
THE HALVORSON EXAMPLE

TOBY MEADOWS

Abstract. Halvorson has proposed an intriguing example of a pair of theories whose cat-

egories are equivalent but which are not themselves definitionally equivalent. Moreover, it

seems obvious that these theories are not equivalent in any intuitive sense. We offer a new

topological proof that these theories are not definitionally equivalent. However, the under-

lying theorem for this claim has a converse that shows a surprising collection of theories,

which are superficially similar to those in Halvorson’s example, turn out to be definitionally

equivalent after all. This offers some new insight into what is going “wrong” in the Halvorson

example.

In his seminal paper on scientific theories, Hans Halvorson puts forward an intriguing exam-

ple of a pair of theories that are not definitionally equivalent, but which are equivalent as

categories [Halvorson, 2012].1 The theories involved in the Halvorson example are generally

thought to be intuitively and somewhat obviously inequivalent. This thought has motivated

pointed questions of the appropriateness of categorical equivalence as a tool for understand-

ing when two theories are genuinely equivalent. It has also spawned a number of attempts to

find more suitable halfway houses between categorical equivalence and definitional equivalence

[Barrett and Halvorson, 2016, Hudetz, 2019, March, 2024].

My goal in this short paper is to provide a new topological proof that the theories involved in

the Halvorson example are not definitionally equivalent. But more interestingly, the lemmas

used in this proof have converses that can be used to show that a surprising variety of pairs

of theories, which are similar to those of the Halvorson example, are – in fact – definitionally

equivalent. These examples put some pressure on the thought that the original pair of theories

were so obviously inequivalent after all. For this reason alone, it seems like a good idea to

record this observation. However, the techniques used in this paper will also hopefully open

a door to some new approaches to – the often difficult – problem establishing that a pair of

theories are not definitionally equivalent.

The paper is organized as follows. We start in Section 1 by recalling the example and sketching

the argument that the theories are equivalent as categories. We then use the Cantor-Bernstein

theorem and an infinitary logic to show that there is a weak sense in which these theories are

interdefinable. In Section 2, we give a new proof of Halvorson’s result that the interdefinability

I’d like to thank Elliot Glazer for his invaluable assistance with Section 2.2. I’d also like to thank JimWeatherall
for some very helpful comments on a draft of this paper. I’d like to than Neil Dewar for some probing questions
about this work. And finally, I’d like to thank the LPS community for showing up to a rather long impromptu
talk about this material and other things in the Summer of 2024.
1The relevant definitions can be found in, for example, [Barrett and Halvorson, 2016].
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cannot be executed in first order logic; i.e., the theories are not definitionally equivalent. We

proceed by remolding the problem into a problem about propositional logic and then into a

problem of topology. These results deliver a theorem from which Halvorson’s result directly

follows, but it also delivers a raft of, so to speak, converse cases establishing that a surprising

variety of theories similar to those in the example are all definitionally equivalent. Finally in

Section 3, we offer some informal discussion of the significance of these results.

1. The Example

There have been a number of presentations of the Halvorson Example, but we shall begin

with a version in the setting of first order logic. Our theories T and S are described below:

• Let T be the theory in the language LT = {Pn, a}n∈ω with one sort σ where each Pn

has arity σ and a is a constant symbol. Let T consist of the axiom that says there is

exactly one object.

• Let S be the theory in the language LS = {Qn, b}n∈ω with one sort τ where each Qn

has arity τ and b is a constant symbol. Let S say that there is exactly one object and

include the following axioms, for all n ∈ ω

(Q0b→ Qnb).

A little informally, T talks about a single object, a, in language with infinitely many predicates

and says absolutely nothing about whether they apply to a. S on the other hand, also talks

about a single object, b, in a language with infinitely many predicates, but it says that if the

first of those predicates holds of b, then so do all the rest. Given that T says almost nothing

and S, says a little more, it seems natural to think that these theories are not equivalent. But

how do we make that precise?

Proposition 1. [Halvorson, 2012] T and S are not definitionally equivalent.

So far so good. But definitional equivalence isn’t the only criterion for theoretical equivalence

in town. Moreover, in contexts where first order logic isn’t obviously available – as is often

the case in physics – it’s not clear that definitional equivalence even makes sense. It would,

thus, be pleasing to have an alternative and more general criterion for theoretical equivalence.

One such criterion is categorical equivalence [Weatherall, 2021].

When considered as categories, it turns out that T and S are equivalent. We shall deliver

a quick rehearsal of that argument as it will also give us the opportunity to introduce some

helpful terminology and offer a simpler perspective on the problem. In fact, we’ll show that T

and S are categorically isomorphic, which is generally stronger than categorical equivalence.

Recall that the theory category mod(T ) of T is the category whose objects are models of T

and whose arrows are elementary embeddings between them. We define mod(S) similarly.
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mod(T ) and mod(S) are isomorphic if there is a functor F between them which is a bijection

on both objects and arrows.2

Note that models of T and S both have an unusual – and for our purposes, helpful – feature:

they all have exactly one object in them. This tells us that: there is at most one arrow between

any pair of models in these categories; and as such, every arrow is an isomorphism between

those models. This simplifies the problem greatly. In order to establish an isomorphism

between these categories we just need to show there is a bijection between the models of T

and S such that any pair of models from one isomorphism class from mod(T ) get sent to

models in the same isomorphism class of mod(S). So really we just want to show that there

is a bijection between the isomorphism types of T and the isomorphism types of S. At this

point, one might simply observe that T and S both have continuum many isomorphism types

and so such a bijection obviously exists.3

Proposition 2. [Halvorson, 2012] T and S have isomorphic theory categories.

However, it will serve us well to dig a little further into the weeds here. For some motiva-

tion, the argument we have given thus far just shows that there is a bijection between their

isomorphism types. It tells us nothing about what it is like. Given that we obtained it from

crude cardinality facts, we’ve obtained our bijection using the Axiom of Choice. This may

give some people reason to pause. Regardless, we can avoid Choice altogether and provide a

very natural definition of such a bijection.4

To define this bijection, we change perspective and give a natural representation for the

isomorphism types of T and S. Recall first that a model of T is of the form

A = ⟨{aA}, PA
n , a

A⟩n∈ω

where {aA} is its domain and each PA
n ⊆ {aA}. It’s not difficult to see that A can be

represented5 as a pair of an object aA and a function fA : ω → 2 such that for all n ∈ ω

aA ∈ PA ⇔ fA(n) = 1.

Now given we aren’t interested so much in A as its isomorphism class, we can throw aA away

and use fA for this representational purpose. To put it bluntly, each isomorphism type for

models of T and S is essentially a function f : ω → 2.

This means we can represent (the isomorphism types of) these theories using subsets of 2ω:

the set of functions f : ω → 2. Recall that 2ω is commonly known as Cantor Space, and

2See [Awodey, 2006] for a definition of a functor. It is essentially the obvious rendering of an order preserving
map between categories.
3This is essentially the proof given in [Barrett and Halvorson, 2016].
4Similar work to these preliminaries, which goes into more detail, can be found in [Barrett and Halvorson,
manuscript].
5That is, A and ⟨aA, fA⟩ can be simply defined from each other. Given the topic of this paper, one might
worry whether or not they are “equivalent.” This is not important in this argument, since the theory categories
for T and S are unusual in the ways noted above.
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following a convention in mathematical logic, I’m going to call elements of 2ω reals. Thus, we

let XT = 2ω (i.e., all of them); and

XS = 2ω\{f ∈ 2ω | f(0) = 1 ∧ ∃n ∈ ω f(n) = 0}

(i.e., those reals that don’t start with a 1 and have a 0 later on). We wish to define a bijection

between XT and XS . First we note that we can easily define injections in either direction.

• Let ρ : XS → XT be the identity.

• Let σ : XT → Xs be such that for all f ∈ 2ω and for all n ∈ ω

σ(f)(n) =

0 if n = 0

f(n− 1) otherwise
.

ρ works since its obvious that XS ⊊ XT . To see how σ works we might be more succinct

and clear by writing σ(f) = 0⌢f to indicate that we are just putting a 0 at the front of

the f sequence. This is not a surjection since the constant function f : ω → {1} is in XS

but not in the range of σ. Since we have injections in both directions but neither of them

are surjections. Regardless, the Cantor-Bernstein theorem tells us that since we have these

injections, there is a bijection π : XT → XS . Moreover, the Axiom of Choice is not required.

Now we’ve established categorical equivalence twice over, but there’s still a little more depth

to be plumbed: the definition of π is exceedingly simple. For f ∈ 2ω, we let

π(f) =

f if ∃n ∈ ω f = 0n⌢1̄

0⌢f otherwise

where 0n = ⟨0, ..., 0︸ ︷︷ ︸
n-timtes

⟩ and 1̄ : ω → {1}. Intuitively speaking, we check if f has a finitely many

0s following by 1s forever. If so, we leave it alone; if not we put a 0 in front of it.

I think it’s worth pausing to remark on this observation. While it might see obvious that T

and S are inequivalent, there is a way of relating them that is – conceptually speaking – very

simple: the function between them can be described with a quick sentence. We noted above

and we’ll show below that T and S are not definitionally equivalent, but one might wonder

if they are, in some sense, close to being definitionally equivalent. One way to see that they

are is to move to a stronger logic. Lω1ω is the logic extending first order logic with the

conjunctions and disjunctions of countable length that we denote by
∧

and
∨

respectively. In

this setting, we may define translations back and forth from LT and LS witnessing definitional

equivalence. To illustrate this we just describe a translation t from LS into LT as it is most

like the function π above. Given the atomic formula Qnx in LS for n > 0 we translate that
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into LT in the logic Lω1ω as

(
∨
n∈ω

(
∧
i≤n

¬Pnx ∧
∧
i>n

Pnx)→ Pnx)∧

(¬
∨
n∈ω

(
∧
i≤n

¬Pnx ∧
∧
i>n

Pnx)→ Pn−1x).

The busy looking antecedent of the first conjunct is intended to mirror the first clause in the

definition of π(f); in the second conjunct, we use its negation to represent the “otherwise”

clause. We leave the similar definition of Q0 to the reader and note that b is clearly translated

as a. The translation in the other direction is also left to the reader, however, it should

be clear that in the stronger setting of Lω1ω it is not hard to make translations that mirror

the bijection described above; and thus, in this infinitary setting, T and S are definitionally

equivalent.

What should we make of this? I think it just gives us reason to take another look at these

problems. While we do have something like definitional equivalence, we cannot – as finite

beings – really work in the logic of infinite conjunctions and disjunctions. As such, it’s not so

obvious how we can really make use of this translation; and so we don’t have a particularly

compelling reason to take this result very seriously.6 But one might wonder what we might

see if we look a little closer.

2. A new proof

In this section, we revisit the claim that T and S are not definitionally equivalent through a

topological lens. In the previous section, we saw that the isomorphism types of models of T

and S can be helpfully represented by logicians’ reals: i.e., functions f : ω → 2. This suggests

that a topological perspective might be helpful.

2.1. Propositional logic and topology. Before we set up our topological apparatus, first note

that the theories T and S, while articulated in first order logic have very natural counterparts

in propositional logic.7 In particular, we might articulate T in propositional logic as the empty

propositional theory in the variables {pn}n∈ω and S as

q0 → qn

for all n ∈ ω in the language with variables {qn}n∈ω. With the clutter of quantification

removed, we define a natural topology on 2ω by using the following “cylinder” sets as a basis.

For each pair s, t of finite subsets of ω with empty over lap, we let

Cs,t = {f ∈ 2ω | ∀n ∈ s f(n) = 1 ∧ ∀n ∈ t f(n) = 0}.

6With some hindsight, I think that the results of this paper suggest that definitional equivalences based on
infinitary techniques deserve another look. We have developed a framework emerging out of Hudetz’s program
that can be used to comprehensively subsume such equivalences [Hudetz, 2017]. We save the exposition of that
work for a future date.
7This was observed by Halvorson in [2012]. Indeed, that article begins with the propositional representation.
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It can be seen that these sets form a clopen basis for a topology on 2ω. Moreover and impor-

tantly for our little project, there is a propositional formula χs,t of {pn}n∈ω that corresponds

naturally with Cs,t. More specifically, we let χs,t be∧
n∈s

pn ∧
∧
n∈t
¬pn.

A similar formula corresponding to Cs,t obviously exists in {qn}n∈ω. This gives us a connection
between formulae of propositional logic and our topology. Now recall that every formula φ of

propositional logic can be put into disjunctive normal form. This means that there is a finite

sequence ⟨si, ti⟩i<n of non-overlapping finite sets of natural numbers such that φ is logically

equivalent to ∨
i<n

χsi,ti .

In topological terms, this formula can then be represented by the set⋃
i<n

Csi,ti ⊆ 2ω.

In other words, every formula of propositional logic is naturally represented by a finite union of

clopen sets; i.e., it is a clopen subset of 2ω. This provides the topological link that we require.

Finally, we note that a theory in propositional logic based on countably many variables can

consist of, at most, a countably infinity of sentences and so is naturally represented by an

infinite intersection of clopen sets; i.e., a closed set.

2.2. Topology recall8. We now record three standard topological facts that drive our proof.

Recall that a set of reals is perfect if it contains no isolated elements. The definition is similar

in 2ω. A set X is perfect in 2ω if whenever f ∈ X and n ∈ ω, then there is some g ̸= f ∈ 2ω

such that g and f are the same up to n.

Lemma 3. Let X ⊆ 2ω. The following are equivalent:9

(1) X is perfect; and

(2) there is a continuous injection f : 2ω → 2ω such that f [2ω] = X.

Informally speaking, this lemma allows us to see that any pair of perfect sets are linked by

very nice bijections; i.e., they are continuous.

Lemma 4. Let f : X → Y where Y is compact, Hausdorff. Then the following are equivalent:10

8I’m particularly grateful to Elliot Glazer for his assistance with this section.
9This is Lemma 1.22 and Exercise 1.23 in David Marker’s notes on Descriptive Set Theory. For a more robust
citation source: (1→2) is essentially Corollary 1.A.3 from [Moschovakis, 1980]; and Theorem 6.2 from [Kechris,
2012]. (2→1) is relatively easy. Suppose X is not perfect and toward a contradiction that f : 2ω → 2ω is a
continuous injection whose range is X. Then we may fix some f(y) that is isolated in X and some p ∈ 2<ω

such that f(y) is the only point extending p in X. But then there cannot be q ∈ 2<ω such that x extends q
and f(z) extends p for every z extending p since then f could not be an injection.
10This is Exercise 8 in Section 26 of Chapter 5 in [Munkres, 2000].
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(1) f is continuous; and

(2) the graph of f is a closed set in X × Y .

This lemma tells us that the very nice maps have a simple topological characterization; i.e.,

they are closed sets.

Lemma 5. If Z is a closed subset of 2ω × 2ω, there is a tree W on 2<ω × 2<ω such that11 for

all x, y ∈ 2ω

⟨x, y⟩ ∈ Z ⇔ ∀n ∈ ω ⟨x ↾ n, y ↾ n⟩ ∈W.

This lemma tells that closed sets of Cantor space are naturally represented by trees. This will

be useful since it is relatively easy to represent a tree using a theory in propositional logic.

2.3. Implicit interpretation. We are almost ready for the main theorem, but we still need

a way of linking our topological results with definitional equivalence. To this end, it will

be helpful to offer an alternative characterization of definitional equivalence that is more

amenable to our proof strategy. In a nutshell, are going to make use of Beth’s definability

theorem to characterize definitional equivalence in such a way that (explicit) definitions are no

longer required. The techniques of this section can be generalized to offer a theory of implicit

interpretation that appears to be just a little stronger than Morita interpretation. We leave the

exposition of that theory to a future date and just focus on definitional equivalence here.12 The

following generalization of Beth’s definability theorem drives our alternative characterization.

Lemma 6. [Andréka et al., 2022] Let T be a theory articulated in the L ∪ {Ri}i∈I where each

Ri is a relation symbol. Now suppose that for any pair of models M,N of T such that the

reducts M ↾ L = N ↾ L,13 we have M = N . Then each Ri is definable in T by a formula of

L; i.e., there is a formula ψi(x̄) of L such that

T ⊢ ∀x(Rix̄↔ ψi(x̄)).

The following lemma then provides the missing link for the main theorem. Intuitively, it tells

us that we don’t need to bother figuring out how the vocabulary of one theory is defined in

another. We just need to find a suitable theory that extends them. For simplicity, we suppose

that all our theories are articulated in languages that only use relation symbols.

Lemma 7. Let A and B be theories articulated in the languages LA and LB respectively where

LA ∩LB = ∅. Then A and B are definitionally equivalent14 iff there is a theory U articulated

in the language LA ∪ LB such that:

(1) every model of A, and respectively B, has a unique expansion to a model of U ; and

(2) every model of U satisfies both A and B.

11See Proposition 2.4 in [Kechris, 2012] or Proposition 2.3 in [Mansfield and Weitkamp, 1985].
12I’ll note that this work is heavily inspired by the work of Thomas Barrett and Hajnal Andréka.
13Here M ↾ L is the reduct of the model M of L ∪ {Ri}i∈I to L.
14We use essentially the characterization of definitional equivalence from [Barrett and Halvorson, 2016].



THE HALVORSON EXAMPLE 8

(→) Suppose that A and B are definitionally equivalent. Then we may fix definitional exten-

sions A∗ and B∗ of A and B respectively such that A∗ and B∗ are the same theory.15 Let

U = A∗ = B∗. Given a modelM of A there is clearly a unique model satisfying A∗ since the

new vocabulary was explicitly defined. A similar observation holds for models of B.

(←) Suppose we have a theory U articulated in LA∪LB as described above. LetM and N be

models of U and supposeM ↾ LA = N ↾ LA. By the second part of our assumption, these are

both models of A and thus, by the first part of our assumption, they have a unique expansion

to a model of U . Thus,M = N . This means that the vocabulary of LB is implicitly definable

and so using Lemma 6 we see that the vocabulary of LB is explicitly definable in U . Let A∗

be the theory obtained by adding these explicit definitions to A. A similar argument show

that the vocabulary of LA is explicitly definable in U and so we may form B∗ by adding these

definitions to B. It should then be clear that A∗ = B∗ = U as required.

2.4. The theorem. Finally, we can deliver the main theorem of this paper.

Theorem 8. Suppose that S∗ is a theory articulated in LS. Then the following are equivalent:

(1) XS∗ is a perfect set; and

(2) T and S∗ are definitionally equivalent.

Proof. (1→2) By Lemma 3, we may fix a continuous injection f : 2ω → XS∗ such that

f [2ω] = XS∗ . Moreover, by Lemma 2, we see that the graph of f is closed. By Lemma 5, we

may then fix some tree W on 2<ω × 2<ω such that

f(x) = y ⇔ ∀n ∈ ω ⟨x ↾ n, y ↾ n⟩ ∈W.

Next we observe that this tree can be represented as a theory of propositional logic in the

language with atoms {pi, qi}i∈ω. Given a pair ⟨t, s⟩ ∈ 2<ω × 2<ω with lh(t) = lh(s) = n, we

let ψt,s be ∧
{pi | i < n ∧ t(n) = 1}

∧
∧
{¬pi | i < n ∧ t(n) = 0}∧
{qi | i < n ∧ s(n) = 1}

∧
∧
{¬qi | i < n ∧ s(n) = 0}.

This gives us a way of representing a potential element ⟨t, s⟩ of the tree W in propositional

logic. We then put this together by letting U∗ be the propositional theory whose axioms are

ψt,s where ⟨t, s⟩ ∈W . And finally, we let U be the obvious first order theory in LT ∪LS that

corresponds to U∗. Given a model M of U , let xT be the characteristic function of the set

{n ∈ ω | M |= Pna} and xS be the characteristic function for the set {n ∈ ω | M |= Qnb}. It

15Recall that the standard definition of a theory is a set of sentences closed under consequence.
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can then be seen that for all modelsM of LT ∪ LS

M |= U ⇔ f(xT ) = xS .

From here, it is easy to see that wheneverM,N satisfy U , the clauses of Lemma 7 are satisfied

and so T and S are definitionally equivalent.

(2→1) Since T and S∗ are definitionally equivalent, we may use Lemma 7 to fix a theory U

in LT ∪ LS satisfying conditions (1) and (2) described there. Recalling that XT = 2ω, it can

then be seen from this that there is a function f : 2ω → 2ω such that f [2ω] = XS . Moreover,

since f is described by what is effectively a theory in propositional logic, we see that its graph

must be closed. But then Lemma 2 tells us that f is continuous; and finally Lemma 3 tells

us that XS is perfect. □

The fact that Halvorson’s T and S are not definitionally equivalent is essentially a corollary

of our theorem.

Corollary 9. T and S are not definitionally equivalent.

Proof. XS is not a perfect set, since the sequence ⟨1, 1, ...⟩ is isolated in XS . □

But as promised, our theorem also delivers some surprising equivalences between theories

similar to those in the Halvorson example. Very generally, we have the following:

Corollary 10. Suppose A and B are (consistent) theories in LT and LS that both include the

statement that there is exactly one object. Then suppose that the set of reals XA and XB

associated with A and B are both perfect. Then A and B are definitionally equivalent.

Proof. Using Theorem 8, we see that A and B are both definitionally equivalent to T and so

they are definitionally equivalent to each other. □

For a more specific and perhaps more striking example we have the following:

Proposition 11. If A and B are finite, consistent theories in LT and LS that both say there is

exactly one object, then they are definitionally equivalent.

Proof. Since A and B are both finite, they are both represented by finite theories in propo-

sitional logic; i.e., sentences of propositional logic. Since each sentence of propositional logic

can be converted into disjunctive normal form, we see that each of these sets is a finite union

of clopen basis elements. It is then easy to see that such sets have no isolated elements. And

since they are perfect, we see by Corollary 10 that A and B are definitionally equivalent. □

In other words, this tells us that any pair of finite theories in propositional logic can be

understood as being definitionally equivalent.
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3. Discussion

What should we make of this? I’d like to offer a contrived example that I believe will help

us better understand the odd tension between mathematics and intuition that the Halvorson

example seems to provoke. To this end, suppose that every year at the end of our harvest, we

make an offering to our gods with our finest produce and afterwards celebrate with a massive

feast. Everyone sleeps long and deep after the feast and each year, we wake to find that

the offering has either been taken or left in its place. Naturally, this leads our community

to questions and speculation. What are the gods trying to tell us? What will happen next

year? And the year after that? Two members of our community, Terry and Shirley, take it

upon themselves to prophesize the future plans of the gods with regard to our offerings. Let’s

take it that Terry’s prophesy is empty. He makes no commitments at all and just says that

anything can happen. Shirley, on the other hand, does make a little conditional prophesy. She

proposes that if the gods take their offering this year, then they’ll continue taking the offering

forever after. It’s not difficult to see that this little story corresponds with the theories of the

Halvorson example. Terry can be understood as offering the theory, T , while Shirley offers S.

Now it seems obvious that Terry and Shirley are offering two noticeably different theories

about the future behavior of our gods. Moreover, the fact that T and S are not definitionally

equivalent seems to support this intuition. But let’s complicate the picture and suppose that

another member of our community, Botao, offers a new prophesy which says that for the next

one hundred years the gods will not take our offering. This clearly corresponds to a theory B

in LS which says that there is only one object, b, and that ¬Qnb holds for all n < 100. Now it

also seems obvious that Terry and Botao are offering different prophesies. Terry isn’t saying

anything and Botao is committing to a sequence of events that extend beyond almost all of our

lives. Nonetheless, Corollary 10 tells us that the associated theories T and B are definitionally

equivalent. Indeed in this particular case, it is not difficult to see that the required translations

can be procured without recourse to the very general machinery described above.

So what is going on? Given the clash between formalism and intuition, it seems obvious that

we should blame definitional equivalence. Just as we took the equivalence of the categories

associated with T and S as reason to be suspicious of categorical equivalence, we might take

the definitional equivalence T and B as reason to be suspicious of definitional equivalence.

There is something to this line of thought, but without some care we can easily take it too

far. The key point is that there is nothing wrong with definitional equivalence, but it is very

easy to be misled into thinking definitional equivalence tells us more than it actually does.

Returning to Terry and Botao, I think it is obvious that our intuitions are correct. Terry and

Botao are not offering the same prophesy. And yet, it is also obvious that their prophesies

are definitionally equivalent. However, the main driver behind our intuition is the fact that

Terry and Botao are offering theories in an interpreted language. The words they are uttering

already have a specific predetermined meaning. When Botao says that the gods will take
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the offering next year, his theory, B, will proven wrong if they do not, while Terry’s empty

prophesy, T , will remain intact. The very fact that B could be wrong while T is right means

that B and T are not different versions the same theory.16 The key to the puzzle then is the

fact that definitional equivalence has absolutely nothing to say about interpreted languages.

Definitional equivalence speaks about T and B as purely syntactic items: strings of symbols

with no antecedent meaning. Put like that, one might be tempted think that definitional

equivalence is just some mathematical artifact with little or no real world significance. This,

I think, would be a mistake. The problem is not that definitional equivalence is irrelevant,

it is that we’ve been tempted to squeeze more out of the mathematics than was there in the

first place. We need to offer a better explanation of what it means when two theories are

definitionally equivalent.

Here is what I think a serviceable informal explanation of definitional equivalence might look

like. When theories U and W are definitionally equivalent, we learn – not that they are

different versions of the same theory – but rather that: through translation we could use

theory U (understood syntactically) to do whatever representational work for which we might

use W ; and similarly, we might use W to, so to speak, stand in for U . Of course, there’s

a lot to unpack, but this is merely intended as a helpful gloss. Now it could happen that

we were already using U and W for some real world purpose. As such, we should regard the

languages LU and LW of U andW as interpreted. But there is absolutely no guarantee that the

translations used in establishing the definitional equivalence will respect the meanings of those

interpreted languages. Indeed, this is exactly what happens in the comparison of Terry and

Botao’s prophesies. While T and B are definitionally equivalent, the translations that witness

this do not preserve the meaning of the expressions in the underlying interpreted languages.

Indeed in this case, any (non-trivial) translation will break the underlying interpretations,

since Terry and Botao are speaking essentially the same interpreted language.17 So while it

is true that you could use T (understood syntactically) to do the representational work done

by B, the translation used to achieve this will change the meaning of T .18

Where does this leave us? I don’t think we’ve found any reason to doubt the value of defini-

tional equivalence as an instrument for understanding when two theories are equivalent. That

said, we did show that definitional equivalence does not deliver a simple sufficient condition

for saying that two theories are merely different versions of each other. Sometimes we need to

16Note that we can make an analogous observation distinguishing T and S. If the gods take our offerings this
year and then fail to take them in some later year, Shirley’s prophesy will have been refuted, while Terry’s
remains vacuously correct. Thus again, we have good reason to think that T and S are not the same theory.
17Strictly, we should say there is a fixed translation between the languages that preserves the underlying
interpretation of the vocabularies of LT and LS . More specifically, a and b translate to each other, and so do
Pn and Qn for all n ∈ ω.
18Note that an analogous observation applies to the comparison of T and S. Categorical equivalence is not
so helpful here, but our earlier observation that T and S are definitionally equivalent in the infinitary logic,
Lω1ω, tells us that the infinitary translations witnessing this cannot preserve the meanings of the words used
by Terry and Shirley.
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be attentive to the question of whether a theory is articulated in an interpreted language.19

Given that definitional equivalence, properly understood, has been saved from the chopping

block, this gives us some reason to revisit categorical equivalence. As we noted at the begin-

ning of this paper, the fact that T and S have equivalent theory categories is often thought of

as a mark against categorical equivalence as an indicator of genuine equivalence. I think the

examples above indicate that categorical equivalence also deserves something of a reprieve.

Like definitional equivalence, categorical equivalence has nothing to say about interpreted

theories. Theory categories are also defined with a syntactic understanding of a theory with

no attention paid to predetermined interpretations of the underlying language of the theory.

As such and with the help of a couple of footnotes above, we see that the problem presented

by T and S is analogous to that of T and B. So what then is a better explanation of what it

means to say two theories have equivalent categories? I would contend that the explanation is

much the same as that we gave for definitional equivalence. To draw out the difference, we’d

need to dig deeper into details. But the key point for this paper, is that the fact that T and

S are categorically equivalent when T and S are intuitively inequivalent is better explained

by our failures to observe when we are thinking about interpreted languages than it is by fact

that definitional equivalence is more difficult to obtain than categorical equivalence.

So what’s the answer then? Are T and S equivalent or not? I’m inclined to say that the

question is somewhat under-determined. If we are thinking of T and S as purely syntactic

theories, then I think their categorical equivalence tells that what we might call their repre-

sentational capacities are, at least to some degree, equivalent. But if we were thinking of T

and S as theories articulated in interpreted languages, as in the discussion above, then they

may be obviously inequivalent. Given that the Halvorson example is usually presented with

T and S as theories in uninterpreted languages, it seems perhaps a little more natural to say

that they are equivalent. Since we started with pure theories, this seems like a reasonable

answer. Of course, the value of this response depends on what we want to do with T and S.

As we’ve seen above, this answer may not be that helpful if we are considering theories in

languages whose terms have predetermined meanings.

As a final remark, I’d like to note that although definitional equivalence is unable to detect

the effects of interpreted languages on theories, this should not be taken as evidence that

formal methods are not useful here. The problem is rather that the standard apparatus of

translation and interpretation was not designed to take such issues into account. We leave the

generalization and development of a framework that is sensitive to the predetermined meaning

of its vocabulary as a challenge and target for future work.

19I think it is plausible that we generally don’t need to be sensitive to this with mathematical theories, but we
leave this discussion for another article.
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