Brandom would later describe
this view, “Sellars takes it that ‘grasp of a concept is mastery of the use of a
word.’ He then understands the metalinguistic features in question in terms
of rules of inference, whose paradigms are Carnap’s L-rules and P-rules. ...
Sellars identifies his ‘material rules of inference’ with Carnap’s ‘P-rules’. ...
Carnap’s views ... made the scales fall from Sellars’s eyes.” (Brandom 2015,
43sq) Granting this identification and the falling of scales, what are mate-

111



rial inferences and what exactly are their rules? What is the argument that
supports their metasemantic indispensability?

Against Carnap’s view that material rules, or what he called P-rules, are
just thought-economical devices, “a matter of convention and hence, at most,
a question of expedience” (Carnap 1934, 180), Sellars argued that material
inferences are irreducible to logical inferences. The argument will be important
for understanding, when we turn to QM, the metasemantic work that the rules
of material inferences are claimed to do there. In order to explain it, consider
these examples:

If an object is red, then it’s colored. This object is red. Thus, it’s
colored.

If something is gray, then it’s a slithy tove. Findus is gray. Thus,
it’s a slithy tove.

What is characteristic of such inferences is, of course, that one can assent
to their conclusions once one has assented to their premises, even though one
may not know what the terms mean. In the case of logical inferences, it’s
their logical form that matters. However, Sellars pointed out that, in the case
of material inferences, it’s the matter that matters, not the logical form. He
maintained that unless one assents to their conclusions once one has assented
to their premises, one does not know what the terms involved mean. Consider
these examples:

This object is red. Thus, it’s colored.

Findus is on the mat. Thus, Findus is not on the roof.

An entire network of such inferences – what Brandom calls “the social
game of giving and taking reasons” (Brandom 2000, 159) – determines, ac-
cording to Sellars, the meaning of all of our linguistic expressions. To defend
this view, he first noted that material inferences are expressed by subjunctive
conditionals, such as “If this object were red, then it would be colored.” and
“If Findus were on the mat, Findus would not be on the roof.” Such sub-
junctive conditionals, as Brandom would later emphasize, are implicit modal
statements.70 In particular, our two inferences are expressed by the following
modal statements: “Necessarily, if this object is red, then it is colored.” and
“Necessarily, if Findus is on the mat, then Findus is not on the roof.” Essen-
tially due to this implicit modality, Sellars concluded that material inferences
are irreducible to logical inferences. This is because one cannot detach the
consequent of a subjunctive conditional only by affirming its antecedent:

70For this reason, Brandom characterized inferentialism as a “modal expressivism”, i.e.,
the view that modal concepts make explicit what is implicit in the use of concepts in material
inferences. I will return to this idea in my discussion of quantum inferentialism, in section
5.1.2.
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Necessarily, if this object is red, then it is colored. This object is
red. Thus, this object is colored.

Necessarily, if Findus is on the mat, then he is not on the roof.
Findus is on the mat. Thus, he is not on the roof.

As stated, these two inferences are logically invalid.71 Moreover, some ma-
terial inferences are clearly nonmonotonic, since they admit of defeasors. For
example, Findus’ mat actually being on the roof is such a defeasor, since in
this specific case of domestic negligence, the corresponding subjunctive con-
ditional, “Necessarily, if Findus is on the mat, Findus is not on the roof.” is
false. But other material inferences are counterfactually robust, as it is hard
to find defeasors for them.

Sellars took this argument to establish the metasemantic indispensability
of material inferences: such inferences are relations between meanings, rather
than relations between extensions of concepts. Expressing material inferences
as implicit modal statements makes this point explicit. He also thought that
this corrected the view defended by Carnap. According to Sellars, Carnap had
maintained that P-rules – the rules of material inferences – are, in principle,
reducible to logical rules:

Carnap, however, makes it clear that in his opinion a language
containing descriptive terms need not be governed by extra-logical
transformation rules. Indeed, he commits himself (p. 180) to the
view that for every language with P-rules, a language with L-rules
only can be constructed in which everything sayable in the former
can be said. (Sellars 1953, 320; original emphasis)

It is rather difficult to endorse this reading of what Carnap actually says
on page 180 of his Syntax, and one would have to say much more to justify
the step from P-rules being a matter of convention and expedience, as Carnap
saw them, to P-rules being metasemantically dispensable, in the sense Sellars
thought Carnap saw them. On Sellars’s reading, Carnap regarded material
rules as admissible only on account of “the economy in the number of premises
required for inferences” (op. cit., 321). So he considered Carnap’s view to be
that material rules are inessential to any language, and thus metasemantically
inert or dispensable. But what Carnap had maintained is that, in principle,
one could stipulate only logical rules or one can adopt as material rules all
sentences that are not logical rules: the choice is based on pragmatic criteria
like simplicity and fruitfulness. He never said that adding or dropping P-rules
would leave the expressive power of a language unchanged.

71Of course, one might object that, as stated, these inferences are mere enthymemes, which
could be completed by adding an appropriate premise of the form “If necessarily p, then
p.” However, I am here merely interested in reconstructing, rather than criticizing Sellars’
argument. But one might wonder if this objection could also be raised against Healey’s
quantum inferentialism.
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In any case, Sellars doubted that the view that material rules are metase-
mantically dispensable is correct, and thought that empiricism, or at least
Carnap’s empiricism, could be disconnected from it:

But might it not be possible for an empiricist to hold that material
rules of inference are as essential to meaning as [the logical] rules?
... P-rules are essential to any language which contains non-logical
or descriptive terms. (op. cit., 336)

Sellars believed that his argument from the implicit modal character of
material inferences successfully refutes what he took to be Carnap’s view. But
Carnap’s reflections on P-rules actually raise an important point for inferen-
tialism, regarding the inferential conservativity of material rules. He noted the
following:

If P-rules are stated, we may frequently be placed in the position
of having to alter the language; and if we go so far as to adopt all
acknowledged sentences as valid, then we must be continuously ex-
panding it. But there are no fundamental [as opposed to practical]
objections to this. (Carnap 1934, 180)

Continuous expansion of a language and continuous modification of its
semantics, although impractical, may be admissible. But on Sellars’ inferen-
tialism, such a modification would be unavoidable. The introduction of new
vocabulary, and as a special case the introduction of new concepts in science,
always allows us to make novel material inferences. Given the metasemantic
work done by such inferences, on Sellars’ view, they will not only determine the
meaning of the new vocabulary, but will change the meaning of at least some
of the old expressions as well. This updating of semantics presupposes, in any
case, that the rules are such that novel material inferences can be made when
new concepts are introduced in a language. In other words, it presupposes
that the rules are inferentially non-conservative.

Moreover, as Carnap further noted, rules of inference can also be altered:

No rule of the physical language is definitive; all rules are laid down
with the reservation that they may be altered as soon as it seems
expedient to do so. This applies not only to the P-rules but also to
the L-rules, including those of mathematics. In this respect, there
are only differences in degree; certain rules are more difficult to
renounce than others. (op. cit., 318)

Thus, for Carnap, updating the semantics of a language as a result of
changing the rules of inference would be admissible as well, while for Sellars
this updating would be, once again, unavoidable. Since material inferences
determine the meaning of empirical terms, every change of rules implies a
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modification of the meaning of at least some of these terms in the language.
But again, this presupposes that the rules are inferentially non-conservative,
i.e., they allow new material inferences.

The point that I emphasize here, building on Carnap’s reflections, that the
semantics of a descriptive language changes whenever new material inferences
or new material rules of inference are formulated for that language, has been
acknowledged by Brandom. He implied, however, that inferential conservativ-
ity is nevertheless a good thing in logic:

Unless the introduction and elimination rules are inferentially con-
servative, the introduction of the new vocabulary licenses new ma-
terial inferences, and so alters the contents associated with the old
vocabulary. ... Outside of logic, this is no bad thing. Conceptual
progress in science often consists in introducing just such novel
contents. (Brandom 2000, 68-71)

Following logical inferentialism, where logical rules of inference are rules
for the introduction and the elimination of logical connectives, Brandom takes
material rules of inference similarly as rules for the introduction and the elim-
ination of descriptive terms. In a bit more detail, according to logical in-
ferentialism, introduction rules state inferentially sufficient conditions for the
employment of a logical connective, and elimination rules state inferentially
necessary consequences of the employment of that connective. Likewise, the
inferentially sufficient conditions for the employment of a descriptive term are
taken as its introduction rules, and the inferentially necessary consequences
of the employment of that term are taken as its elimination rules. In order
to block the introduction of spurious connectives in logic, e.g. tonk-like ones,
as well as to avoid changing the meaning of connectives, the rules of logical
inference should be inferentially conservative.72

In contrast, according to Brandom, the material rules of inference in a
descriptive language should be inferentially non-conservative, to allow for con-
ceptual progress, or at least for the kind of scientific progress based on the
introduction of new concepts.73 This point is endorsed by Healey:

72Cf. Prior 1960. Note that this condition is only contextually justified: for instance,
one should allow that the language of positive logic is inferentially non-conservative, lest
one blocks the introduction of new connectives in this language, e.g., negation (for a brief
discussion of positive logic including a proof of its non-categoricity, see Br̂ıncus

,
and Toader

2019). Note also that tonk is an extreme example of a spurious connective, since it allows
one to infer everything from anything. But are there connectives that are spurious without
being tonk-like? Are there degrees of spuriousness?

73Brandom’s point here goes against a view proposed by Michael Dummett, who upheld
inferential conservativity not only for logical languages, but for descriptive languages, so that
the introduction of new but spurious descriptive terms can be blocked as well. Of course,
part of the issue here (as in the case of logic) revolves around the nature of spuriousness:
what exactly should be the criteria of spuriousness?
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Acceptance of quantum theory affects the content of all magnitude
claims, though for most such claims (especially concerning ordi-
nary objects above a microscopic scale) the effect may be safely
neglected. (Healey 2017, 210)

Healey readily admits that the introduction of QM has licensed new ma-
terial inferences in physics, which on the inferentialist metasemantics that he
favors not only determines the meaning of quantum expressions, but they also
change the meaning of non-quantum expressions like “Particle s is located in
region R”, “Findus is alive”, etc. The changes in meaning of such expressions
are, he contends, negligible for most such expressions, and especially so for
those that concern macroscopic objects. As we will see, however, Healey’s
endorsement of the inferential non-conservativity of material rules of infer-
ence in standard QM is problematic, for it blocks one possible response to the
categoricity problem that I will pose further below to quantum inferentialism.

One final point before I turn to present Healey’s view in more detail. This
concerns Sellars’s claim that the metasemantic use of correspondence or se-
mantic rules is actually question-begging:

There is at first sight some plausibility in saying that the rules to
which the expressions of a language owe their meaning are of two
kinds, (a) syntactical rules, relating symbols to other symbols, and
(b) semantical rules, whereby basic descriptive terms acquire extra-
linguistic meaning. It takes but a moment, however, to show that
this widespread manner of speaking is radically mistaken. (Sellars
1953, 335sq)

He rejected the idea that semantic rules can do any metasemantic work as
radically mistaken in the following way:

Obeying a rule entails recognizing that a circumstance is one to
which the rule applies. If there were such a thing as a ‘semantical
rule’ by the adoption of which a descriptive term acquires meaning,
it would presumably be of the form ‘red objects are to be responded
to by the noise red ’. But to recognize the circumstances to which
this rule applies, one would already have to have the concept of red,
that is, a symbol of which it can correctly be said that it ‘means
red’. (loc. cit.)

Sellars’ rejection of the idea that semantic rules can do any metasemantic
work will be important in the context of my first objection to quantum inferen-
tialism, based on information-theoretic reconstructions of QM. That objection
will specifically point out that unless one allows semantic or correspondence
rules to do some metasemantic work, those reconstructions cannot account
for the meaning of reconstructed QM. But, of course, that such rules do no
metasemantic work is precisely what the inferentialist insists upon, as Sellars
indeed did.
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5.1.2 Healey’s quantum inferentialism

The quantum inferentialist is committed to the claim that an adequate un-
derstanding of QM requires not only the ability to successfully use the theory
for prediction and explanation, but it further requires that questions about
semantic facts, about what determines the meaning of quantum expressions,
be properly answered. Some reasons for adopting inferentialism concern what
Healey regards as the failure of most viable interpretations of QM to pro-
vide adequate solutions to a host of foundational problems like the problem of
ontology, measurement, completeness, nonlocality, etc.74 Since these interpre-
tational problems arguably assume representationalism, dropping the latter is
believed to dissolve such problems, which in turn provides indirect support
for inferentialism. For example, as I mentioned already, standard QM has,
according to Healey, no beables of its own, and so, importantly, there exists
no quantum dynamics. Also, entanglement is not a physical relation between
real systems, but a mathematical relation between mathematical objects.

As Healey emphasized, “The most significant break marked by acceptance
of quantum theory is a novel, indirect use of models to further the aims of fun-
damental science.” (Healey 2017, 121) Successful prediction and explanation
do not assume that quantum models provide a representation of the physi-
cal world, or of our knowledge thereof. The inferentialist proposes that they
are used as epistemic advisors, in the following sense: the Schrödinger equa-
tion tells us how quantum models are used for prescribing and updating our
credences in experimental propositions, i.e., what Healey calls “canonical non-
quantum magnitude claims” about a system. For a system s and magnitude
M, all such claims have the the form “s has (M ∈ ∆)” which says “The value
of the magnitude M of s is in the interval ∆”, or a bit more precisely, “The
value of the magnitude corresponding to operator A lies in interval ∆”, where
A ∈ A is associated to M, and ∆ ⊆ Spec(A) is an interval in A’s spectrum.

Thus, Healey sees QM as ψ-prescriptive. This is what makes it a non-
classical theory and explains its revolutionary character: for rather than rep-
resenting states of affairs, the theory prescribes credences or degrees of belief in
certain non-quantum magnitude claims about physical systems. Nevertheless,
as we will see presently in more detail, quantum models are to be relativized
to physical situations, such that differently located agents can assign different
quantum models to the same system, and thus can prescribe different credences
about the same magnitude claim. And each such prescription is complete, in
the sense that the model it is based on requires no additional variables. In
contrast, ψ-ontic and ψ-epistemic interpretations treat QM just like classical
physics, i.e., they assume that quantum expressions are, just like the language
of classical physics, representational. They assume, in other words, not only a
representationalist semantics, but a representationalist metasemantics as well.

74For a clear and comprehensive account of these problems in the foundations of QM, see
Norsen 2017. See chapters 4 and 6 in Healey 2017 for his own account.
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Healey insists that precisely because of such assumptions, these interpreta-
tions fail to account for the revolutionary character of QM. On his view, what
accounts for this character is neither the lack of an ontology, nor its possibly
deviant logic, but rather its semantics and metasemantics.

But one might wonder whether, despite the proposed dissolution of quan-
tum ontology, an inferentialist makes no other ontological commitments in
QM. Recall that, as noted in the previous section, on Brandom’s development
of Sellars’ view, inferentialism turns out to be a kind of modal expressivism.
Brandom further took this to be a “fundamental Kantian idea”:

Claiming that one should be a pragmatic modal expressivist (an
expressivist about what one is doing in applying modal vocabu-
lary) but a semantic modal realist (a realist about what one is
saying in applying modal vocabulary) is, I think, recognizably a
development and a descendant, for this special but central case, of
Kant’s claim that one should be a transcendental idealist, but an
empirical realist. (Brandom 2015, 178)

Thus, an inferentialist is an expressivist about what she is doing, but a
realist about what she is saying, in applying modal vocabulary, for example in
the statement “Necessarily, if this substance turns litmus red, it is an acid.”
This is presumably because this modal statement not only expresses a material
inference (This substance turns litmus red. Thus, it is an acid.), but it also
describes a modal fact. If this idea is taken seriously by the quantum inferen-
tialist, then even though QM is intended to be prescriptive, it seems it cannot
be purely prescriptive. This is because the modal statements that express its
material inferences turn out to be descriptive after all, in the sense just indi-
cated, which suggests that the quantum inferentialist must be committed to a
modal ontology.

In any case, how does inferentialism actually explain the relationship be-
tween the quantum formalism and its meaning? What are the rules of material
inferences that do metasemantic work in standard QM? On Healey’s view, the
circumstances and the consequences of the application of a quantum model de-
termine the meaning of all quantum expressions in the model. Circumstances
of application are the inferentially sufficient conditions for the employment of
a model, for the assignment of a quantum state. In other words, they are its
introduction rules. Consequences of application are the inferentially necessary
consequences of the employment of a model, of the assignment of a quantum
state – its elimination rules.

In order to further clarify what these introduction and elimination rules
are, note that Healey conceives of quantum models as “informational bridges”,
bridges that take an agent from a certain set of non-quantum magnitude claims
(what he calls “backing conditions”), through the assigned quantum model, to
a set of probability statements. In other words, the agent’s description of an
experimental setup justifies the assignment of a quantum state, which in turn
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justifies the prescription of credences in other non-quantum magnitude claims
that describe experimental outcomes. Roughly, the template of all material
inferences in QM is as follows:

Backing conditions are such and such.

Thus, the assignment of a certain quantum state is justified.

Thus, the Born probabilities are such and such.

Such an inference is non-logical, but nevertheless objective, i.e., indepen-
dent of agents, although not independent of their physical location. One of
Healey’s main examples of material inferences in QM involve some cool inter-
ference experiments performed in Vienna (Juffmann et al. 2009), an example
that could be explained as above, in section 4.3.2. But here is a simpler ex-
ample, featuring again my beloved cat in a Schrödinger’s cat scenario:

Findus is purring in his box, next to a flask of poison, a radioactive
atom, etc.

Thus, Ψ0 −→
1√
2
(ψnotdecayedφintactξalive + ψdecayedφshatteredξdead).

Thus, Pr(Atom hasn’t decayed, the flask of poison isn’t shattered,
and Findus is alive) = 0.5 and Pr(Atom has decayed, the flask of
poison is shattered, and Findus is dead) = 0.5.

Inferences like this one are not logical inferences for precisely the reason
already indicated by Sellars. They are expressed by subjunctive conditionals:
“If the backing conditions were such and such, then the assignment of a quan-
tum state would be justified, and so by a legitimate application of the Born
rule the prescribed credences would be such and such.” Furthermore, such
conditionals are understood as implicit modal statements: “Necessarily, if the
backing conditions are such and such, then the assignment of a quantum state
is justified, and so by a legitimate application of the Born rule the prescribed
credences are such and such.” As we have discussed above, this is taken to
show that one cannot validly detach the consequent of a material inference
only by affirming its antecedent.

In standard QM, there are two sets of rules for material inferences. The
first set includes only the Born rule, which prescribes probabilities, interpreted
as credences or degrees of belief in non-quantum magnitude claims, so the in-
ferentialist understands it as an elimination rule for quantum models (but only
in decoherent contexts, as Healey emphasizes, and I will return below to this
qualification). The second set includes rules for the introduction of quantum
models, for the assignment of quantum states. However, these rules are never
explicitly stated, but they are said to be implicitly learned in the practice of
QM, and more exactly, in the practice of state preparation: “Deciding on the
best available quantum model requires the expertise of the practicing physicist,
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which can be acquired only through extensive education and long experience.”
(Healey 2017, 135)

Importantly, however, for any set of true backing conditions, these rules are
supposed to introduce a unique quantum model. For, as already mentioned,
the assignment of a quantum state is always relative to the spatiotemporal
location of the observer applying the rules of QM, and backing conditions are
true in virtue of events in the backward light cone of the observer.75 Clearly
then, the prescription of credences on the basis of a quantum model is taken
to be counterfactually robust: “If the backing conditions were such and such,
then the assignment of a unique quantum state would be justified, and so
by a legitimate application of the Born rule the prescribed credences would
be such and such.” Had there been different events in the backward light
cone, a different quantum model would have been introduced, and so different
credences would have been prescribed to the relevant non-quantum claims. The
implicit modal statement that expresses the relevant material inference is this:
“Necessarily, if the backing conditions are such and such, then the assignment
of a unique quantum state is justified, and so by a legitimate application of
the Born rule the prescribed credences are such and such.”

Having presented this central aspect of Healey’s quantum inferentialism,
we should further observe that dissolving quantum ontology is neither suffi-
cient nor necessary for this metasemantics. For on the one hand, quantum
fictionalism can preserve representationalism, even though it denies the exis-
tence of quantum reality. On the other hand, one could in principle adopt the
view that the meaning of quantum expressions is fully determined inferentially,
despite commitment to a quantum ontology that the theory may nevertheless
be taken to represent.76 Neither of these two hands is, however, Healey’s own.
While embracing an inferentialist metasemantics, as we have seen, he also
adopts an inferentialist semantics for quantum expressions, for he denies that
the standard formalism has representational properties. Nevertheless, he al-
lows a representationalist semantics for non-quantum expressions. This looks
like a retreat from Healey’s professed pragmatism, so it’s worth considering it
more closely. In particular, it turns out to be one important difference between
Healey’s and Price’s views.

In contrast to Price, whose global expressivism extends the scope of asser-
tion to all vocabularies (moral, normative, modal, but also scientific vocab-
ularies), Healey may be said to advocate a local expressivism, only for the
language of QM. Expressions that do not belong to this language, such as
non-quantum magnitude claims (or experimental statements about the possi-

75This is the only way in which Healey takes QM to be observer-dependent. I’ll come
back to this issue further below, in section 5.2.2, when I discuss his view on Wigner’s friend
scenarios.

76See section 1.2, where I mentioned the conceptual possibility of views like Bohmian
inferentialism, Everretian QBism, etc., according to which semantic rules do not do any
metasemantic work, but they can nevertheless specify the representational properties of
quantum concepts.
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ble values of dynamical variables), are taken to represent facts. Probabilistic
statements about such claims, although they are expressions of advice con-
cerning one’s degrees of belief in non-quantum magnitude claims, are also said
to be “weakly representational” (Healey 2017, 135), so in some sense they also
represent facts.77

How does Healey justify the need for a representationalist semantics? The
answer to this question is clear from his criticism of Price’s global expressivism
as a form of radical pragmatism:

A radical pragmatist might deny that any statement has the pri-
mary function of representing the world. Price... argues against
what he calls Representationalism, the view that ‘the function of
statements is to “represent” worldly states of affairs, and true state-
ments succeed in doing so’. But in order to address the goals of
predicting and explaining natural phenomena, science must be ca-
pable of representing those phenomena in language: in the case of
quantum theory, this means assigning magnitude claims a primary
representational role. (op. cit., 135)

At the heart of Healey’s criticism of Price’s view is a version of the so-called
“no-exit problem” for global expressivism.78 Taking this problem seriously,
Healey acknowledged that the scientific prediction and explanation of natural
phenomena require that non-quantum magnitude claims have a representa-
tionalist semantics. Magnitude claims (as well as the probabilistic statements
about them) must ultimately describe facts in the world. How might a radi-
cal pragmatist avoid the adoption of representationalist semantics for at least
some linguistic expressions?

In his 2008 Descartes lectures, Price distinguished two relations of rep-
resentation: what he called i-representation, on the one hand, and what he
called e-representation, on the other hand (Price 2013). The former relation is
said to hold between assertoric statements and facts that are accessible only
from within the use of language. In the sense of i-representation, as Price put
it, “something counts as a representation in virtue of its position or role in
some cognitive or inferential architecture.” (op. cit., 36) For example, moral,

77I will return to this issue about probabilistic statements in section 5.2.2.
78The no-exit problem was raised by Simon Blackburn against Price’s view in the following

way: “I am much less certain about global pragmatism, the overall rout of the representa-
tionalists apparently promised by Rorty and perhaps by Robert Brandom. The reason is
obvious enough. It is what Robert Kraut, investigating similar themes, calls the no-exit
problem. It points out, blandly enough, that even genealogical and anthropological stories
have to start somewhere. There are things that even pragmatists need to rely upon, as
they produce what they regard as their better understandings of the functions of pieces of
discourse. This is obvious when we think of the most successful strategies of the pragma-
tist’s kind.” (Blackburn 2013, 78) The pragmatist inferentialist, in particular, would have to
allow that at least some expressions of the natural language admit of a representationalist
semantics. For Price’s own response to this problem, see Price 2013, 157 sq.
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normative, and scientific statements are all i-representational: they describe
facts that are accessible only from within the use of language. The total-
ity of these facts, which can be i-represented by such statements, constitutes
what Price called the i-world. The existence of the i-world is compatible with
inferentialism.

Unlike moral and normative statements, scientific statements are not only
i-representational; they are e-representational as well. The relation of e-
representation is said to hold between scientific statements and facts that are
accessible from within science. In the sense of e-representation, something
counts as a representation in virtue of its covariance with an external envi-
ronmental condition, or in other words, in virtue of its tracking the world.
The totality of facts that are e-represented by scientific statements constitutes
what Price called the e-world. The existence of the e-world is also compatible
with inferentialism. This is because, according to him,

the e-world is visible only from within science in precisely the same
sense as the i-world is visible only from within the viewpoint of
users of assertoric vocabularies in general. Indeed, the e-world
simply is the i-world of the scientific vocabulary. (Price 2013, 55)

But it seems to me that Price’s two-worlds view flies in the face of the
problem of representational success, which was raised against Brandom’s in-
ferentialist view of the natural language.79 This problem points out, essentially,
that a network of material inferences – an inferential architecture – although
perhaps sufficient metasemantically, i.e., sufficient for determining the meaning
of all descriptive expressions in a language, cannot be sufficient semantically,
i.e., it cannot be enough for fixing the reference of singular terms in that lan-
guage. In the case of Price’s global expressivism, even though the existence of
the e-world may be compatible with inferentialism, there is no guarantee that
it simply is the i-world of the scientific vocabulary. For there is no guarantee
that singular terms in the language of science are successfully tracking the
world only in virtue of their position and role in the inferential architecture of
science.80

79Here is how Michael Kremer summarizes his criticism of Brandom, glossing on an im-
portant Kantian distinction: “Brandom’s inferentialism, like the representationalism it is
supposed to supplant, is, in the end, one-sided. Just as representationalism cannot provide
an adequate account of representational uptake, inferentialism cannot provide an adequate
account of representational success. Brandom’s anti-representationalist arguments are salu-
tary insofar as they remind us that representation without inference is blind; but taken as
arguments for inferentialism, they lead us astray, causing us to forget the equally important
insight that inference without representation is empty.” (Kremer 2010, 244)

80One might contend that tracking the world and explaining the meaning of vocabularies
are distinct and unrelated endeavors. Thus, scientific terms are tracking the world, but this
is independent of their position and role in the inferential architecture of science. As men-
tioned before, in section 1.3, this gap between semantics and metasemantics afflicts all views
conjoining a representationalist semantics and a non-representationalist metasemantics for
the same language (including, of course, Healey’s view of non-quantum expressions in the
language of physics).
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In contrast to Price, Healey avoids the no-exit problem by acknowledging
that a representationalist semantics for part of the scientific language is in-
dispensable for prediction and explanation, for tracking the world, as it were.
The problem of representational success for non-quantum magnitude claims
and the probabilistic statements about these claims does not arise. For even
though he takes their meaning to be determined in virtue of their inferential
roles, this is not what Healey believes can fix the reference of their terms.
They track the world independently of their inferential roles. The problem of
representational success for quantum expressions does not arise, either, for he
does not think they have any representational capacities. Healey denies that
there exists anything like an e-world or an i-world that QM could e-represent
or i-represent. On Healey’s inferentialist view, as I understand it, QM is nei-
ther i-representational, nor e-representational: there are simply no quantum
facts visible from within QM.81

In the next section, I will present two preliminary objections to Healey’s
quantum inferentialism. Afterwards, in section 5.3.3, I will argue that quantum
inferentialism must face a third, more serious problem, which had already
been encountered by logical inferentialism: the problem of categoricity. This
is an issue for quantum inferentialism as well because it indicates that the
rules for the inferential use of quantum expressions cannot in fact precisely
determine their semantic attributes, if they – the rules – are not categorical.
This will draw attention to Healey’s point that assigning different quantum
models to one and the same physical system is possible only relative to different
spatiotemporal locations of observers.

5.2 Two preliminary objections to quantum inferential-

ism

The reconstructionist approach to QM, which I shall refer to as reconstruc-
tionism, has been thriving in the last couple of decades. Since Lucien Hardy
proposed his first reconstruction in the framework of a general probability
theory (GPT), a reconstruction based on what he called “reasonable” axioms
(Hardy 2001), others have followed up and developed variations in the GPT
framework (e.g., Masanes and Müller 2011). Yet others have proposed recon-
structions from different principles in different theoretical frameworks, e.g.,
the general C∗-algebra framework of the CBH reconstruction (Clifton, Bub,
Halvorson 2003).82

The main epistemic benefit of reconstructionism, envisaged already by John
Wheeler, has been recently emphasized by Markus Müller: “it allows us to

81Nevertheless, see above my suggestion that if, closely following Brandom, one takes
inferentialism as a modal expressivism, then Healey might have to admit that quantum
statements describe some modal facts after all. Of course, this does not block his character-
ization of standard QM as a prescriptive physical theory.

82The CBH reconstruction has been given up in the meantime. For philosophical discus-
sions of quantum reconstructions, see e.g., Dickson 2015, Grinbaum 2007.
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understand which features are uniquely quantum and which others are just
general properties of probabilistic theories.” (Müller 2021) But consider also
the epistemic benefit that Healey has recently argued comes within reach if one
adopts inferentialism, rather than representationalism: “We can understand
quantum theory better if we stop asking how it represents the world and ask
instead how we are able to use it so successfully in predicting, explaining and
controlling the world.” (Healey 2023) Taken together, these comments suggest
that there should be double epistemic benefit in adopting inferentialism as a
metasemantics of reconstructed QM: not only can we understand QM better
philosophically, but we can also understand what exactly and perhaps uniquely
distinguishes it from other probabilistic theories.

However, I think that this is too good to be true, so I want to raise some
doubts about this conceivable joint project (in section 5.2.1), although my goal
is not to show that the project is bound to fail. Quite the opposite, in fact, I
think it might be a project worth pursuing. But it just requires more work.
Afterwards, I will move on to discuss (in section 5.2.2) Healey’s inferentialist
approach to Wigner’s friend scenario (and recent extensions of the scenario),
an approach intended to save a notion of objectivity in QM that avoids truth
relativism – arguably the worst case of semantic indeterminacy.

5.2.1 Reconstructions of quantum mechanics

Consider the following questions: In virtue of what do expressions in the lan-
guage of reconstructed QM have meaning? More specifically, is there any
reason in favor of a representationalist metasemantics, rather than a non-
representationalist one? Reconstructionists could, in principle, adopt repre-
sentationalism by just taking up the semantic rules of a ψ-ontic interpretation
and allow them to do metasemantic work. Of course, this requires that some
such interpretation be acceptable to the reconstructivist in the first place.
However, this is not the case: viable ψ-ontic interpretations of QM are gener-
ally rejected by reconstructionists as rationally unacceptable.

Here is an argument to this effect developed by Jeffrey Bub (Bub 2004).
Assume that the CBH information-theoretic constraints (i.e., no signalling,
no broadcasting, and no bit commitment) are true, and that all theories that
satisfy these constraints are quantum theories. Further, assume that there is
an equilibrium distribution over particle positions. If there is an equilibrium
distribution over particle positions, then any hidden variables interpretation of
QM satisfies the CBH constraints. Thus, any hidden variables interpretation
of QM is (equivalent to) QM. It follows that all hidden variables interpre-
tations are equivalent to one another. However, if QM does not break this
equivalence, then no hidden variables interpretation is rationally acceptable.
But QM does not break this equivalence, i.e., it provides no evidence in favor
of any such interpretation. Therefore, no hidden variables interpretation is
rationally acceptable.

Bub suggested that this argument goes through for the many worlds inter-
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pretation as well. Nevertheless, one might be inclined to reject it: indeed, why
should the rational acceptability of any quantum interpretation require that
it is QM that singles it out among all the equivalent interpretations? Why
should one ignore other criteria, including theoretical and pragmatic ones, be-
side those that depend on QM, in an attempt to break the equivalence?

A similar argument to the same conclusion, that no hidden variables in-
terpretation of QM is rationally acceptable, has been offered by Hardy. This
starts from his five axioms: probabilities, subspaces, composite systems, sim-
plicity, and continuity (cf. Hardy 2004a for a concise account) and goes as
follows:

If we really believe these axioms to be reasonable then they would
also apply to hidden variables and it would follow that the hidden
variable substructure must look like quantum theory. We could not
then use hidden variables to solve the measurement problem (since
this relies on being able to give the hidden variables a classical
probability interpretation). (Hardy 2001)

Assume that Hardy’s axioms, formulated in a GPT language, are reason-
able. This is taken to imply that they apply to any hidden variables interpreta-
tion of QM. If one grants this implication, then it follows, according to Hardy,
that any such interpretation must be equivalent, in some sense, to QM. But
if any hidden variables interpretation were equivalent, in that sense, to QM,
then it could not solve the measurement problem. Thus, no hidden variables
interpretation would be acceptable (unless other reasons compel us to accept
it).

One might be inclined to reject this argument as well, perhaps on account
of its vagueness: what might it mean, more precisely, to “apply” Hardy’s
axioms to an interpretation of QM? Might it mean that, just as one could
derive QM from them, one could also derive from them any hidden variables
interpretation? Perhaps the sense of this application may be clarified, to some
extent, by pointing to what Hardy called the “ontological embedding” of his
axioms in an interpretation of QM (Hardy 2004b). But this is not clear enough,
either. Might it mean that the models of the axioms can be embedded in
the models of the interpretation? If so, then this kind of embedding cannot
guarantee the implied equivalence.

Despite such difficulties with these arguments against ψ-ontic interpreta-
tions, the point I want to emphasizes is that, for better or worse, reconstruc-
tionists strongly believe that these interpretations are not rationally accept-
able. And there exist, of course, more arguments to the same effect. For
example, ψ-ontic interpretations are sometimes rejected on the basis of Ein-
stein’s famous distinction between principle and constructive theories:

Reconstructions represent a challenge for existing ‘ψ-ontic’ inter-
pretations of quantum theory by highlighting a relative deficiency
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of those interpretations in terms of their explanatory power. ...
None of Bohmian mechanics, Everettian quantum theory, or col-
lapse theories fill the explanatory role of a principle theory. ...
Nevertheless, ... one should demand that they give us something
else in replacement in order to be considered successful: some addi-
tional element of empirical or theoretical success that goes beyond
the standard formulation of quantum theory.83

I take the argument here to be as follows: A physical theory has the ex-
planatory power of a principle theory only if it is reconstructed in a general
framework from simple principles. It has the explanatory power of a con-
structive theory only if it increases the success of its predecessor(s). But no
ψ-ontic interpretation of QM has been reconstructed in a general framework
from simple principles. And no ψ-ontic interpretation of QM has increased
the success of QM. Thus, ψ-ontic interpretations have neither the explana-
tory power of a principle theory, nor the explanatory power of a constructive
theory. Therefore, ψ-ontic interpretations should be rejected as explanatorily
defective.

But if viable ψ-ontic interpretations are to be rejected as explanatorily
defective (or as rationally unacceptable), then adopting their semantic rules
can hardly be an option for the reconstructionist looking for a representation-
alist (meta)semantics. Still, one might be wondering whether, in the recon-
structionist arguments just presented, one is throwing the baby (i.e., repre-
sentationalism) out with the water (i.e., ψ-ontic interpretations). Of course,
the reconstructionist could adopt a ψ-epistemic interpretation together with
its semantic rules, and allow these rules to do metasemantic work for recon-
structed QM. Alternatively, the reconstructionist could forgo all semantic rules
and instead adopt inferentialism. This latter option will be my focus in what
follows. But what I want to argue is that this option cannot stand on its
own. This is because some semantic rules are metasemantically indispensable
to GPT-reconstructions of QM, or so I will argue.

Just to be very clear, my argument will not be against reconstructionism.
Rather, I present it as a preliminary objection to inferentialism considered as a
metasemantics of reconstructed QM – preliminary, because I take it as a mere
step in the development of a more robust version of quantum inferentialism,
one that could be adopted for the language of a reconstructed QM as well.

Recall that, according to inferentialism, the meaning of all linguistic ex-
pressions is determined in virtue of their inferential use. Hence, the meaning
of terms like “state”, “property”, and “probability” is articulated by the mate-
rial inferences of the theory the language of which contains these expressions.
For instance, as expressions in the language of GPT, their meaning is de-
termined in virtue of the material inferences of GPT. As expressions in the

83Cf. Koberinski and Müller 2018, 262-265. For more on Einstein’s distinction, see section
6.1.
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language of QM, their meaning is determined in virtue of the material infer-
ences of QM. But, of course, QM and GPT are not identical theories. Since
the standard axioms of QM are different from the GPT principles, these two
theories have different rules for material inferences. Therefore, according to
inferentialism, the meaning of GPT expressions is different than that of their
quantum mechanical counterparts. But this implies that GPT-reconstructions
are not meaning-preserving, which should throw doubt on their adequacy as
reconstruction of QM.

But perhaps one might think differently about the meaning of reconstructed
QM. Here is one suggestion:

The question of meaning, previously asked with regard to the for-
malism, is removed and now bears, if at all, only on the selection
of the principles. No room for mystery remains in what concerns
the meaning of the theory’s mathematical apparatus. One now
makes sense of all of the formalism solely on the basis of the first
principles, and whatever mathematical element is contained in the
formalism ... it now acquires a precise meaning in virtue of the first
principles. (Grinbaum 2007, 389)

The suggestion here is that GPT principles, for instance, are enough to
account of the metasemantics of reconstructed QM. For the meaning of all
expressions in the language of reconstructed QM is determined in virtue of the
GPT principles, rather than in virtue of the rules of the reconstructed theory.
I think that the are two problems with this suggestion.

The first problem, for the inferentialist, is that semantic or correspondence
rules appear to be metasemantically indispensable. Indeed, reconstructionists
typically use such rules to fix the information-theoretic meaning of QM terms.
For example: “A state is an equivalence class of preparation procedures.”
(Müller 2021) Quite explicitly, the meaning of the term “state” in the language
of GPT is defined in terms of a certain class of preparation procedures. Then
the meaning of its quantum mechanical counterpart is fixed by a meaning-
preserving translation from the language of GPT, i.e., by a correspondence
rule that associates a GPT term to its counterpart QM term. Obviously, this
is a different view than that advocated by the inferentialist, since it requires
that correspondence rules do metasemantic work. Correspondence rules do
metasemantic work by explaining the semantic attributes of quantum concepts
via the information-theoretic properties of GPT concepts.

The second, and more important problem is that the suggestion under
discussion makes the material inferences of QM metasemantically idle: since
the meaning of QM expressions is determined in virtue of GPT principles, then
QM’s own inferential rules do no metasemantic work! Naturally, this cannot
be acceptable to the quantum inferentialist. If this is correct, it can cut either
way: against inferentialism or against reconstructionism. However, I think the
interesting philosophical work lies ahead on a reconciliation route, on which
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the challenge is to develop inferentialism into a workable metasemantics of
reconstructed QM.

5.2.2 Extended Wigner’s friend scenarios

Another preliminary objection to quantum inferentialism is motivated by Healey’s
critical approach to recent relativistic extensions of the Wigner’s friend sce-
nario, and especially to some of the philosophical consequences of such exten-
sions (as outlined, e.g., in Brukner 2018). These extensions, as we will presently
see, are sometimes taken to reinforce a philosophical view already implied by
Wigner’s original scenario (Wigner 1961), that is the view that there are no
objective, observer-independent facts: what is a fact for some observers is not
a fact for others. This in turn is taken to imply truth-relativism: what is
true for some observers is false for others. Very recently, Healey rejected such
consequences (Healey 2021). What I want to do in this section is evaluate the
grounds for this rejection from the perspective of quantum inferentialism. My
claim will be that there is an overlooked tension between Healey’s attempt to
save the objectivity of facts and his inferentialism.

Consider an isolated lab: inside, there is a target system and an observer
(Alice); outside the lab, there is a superobserver (Super Alice). The possibility
of superobservers, i.e., observers of observers, follows from the assumption
that QM is a universally applicable theory, which means applicable not only
to microscopic systems, but to macroscopic ones, including human beings, as
well. Suppose Alice measures a physical variable xa on the system and suppose
she obtains the result a. For simplicity, the only possible values of a are +1
or –1. Let the two experimental statements be pa and p′a, which state “a
= +1” and “a = –1”, respectively. We then say that there is a fact about
Alice’s measurement if and only if pa ∨ p′a is true, where ∨ is an exclusive
disjunction, since we also assume that all measurements have unique results.
From Super Alice’s perspective, however, neither pa nor p

′
a is true. Thus, from

that perspective, in accord with QM, pa ∨ p′a is false. This already suggests
that facts are observer-dependent, since what is a fact for Alice, inside the lab,
is not a fact for Super Alice outside. The extensions of this scenario reinforce
this claim.

Now, suppose there is a physical variable XA that Super Alice can measure
on Alice’s lab and obtain result A, which just as above can, for simplicity,
be either +1 or –1. Let the experimental statements be pA and p′A, which
state “A = +1” and “A = –1”, respectively. We say that there is a fact
about Super Alice’s result if and only if pA ∨ p′A is true, where ∨ is again an
exclusive disjunction. Further, consider a second isolated lab: inside, a target
system and an observer (Bob); outside this lab, a superobserver (Super Bob).
Suppose Bob measures xb on his system and obtains result b (again, either
+1 or –1). Bob’s experimental statements are then pb and p′b, which state
“b = +1” and “b = –1”, respectively. Similarly, we say that there is a fact
about Bob’s result if and only if pb ∨ p

′
b is true. Suppose, again as above, that
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there is a physical variable XB that Super Bob can measure on Bob’s lab and
obtain result B (either +1 or –1). Super Bob’s experimental statements are
pB and p′B, which state “B = +1” and “B = –1”, respectively. We say that
there is a fact about Super Bob’s result if and only if pB ∨ p′B is true. Finally,
consider a third lab: inside, a target system and an observer (Carr); outside,
a superobserver (Super Carr). Suppose Carr measures xc on the system and
gets result c (exactly, +1 or –1). Carr’s experimental statements are then pc
and p′c, which state “c = +1” and “c = –1”, respectively. There is a fact about
Carr’s result if and only if pc ∨ p′c is true. Suppose further that there is XC

that Super Carr can measure on Carr’s lab and get result C, and let pC and
p′C state the corresponding experimental statements “C = +1” and “C = –1”.
There is a fact about Super Carr’s result if and only if pC ∨ p′C is true.

Putting everything together, we should say that there is a fact – I will call
this a superfact, since it is supposed to be observer-independent – about all
six results a, A, b, B, c, C if and only if

(pa ∨ p
′
a) ∧ (pA ∨ p′A) ∧ (pb ∨ p

′
b) ∧ (pB ∨ p′B) ∧ (pc ∨ p

′
c) ∧ (pC ∨ p′C)

is true. But here a difficulty arises. If the three target systems in the
three isolated, spacelike separated labs are entangled, such that the extended
Wigner’s friend scenario satisfies the conditions of the Greenberger-Horne-
Shimony-Zeilinger (GHSZ) theorem (Greenberger et al. 1989, 1990), then
superobservers and superfacts are incompossible. In particular, if there are
superfacts, then QM cannot be universally applicable.84

Here is, briefly, how the difficulty arises. Applying the GHSZ theorem, we
get the following claims: If Super Alice’s, Bob’s, and Carr’s measurements are
simultaneous, then Abc = +1. If Alice’s, Super Bob’s, and Carr’s measure-
ments are simultaneous, then aBc = +1. If Alice’s, Bob’s, and Super Carr’s
measurements are simultaneous, then abC = +1. The antecedents of these
claims are all relativistically compatible, since each is true in some inertial
frame. Multiplying on both sides of the equations in their consequents, we
obtain ABC = +1. However, if Super Alice’s, Super Bob’s, and Super Carr’s
measurements are simultaneous, then ABC = –1. The contradiction entails
that in at least one relativistic frame, QM is not applicable.

If one wants to preserve universal applicability, the obvious option is to
eliminate superfacts. To see how this can be achieved, note that, on the one
hand, ABC = +1 entails that pA ∧ pB ∧ pC is true, or p′A ∧ p′B ∧ pC is true, or
pA ∧ p′B ∧ p′C is true, or p′A ∧ pB ∧ p′C is true. In each of these conjunctions,
the number of primed sentences must be even. On the other hand, ABC = –1
entails that p′A∧pB ∧pC is true, or pA∧p

′
B ∧pC is true, or pA∧pB ∧p′C is true,

or p′A ∧ p′B ∧ p′C is true. In each of these conjunctions, the number of primed
sentences must be odd. Thus, if ABC = +1 and ABC = –1, then there is a
truth valuation such that one of the first four conjunctions, i.e.,

84For the application of the GHSZ theorem to Wigner’s friend scenario, see Leegwater
2018, which is followed in Healey 2021.
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pA ∧ pB ∧ pC , or p
′
A ∧ p′B ∧ pC , or pA ∧ p′B ∧ p′C , or p

′
A ∧ pB ∧ p′C

and one of the last four conjunctions, i.e.,

p′A ∧ pB ∧ pC , or pA ∧ p′B ∧ pC , or pA ∧ pB ∧ p′C , or p
′
A ∧ p′B ∧ p′C

are true together. But on the same truth valuation, at least one conjunct
in

(pa ∨ p
′
a) ∧ (pA ∨ p′A) ∧ (pb ∨ p

′
b) ∧ (pB ∨ p′B) ∧ (pc ∨ p

′
c) ∧ (pC ∨ p′C)

is false. Thus, on this truth valuation, this big conjunction is false.85 This
entails that there is no superfact – no fact for all of our six observers.

There are, however, facts for some, though not all, of the six observers. By
eliminating the false conjuncts in the big conjunction we obtain the following:
there is a truth valuation such that (pa ∨ p

′
a) ∧ (pb ∨ p

′
b) ∧ (pc ∨ p

′
c) is true, so

there is a fact for Alice, Bob and Carr; there is a truth valuation such that
(pa∨p

′
a)∧(pB∨p

′
B)∧(pC∨p

′
C) is true, so there is a fact for Alice, Super Bob, and

Super Carr; there is a truth valuation such that (pA∨p
′
A)∧ (pb∨p

′
b)∧ (pC ∨p

′
C)

is true, so there is a fact for Super Alice, Bob, and Super Carr; and there is a
truth valuation such that (pA ∨ p′A)∧ (pB ∨ p′B)∧ (pc ∨ p

′
c) is true, so there is a

fact for Super Alice, Super Bob, and Carr. Hence, there are different facts for
different observers. This has been taken to imply that facts are not observer-
independent: “In quantum physics the objectivity of facts is not absolute,
but only relative to the observation and the observer.” (Brukner 2022, 628)
Indeed, the extended Wigner’s friend scenario is sometimes taken to imply
that there are no objective, i.e., observer-independent facts. This leads to
truth relativism: what is true for some observers is false for others.

Unsurprisingly, such semantic indeterminacy does not sit well together with
an inferentialist metasemantics of QM. Indeed, Healey has recently rejected
truth relativism as a consequence of the extended Wigner’s friend scenario,
by arguing essentially that one can eliminate superfacts without having to
accept truth-relativism. In other words, the elimination of superfacts need not
entail that facts are observer-dependent. The point is quite simple. Instead
of eliminating superfacts by showing that the big conjunction above is false,

85The same conclusion can obviously be reached from the other possible three contradic-
tions. For Abc = +1 entails that p′

A
∧ p′

b
∧ pc is true, or p

′
A
∧ pb ∧ p′c is true, or pA ∧ p′

b
∧ p′c is

true, or pA ∧ pb ∧ pc is true. But Abc = –1 entails that p′
A
∧ pb ∧ pc is true, or pA ∧ p′

b
∧ pc is

true, or pA ∧ pb ∧ p′c is true, or p′
A
∧ p′

b
∧ p′c is true. And aBc = +1 entails that pa ∧ p′

B
∧ p′c

is true, or pa ∧ pB ∧ pc is true, or p′a ∧ pB ∧ p′c is true, or p′a ∧ p′
B
∧ pc is true. But aBc

= –1 entails that p′a ∧ pB ∧ pc is true, or pa ∧ p′
B
∧ pc is true, or pa ∧ pB ∧ p′c is true, or

p′a ∧ p′
B
∧ p′c is true. Lastly, abC = +1 entails that pa ∧ pb ∧ pC is true, or p′a ∧ p′

b
∧ pC is

true, or p′a ∧ pb ∧ p′
C
is true, or pa ∧ p′

b
∧ p′

C
is true. But abC = –1 entails that p′a ∧ pb ∧ pC

is true, or pa ∧ p′
b
∧ pC is true, or pa ∧ pb ∧ p′

C
is true, or p′a ∧ p′

b
∧ p′

C
is true. Following the

same reasoning steps as above, one can again show that there is a truth valuation on which
(pa ∨ p′a) ∧ (pA ∨ p′

A
) ∧ (pb ∨ p′

b
) ∧ (pB ∨ p′

B
) ∧ (pc ∨ p′c) ∧ (pC ∨ p′

C
) is false.
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one could also eliminate superfacts by arguing that the big conjunction lacks
a truth value. This is based on Healey’s condition that the class of truth
valuations should be restricted such that if a statement is assessed as true by
an observer, it is true when assessed by all others who are in a position to
assess it.

To be in a position to assess an experimental statement as true or false, one
needs to be properly situated in a context of assessment. Thus, for example,
if there is a truth valuation such that (pa ∨ p

′
a) ∧ (pB ∨ p′B) ∧ (pC ∨ p′C) is true

for Alice, Super Bob, and Super Carr, then there should be no truth valuation
such that (pa ∨ p

′
a) ∧ (pB ∨ p′B) ∧ (pC ∨ p′C) is false for any other observer, and

in particular, there should be no truth valuation such that it is false for Super
Alice. Rather, one should say that (pa∨p

′
a)∧(pB∨p

′
B)∧(pC∨p

′
C) lacks a truth

value for this superobserver, since she is not properly situated in the relevant
context of assessment regarding (pa ∨ p

′
a) ∧ (pB ∨ p′B) ∧ (pC ∨ p′C).

One potential problem with this attempt to save the objectivity of facts –
their observer-independence – is that it makes logical connectives non-truth-
functional. This is because the truth value of compound statements is not
merely a function of the truth values of their atomic components, but also a
function of spatiotemporal location – regions that are taken as proper contexts
of assessment for some, but not for other statements. As I have suggested in
the previous chapter, however, truth-functionality should not be taken as an
indispensable feature of logicality. So I don’t think there is a real problem
here.

However, and this I think is a real problem for the quantum inferential-
ist, the proposed restriction on the class of admissible truth valuations is not
justifiable on purely inferentialist grounds. According to inferentialism, the
meaning of all non-logical terms in experimental statements is to be fully de-
termined by material inferences. But restricting truth valuations in the way
suggested by Healey essentially reintroduces semantic constraints that are in-
dependent of the rules of QM. This creates a certain tension with his own
inferentialist metasemantics.

Nevertheless, I do not think that this tension is unavoidable. Just as in
the case of the first preliminary objection in the previous section, I think there
is interesting philosophical work to be done here, in the attempt to develop
a more robust inferentialist account of objectivity in QM. Part of this work
should also be concerned with the categoricity problem to which I now turn.

5.3 The categoricity problem for inferentialism

The categoricity problem for Healey’s quantum inferentialism brings to the
fore the regularity assumption behind his claim that, for a physical system
and experimental setup, there is a unique quantum state that can be assigned
to that system relative to its spatiotemporal location. This is the same assump-
tion that we have discussed, in chapter 2, in my reconstruction of Einstein’s
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argument for the incompleteness of QM. The assumption raises a difficulty
for Healey’s view because, as far as I can see, there is no inferentialist jus-
tification available for assigning a regular, rather than a non-regular, state
to a physical system. Without a justification of regularity, multiple quantum
state assignments are possible to one and the same system relative to the same
spatiotemporal location.

Once this problem is spelled out, and its metasemantic consequences, as
well as the epistemological consequences regarding the objectivity of prob-
abilistic statements, are explained (in section 5.3.2), I will consider what a
quantum inferentialist might say in response, insisting on a reformulation of
Schrödinger’s equation as an introduction rule for quantum models, coupled
with a reformulation of decoherence as an elimination rule. I will also surmise
(in section 5.3.3) what a QBist might want to say in response to the cate-
goricity problem, and why this response could motivate the development of
an alternative non-representationalist metasemantics for QBism. But I want
to start by revisiting (in section 5.3.1) a categoricity problem for logical in-
ferentialism that Carnap identified already in 1943. This will help us better
appreciate both the nature and the force of the categoricity problem for quan-
tum inferentialism.

5.3.1 Carnap’s categoricity problem

In Formalization of Logic, Carnap embarked on an analysis of the semantics
of classical logic (CL), both propositional and quantificational (Carnap 1943).
More specifically, he was interested in determining whether, in addition to
its standard semantics, given by the normal truth tables, the logical calculus
admits of a non-standard semantics, one that deviates from the non-normal
truth tables. Likewise, he was interested in whether the quantifiers admit of a
non-standard semantics, in addition to the standard one. In particular, for the
propositional calculus, Carnap constructed two different non-standard valua-
tions: in one of them, all sentences in the language (including their negations)
are true; in the other, all sentences (except classical tautologies) are false, and
if a sentence and its negation are both false, then their disjunction is still
true, in order to validate the law of excluded middle. The existence of such
valuations proved, according to Carnap, that the calculus is incomplete, i.e.,
non-categorical.86

More exactly, in the formalism introduced in section 4.2.1, let the CL-
consequence relation �CL be defined via the standard class of valuations C∗

CL
determined by the normal truth tables. The class C∗

CL is therefore defined by
the following properties, for all v ∈ C∗

CL:

86Similar problems for classical logic had been discussed by others, e.g., Bernstein 1932.
See also section 3.3.2 above, for Weyl’s argument, in his 1940 paper, that the quantum
logical calculus introduced by Birkhoff and von Neumann in 1936 is incomplete, i.e., non-
categorical.
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v(¬p) = 1 if and only if v(p) = 1,
v(p ∧ q) = 1 if and only if v(p) = v(q) = 1,
v(p ∨ q) = 0 if and only if v(p) = v(q) = 0.

Carnap’s question was whether the same consequence relation could be
characterized by a different class of valuations. Is the class C∗

CL unique (up
to truth table isomorphism)? In his answer, he showed that there are indeed
non-standard classes of valuations, which characterize the same consequence
relation �CL. One such class is given by C∗

CL ∪ {ṽCL}, where the non-normal
valuation ṽCL obeys

ṽCL(p) = 1, if and only if ‘p’ is a classical tautology (i.e. �CL p).

Despite being non-isomorphic, both C∗
CL and C∗

CL ∪ {ṽCL} define the same
relation of logical consequence. Carnap saw this as a problem because it implies
that CL cannot have what he considered a “full formalization”, i.e., one that
precisely determines the intended class of valuations (i.e. the one given by the
normal truth tables). This is because it turns out that C∗

CL∪{ṽCL} makes both
CL negation and CL disjunction non-truth-functional.87

Carnap attempted to solve the problem, arguing that one way to do this
requires a multiple-conclusions formalization of CL. In other words, he noted
that one can impose the normal truth table on disjunction if one formalizes
valid arguments as relations between sets of premises and sets of conclusions,
and if one modifies the definition of classes of valuations accordingly. The
∨-elimination and ∨-introduction rules,

a �CL a ∨ b, b �CL a ∨ b, and a ∨ b �CL {a, b},

then imply that a disjunction is false if and only if each of its disjuncts is
false.88

Barring multiple-conclusions calculi, Carnap’s problem presents a challenge
to the logical inferentialist thesis that the rules of inference fix the meaning
of logical terms.89 As a consequence, an inferentialist justification for singling
out the normal, truth-functional semantics for CL connectives is not some-
thing that comes for free, but must be earned. Proposals for doing so include
semantic solutions, which in general are not acceptable from an inferentialist
point of view, but also syntactic ones, which adjust or qualify the application
of the inferential rules of the logical calculus.90

87For a detailed discussion of this non-standard class of valuations, see Br̂ıncus
,
2021.

88For discussions of multiple-conclusions calculi, see Shoesmith and Smiley 1978 and Re-
stall 2005.

89As we have seen in section 5.1.1, this thesis was expressed by Carnap himself (Carnap
1934, xv). See also Quine 1992, 7. Logical inferentialism has been recently defended in, e.g.,
Peregrin 2014 and Warren 2020. For an overview of inferentialism, and some of its problems,
see Murzi and Steinberger 2017.

90See Br̂ıncus
,
2024 for a brief overview of recent solutions to Carnap’s categoricity prob-

lem.
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As we will see in the next section, one of these solutions – based on the
requirement that the rules of inference, and in particular Schrödinger’s equa-
tion expressed as such a rule, should be open-ended, in a sense to be explained
below – could help provide a solution to a similar categoricity problem that I
shall now formulate against quantum inferentialism.

5.3.2 A categoricity problem for quantum inferentialism

Logical inferentialism holds, as we have just seen, that the semantic attributes
of the connectives in a language are determined by their inferential proper-
ties, i.e., by the rules of inference that govern their employment. This is,
of course, a local version of inferentialism, concerned with the meaning of a
particular class of terms – the logical ones. Global versions of inferentialism,
as already emphasized above, when I reviewed Sellars’ view, hold that the
semantic attributes of non-logical, descriptive terms are also determined by
their inferential properties, i.e., by the rules for their employment in mate-
rial inferences. Turning to quantum inferentialism, I then noted that Healey
adopted inferentialism as a metasemantics for all vocabularies, including all
non-quantum expressions (for which, however, he allowed a representationalist
semantics). The semantic attributes of all linguistic expressions whatsoever
are taken to be determined in virtue of the inferences in which the expressions
are used. More specifically, it is the rules of introduction and elimination of
each expression that is supposed to explain its meaning. And we have seen
that the template of material inferences in QM is as follows:

Backing conditions are such and such.

Thus, the assignment of a unique quantum state is justified.

Thus, the Born probabilities are such and such.

Such inferences are not logical inferences, as they can be expressed by
subjunctive conditionals: “If the backing conditions were such and such, then
the assignment of a unique quantum state would be justified, and so the Born
probabilities would be such and such.” They are counterfactually robust and
should be understood as explicit modal claims: “Necessarily, if the backing
conditions are such and such, then the assignment of a unique quantum state
is justified, and so the Born probabilities are such and such.” According to
quantum inferentialism, an agent who does not endorse such modal claims does
not understand what quantum mechanical expressions mean. For, recall, it is
material inferences that determine the meaning of all non-logical terms, in the
“social game of giving and asking for reasons”. In QM, legitimate applications
of the introduction and eliminations rules for quantum expressions articulate
the meaning of these expressions.

Importantly, on Healey’s view, the introduction rules are supposed to jus-
tify, for any set of backing conditions, relative to a physical situation, the
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assignment of an unique a quantum state – a unique local model – to a phys-
ical system. But what is it that really justifies this uniqueness claim? I think
that what might be taken to justify this claim, in standard QM, is the Stone-
von Neumann theorem, already discussed in chapter 2. This establishes that
the Hilbert space representations of the Weyl algebra (generated by the CCRs)
of a system with a finite number of degrees of freedom are unitarily equivalent
to its Schrödinger representation. Unitary equivalence is just uniqueness up to
an isometric isomorphism, and implies that for any set of backing conditions,
relative to a physical situation, the quantum state assigned to the physical
system would be unique up to this isomorphism. But the point that I want to
make now is that the inferentialist cannot properly justify unitary equivalence.

As noted already in section 2.2.2., a crucial assumption of the Stone-
von Neumann theorem is that representations must be regular. However, on
Healey’s approach to QM, no inferentialist justification of regularity is read-
ily available. Recall that for a Weyl algebra A, i.e., the C∗-algebra gener-
ated by the Weyl CCRs, a faithful representation (H, π) is a ∗-isomorphism
π : A → B(H), which is irreducible if no (nontrivial) subspace of H is in-
variant under the operators in π(A), and it is regular if the operators in π(A)
are weakly continuous. Any two faithful, irreducible, and regular representa-
tions (H1, π1) and (H2, π2) of A are unitarily equivalent iff there is a unitary
intertwiner A ∋ U : H1 → H2 which means that UU∗ = U∗U = 1 and π1(A)
= Uπ2(A)U

∗ for all elements A ∈ A. But as we have seen, there is no such
intertwiner for representations like the position representation (with position
eigenstates, but no operator for momentum) or the momentum representation
(with momentum eigenstates, but no operator for position). Such non-regular
representations are unitarily inequivalent to the Schrödinger representation,
and also to one another. Thus, the uniqueness (up to isomorphism) of any
local model, assigned to a system relative to a physical situation, fails in QM.
This poses a categoricity problem for a representationalist metasemantics.

But furthermore, non-regularity poses a categoricity problem for an infer-
entialist metasemantics as well. This is because, if there is no inferentialist
way of eliminating non-regular states, then the modal claims that make ex-
plicit what is implicit in the material inferences of QM would turn out to be
all false! If there is no inferentialist way of eliminating non-regular states, no
set of backing conditions would be sufficient to justify assigning to a system,
relative to a physical situation, a unique state. For it would not be sufficient
to justify assigning a regular state in the Schrödinger representation, rather
than, say, a position state (or a momentum state) in a non-regular represen-
tation. But in this case, taking once again Hilbert space representations as
local models, it follows that the meaning of quantum expressions cannot be
determined precisely by the rules of material inferences because these rules
allow the introduction of mutually non-isomorphic models.

One might think that this could be fixed by making modal claims more
explicit than before: “Necessarily, if the backing conditions are such and such,
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then the assignment of either a regular or a non-regular quantum state is justi-
fied, and so the Born probabilities are such and such.” But this reformulation
only emphasizes the problem more clearly, for the latter modal claim actually
expresses distinct material inferences – divergent informational bridges – start-
ing from the same set of backing conditions, relative to the same system and
physical situation, but leading to different Born probabilities. The Born prob-
abilities will be different depending on whether the assigned state is regular
or non-regular, as in the example I will presently give. So which one of these
material inference determines the meaning of quantum expressions? It seems
reasonable to believe that, according to quantum inferentialism, different ma-
terial inferences determine different meanings for the same expressions. But
then we have a categoricity problem for quantum inferentialism, for the same
QM rules of material inference allow different meanings for the same QM ex-
pressions. The problem shows that semantic attributes cannot be determined
precisely in the way the inferentialist claims they are determined: inferentially.

If this categoricity problem can admit of no inferentialist solution, then
quantum expressions turn out to be semantically indeterminate. But further-
more, this same problem also has undesirable epistemological consequences for
Healey’s view of QM, regarding the objectivity of facts described by proba-
bilistic statements and, thus, for his prescriptivist interpretation of Born prob-
abilities. Before I suggest what a quantum inferentialist might do in order
to address the categoricity problem, let me spell out the metasemantic and
epistemological consequences of the categoricity problem by returning to Alice
in Wigner’s friend scenario.91

On an inferentialist approach, Alice would follow the rules for the intro-
duction of quantum states, and given the experimental setup in her lab, she
would assign a quantum state to her target system. Then, following a legit-
imate application of elimination rules, this state would yield probabilities for
her experimental statements pa and p′a via the following material inference:

Backing conditions are such and such.

Thus, the assignment of a unique quantum state is justified.

Thus, the Born probabilities are “Pr(pa) = 0.5” and “Pr(p′a) =
0.5”.

These two probabilistic statements are, on Healey’s view, prescriptions for
Alice’s degrees of belief. She is therefore justified to believe that a = +1 and

91Just in case what I have said so far may not be worrisome enough, recall the fact
mentioned in chapter 2, that the Stone-von Neumman theorem fails in QFT, which allows
an infinity of unitarily inequivalent Hilbert space representations. Also consider related
worries expressed by Abhay Ashtekar: “How can there be an unique diffeomorphism state?
Surely, quantum gravity admits an infinite number of diffeomorphism invariant states!”
(Ashtekar 2009, 1929) If it is reasonable to believe that the non-uniqueness of quantum states
allows a plurality of material inferences starting from the same set of backing conditions and
relative to the same physical situation, then inferentialism has a categoricity problem in these
quantum theories as well.
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a = –1 are equally likely to obtain. But suppose that Alice realizes that,
given the assumptions of the Stone-von Neumann theorem, there is a variety
of quantum states that can be assigned to her system, including non-regular
ones. Accordingly, she is considering extending the class of her models by
introducing nonregular |ψ〉nr besides the regular ones |ψ〉r. As she well knows,
there is no unitary transformation between such states. This allows her to
formulate distinct material inferences.

One material inference might look like this:

Backing conditions are such and such.

Thus, the assignment of |ψ〉r is justified.

Thus, the Born probabilities are “Pr(pa) = 0.5” and “Pr(p′a) =
0.5”.

But the other material inference might look as follows:

Backing conditions are such and such.

Thus, the assignment of |ψ〉nr is justified.

Thus, the Born probabilities are “Pr(pa) = 0.49” and “Pr(p′a) =
0.51”.

If it is reasonable to believe that these distinct material inferences deter-
mine different meanings for the expressions used in them, then this is definitely
a problem for an inferentialist metasemantics of QM.

There are two easy ways out, which we need to acknowledge and reject
before we consider more serious ones. First, the quantum inferentialist might
be inclined to ignore the categoricity problem and insist on the uniqueness of
a quantum state assignment, by assuming regularity of states from the get-
go. That is, she could take the Stone von Neumann as a fundamental result,
but discount its problematic assumptions, since it seems safe to believe that in
practice they are insignificant in any case. Secondly, the quantum inferentialist
might want to bite the bullet of semantic indeterminacy, on the ground that
this type of indeterminacy is unlikely to have any consequences for the practice
of QM. There are even logical inferentialists who are ready to do so in the face
of Carnap’s categoricity problem:

After all, inferential rules are the only thing that matter to an
inferentialist. If criticized for ignoring something vital — namely
that inferentialism is not able to render the truly logical constants
— the inferentialist can reply that such criticism is on a par with
criticizing an atheist for ignoring the secrets of the Holy Trinity. ...
True, inferentialism and classical logic do not form an ideal couple,
but this does not undermine inferentialism as such. (Peregrin 2014,
179)
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Paraphrasing, one could similarly say that only the rules of material in-
ference matter to a quantum inferentialist. If criticized for being unable to
single out the genuinely quantum states, |ψ〉r or |ψ〉nr, the inferentialist can
reply that such criticism is on a par with criticizing an atheist for ignoring the
secrets of the Holy Trinity, and then admit that inferentialism and QM do not
form an ideal couple.

Needless to say, however, the first easy way out is begging the very question
at stake here, while the second turns out to recommend a very big bite: indeed,
I think that Peregrin’s suggestion is tantamount to giving up inferentialism as
metasemantics, i.e., as an explanation of semantic facts. I will come back to
this kind of response to the categoricity problem, in the next section, where
I look ahead at a non-representationalist, but also non-inferentialist metase-
mantics for QBism.

Let us now turn to the epistemological consequences of the categoricity
problem for Healey’s view. Since on his account Born probabilities give pre-
scriptions for Alice’s degrees of belief, if she can materially infer different prob-
abilistic statements, and they are all justified on the basis of her application
of QM, then she has an epistemological problem: what is Alice now really
justified to believe? What set of credences is she supposed to adopt? Fur-
thermore, recall that on Healey’s account, non-quantum magnitude claims or
experimental statements, like Alice’s pa and p′a, have a primary representa-
tional role. This is, recall, Healey’s solution to the no-exit problem, discussed
above. What it means is that, even if they do not do any metasemantic work,
we can specify their truth conditions:

“a = +1” is true iff a = +1,
“a = –1” is true iff a = –1,

in the same way in which “The atom has decayed, the flask has shattered,
and Findus is alive” is true if and only if the atom has decayed, the flask
has shattered, and Findus is alive. Similarly, and even if their primary role
is to provide prescriptions, probabilistic claims about non-quantum magni-
tude claims are also representational, though only “weakly representational”
(Healey 2017, 135), so we can specify their truth conditions as well:

“Pr(pa) = 0.5” is true iff Pr(pa) = 0.5,
“Pr(pa) = 0.49” is true iff Pr(pa) = 0.49.

But despite Healey’s emphasis on the objectivity of such probabilistic
claims, which of these truth conditions obtain appears to be a fact that de-
pends on Alice’s choice between |ψ〉r and |ψ〉nr. More generally, if an observer
can extend her class of models as I suggested, then her choice of a model for a
system yields different probabilistic claims about the same experimental state-
ment. This implies, against Healey’s view, that a significant category of facts
is observer-dependent after all.
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What else might a quantum inferentialist say in response to the categoricity
problem? As far as I can see, there is a variety of options, some better than
others. So let me take them in turn, considering each with respect to whether
they are compatible with inferentialism.

First, the inferentialist can insist on physical grounds, that for any given
experimental setup, relative to a physical situation, there is always a uniquely
correct state – a regular state – which can be assigned to a target system.
Indeed, one might wonder, are non-regular states even admissible in QM? As
mentioned above in chapter 2, they are arguably physically significant and may
be taken to give a precise form to Bohr’s complementarity. However, as we
have noted there, their elimination might be justified on the ground that the
unitary time evolution described by the Schrödinger equation does not sit well
on non-regular representations, which are dynamically mutually inaccessible
(Feintzeig et al. 2019, 2022).

Nevertheless, Healey cannot justify regularity in this way, by just endors-
ing the elimination of non-regular states for dynamical reasons. This is not
only because his dissolution of quantum ontology indeed blocks the inferential-
ist’s access to this justification. But even if one allowed QM to have its own
beables, this justification for the elimination of non-regular states would not
be acceptable to the inferentialist: for the elimination of non-regular states
should be justified inferentially, that is decided only on the basis of QM’s
material rules of inference, and not by appealing to the semantic features of
quantum models. Furthermore, if non-regular states turn out to be useful in
QM, then any reason for eliminating them as spurious concepts would conflict
with Brandom’s inferential non-conservativity argument, endorsed by Healey.

Secondly, the inferentialist might want to restrict, on pragmatist grounds,
the probability valuations of non-quantum magnitude claims such that an
agent cannot assign different probability values to the same claim. Here, as
should be obvious, pragmatism would again conflict with inferentialism. As
we have seen above, in the context of a relativistic extension of Wigner’s friend
scenario, the inferentialist illicitly restricts the truth valuations of experimen-
tal statements to solve the objectivity problem raised by the elimination of
superfacts, and thereby avoid truth-relativism. But such restrictions do not
help the inferentialist against truth-relativism, since they are semantic con-
straints, rather than constraints that follow from the inferential rules. For the
same reason, pragmatist restrictions on probability valuations should not be
appealed to in the present context, either.

My own suggestion of a potential solution to the categoricity problem, on
behalf of the quantum inferentialist, takes seriously the idea that the elimi-
nation of non-regular states should be justified inferentially, that is decided
only on the basis of QM’s material rules of inference, and not by appealing to
semantic features of quantum models and dynamics or to semantic restrictions
on probability valuations of magnitude claims. The suggestion is simply that
the inferentialist should explicitly reformulate the Schrödinger equation as a
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rule of material inference, that is more precisely as a rule for the introduction
of quantum states. Moreover, the inferentialist should take the Schrödinger
equation as a permanent or open-ended rule, i.e., she should justify its preser-
vation for all mathematically possible extensions of the language of standard
QM. This, by itself, should be enough to block any assignment of non-regular
states to physical systems. It seems to me that this is the most promising way
of solving the problem of categoricity for quantum inferentialism and, thereby,
averting the semantic indeterminacy caused by this problem.92

But this is not enough. The quantum inferentialist should adopt a simi-
lar strategy not only with respect to introduction rules, but with respect to
elimination rules as well. The only quantum rule that Healey indicates must
be understood inferentially, as an elimination rule for quantum states, is the
Born rule. But I think that the inferentialist should attempt to reformulate
decoherence explicitly as an elimination rule as well. This is because it is not
compatible with inferentialism to apply decoherence, as Healey does, as a se-
mantic constraint on the application of the Born rule, i.e., as a constraint that
helps eliminate the magnitude claims that, in a certain physical situation, are
meaningless. Healey argues that the Born rule should only be applied to stably
decohered states, for instance, to position states that decohere at detection,
i.e, after a suitable interaction with another system. This allows the selection
of magnitude claims, e.g., about position, that have a determinate truth value,
and are thus meaningful as a guide for an agent’s expectations. However, as
already mentioned, this should be unacceptable to the inferentialist: just like
the Schrödinger equation, decoherence should be formulated as an inferential
rule, rather than taken employed as a semantic constraint.

Healey, himself, suggests what might be considered as a normative approach
to the categoricity problem:

There are at least three respects in which ... probabilistic state-
ments ... are objective: There is widely shared agreement on them
within the scientific community. A norm is operative within that
community requiring resolution of any residual disagreements. This
norm is not arbitrary but derives directly from the scientific aims
of prediction, control, and explanation of natural phenomena. ...

92This inferentialist strategy, which takes rules to be open-ended in the sense explained in
the text, has been applied already in the metasemantics of classical logic and mathematics,
and it is arguably a successful strategy. More exactly, inferentialists about CL have taken
introduction and elimination rules for the logical connectives to be open-ended, i.e., valid
for all possible extensions of the language of CL, and inferentialists about PA have taken
first-order mathematical induction to be an open-ended rule for the introduction of arith-
metical concepts, i.e., a rule valid for all possible extensions of the language of PA. For more
on open-endedness in philosophy of logic and mathematics, see e.g. Warren 2020, Murzi
and Topey 2021. An alternative strategy, for the case of QM, is to change the standard
formalism by replacing the Weyl algebra with a different mathematical structure, as pro-
posed in Feintzeig and Weatherall 2019, Feintzeig 2022. But such alternatives will have to
be discussed elsewhere.
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Flouting this norm would leave one unable to account for the pat-
terns of statistical correlation among events described by true mag-
nitude claims to which quantum theory is ultimately responsible.
(Healey 2017, 135)

The demand that I think the quantum inferentialist should satisfy is that
this norm, whatever it is, be compatible with an inferentialist metasemantics,
i.e., with the view that the semantic attributes of all linguistic expressions in
QM are determined by quantum-mechanical rules of material inference. This
is the ultimate criterion for the admissibility of any solution to the categoricity
problem for quantum inferentialism.

Finally, the inferentialist might, of course, also want to insist that the
very question about the categoricity of QM is well posed only for a rational
reconstruction of QM, i.e., a reformulation of a theory in a formal (ideally,
first-order) language, rather than for its standard Hilbert space formalism. In
other words, the inferentialist could demand that the metasemantic analysis
should start by first verifying that QM can be rationally reconstructed as a
formal system in which QM rules are expressed formally. Only after a rational
reconstruction has been given could one verify whether its semantics is unique
up to the relevant isomorphism. After all, Carnap’s metasemantic analysis
of CL also started with formal axiomatization, before its outcome would be
articulated as a categoricity problem for logical inferentialism. Since Healey
rejects, as we will see in section 6.2, the Carnapian task of a rational recon-
struction of any scientific theory, it seems plausible to believe that this should
be enough to reject the categoricity problem as a problem for standard QM.

But I think that this response – insisting on rational reconstruction – would
not be justified. The notion of categoricity that I have articulated in section
2.2.2, perfectly suitable for standard QM, is enough to express the problem.
Moreover, as I have argued there, if standard QM has a categoricity problem,
then a rationally reconstructed QM would also have a categoricity problem.
The formalization of a scientific theory cannot really give the impression of
what Tarski called “a closed and organic unity” in case the theory itself lacks
that kind of unity. But if it does, then this tells us something about formaliza-
tion rather than about the scientific theory. However, I do not think that the
project of a rational reconstruction of QM should be blocked. Quite the con-
trary, I will argue further below, in section 6.2, when I will revisit the problem
of the viability of a rational reconstruction of QM, that Healey’s own challenge
to the Carnapian task can be met on inferentialist grounds.

5.3.3 The meaning of QBism

I noted above that a quantum inferentialist facing the categoricity problem
might be inclined to consider an easy way out, simply ignoring it and bit-
ing the bullet of semantic indeterminacy. One reason for doing so could be
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that any semantic indeterminacy of the standard formalism is considered in-
consequential for the practice of QM. But I have also maintained that this
response would be detrimental to quantum inferentialism as a metasemantics,
in the same way in which it is detrimental to logical inferentialism as a metase-
mantics to contend that since an inferentialist is exclusively concerned with
inferential rules, any semantic indeterminacy of logical connectives can be ig-
nored. In both cases, the philosophical endeavor to explain semantic facts in
a satisfactory manner would be cut short.

Note, however, that although detrimental to quantum inferentialism, this
response might not be damaging to other neo-Bohrian approaches to QM, like
QBism. Even if a metasemantics could be developed in this case, a QBist might
nevertheless insist that scientific practice does not actually require any expla-
nation of semantic facts. Of course, the categoricity problem would still loom
behind like the shadow of an unfinished philosophical business, but a QBist
might feel free to ignore its consequences, i.e., free to discount the apparently
insignificant detail that the meaning of QM cannot be precisely determined
by its rules. And unlike quantum inferentialism, QBism might be thought
immune to the objection that it would remain “unable to nail down a claim’s
content sufficiently to explain how this may be unambiguously communicated
in public discourse”. Unambiguous public communication, a QBist might be
inclined to say, is practically unachievable anyway.

Be that as it may, the question I will take up in this section is whether it is
possible to develop a metasemantics for QBism at all; and if so, how. I will first
recall what is perhaps the most characteristic feature of QBism as an inter-
pretation of standard QM, a feature that has attracted a lot of philosophical
criticism (including, more recently, a certain phenomenological buzz around
it). Then I will note that although, just like quantum inferentialism, QBism
can be seen to distinguish between the semantics and ontology of QM and to
reject any representational capacities of quantum models, it regards the rules
of QM, and especially the Born rule, in a general normative sense, rather than
specifically as inferential rules. Moreover, Chris Fuchs has intriguingly claimed
that Healey’s inferentialism “is so very far from QBism in what it takes to be
a norm ... that it essentially shares nothing in common with QBism except
the word ‘normative’.” (Fuchs 2023, 132, f16)

I will focus my exploratory analysis on this normativity issue, with the
avowedly subversive intention to redirect some philosophical attention from
the controversial epistemological aspects of QBism to its unsettled metase-
mantic commitments. For I think that although it is clear that it favors a
non-representationalist semantics for QM, and even if one might think it set
to ignore the categoricity problem and the ensuing semantic indeterminacy
of quantum expressions, QBism should not avoid providing an explanation of
the semantic facts of QM. Not everything in the philosophy of science can be
dictated by the achievements or limitations of scientific practice.

Arguably the most contentious tenet of QBism is that quantum states
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are personal judgments, which implies that QM is a “single user theory”, in
the sense that any agent assigns her personal quantum state to a physical
system.93 This dismisses quite bluntly the uniqueness of a quantum state
assignment that we have discussed above in the case of Healey’s inferentialism.
It also immediately suggests that an inferentialist metasemantics would not be
acceptable to a QBist: for if QM is a single user theory, how could its meaning
ever be determined in a multiple user inferential architecture, in a “social
game of giving and asking for reasons”? This QBist tenet has been typically
perceived as an attack on scientific objectivity, and has been the focus of
intense philosophical criticism.94 Nevertheless, QBism regards the rules of
QM, and especially the Born rule – “the primary empirical statement of the
theory”, along with probability theory as a whole, in an objectively normative
sense, even though not specifically as inferential rules. This strong emphasis
on the objective normativity of the quantum formalism is another tenet that
is currently taken to characterize QBism. But as it stands, it is rather unclear
what this might mean. More explanation should be in order.

To be sure, Fuchs emphasized that what is normative in QM, as interpreted
by QBism, is the relation expressed by the Born rule, rather than its individ-
ual relata: “The normative thrust of quantum theory is that it is a kind of
glue for probability assignments over and above the requirements of raw prob-
ability theory. From the QBist perspective, it is this glue which indicates the
physical content of quantum theory.” (Fuchs 2023, 90) Perhaps more exactly,
what this may be taken to say is that the meaning of QM is purportedly deter-
mined in virtue of the normative properties of the relation between probability
assignments specified by the Born rule.

Note that the emphasis on normative properties clearly distinguishes QBism
from interpretations that typically attribute descriptive properties to quantum
expressions: “Particularly in QBism, the quantum formalism plays a norma-
tive role for its users; it does not play a descriptive role concerning exactly
how the world is. Its focus is on how a user should gamble.” (op. cit, 82)
But the normative properties that the QBist attributes to QM also distinguish
QBism from inferentialism, since the formalism is said to provide gambling
rules, rather than inferential rules.

One immediate problem that QBism had to deal with is that the stan-
dard formalism does not appear to have the normative character attributed
by QBism. This is why it has to be reformulated in a way that may bring
this character to light: “This [i.e., the normative character] is most easily seen
by rewriting the quantum formalism in a form that is purely probabilistic in
nature, without operators on complex vector spaces, etc.” (op. cit., 116) Once

93For presentations of QBism, see e.g. Fuchs, Mermin, and Schack 2014, Fuchs and Schack
2015, Fuchs 2018, Fuchs and Stacey 2019. My discussion in this section refers primarily to
the most recent presentation, in Fuchs 2023.

94For a recent discussion, see e.g. Glick 2021. But recall that, as I have argued in the
previous section, inferentialism might also have a rather difficult time saving objectivity in
QM.
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this has been properly done, one would then clearly see what the QBist already
saw in the standard formalism: rules for an agent’s gambling. One indispens-
able constraint on such rules is, of course, that their use must be consistent.
Consistency is here understood in the sense of Bayesian coherence – a condi-
tion that ensures that a Dutch book, i.e., a bet that an agent is guaranteed to
lose, is avoided.

Now, the QBist reformulation of QM raises several important questions:
What exactly are the relevant normative properties of quantum rules, as un-
derstood by QBism? What kind of language is the purely probabilistic refor-
mulation of these rules? How can this achieve what it is designed to achieve
– bringing to light the relevant normative properties? Furthermore, could an
inferentialist metasemantics be extended, at least in principle, to account for
the meaning of expressions in this language? Or should a metasemantics for
QBism be developed independently, based on the purely probabilistic struc-
ture of the QBist reformulation of QM? To answer these questions, an extended
analysis of the language of this reformulation must be given. I do not attempt
to do this here, but I want at least to motivate such an analysis, and indicate
a place where this could start.

One place where the analysis could start is the crucial observation that,
when reformulated as a relation between probabilities, without any reference
to a quantum state, the Born rule can be considered a decision-theoretic de-
vice. This is why QBism is properly understood as revealing the decision-
theoretic structure of QM. Indeed, QBism sees QM as an extension of decision
theory that helps an agent make better decisions by providing guidance as
to how she ought to adjust her personal judgments. More specifically, as a
decision-theoretic device, the Born rule provides guidance as to how an agent
should gamble on the expected consequences of her actions on a physical sys-
tem, always under a Dutch-book coherent application. This supports Fuchs’
claim that the normative properties attributed to QM by QBism are differ-
ent from those attributed to it by Healey’s inferentialism, and suggests that
the QBist understands the meaning of QM as determined in virtue of the
decision-theoretic properties, rather than the inferential properties, of quan-
tum expressions.

Although this aspect has been so far overlooked, as far as I can tell, it
seems to me significant that a QBist reformulation of the standard formalism
incorporates not only the language of decision theory, but includes deontic
modals, i.e., terms like “ought” and “should”. This is the case, for example, in
expressions like “I ought to believe that the atom hasn’t decayed, the flask of
poison isn’t shattered, and the cat is alive with a probability of 50%” and “I
should expect the particle’s spin to be up with a probability of 60%”, etc. This
strongly suggests, I think, that the project of developing a metasemantics for
QBism, i.e., an account of its reformulation of the quantum rules that clarifies
the meaning of its linguistic expressions and explains why the latter have that
meaning, could be based on, or at least could begin with, an explanation of
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the meaning of its deontic modals.
Despite the differences noted above, would it be possible to take up infer-

entialism as a metasemantics for QBism? Can inferentialism account for the
meaning of linguistic expressions that include deontic modals? The inferential-
ist understands deontic modals as metaconceptual devices that make explicit
one’s commitments to practical inferences, that is “language-exit” transitions
from linguistic expressions to expressions of intentions or actions.95 However,
this view has been criticized as unable to explain the meaning of a large class
of deontic modals.96 For example, in an expression that includes deontic ne-
cessity, like “I ought to win the lottery”, it is not clear that the meaning of
“ought” can be explained by its role as a metaconceptual device that makes
explicit my commitment to a practical inference: for despite my genuine inten-
tion to win the lottery, I cannot infer to an expression of action, i.e., I cannot
infer that since I ought to win the lottery, I will win the lottery. All I can infer
is that it would be highly preferable – ideal – that I win the lottery.

Would such limitations of inferentialism further block the attempt to in-
ferentially explain the meaning of QBist deontic modals? Might this very
attempt encounter additional obstacles pertaining to the QBist reformulation
of the standard formalism? Can the meaning of “should” in an expression
like “I should expect the particle’s spin to be up with a probability of 60%”
be explained by its role as a metaconceptual device that makes explicit my
commitment to a “language-exit” inference? Can I infer that since I should
expect the particle’s spin being up with a probability of 60%, I will gamble on
the particle’s spin to be up? Or I am only justified to infer that it would be
highly preferable – ideal – that I gamble on the particle’s spin being up? If
an inferentialist metasemantics for QBism turns out to be unworkable, what
might be the alternative? Assuming that decision-theoretic properties cannot
be reduced to inferential ones, could one explain non-inferentially the mean-
ing of QBist deontic modals on the basis of the explicitly decision-theoretic
structure of the QBist reformulation of QM?

One strategy for developing a non-inferentialist metasemantics for QBism
could be to start from the observation that deontic modals are information-
sensitive, i.e., relative to states of information and, in the case of QBism,
relative to a quantum state understood as a personal probability distribution.
For example, suppose that relative to an agent’s initial personal judgments and
her personal probability distribution, the expectation of, say, particle spin up
may be greater than the expectation of particle spin down. This is decision-
theoreticly equivalent to saying that she ought to gamble on particle spin
being up rather than on particle spin being down, which indicates that the

95Cf. Brandom 2000. On this view, deontic modals are on a par with conceptual modals,
which make explicit one’s commitments to theoretical inferences, that is transitions from
linguistic expressions to other linguistic expressions (as we have seen above, in the discussion
of Healey’s inferentialism).

96For a criticism of Brandom’s conception of deontic modals, e.g., Chrisman 2016a, 2016b.
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agent’s deontic modals are sensitive to the decision-theoretic structure of her
expectations. The meaning of deontic modals can then perhaps be explained
in virtue of their role in making explicit an agent’s commitment to a highly
preferable – ideal – betting behavior, in the transition from the particular
structure of her personal probability distribution to her exact expression of
this commitment.

Along the same line, note that the Born rule, as reformulated in QBism, is
not merely a decision-theoretic device; rather, it may be considered a choice
function articulated by the quantum-theoretic extension of decision theory,
that is a function from decision problems into sets of preferable actions that
are admissible according to QM. In other words, the Born rule behaves like a
deontic choice function.97 A deontic choice function maps an initial informa-
tion state to another information state that is as deontically ideal as possible,
given the particular structure of the agent’s probability distribution. As such,
the Born rule bridges the gap between an agent’s personal quantum state and
her deontically ideal betting behavior, i.e., how the agent should gamble in the
context of all available betting options.

This strategy could further clarify the exact role of the Born rule in deter-
mining the meaning of quantum expressions and, if pursued, it might help de-
velop a full-fledged, non-representationalist, but also non-inferentialist, metase-
mantics for QM, as interpreted by QBism. Once again, according to this view,
it would be the legitimate application of the Born rule as a deontic choice
function, rather than as an inferential rule, that articulates the meaning of
quantum expressions. This could be an important philosophical development
of QBism, which might in the end also help us better understand not only
the controversial epistemological aspects of QBism itself, but perhaps pave the
way for a better philosophical appreciation of neo-Bohrian approaches to QM,
more generally.

97See Kolodny and MacFarlane 2010, for a general analysis of deontic choice functions
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6 The logical perfection of physical theories

Whether we adopt a representationalist or an inferentialist metasemantics for
standard quantum mechanics (QM), the categoricity problem turns out to be
serious enough. One might be inclined to think that the ensuing semantic
indeterminacy of QM is inevitable, and so one has to live with it. This chap-
ter aims to oppose this inclination: first, categoricity, as a property apt to
characterize physical theories, should be pursued as a metasemantic ideal; and
secondly, despite almost unanimous rejection, the rational reconstruction of
QM, as a Carnapian language, should not really be thought impossible as a
basis for further metasemantic investigations.

6.1 Categoricity as a metasemantic ideal

In section 1.1 of the book, I mentioned Hilbert’s distinction between two de-
velopment strategies based on the axiomatic method: a progressive strategy,
leading from the axioms of a theory to what can be derived from them by
following its own rules, and a regressive strategy, leading to deeper axioms, un-
covered by a critical examination of that theory. In the philosophy of physics,
this distinction is usually attributed to Einstein, who in his article for The
London Times (Einstein 1919), similarly distinguished between constructive
and principle theories, or rather, between progressive and regressive strategies
for developing theories.98 Of course, the British audience of the Times would
have been already familiar with that very distinction, since Russell had advo-
cated and extensively discussed it in writing, as we will presently see.99 But
the British scientists would have been familiar with the two strategies at least
since Peacock’s 1833 Report (see above, section 3.1.1), where he noted

a marked distinction between those sciences which, like algebra and
geometry, are founded upon assumed principles and definitions, and
the physical sciences: in one case we consider those principles and
definitions as ultimate facts, from which our investigations proceed
in one direction only ... whilst in the physical sciences there are no
such ultimate facts which can be considered as the natural or the
assumable limits of our investigations. It is true, indeed, that ...
we assume certain facts or principles ... making them the founda-
tion of a system of propositions ... such assumed first principles,
however vast may be the superstructure which is raised upon them,
form only one or more links in the great chain of propositions, the

98For a recent account of the history of Einstein’s distinction in his own work, see Gio-
vanelli 2020.

99For Russell’s influence on Hilbert and his school, see Mancosu 2010, chapter 4. As for
Einstein, he declared: “I owe innumerable happy hours to the reading of Russell’s works,
something which I cannot say of any other contemporary scientific writer, with the exception
of Thorstein Veblen.” (Einstein 1944, 18sq)
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termination and foundation of which must be for ever veiled in the
mystery of the first cause. ... The first principles, therefore, which
form the foundation of our mathematical reasonings in the phys-
ical sciences ... can never cease to be more or less the subject of
examination and inquiry at any point of our researches. (Peacock
1833, 186)

On Peacock’s view, the continuous examination of the principles of a phys-
ical theory is demanded by their very nature, since they cannot be considered
as ultimate facts. But the result of examination may be expected to take
the examiner as close as possible to principles that can be assumed as such
facts. Reconstructions of theories attempted in this vein are, thus, metaphysi-
cally and epistemologically motivated. What I want to suggest in this chapter
is that starting with Russell’s examination of the principles of mathematics,
reconstructions came to be motivated metasemantically as well (or even pri-
marily so). Before we turn to Russell, let us look again at Einstein’s famous
distinction, since it is his notion of the logical perfection of a theory that I
take to be at the center of this kind of motivation.

Here is the most widely quoted passage from the Times article mentioned
above:

We can distinguish various kinds of theories in physics. Most of
them are constructive. They attempt to build up a picture of the
more complex phenomena out of the materials of a relatively simple
formal scheme from which they start out. ... When we say that we
have succeeded in understanding a group of natural processes, we
invariably mean that a constructive theory has been found which
covers the processes in question. Along with this most important
class of theories there exists a second, which I will call ‘principle-
theories.’ These employ the analytic, not the synthetic, method.
... The advantages of ... the principle theory are logical perfection
and security of the foundations. (Einstein 1919, 228)

On Einstein’s view, both of these strategies (or methods) start from (or
apply to) the same formal scheme – the same set of axioms – but they are not
exclusive or mutually inconsistent, only driven by different ideals, which lead
them accordingly in different directions. Einstein always emphasized logical
perfection as an ideal of physics: “our notions of physical reality can never be
final. We must always be ready to change these notions – that is to say, the
axiomatic basis of physics – in order to do justice to perceived facts in the most
perfect way logically.” (Einstein 1931, 266) Such passages have always raised
a nagging question: what is logical perfection? Unfortunately, Einstein never
seems to have paused to define this notion more explicitly (Dongen 2010, 59).

My suggestion is that we can get an idea of what Einstein might have had
in mind if we consider Russell’s own reconstruction of arithmetic from logical
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principles. This reconstruction, we will presently see, was primarily driven by
the need to provide a unique semantics for arithmetic, i.e., to give arithmetical
expressions a precisely determined meaning, rather than allowing an infinity
of models of the arithmetical axioms. This view transpires most explicitly in
Russell’s Introduction to Mathematical Philosophy, where he wrote:

Mathematics is a study which, when we start from its most famil-
iar portions, may be pursued in either of two opposite directions.
The more familiar direction is constructive, towards gradually in-
creasing complexity: from integers to fractions, real numbers, com-
plex numbers; from addition and multiplication to differentiation
and integration, and on to higher mathematics. The other di-
rection, which is less familiar, proceeds, by analysing, to greater
and greater abstractness and logical simplicity; instead of asking
what can be defined and deduced from what is assumed to begin
with, we ask instead what more general ideas and principles can
be found, in terms of which what was our starting-point can be de-
fined or deduced. It is the fact of pursuing this opposite direction
that characterises mathematical philosophy as opposed to ordinary
mathematics. (Russell 1919, 1)100

Russell compared these two pursuits with the use of different tools, “one to
take us forward to the higher mathematics, the other to take us backward to
the logical foundations” (op. cit., 2). After discussing Peano’s achievements
with respect to the latter pursuit, Russell famously noted “some of the reasons
why Peano’s treatment is less final than it appears to be” (op. cit., 7). First
and foremost, “Peano’s three primitive ideas – namely, ‘0,’ ‘number,’ and ‘suc-
cessor’ – are capable of an infinite number of different interpretations, all of
which will satisfy the five primitive propositions.” (loc. cit.) In more detail:

Every progression verifies Peano’s five axioms. It can be proved,
conversely, that every series which verifies Peano’s five axioms is
a progression. Hence these five axioms may be used to define the
class of progressions: ‘progressions’ are ‘those series which verify
these five axioms’. ... The progression need not be composed of
numbers: it may be composed of points in space, or moments of
time, or any other terms of which there is an infinite supply. Each
different progression will give rise to a different interpretation of
all the propositions of traditional pure mathematics; all these pos-
sible interpretations will be equally true. In Peano’s system there

100Of course, Russell had been saying similar things for at least a decade: “In every science,
we start with a body of propositions of which we feel fairly sure. These are our empirical
premises, commonly called the facts, which are generally got by observation. We may
then ask either: What follows from these facts? or, what do these facts follow from?”
(Russell 1907, 573) Note also that, like Russell in 1919, Einstein sometimes referred to
logical simplicity as, presumably, a form of logical perfection (e.g., in Einstein 1949).
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is nothing to enable us to distinguish between these different inter-
pretations of his primitive ideas.” (op. cit., 8-9)101

Following Frege, Russell believed that one could do better than this, that
one should be able to derive the Peano axioms from logical principles, which
then Russell hoped would make it possible to single out the intended interpre-
tation of arithmetic: “our numbers should have a definite meaning, not merely
... certain formal properties.” (10) Mathematical philosophy, as he conceived
of it, is a project that aims at defining the “definite”, i.e., intended, meaning
of arithmetical terms, as opposed to the “indefinite” meaning they would have
if interpretations could be determined up to isomorphism only. Summarizing
Frege’s and his own achievements, Russell concluded:

We have thus reduced Peano’s three primitive ideas to ideas of
logic: we have given definitions of them which make them definite,
no longer capable of an infinity of different meanings, as they were
when they were only determinate to the extent of obeying Peano’s
five axioms. (24)102

Russell’s hope to single out the intended interpretation of the arithmetical
axioms, by pursuing their reconstruction from logical principles, turned out to
be illusory: one can only single out the intended interpretation of the arith-
metical axioms up to isomorphism at best (for more on this, see section 2.2.1
above). But the significant point here is that Russell’s primary motivation for
pursuing the reconstruction of arithmetic was clearly metasemantic.

Taking this seriously, one may indeed consider categoricity as a metathe-
oretical ideal capable of reinforcing a metasemantic motivation for the recon-
structionist strategy that Einstein envisaged. Categoricity can, and I think
should, be pursued in physics, not only in logic and mathematics, as a form of
logical perfection. More recently, Boris Zilber and his collaborators have at-
tempted to rekindle philosophical interest in the logical perfection of scientific
theories, based on the notion of categoricity:

Although the expression [“logical perfection”] is quite often used
(informally) in mathematical practice and even sometimes in more
formal discussion around mathematics, we construe it here for the
first time as an independent philosophical notion. Informal use of
the expression often happens in the form of an (implicit) aesthetic
criterion; it is arguably one of the strongest drivers of mathemat-
ical activity, as one of the main tests for its relevance. Since the

101In his Principles of Mathematics, Russell had already criticized Dedekind on similar
grounds (Russell 1903, §242), which as is well known, attracted Cassirer’s criticism (Cassirer
1953, 39sq).
102Interestingly, Russell also suggested a more general project in metasemantics: “What are

the possible meanings of a law expressed in terms of which we do not know the substantive
meaning, but only the grammar and syntax?” (55)
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advent of mathematical logic as an independent discipline, it has
become possible to investigate the formal notion of categoricity by
mathematical means. We use this notion as the main base of our
notion of logical perfection. (Morales et al. 2021)

The logical perfection of theories that Zilber investigates is formally defined
in terms of the modern model-theoretic notion of k -categoricity, which applies
to a theory just in case, for any k, all its models of cardinality k belong to the
same isomorphism class. This is different than the usual notion of categoricity,
which is independent of cardinality constraints, but it seems more suitable for
theories like QM, given the necessity to consider local, rather than global,
models of quantum systems (as discussed in section 2.2.2).

Importantly, the notion of k -categoricity is apt to characterize first-order
theories. Zilber’s programmatic claim about physics is that one should not give
up the attempt to reconstruct or reformulate quantum theories in a first-order
language: “a formal theorem like Löwenheim-Skolem could not undermine the
quest for a univocal [i.e., categorical] theory of physics.”103 Nevertheless, one
may still harbor doubts as to whether the standard Hilbert space formalism can
be given a first-order formalization. Such doubts may, however, be diminished
if one considers minimal extensions of first-order logic as the framework of such
formalizations.

Take, for instance, continuous first-order logic, which is an extension of
first-order logic whose vocabulary consists of constant symbols, n-ary function
symbols and n-ary relation symbols, and which replaces the set of possible
truth values from {T, F} to the bounded interval [0, 1], and Boolean functions
as connectives by continuous functions from [0, 1]n to [0, 1] (Ben Yaacov et al.
2008). Negation, disjunction, conjunction, and the conditional are defined as
follows:

¬a := 1− a

a ∨ b := min(a, b)
a ∧ b := max(a, b)

a→ b := min(1 − a, b).

First-order quantifiers ∀x and ∃x are replaced by the operations supx and
infx, respectively, which are defined on the complete linear ordering of ele-
ments in the unit interval. Continuous first-order logic allows, for example,
a formalization of C∗-algebras (Farah et al. 2021). Similarly, one can search
for a formalization of Hilbert space representations (or Rieffel’s G-modules)
as continuous first-order models. Then an appropriately formulated version of
the Stone-von Neumann theorem might be rigorously interpreted as an appro-
priately conceived categoricity result for QM.

103Lecture in Bogotá, May 13, 2020, quoted in Kennedy 2022, 82. See also Zilber 2016,
2024.
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But such attempts to formalize or rationally reconstruct QM must surely
give us, philosophers, pause. Have we not learned already that the 20th cen-
tury project of formalizing scientific theories has been an utter failure? Are
philosophers of science not in agreement that the Carnapian project of ratio-
nally reconstructing physical theories like QM is generally uninformative and
perhaps incoherent as well?

In the next section, I want to suggest that this need not be the case. More
specifically, I will argue that at least two of the most widely endorsed criticisms
of the Carnapian project could actually be met, provided that one is willing
to follow Sellars in giving up representationalism altogether.

6.2 Quantum mechanics as a Carnapian language

Let me start by considering some of Carnap’s remarks on QM, as given in
his “Indeterminism in Quantum Physics” – the last chapter of Philosophical
Foundations of Physics: An Introduction to Philosophy of Science, where he
considered whether “a change in the form of logic used in physics” (Carnap
1966, 288) can be motivated by QM. Unlike the early Putnam, however, Car-
nap was never ready to take lessons in logic from QM. The reasons he gave
for this are as follows: “Physicists seldom present their theories in a form that
logicians would like to see. ... the postulates of the entire field of physics stated
in a systematic form that would include formal logic.” (op. cit., 291)

How did he think this might ever be achieved? A systematic presentation
of the entire field of physics should be achieved, Carnap continued, through
“the application of modern logic and set theory, and the adoption of the ax-
iomatic method in its modern form, which presupposes a formalized language
system.” (loc. cit.) The suggestion here is, of course, that questions about the
logic of QM cannot be properly addressed until a rational reconstruction of
the whole of physics becomes available, which seems easy to reject as prepos-
terous. However, a watered-down suggestion, which only requires a rational
reconstruction of QM, might be more difficult to reject. But first, what did
Carnap actually mean by rational reconstruction?

The notion of rational reconstruction first appears in his Aufbau: “A theory
is axiomatized when all statements of the theory are arranged in the form
of a deductive system whose basis is formed by the axioms, and when all
concepts of the theory are arranged in the form of a constructional system
whose basis is formed by the fundamental concepts.” (Carnap 1928, §2)104

Thus, a theory is rationally reconstructed if a Hilbert-style axiomatization – a
framework of concepts – is turned into a constructional system. This requires
the application of what Susan Stebbing would call “directional analysis” to
uncover the fundamental concepts of the system.105

104For the development of the notion of rational reconstruction, see Beaney 2013. For a
discussion focused on Carnap on rational reconstruction, see Demopoulos 2007. For my own
reading of Carnap’s reconstructivist project in the Aufbau, see Toader 2015.
105Cf. Stebbing 1935, where she characterized the system of Russell and Whitehead’s
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After 1934, a rational reconstruction is supposed to use the tools developed
in the Logical Syntax : one can then say that a theory is rationally reconstructed
if it is constructed as a Carnapian language: a consequence relation is first
defined, logical and descriptive terms must then be distinguished, etc. As is
well known, Carnap’s view on the rational reconstruction of scientific theories
evolved from the early partial interpretation approach, to an approach based
on the formulation of Ramsey and Carnap sentences, culminating with his
mature view that deploys Hilbert’s epsilon operator.106

As I noted in section 5.3.1, Carnap argued in 1943 that submitting a ra-
tional reconstruction of CL – Hilbert and Bernays formalization of classical
logical reasoning – to metasemantic evaluation shows that this is not categor-
ical, since it lacks a unique semantics up to a isomorphism. This entails, as
we noted, that the meaning of logical connectives is not fixed by its formal
rules, since some of them turn out to be not truth-functional under valuations
that Carnap constructed. This categoricity problem led him to propose a revi-
sion of the rational reconstruction that formalizes valid arguments by allowing
multiple conclusions.

Taking the hint, one may surmise that a rational reconstruction of QM
should also be required as a basis for a metasemantic analysis of QM: investi-
gating whether this rational reconstruction is categorical should tell us some-
thing about the meaning of quantum expressions. More exactly, if it turned
out that no rational reconstruction of QM is categorical, then this would im-
ply that its rules do not fix the semantic attributes of quantum expressions.
Quantum inferentialism would, thus, be false.

The inferentialist could reply that since there cannot be any viable rational
reconstruction of QM, the objection based on the categoricity problem against
quantum inferentialism misfires. As I noted already (in section 2.2.2), the
categoricity problem does not actually depend on the existence of viable ra-
tional reconstructions of QM, since a notion of categoricity apt to characterize
standard QM can be specified. Nevertheless, why would the inferentialist, or
anyone for that matter, think that there cannot be any viable rational recon-
struction of QM?

Clearly enough, standard QM, i.e., the axiomatization given by von Neu-
mann in 1932, can hardly be considered a Carnapian constructional system,
although it certainly looks like a Hilbertian framework of concepts. This is be-
cause its basic concepts are not fundamental in the sense required by Carnap
– they are not the result of a directional analysis – and there is no systematic

Principia Mathematica as a directional postulate system, rather than an axiomatic system.
In his “Axiomatic Thinking”, Hilbert famously wrote: “When we assemble the facts of a
definite, more-or-less comprehensive field of knowledge, we soon notice that these facts are
capable of being ordered. This ordering always comes about with the help of a certain
framework of concepts... [which] is nothing other than the theory of the field of knowledge.”
(Hilbert 1918, §2)
106This evolution has been the subject of extended analysis in contemporary philosophy of

science. For a recent account, see Demopoulos 2022.
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construction of concepts, either. In contrast, recent re-axiomatizations of QM
do seem to require a directional analysis, since they derive standard QM from
information-theoretic principles, considered to be more fundamental than the
von Neumann axioms (see section 5.2.1). But these information-theoretic re-
constructions are not formulated as Carnapian languages, and do not consider
the definition of a consequence relation as a central task.

Perhaps this should not be surprising after all. Maybe the inferentialist is
right to think that there cannot be any viable rational reconstruction of QM.
However, consider Healey’s reasons for rejecting the Carnapian project:

For Carnap, the task of the philosopher is to seek clarification of
what a scientific theory says by means of a logical reconstruction
of the theory within a precisely defined language. ... there is now
a consensus among philosophers of science that the labor involved
in re-expressing a significant theory in a formal language and then
giving its semantics by means of correspondence rules would make
this neither a practicable nor a useful technique for revealing its
structure and function. (Healey 2017, 123)

Rational reconstruction is said to be neither practicable, nor useful, but
note that Healey does not take it to be impossible. More importantly, note
that a rational reconstruction is understood to require representationalism:
the semantics of its language is supposed to be given by correspondence rules,
which presumably are also supposed to do metasemantic work. But why must
the Carnapian project be wedded to representationalism? An alternative that
may be immediately suggested is that a rational reconstruction is possible,
and might be even practicable and useful, if it would not be taken to require
representationalism, but would, instead, adopt inferentialism. Healey, for one,
might definitely embrace this suggestion.

But others reject Carnap’s project precisely because they understand it
to require non-representationalism, at least for theoretical terms (which is
what Carnap had already suggested in his 1927 paper, “Proper and Improper
Concepts”):

The non-representationalist strategy ... is not new, nor is it specific
to quantum theory. It is, rather, the central idea in the logical-
positivist and logical-empiricist pictures of science. ... It is almost
universally accepted today that these approaches are not viable.
But the predominant reason, historically, that they fell from grace
was ... the increasingly clear realization – notably ... in the rec-
ognized failure of Carnap’s project in the Aufbau (1928) – that
observation is theory-laden.” (Wallace 2020, 92)

Rational reconstruction is considered not viable because it is taken to as-
sume a sharp division between observational terms (having a representational-
ist semantics) and theoretical terms (having a non-representationalist seman-
tics). The problem, of course, is that no such division is defensible. But,

154



again, why must the Carnapian project be wedded to this division? The al-
ternative that may be immediately suggested is, again, that a viable rational
reconstruction should simply not require non-representationalism only for the-
oretical terms: if inferentialism were globally required, for all terms, then no
problematic division between observational and theoretical terms would be
required.

One further obstacle for the very possibility of a rational reconstruction of
QM, other than the problems that would follow from the adoption of global
inferentialism, should also be considered. Inspired by a more general and
seemingly devastating criticism raised by Michael Potter (2000, 277) against
the rational reconstruction of mathematical theories, this obstacle can be pre-
sented in the form of the following argument:

1. It is an experimental fact that QM makes adequate empirical claims,
i.e., there is inductive evidence for this fact.

2. Thus, we can know that QM makes adequate empirical claims.
3. Suppose a rational reconstruction of QM can be given.
4. We cannot know that QM makes adequate empirical claims unless one

proves the consistency of the rational reconstruction of QM.
5. Due to Gödel’s second incompleteness theorem, the consistency of the

rational reconstruction of QM cannot be proved (in an adequate, informative
way).

6. Thus, we cannot know that QM makes adequate empirical claims.
7. Therefore, QM cannot be rationally reconstructed.

However, I think that one might be able to overcome this obstacle by
making a simple distinction between two types of knowledge: on the one hand,
fallible knowledge, which is based on inductive evidence (premise 2), and on
the other hand, infallible knowledge, which is based on mathematical proof
(premises 4 and 6). If we make this distinction, the conclusion of the argument
can be resisted.

Then it might be open to us after all to say that we could learn something
about QM from a rational reconstruction of QM. Submitting the latter to
metasemantic analysis by investigating its categoricity would perhaps allow
us, for example, to further examine the validity of quantum inferentialism
(or any other non-representationalist explanation of semantic facts). If this
examination failed, it would not fail because a rational reconstruction of QM
cannot be given.

In closing the book, I want to emphasize that a fuller metasemantic analysis
of QM, and more generally, of any mathematical and scientific theory, should
actually take us all the way back to Hilbert’s own considerations, in the late
1920s, concerning the principle of permanence and the metatheoretical ideal
of completeness as categoricity.
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6.3 Back to Hilbert!

In a letter to Weyl, dated 6 November 1929, from which I extracted the motto
for my book, Schrödinger thanked him for sending the first edition, from 1928,
of The Theory of Groups and Quantum Mechanics (Weyl 1930), but com-
plained about the introduction of a new algebraic formalism in physics:

Dear mathematicians ... Building new conceptual structures is fun,
it is your very own sphere, but for us the physics is still far too
deep in the darkness to hope that we could work successfully with
such complicated, unfamiliar instruments. ... You have to under-
stand the physiology and biology and eventually the phylogeny of
a mathematical apparatus, then you have something.107

These conditions for the genuine understanding of a mathematical formal-
ism – what Schrödinger called its physiology, biology, and phylogeny – suggest
that he believed an answer should be given to the question about the relation-
ship between the algebraic formalism just introduced by Weyl in QM and its
content – the “blood of empirical reality”, as Carnap famously put it (Carnap
1927). This is essentially the question that, as I noted at the very outset,
in section 1.1, Hilbert had asked in his 1917 lecture in Zurich. Schrödinger
expressed, I take it, a concern that many, including Weyl and Carnap, among
others, thought justified.

I have interpreted Hilbert’s question as pointing to the metasemantics of
classical logic and mathematics, but also that of quantum physics. And I have
maintained that an investigation of the metasemantics of standard QM and
non-distributive QL would help provide a better philosophical understanding
of these theories. The investigation has focused on two problems, which I
called, for both systematic and historical reasons, the categoricity problem
and the permanence problem.

This led me to propose, among other things, a new reconstruction of Ein-
stein’s argument for the incompleteness of QM, which suggests that his debate
with Bohr could be understood metasemantically, as a divergence about the
indispensability of categoricity as a condition on the relationship between the
mathematical apparatus of QM and its physical meaning. It also led me to un-
cover the 19th century philosophical and mathematical background to Bohr’s
correspondence principle, which helps to understand the latter as grounded
in the principle of permanence, and to further illuminate some of his obscure
claims about the relationship between the mathematical apparatus of QM and

107The German passage is this: “Liebe Mathematiker... Neue Begriffsgebäude aufbauen
macht Spass, es ist Eure allerureigenste Sphäre, aber für uns liegt das Physikalische noch viel
zu Tief im Dunkel, als dass wir hoffen könnten, in dieser Finsternis mit solch komplizierten,
ungewohnten Instrumenten erfolgreich arbeiten zu können. .... Man muss die Physiologie
und Biologie und womöglich die Phylogenie eines mathematischen Apparatus verstehen,
dann hat man etwas davon.” (Manuscript Hs 91:730, located in the Archive at the ETH
Library in Zurich)

156



its physical meaning. From Einstein and Bohr, the investigation led me to con-
sider the categoricity problem and the permanence problem, as well as their
metasemantic implications for QL, in the works of von Neumann and Weyl.
And from this, further, to current debates in contemporary philosophy of logic
and physics.

Hilbert himself was, of course, fully aware of both of these problems. What
he called the “higher-order” principle of permanence was at the center of
his foundational debate about mathematics with Brouwer’s intuitionism. As
Bernays put it:

The system of arithmetic is built on a foundation of conceptions
which have decisive significance for scientific systematization in
general: namely the principle of conservation (or ‘permanence’)
of laws, which appears in this connection as the postulate of the
unlimited applicability of the usual logical forms of judgment and
inference, and the demand for a purely objective conception of the
theory through which the latter is freed from every reference to our
knowledge. (Bernays 1930/1931)

But an account of the role of permanence as conservation in Hilbert’s views
on the foundations of mathematics, and especially its potential influence on
Bohr’s approach to QM, and particularly on his understanding of the corre-
spondence principle (discussed in section 3.2), still needs to be given.

The metatheoretical ideal of categoricity, which Hilbert had formulated al-
ready in his axiomatizations of geometry and analysis, was expressed also in
connection with QM: “The goal is to formulate the physical requirements so
completely that the analytical apparatus is uniquely determined.” (Hilbert et
al. 1928) Hilbert’s view, I take it, is that if the axioms or rules of QM are
complete, then the quantum model for a physical system is uniquely deter-
mined (up to isomorphism). If this is a correct reading of his view, then the
completeness of QM that Hilbert was looking for, in 1928, comes close to the
notion of completeness that Einstein was looking for, in 1935 (discussed in
section 2.3). Of course, due to the limitations of first-order logic, especially
within the context of his mathematical finitism, Hilbert very soon gave up
categoricity, in an important lecture in Bologna (Hilbert 1929). But I strongly
suspect he would not have allowed such limitations to undermine the quest for
a precise determination of the meaning of the formalism of a scientific theory.

Another book on metasemantics must be written, one that includes a de-
tailed discussion of Hilbert’s own views on the matter, including his views on
permanence and categoricity. One would then be totally justified, I believe, to
attribute to him the very claim that metasemantics, as an investigation of the
foundations of semantics, contributes to a better philosophical understanding
of scientific theories.
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