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The publication of Saunders Mac Lane’s ([1971]) Categories for the Working Mathematician (CWM) was a signal

event in the history of category theory. This in�uential textbook grew out of the recognition that there had emerged

a well-established body of material that one might consider ‘basic’ category theory, and that it provided an

architecture of concepts (such as categories, functors, limits, and adjoints) that uni�ed many areas of mathematics.

One of the explicit aims of CWM was thus to transmit this meta-mathematical lingua franca to mathematicians in

other sub�elds.

In the following years, the uni�catory power, generality, and foundational import of category theory have made it

fertile soil not only for mathematical but also philosophical thought, and so it is a pleasure to see some of this work

expertly curated by Elaine Landry in her homage to Mac Lane: Categories for the Working Philosopher (CWP). Like

CWM, CWP seeks to convey the fundamental concepts of category theory to a broad audience, especially

philosophers of X (where X is a subject to which category theory has made a signi�cant contribution or has the

potential to do so). But there are some important di�erences in the scope and context of these respective works.
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First, while CWM organizes and transmits a collection of categorical concepts that might uncontroversially be

regarded as ‘basic’, category theory has since experienced an explosive development in various sub-areas, for

example, ∞-categories in logic and algebraic topology, ‘categori�cation’ in representation theory and knot theory,

and the use of topos theory and ‘derived’ methods in algebraic geometry. Thus, beyond a minimal core of

background knowledge (for example, the contents of Borceux [1994a], [1994b], [1994c]), what counts as basic

knowledge depends heavily on the sub-area of category theory with which one is concerned. Since Landry’s volume

is rightly intended to give the reader a �avour of new concepts and techniques that have arisen within these sub-

areas, its scope is signi�cantly more ambitious than that of CWM and the material is correspondingly less uni�ed. A

second di�erence is that while CWM is concerned with the relevance of category theory for pure mathematics, one

�nds in CWP a roughly equal division between pure (Chapters 1–10) and applied (Chapters 11–19) material, where

the latter includes applications to physics, biology, and the philosophy of science.

The breath-taking scope of the material covered in CWP makes it particularly challenging to identify some core set

of themes that confer a narrative unity upon the various chapters in this volume (beyond the true but unhelpful

statement that the chapters all concern category theory!). Nonetheless, we believe that one can discern two such

themes, which provide the reader with a useful (although by no means the only) path through this material.

Theme A—which is dominant in the pure chapters—is that the ‘principle of extensionality’ (PE) is the key to

understanding why category theory is conceptually or foundationally illuminating, and thus drives many

developments in modern category theory. We note that (as will be evident below) we adopt the sense of

‘extensionality’ most commonly used by category theorists, and not the—antithetical—sense that is adopted by set

theorists. Roughly speaking, PE stipulates that one should not ‘look inside’ a mathematical object (for example, by

considering the elements of a set) to determine whether two objects or constructions are identical. One way in

which PE can be formalized in category theory is via the Yoneda lemma (and its higher-categorical generalizations),

which asserts that two objects of a category are isomorphic (or suitably n-equivalent) whenever they are related in

the same way to all objects of that category. By contrast, the use of set theory as a candidate foundation of

mathematics violates PE, because of the so-called axiom of extensionality—a sense of ‘extensionality’ that di�ers

from our own and that of the category theory community!—in ZFC (according to this axiom, two sets are equal if

and only if they have the same elements; hence one is required to ‘look inside’ the sets to examine whether or not

they are equal). An important immediate consequence of PE is the invariance of all categorical constructions under

isomorphism in a category (and the higher-dimensional analogues of this statement). In the literature, this

statement is sometimes called the principle of equivalence (nlab [2018]); below, we shall treat it as the restriction of

PE to the special case of ‘groupoids’, namely, categories in which all arrows between objects are invertible.

Theme A can be seen as motivating two projects: A1, the use of category theory to rearticulate some branch of logic

or mathematics so that one can implement PE in speci�c contexts; and A2, the far more ambitious programme of

using category theory to build PE into the very foundations of logic and mathematics, thus making PE an ‘intrinsic’

feature of one’s linguistic framework, as it were. On the other hand, Theme B—which is dominant in the applied

chapters—is the project of abstractly conceptualizing a scienti�c theory (or certain aspects of it) so that the resulting

description is amenable to the methods of category theory. We shall have more to say about the extent to which

these two themes dovetail at the end of our review.

Based on the above hermeneutic, one way of reading the pure chapters of CWP is as motivating a progression from

A1 to A2. An introduction to the logical application of A1 is given in Chapter 7, where John Bell summarizes the

advances in categorical logic from its conception in the 1960s up to roughly 1990. Among the main topics addressed

are Lawvere’s functorial semantics and the topos-theoretic description of logic. These early developments and

results relating di�erent kinds of logics to di�erent kinds of categories (called ‘hyperdoctrines’) set the stage for the

remaining nine pure chapters. In Chapter 9, Kohei Kishida extends this approach to logic by using category theory



to describe modal logic and its semantics. We recall that in Lawvere’s view, the syntax of a logic is a category and its

models are given by functors from this category to some target category. By contrast, in Kishida’s re-articulation of

modal logic, the syntax is a functor and the models are certain natural transformations (namely, arrows between

functors). While the development of mathematical logic in the twentieth century has generally placed more

emphasis on syntax than semantics, we note that category theory also has something to contribute to syntax-heavy

systems; for instance, Chapter 10 by J. R. B. Cockett and R. A. G. Seely reviews how symmetric monoidal categories

can be used to develop a categorical semantics for linear logic.

It is relatively uncontroversial that category theory is ‘foundational’ in the sense that it has provided many areas of

mathematics with a convenient linguistic framework in which to reason. However, and far more controversially,

category theory has also been put forward as a foundation for all of mathematics, and in particular one that does

not rely on set theory. This claim has been the subject of ongoing debate: could and should a categorical foundation

replace the more familiar set-theoretic one? In Chapter 5, Michael Ernst provides an overview of this debate. While

the debate has previously focused on technical adequacy and the autonomy of each of these competing

foundations, Ernst chooses instead to emphasize the question of which foundations best capture the practice of

working mathematicians. This chapter, along with Chapters 1 and 6, can be viewed as a bridge between A1 and A2,

because it re�ects on the signi�cance of the fact that PE encodes an essential insight from mathematical practice

and is responsible for the fruitfulness of using category theory to re-articulate known mathematical structures. For

instance, in Chapter 1, Colin McLarty surveys the various scenarios in which a working mathematician might

encounter set theory and concludes that what ultimately matters to practitioners is our aforementioned PE. His

main example here is the fact that there are many equivalent—but not equal—constructions of a tangent bundle

and the fact that practitioners only care about these up to the structural properties that determine their

equivalence. Along similar lines, Jean-Pierre Marquis argues in Chapter 6 that the notion of ‘canonical maps’

illustrates how category theory provides insight into the structural character of mathematics that is not provided by

set theory.

While category theory can yield such insights, there are still areas of mathematics whose structural description

requires us to enhance our meta-mathematical framework beyond categories. An example of such an area is… (1)-

category theory itself! To illustrate this point, consider that from the set-theoretic perspective, the standard of

sameness of two categories is equality; similarly, one might be tempted to say that from the category-theoretic

perspective, the relevant standard is isomorphism. However, we know from the practice of category theory that we

miss out on many interesting phenomena if our standard of sameness is as strict as isomorphism—in fact, it is

often fruitful to relax this standard to a weaker one called ‘categorical equivalence’. How can we build into our

meta-mathematical description a principle that will yield the ‘right’ standard of sameness for categories (or higher

categories)?

One attempt to do so is Michael Makkai’s FOLDS (�rst-order logic with dependent sorts), which is presented by

Marquis in Chapter 8. For instance, in the FOLDS theory of categories, two categories are equal if and only if they

are equivalent. As one might expect, while FOL has a natural interpretation in su�ciently structured categories, the

general interpretation of FOLDS requires the resources of higher categories. On the other hand, one can take a

di�erent tack from Makkai and use the existing system of Martin–Löf type theory as the basis for a system that

captures the relevant notion of sameness. This approach—now known as homotopy type theory (HoTT)—was taken

by Vladimir Voevodsky, who noticed a close connection between the notion of ‘equality’ in independent type theory

and the notion of ‘homotopy’ that is familiar from topology.

The origins of HoTT are explained by Michael Shulman’s Chapter 3, after which Steve Awodey’s Chapter 4 presents

the univalence axiom of HoTT as the ultimate form of structuralism. To state the univalence axiom, consider that for

any two objects, A and B, in a (possibly higher) category, one may consider a map taking ‘a proof that A and B are



equal’ to ‘an equivalence between A and B’. The univalence axiom then asserts that this map itself is an equivalence,

that is, in suitable sense, every equivalence arises from a proof of equality. While it may at �rst seem that this axiom

restricts the class of equivalences in a category, in fact it does the opposite: it extends the notion of equality to

match that of equivalence. This formally forbids the user of a foundational system from making any statements that

would violate PE, thus turning a philosophical principle into a foundational axiom. Upon closer examination, the

univalence axiom bears close resemblance to the object classi�er of an ∞-topos, as de�ned by Jacob Lurie ([2009]).

It is believed (although not yet proven) that HoTT is the internal language of such ∞-topoi; this more elaborate set of

connections �gures in David Cor�eld’s Chapter 2, which describes Urs Schreiber’s novel approach to geometry,

namely, doing geometry ‘internally’ to an ∞-topos.

To sum up, one way of reading the ‘pure’ chapters of CWP is as building up to an explication of how in recent

mathematics PE has been implemented in ever more thorough-going ways. We now turn to the ‘applied’ chapters of

CWP.

In Chapter 16, David Spivak makes a compelling case for the fruitfulness of category theory as a model of the

models that we use in the applied sciences: this case essentially turns on using PE (in the guise of Yoneda) to

articulate the relationships between such models. Furthermore, he rightly stresses a point that highlights our

Theme B: a large part of the task of applying category theory to some discipline consists in understanding which

aspects of a theory one should conceptualize in categorical terms, and the level of abstraction one needs to work at

in order for this choice to be mathematically and scienti�cally fruitful. For instance, Joachim Lambek’s (posthumous)

Chapter 14 provides an intriguing—if idiosyncratic—illustration of this task by describing a small fragment of �eld

theory (Dirac spinors on Minkowski spacetime) as an additive category.

For a rather more ambitious and comprehensive attempt to conceptualize aspects of physics in terms of category

theory, the reader need look no further than Chapters 11 and 12, which review the work of the ‘Oxford school’, who

apply category theory to quantum mechanics. In Chapter 11, Samson Abramsky reviews how the probabilistic data

of quantum theory can be conceptualized in terms of a presheaf that assigns such data to various sets of

compatible measurements. Among other things, this powerful abstraction of (part of) the structure of quantum

theory allows one to provide a classi�cation of the phenomenon of ‘contextuality’ (that is, the ‘inconsistent’

aggregation of data from the perspective of classical probability), to apply this classi�catory scheme to non-

quantum theories, and (in principle) to apply the full category-theoretic machinery that has been developed for

sheaves (and their higher analogues) to such an analysis. In Chapter 12, Bob Coecke and Aleks Kissinger provide the

�rst of a three-part overview of the programme called ‘categorical quantum mechanics’.[1] Here we see that many

of the key concepts of quantum information theory (for example, compositionality, causality, no-cloning,

teleportation, non-locality) can be abstracted and formalized within the setting of symmetric monoidal categories

with further structure; thus, these concepts can also be applied to non-quantum theories that share a similar

categorical structure. While much of applied category theory has focused on the case of mathematical physics,

Andrée Ehresmann’s Chapter 15 shows that category theory can also be fruitfully applied within speci�c

frameworks for modelling living systems and for modelling cognitive systems in biology.

Chapters 13 and 17 of CWP are directed at the broad topic of how category theory can be used to formalize

relationships between various scienti�c theories. In order to provide a toy model of how category theory can be

used to compare theories, one can simply treat the theory’s models as structured sets collected into categories of

various kinds. In Chapter 13, James Weatherall assumes this set-up and discusses how statements about

di�erences between various fragments of physical theories can be re-articulated in the language of ‘forgetful

functors’ and in particular Baez’s taxonomy of ‘structure’, ‘property’, and ‘stu�’-forgetting functors. We note that this

topic is in fact deeply related to (the equivalence principle case of) PE: Baez’s taxonomy was originally intended to

apply to the homotopy theory of n-groupoids (Baez and Shulman [unpublished]), and the relationship between this



application and the notion of theories/models (as well as ‘gauge symmetry’) has been discussed in both the

philosophy (Dougherty [2017]; Nguyen et al. [forthcoming]) and the physics (Benini et al. [2015]; Schreiber and

Shulman [unpublished]) literature. In Chapter 17, Hans Halvorson and Dimitris Tsementzis describe how ‘syntactic’

and ‘semantic’ categories can be associated with certain logical theories and proceed to use topos-theoretic

techniques to discuss the relationships (in particular, equivalence) between such categories. They then consider a

two-category of logical theories and discuss the sense in which this might help us understand (analogically) various

relationships between actual scienti�c theories.

Finally, Landry’s Chapter 18 discusses the uses and abuses of category theory within the metaphysics of science,

especially with respect to the position known as ‘radical ontic structural realism’ (ROSR). She argues (persuasively, in

our view) that any attempt to use only the categorically described mathematical structure of a physical theory to

argue in favour of ROSR will founder, because in order to succeed, such an argument requires an appeal to the

object-level physical structure of phenomena. However, Landry also argues that the conceptual resources of

category theory (in particular PE) vindicate a certain sort of Hilbertian mathematical structuralism.

Professor Landry is to be congratulated on putting together a stimulating volume that introduces a broad audience

to so many of the key conceptual, foundational, and philosophical ideas driving contemporary work at the

intersection of philosophy and category theory. In closing, we make two small observations that may be helpful to

the reader. First, despite the importance in contemporary category theory of ∞-categories (which one might think of

as ‘going all the way with PE’!), discussion of this concept seems to be largely absent from CWP (apart from the

chapters of Marquis, Shulman, and Cor�eld, which gesture at ∞-categories). Second, there seems to be something

of a disjunction between the pure and applied parts of CWP: Recall that the narrative of the pure part seems to

yield a clear, overarching moral: an ever-deeper implementation of PE is required to comprehend mathematical

practice, thus culminating in our Theme A2. However, it is less than clear that the applied discussions cohere

enough to provide a uni�ed moral of this kind. Could there, for instance, be a physical or philosophical or (in the

applied realm) methodological principle to motivate an analogous moral, or that yields a more trenchant analysis of

Theme B (which seems very much to be a theme at the level of technê)? And can one say something systematic and

principled about the relationship between Theme B and Theme A? Discussion of these points would further clarify

the importance of category theory for the philosophy of science and for the philosophy of the specialized sciences.
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