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1 Introduction

Consider a typical case of relaxation of a system, initially out of thermal
equilibrium, to a state of thermal equilibrium. It might, for instance, involve
two objects, initially at different temperatures, placed in thermal contact,
which, after a while, come to have the same temperature. I’d like to high-
light two things about processes of this sort. First, they represent a lost
opportunity to obtain work from the system; one could have used the two
objects as reservoirs for a heat engine, extracting heat from the warmer one,
converting some to work and discarding the rest into the cooler one, until
their temperatures are equal. The flip side of this coin is: once the tempera-
tures have equalized, one has to do work or expend some resource that could
be used to do work, in order to restore the initial state. We call processes
like this dissipatory. Spontaneous equilibration involves dissipation.

Second, they involve “forgetting” of the past (at least at the macroscopic
level); distinct initial states can lead to the same final state. Once two
objects, initially at different temperatures, have reached thermal equilibrium
with each other, you won’t be able to tell, from examination of those objects,
which was initially the hotter and which, the cooler (though, of course, there
might be a record of the initial states somewhere else).

Equilibration involves forgetting of the past, and it involves dissipation.
The question addressed by the literature on what has come to be called
Landauer’s principle is: does every process of forgetting (that is, loss of
distinguishability of states) likewise involve dissipation?

The literature on Landauer’s principle is, as John Norton in particular has
persuasively argued, a bit of a mess (see Norton 2005, 2011, 2013). Nonethe-
less, there is something right in what is said, or, at least, something in the
neighbourhood of what is said is right. In my BJPS paper (Myrvold, 2024) I
present a proof of a bound on dissipation associated with processes that take
distinguishable initial states to the same state, with care to lay out exactly
what is and isn’t being assumed. The proof, in its full generality, applies
to situations in which there is less than complete distinguishability of the
initial states, and associates dissipation with any loss of distinguishability.
It applies to any number of input states, and to situations involving arbi-
trary numbers of heat reservoirs. In what follows, after some preliminaries, I
present in §4 a proof of a special case, which sacrifices generality for ease of
reading. Though less general than the version given in the paper, the concep-
tual underpinnings are the same. The proof goes through in both classical
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and quantum mechanics; for the sake of brevity, we’ll treat of the classical
case. The quantum version goes through almost word-for-word, with mixed
states replacing probability distributions on classical phase space.

2 Illustration: An ideal gas

Although the scope of the proof will by no means be restricted to any par-
ticular sort of example, it can be helpful to keep an example in mind, as an
illustration of what is to be proven. We consider an ideal gas consisting of N
molecules, confined to a cylindrical chamber, in thermal contact with a heat
bath at temperature T . There’s a partition that can be inserted, dividing
the chamber into two parts, or removed. We assume that the partition can
be inserted at any distance along the length of the chamber, so that the two
parts into which it divides the chamber need not be of the same size. In ad-
dition, the partition can be used as a piston to expand or compress the gas
in one sub-chamber or the other. We also assume that, if the gas is confined
to some region, we have the means to slide it over into any other region of
the same volume, without doing any work (think, if you will, of a pair of
moveable pistons).

Let L be a state in which the partition divides the container into two
equal parts, left and right, and the gas is in the left half, with temperature
T . Let R be the same, except the gas is in the right half. And let F (for
full) be a state in which the partition has been removed, and the gas fills the
chamber, again at temperature T .

If, starting from either L or R, we slowly expand the gas until it occupies
a fraction p (greater than 1/2) of the container, some quantity Q of heat
will pass from the heat reservoir to the gas. If it is possible to compress the
gas back to its original volume, while transferring the same quantity Q of
heat from the gas into the reservoir, we will say that the original expansion
is thermodynamically reversible. Otherwise, the process is dissipatory.1

Given the set-up as we have described it, one process that is dissipatory

1In this section, we entertain the fiction that uncertainties about the result of a process
can be disregarded, even at the molecular level, and apply standard thermodynamic cal-
culations to calculate heat flows in and out of a gas, even one consisting of a small number
of molecules. This fiction will be removed in §4, in which probabilities over the state of the
system will be employed, and we will couch our discussion in terms of expectation values
of heat exchanges.
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is the process that starts with the gas in state L, and proceeds by removing
the partition, and allowing the gas to diffuse into the newly available volume.
Initial and final states of this process are at the same temperature. Since it’s
an ideal gas, total internal energy is a function only of temperature, and so
the internal energy is unchanged, and there’s no net transfer of heat between
the gas and the reservoir.

This is a dissipatory process: no heat passes from the reservoir into the
gas in the course of the process, but it is not possible to restore the initial
state without doing work and passing heat into the reservoir. We want a
quantitative measure of the amount of dissipation. As long as all heat trans-
fers in and out of the system involve reservoirs at the same temperature T , we
can take, as a measure of the amount of dissipation associated with a given
procedure M that takes a system from a state a to a state b, the difference
between the minimum amount of heat transferred out of the system, among
all processes that restore the initial state, and the quantity of heat that enters
the system in the course of the process.2 Call this quantity DT

M(a → b).
If the initial state is one that can be restored from the final state with no

heat exchange whatsoever between the system and its environment (which
is true of the cases often considered in the literature on Landauer’s bound),
this is conceptually simpler. In such a case, the dissipation associated with a
process is just the negative of the heat that enters the system in the course
of the process, or, to say the same thing, it’s the quantity of heat that is
transferred out of the system in the course of the process. For that reason,
dissipation is often equated, in the Landauer literature, with heat transferred
to the environment.

So, for example, suppose that the initial state is either L or R, and the
final state is required to be L. For each of these initial states, it’s possible
to produce the state L with no heat exchange between the system and the
environment. If the initial state is L, do nothing. If the initial state is R,
then slide the gas over, at constant volume, into the left side of the container.
These are processes without dissipation. Note that different manipulations
are required to produce L without dissipation, depending on whether we
start with L or R.

Suppose, now, we want a single manipulation that yields a final state L
from either initial state, L or R. Here’s one way to do it. From initial state

2If the process M involves a net transfer of heat from the gas to the reservoir, take
heat entering the system to be a negative quantity.
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L or R, remove the partition and allow the gas to expand into the container,
that, is produce the state F . Then slowly compress the gas to L, doing work
on it and expelling heat. The full process is dissipatory, and the amount of
dissipation is the amount of heat expelled. The dissipation occurs in the first
step, though it’s in the second step that the heat is expelled. We’ll call this
manipulation M1/2; it is a member of a family of processes {Mp}, which we
will define shortly.

Dissipation so defined will do as a measure of dissipation in the special
case in which all transfers of heat in and out of the system involve reservoirs
at the same temperature T . Suppose, now, that we have available to us
heat reservoirs at two different temperatures, a hotter temperature T1 and
a cooler one T2. Suppose that some quantity of heat Q is absorbed from
the hotter reservoir, via a thermodynamically reversible process. The initial
state can be restored by depositing the same amount of heat back into the
hotter reservoir, or else we could run a Carnot cycle and restore the initial
state while depositing a smaller amount of heat Q′ into the cooler reservoir,
where

Q′ =

(
T2

T1

)
Q, (1)

or,
Q′

T2

=
Q

T1

. (2)

Following Clausius (1854), we will call the quantityQ/T the equivalence-value
of a quantity Q of heat transferred reversibly to or from a reservoir at temper-
ature T . The rational for this terminology is: if we want to restore the initial
state, we can either expel an amount Q at temperature T1, or an amount Q′

at temperature T2; a quantity Q at temperature T2 is equivalent, as far as
its usefulness in restoring the initial state, to a quantity Q′ at temperature
T1; they have the same equivalence-value. The mark of a thermodynamically
reversible cycle is that the sum of equivalence-values of heat transferred out
of a system be equal in magnitude to the sum of equivalence-values of heat
transferred into the system. The general definition of dissipation incurred
in the course of a process that takes a state a to a state b is: the difference
between the minimum value of the sum of equivalence-values of heat trans-
ferred out of the system, among all processes that take b back to a, and the
sum of equivalence-values of heat transfers into the system during the course
of M . Call this quantity δM(a → b). For the case in which reservoirs have
the same temperature T , it doesn’t really matter whether we use DT

M(a → b)
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or δM(a → b) as our measure of quantity of dissipation, since the two are
related simply by,

DT
M(a → b) = T δM(a → b). (3)

Returning to our example: if the gas can be compressed reversibly back
to its original volume, by a standard calculation, this involves transfer of a
quantity of heat from the gas to the reservoir equal to

Qrev(F → L) = NkT log 2. (4)

Therefore, since the process of removal of the partition, from an initial state
of either L or R, involves no heat passing into the system, we subtract zero
from this quantity, to get a dissipation equal to

DT
M1/2

(L → L) = DT
M1/2

(R → L) = NkT log 2− 0 = NkT log 2. (5)

So, we’ve considered one process that produces a final state L from either
initial state L or R, and it’s dissipatory; we have dissipation NkT log 2,
whether the initial state is L or R.

There are other processes that produce L from initial state L or R, a
whole continuum of them. For any p, 0 < p < 1, consider a process, which
we will callMp, in which the partition is moved slowly from its initial position
at the middle of the container to a position in which the left and right parts
have volumes that are fractions p and 1 − p, respectively, of the whole. For
p greater than 1/2, this involves expansion of the gas, if the initial state is
L, and compression, if it is R. We then remove the partition, and allow the
gas to fill the whole of the container, producing state F . As a final step, we
reversibly compress the gas to L.

The dissipation associated with each of these processes is just the net heat
expelled into the environment. This is NkT log 2 for the final stage. For the
first stage, if p is greater than 1/2, then heat passed into the system if the
initial state is L, and out of the system if the initial state is R. Thus, for
p > 1/2, the net heat expelled from the system is greater than NkT log 2 if
the initial state is L, and less than NkT log 2 if the initial state is R. These
are reversed for p < 1/2.

We can calculate how much greater or less these quantities are than
NkT log 2.

The dissipations associated with such a process, for the two initial states,
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are

DT
Mp

(L → L) = NkT log 2−NkT log(2p) = −NkT log p

DT
Mp

(R → L) = NkT log 2−NkT log(2(1− p)) = −NkT log(1− p).
(6)

Note that, by choosing p close enough to one, we can make the dissipation
associated with the process, for initial state L, as close to zero as we like.
That, is, reversibly expanding the gas until it occupies almost all of the
container, then removing the partition, is close to being a reversible process.
But this small dissipation, if the initial state is L, comes at the cost of a large
dissipation if the initial state is R. When the initial state is R, the process
involves compressing the gas into a very small volume, and then removing
the partition.

We have here a tradeoff; by choosing p, we can make the dissipation
associated with one of the initial states as close to zero as we want, at the
expense of making the dissipation associated with the other initial state high.
Here’s the way of expressing the tradeoff that I find clearest. Using DL and
DR as abbreviations for these two quantities, we have, for process Mp,

e−DL/kT + e−DR/kT = pN + (1− p)N ≤ 1. (7)

(We have used the fact that N ≥ 1, since a gas can’t have less than one
molecule in it.) For a one-molecule gas, we have equality,

e−DL/kT + e−DR/kT = p+ (1− p) = 1. (8)

To sum up: we have considered a set of processes {Mp}, each of which
takes the two initial states, L and R, to the same final state L. All the
processes in this set satisfy,

e−DL/kT + e−DR/kT ≤ 1, (9)

where DL and DR are the dissipations incurred if the gas is initial in state
L and R, respectively. For the one-molecule gas, we have equality in (9), for
each Mp.

The question we now ask is: Could we, for any of these processes Mp,
cook up a process that takes both L and R to the same final state, that
assuredly has lower dissipation than incurred by Mp, for both initial states?
The fact that we haven’t thought of one yet is, of course, no proof that it
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can’t be done. But, as we will prove in section 4.3, for the one-molecule
gas, the answer is negative. Each of the processes Mp is in a certain sense
optimal, in that there is no process that has lower dissipation than Mp for
both of the initial states L and R. What will be proven is that, in general, for
any process that takes both of two distinguishable states to the same final
state, with associated dissipations D1 and D2, the pair (D1, D2) must satisfy,

e−D1/kT + e−D2/kT ≤ 1. (10)

The set of values of the pair (D1, D2) permitted by (10) is graphed in Figure
1. This allows us to visualize the tradeoff already mentioned. If one wants
to make one of the dissipations small, this comes at the price of making the
other large. For the special case in which the same dissipation is incurred,
regardless of initial state, the bound says that this common dissipation must
be at least kT log 2.

Figure 1: Values of (D1, D2) permitted by the Landauer bound.
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For the one-molecule gas, each of the procedures we have discussed has
a pair of dissipations (DL, DR) that is on the boundary of the permitted
region. This means that, for any of these procedures, there is no procedure
that will reduce dissipation for both initial states.

As Szilard (1929) pointed out, the bound (10) can be expressed, equiva-
lently, as,

For all p in (0, 1),

pD1 + (1− p)D2 ≥ −kT [p log p+ (1− p) log(1− p)] . (11)

This is the form in which the bound is usually expressed, in the literature
on Landauer’s principle. For proof of the equivalence, see Appendix B of
Myrvold (2024).

Here’s how to think about this equivalence. For any value of p, the set of
pairs (D1, D2) satisfying the equation

pD1 + (1− p)D2 = −kT [p log p+ (1− p) log(1− p)] . (12)

is a straight line in (D1, D2) space tangent to the boundary of the shaded
area in Figure 1 at the point (−kT log p,−kT log(1 − p)). The inequality
(11) says that, for each p, the point (D1, D2) is on or above the line defined
by equation (12). The set of all such lines is the envelope of the shaded area
in Figure 1, the set of all (D1, D2) satisfying the Landauer bound, inequality
(10).

3 Introducing probabilities

Maxwell, writing in 1878, defined thermodynamics as “the investigation of
the dynamical and thermal properties of bodies, deduced entirely from what
are called the First and Second laws of Thermodynamics, without any hy-
potheses as to the molecular constitution of bodies. . . .”(Maxwell 1878, p.
258; Niven 1890, pp. 664–665).

As long as we confine our attention to the macroscopic level, we can ignore
the molecular structure of matter, and treat the results of our manipulations
as predictable, free of the uncertainties induced by molecular fluctuations.
This predictability is implicit in thermodynamics as it was developed in the
19th century, in that one speaks of the quantity of heat that will be exchanged
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in a given process. If we take a container of gas, and insert a partition halfway
along the length, then, for a gas with a macroscopic number of molecules,
we expect, with a high degree of confidence, that the quantities of gas now
trapped in each of the two halves will be pretty much the same. For a gas
consisting of only a few molecules, we have to take into account the non-
negligible chance that the quantities of gas trapped in the two halves will
be appreciably different, and, for the one-molecule gas, the gas will, with
certainty, be trapped entirely in either the left or the right half. The results
of subsequent operations will depend on which half it is in. If we want to
extend thermodynamics down to the molecular scale, therefore, we will have
to live with limitations on predictability. If all goes well, however, we will be
able to attach probabilities to the results of our operations.

What we can expect, in the realm of probabilistic processes, is a bound
on the expectation values of dissipations.3 As Szilard put it,

if we want to use the fluctuation phenomena in order to gain
energy at the expense of heat, we are in the same position as
playing a game of chance, in which we may win certain amounts
now and then, although the expectation value of the winnings is
zero or negative (Szilard 1964, p. 302; Leff and Rex 2003, p. 111,
from Szilard 1929, p. 841).

It is customary, in statistical thermodynamics, to associate with a system
that is in thermal contact with a heat bath, a probability distribution known
as a canonical distribution, or, sometimes, a thermal distribution. If H(x) is

3Expectation values, not expected values. The phrase “expected value” is a solecism
that seems to have arisen only in the 20th century; the OED gives 1915 as its earliest
attestation. An expectation value, in the original meaning of the phrase, is the value of an
expectation. If you have a ticket that entitles you to a reward tomorrow if some event E
happens in the meantime, you have an expectation: an expectation of receiving the reward
if the condition is met. If E is not certain to occur, the value of the expectation of receiving
a reward if E happens is less than the value of receiving the same reward unconditionally,
and diminishes as the probability of E decreases. This sort of terminology has its origin
in Huygens’ treatise, Van Rekeningh in Spelen van Geluck (pub. 1660), which is all about
calculating the values of various expectations.
My guess is that the use of “expected value” stems from over-emphasis on probability

distributions that are strongly peaked near their expectation values. For those special
cases, with high probability, the actual value will be close to the expectation value. But
one can also have cases in which it’s impossible for the actual value to be close to the
expectation value.
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the Hamiltonian of the system, the canonical distribution at temperature T
is the probability distribution that has a density function, with respect to
Liouville measure, given by,

ρ(x) = Z−1e−H(x)/kT , (13)

where Z is a normalization constant chosen to make the integral of this
function over the available region of phase space equal to one. In what
follows it is assumed that probabilities of heat exchanges calculated using
distributions of this form are correct. This assumption, which plays a central
role in statistical thermodynamics, is what I have elsewhere (Myrvold, 2021)
called the Canonical Postulate.

4 The proof

4.1 The framework

The framework used in the proof will be the more-or-less standard one for
statistical thermodynamics, going back to Gibbs (1902).4 We have a system
of interest, A, that can interact with a heat reservoir B. We can, of course,
consider cases that involve two or more heat reservoirs; the generalization is
straightforward, but for simplicity we will consider the case of only one.

We assume that there is a probability distribution that gives probabilities
for the state of the composite system AB at time t0. What does a good part
of the work in the proof is that this is assumed to take a particular form:
the probability distribution for the reservoir B is a canonical distribution at
temperature T , and the system A (whose distribution is not assumed to be
canonical) is uncorrelated with B at time t0.

Between time t0 and time t1 the system AB undergoes Hamiltonian evo-
lution, according to some, possibly time-varying, Hamiltonian HAB(t). The
course of HAB(t) is assumed to be pre-programmed, independent of the state
of the system AB. We assume that at times t0 and t1, there is no term in
the total Hamiltonian corresponding to an interaction between A and B, and
hence that at these times the total energy of the composite system AB is
just the sum of the energies A and B. We also assume that the Hamiltonian

4Of course, it doesn’t follow from this that we are thereby committed to any of the
more outlandish things that you may have been told “Gibbsians” believe.
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for B, HB, is the same at t0 and t1.
5 We don’t assume that the Hamiltonian

for A is the same at both times. In between times t0 and t1, there might
be coupling between A and B, allowing the two to exchange energy. In ad-
dition, the internal energy of A might change as a result of changes in HA.
Changes in the internal energy of A due to exchanges of energy with B are
to be counted as heat, changes due to changes in the Hamiltonian, as work.

The Hamiltonian evolution consists of a dynamical flow on the phase
space of the system AB, a mapping T from phase-points at time t0 to phase-
points at time t1. The flow induces a mapping from a probability distribution
over microstates of the system at time t0 to a corresponding probability
distribution over microstates at time t1: the probability that, at time t1, the
phase point is in a given region ∆ of phase space is the probability that,
at time t0, the phase point is among those that get mapped by T into a
point in ∆. The only property of the Hamiltonian flow on phase space that
we will be invoking is that there is a measure on phase space, the Liouville
measure, λ, that is conserved by this flow. That is, if we apply our recipe
for evolving probability distributions to the Liouville measure λ, it turns out
that any region ∆ assigned a probability by λ at time t0 is assigned the same
probability by the result of applying the Hamiltonian flow to λ to produce a
probability distribution over states of affairs at time t1.

For the purposes of the proof, we need not say much about the status of
these probability distributions, or about the notion of probability invoked.
The theorem relates expectation values of heat exchanges, calculated with
respect to some probability distributions, to other quantities defined in terms
of those same probability distributions. The only caveat is: one has to accept
that it makes sense to talk about the probability that the state of the system
is in a given subset of the phase space at a given time, and to apply the
dynamical evolution of the system to relate probabilities of states time t0
to probabilities at time t1. A point of view that held that probability-talk
applied to physical systems makes sense only for systems in equilibrium, and
identified the probability ascribed to a region with the long-term average of
the fraction of time spent in that region, would not permit this. This is
an indication of a limitation of that point of view, a signal that, though it
might be of use in some applications, it is not adequate for all applications
of probability in physics.

5That is, we assume that the Hamiltonian is the same function of the phase point at
these two times; we don’t assume that the internal energy of B is the same at both times.
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A probability distribution over conditions at time t0, together with the
dynamical map T , yields a probability distribution over the amount of heat
exchanged between A and B in the interim between t0 and t1. This prob-
ability distribution, in turn, yields an expectation value, ⟨Q⟩, for the heat
exchange. We take heat going from the reservoir B to the system A as pos-
itive, and as negative if it goes in the opposite direction. The fundamental
theorem of statistical thermodynamics, proved in the next section, will be
about such expectation values.

It should be stressed that it is not assumed that the probability distribu-
tion for Q is tightly focussed near its expectation value, or that the actual
value is close to the expectation value. The theorems we will prove will be
entirely general, and remain valid when the spread of the distribution for Q
is large.

We first prove, in subsection 4.2, what I have called the Fundamental
Theorem of Statistical Thermodynamics, which is an analogue, within statis-
tical mechanics, of the second law of thermodynamics. We then apply this,
in subsection 4.3, to get the Landauer bound.

4.2 The fundamental theorem of statistical thermody-
namics

We will be concerned with probability distributions on the phase space of
our system, with the restriction that they can be represented by a density
function with respect to the Liouville measure. We define a functional on
the set of such probability distributions, which (unfortunately, in my opinion)
has come to be known as the “Gibbs entropy.” We will use the notation S[ρ]
for this functional. The letter S is, of course, typically used for entropy, but
don’t let the notation fool you. No connection between S and thermodynamic
entropy is presumed in the proof. In particular, we are not using changes in S
as a measure of quantity of dissipation, and so arguments that it is unsuitable
for that role have no relevance whatsoever to our proof.

If ρ is a probability density function with respect to the Liouville measure
λ, we define S[ρ] as,

S[ρ] = −k⟨log ρ⟩ρ = −k

∫
ρ(x) log ρ(x) dλ. (14)

Given a composite system AB, with a probability distribution represented
by a density function ρAB, marginal densities ρA and ρB are formed by inte-
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grating out the degrees of freedom of the other system. We will, of course,
be considering time-evolving probability distributions. For brevity, we will
write SAB(t) for S[ρAB(t)], and similarly for SA(t) and SB(t).

What we will prove is the following.6

The fundamental theorem of statistical thermodynam-
ics. Assume that, at time t0, the probability distribution over
the composite system AB is such that the distribution of B is a
canonical distribution, at temperature T , and the distributions
of A and B are probabilistically independent. Between times t0
and t1 the composite system AB undergoes Hamiltonian evolu-
tion, according to a Hamiltonian that may vary with time; the
only restrictions are that at the times t0 and t1 the total Hamilto-
nian HAB is the sum of subsystem Hamiltonians HA and HB, and
that HB(t1) = HB(t0). We define ⟨Q⟩ as the expectation value of
energy obtained by A from B:

⟨Q⟩ = − (⟨HB(t1)⟩ − ⟨HB(t0)⟩) .

Then
⟨Q⟩ ≤ T (SA[t1]− SA[t0]) . (15)

This is a mathematical result about probability distributions evolving via
Hamiltonian evolution; it holds for any probability distribution that has a
density with respect to Liouville measure, whether or not that probability
distribution is held to have any physical significance.

The features of S that will be used in the proof are the following.

Lemma 1. For any Hamiltonian H, and any T > 0, the canonical distribu-
tion at temperature T minimizes

⟨H⟩ρ − TS[ρ].

Lemma 2 (Subadditivity). For a composite system AB,

S[ρAB] ≤ S[ρA] + S[ρB],

with equality if and only if the subsystems are probabilistically independent.
6This is not a new theorem. The classical version of it is found in Gibbs (1902, pp.

160–164), and the quantum version, in Tolman (1938, §128–130). Nonetheless, it is not as
well-known in the philosophical literature on statistical mechanics and thermodynamics
as it should be. Maroney (2009) refers to it as a generalized Landauer principle.
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Lemma 3 (Conservation of S). S[ρ] is conserved under Hamiltonian evo-
lution.

From there, the fundamental theorem is pretty simple. A and B are
assumed to be uncorrelated at t0, but might be correlated at t1. Subadditivity
gives us,

SA(t0) + SB(t0) = SAB(t0); (16)

SA(t1) + SB(t1) ≥ SAB(t1). (17)

Because the evolution of AB is Hamiltonian in the interim between t0 and
t1,

SAB(t0) = SAB(t1). (18)

Combining these gives,

SA(t1) + SB(t1) ≥ SA(t0) + SB(t0) (19)

or, more succinctly,
∆SA +∆SB ≥ 0. (20)

The distribution of B at time t0 is assumed to be canonical at temperature
T ; this is not assumed for t1. From this, Lemma 1 gives us,

⟨HB(t1)⟩ − TSB(t1) ≥ ⟨HB(t0)⟩ − TSB(t0), (21)

or,
⟨∆HB⟩ ≥ T∆SB. (22)

Combining (22) and (20), and using the fact that T > 0, gives,

T∆SA + ⟨∆HB⟩ ≥ T∆SA + T∆SB ≥ 0. (23)

That is,
⟨Q⟩ = −⟨∆HB⟩ ≤ T∆SA, (24)

which is what was to be proved.
To some readers, it might look like we have done the impossible, and

derived a time-asymmetric conclusion from time-symmetric premises. Those
readers might wonder whether some implicit time-asymmetric assumption
has been smuggled in. The answer to this is that nothing has been smuggled
in that has not been explicitly stated. The theorem, taken on its own, exhibits
no time asymmetry; nothing in its statement or its proof requires that t0 be
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to the past of t1. The two times t0 and t1 do not, however, enter into the
statement of the theorem symmetrically; absence of correlation between A
and B is assumed at t0 but not at t1. In application to physical systems, we
will assume that the process of equilibration undergone by the heat reservoir
B has effectively effaced any correlations it might have with the rest of the
world, and for this reason presume absence of correlation between A and B
prior to any interactions they may undergo in the course of the manipulation
at hand.

4.3 The Landauer bound

4.3.1 Example: our ideal gas

As a warm-up to the more general theorem, let’s apply these considerations
to our gas of §2.

The strategy is as follows. Let aL and aR be probability distributions
associated with states L and R, respectively. They might, for example, be
canonical distributions with support confined to molecular positions in L and
R, respectively. Suppose we have some manipulation M that, applied to aL
or aR, yields aL at the end. This manipulation M could, for example, be any
one of the procedures Mp we discussed in §2, which take the gas to the state
F , followed by reversible compression to L. It could also be something else
that we haven’t thought of, so long as it falls within the framework outlined
in §4.1. For simplicity, in this section we assume that S[aL] = S[aR], and
that the final state is one of the initial states. However, the proof in its full
generality doesn’t require these assumptions, which will be dropped in the
next section.

Let ⟨QL⟩M be the expectation value of quantities of heat deposited into
the reservoir over the course of manipulation M when the initial state is L,
and similarly for ⟨QR⟩M .

The strategy of the proof is as follows. Given the probability distribu-
tions aL and aR, for any number p in (0, 1), there is another probability
distribution that is a mixture of the two, a weighted average with weights
p and 1 − p. Call this mixture āp. If you like, you can imagine a situation
in which a randomizing device is employed to choose whether to prepare aL
or aR, but this is not necessary. We are employing the mixture to find out
something about the quantities ⟨QL⟩M and ⟨QR⟩M , and for that purpose it
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is not necessary to associate any physical set-up with this mixture.7

The key idea is that, since the manipulation M takes both of aL and aR
to L, it also takes a mixture āp to L, for any value of p. The associated
expectation value of heat exchanges will be the corresponding weighted av-
erage of heat exchanges associated with the two states aL and aR. That is,
the expectation value of heat exchanged, when M is applied to the mixture
āp, is,

⟨Qāp⟩M = p ⟨QL⟩M + (1− p)⟨QR⟩M . (25)

Furthermore, since the Fundamental Theorem applies to any probability dis-
tribution, we can employ it to get a relation between the these quantities.
Recalling that ⟨QL⟩M and ⟨QR⟩M are expectation values of heat transferred
out of the gas, an application of the Fundamental Theorem gives us,

− (p⟨QL⟩M + (1− p)⟨QR⟩M) ≤ T (S[aL]− S[āp]) , (26)

or,
p⟨QL⟩M + (1− p)⟨QR⟩M ≥ T (S[āp]− S[aL]) . (27)

The distributions aL and aR have non-overlapping supports. For such dis-
tributions there is a simple relation between the value that the functional S
assigns to the mixture āp, and the values it assigns to aL and aR.

S[āp] = pS[aL] + (1− p)S[aR]− k [p log p+ (1− p) log(1− p)] . (28)

And, since S[aR] = S[aL],

S[āp] = S[aL]− k [p log p+ (1− p) log(1− p)] . (29)

Combining (27) and (29) gives,

p ⟨QL⟩M + (1− p) ⟨QR⟩M ≥ −kT [p log p+ (1− p) log(1− p)] . (30)

7In particular, if someone were to insist that the only legitimate probabilities in sta-
tistical physics come from canonical distributions, we could accept that for the sake of
argument, with no effect whatsoever on the proof. Let aL and aR be two canonical distri-
butions at temperature T , with support in the left and right sides of the box, respectively.
For any manipulation, these yield probability distributions over heat exchanges, which
yield expectation values that we can use to define ⟨QL⟩M and ⟨QR⟩M . As a purely mathe-
matical fact any weighted average of probability distributions is a probability distribution,
and we can ask what the dynamical evolution associated with our manipulation will do to
that distribution, and from that gain information about the quantities ⟨QL⟩M and ⟨QR⟩M .
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Since p can be any number in (0, 1), ⟨QL⟩M and ⟨QR⟩M have to be such that
(30) holds for all p in (0, 1). This, as already mentioned, is equivalent to

e−⟨QL⟩M/kT + e−⟨QR⟩M/kT ≤ 1. (31)

Note that neither the weights p, nor the functional S, appear in this result. It
is a result about expectation values of heat exchanges for any manipulation
that takes both L and R to a final state L; consideration of mixtures, and
the quantity S, are used as auxiliaries in a derivation of a relation that is not
about them.

If you’ve followed this derivation, then you’ve grasped the conceptual
apparatus needed for the more general result proved in the next section.

4.3.2 The theorem generalized

In the previous section we considered a special case in which the value of S
is the same for the final state and the two initial states, and in which the
initial states can be restored from the final with no heat transfer. In this
section we lift those restrictions.

We consider the case in which there are two initial states of system A, a1,
a2, which are both taken, by some manipulation M , to the same final state
b, and a single heat reservoir. These states are not microstates of the system,
but consist of a specification of values of external parameters (such as the
position of the piston), represented in the Hamiltonian of the system, and a
probability distribution over microstates of the system. The manipulation M
is represented by a time-dependent Hamiltonian. Generalization to a larger
number of initial states, and more than one heat reservoir, is straightforward.

As the specifications of a1 and a2 include specifications of probability dis-
tributions over the state of AB, and the manipulation M defines a dynamical
flow on the state space of the composite system AB, there will be associated
probability distributions over heat exchanges. Let QT

M(ai → b) be the ex-
pectation value of heat received by A from the reservoir B, in the course of
the manipulation M , when the initial state is ai.

We assume that there are processes that take b back to a1, and other
processes that take b back to a2. Among processes that take b to a1 there will
be a minimum expectation value of the quantity of heat that is transferred
from A to the reservoir. Recall that, in section 4.2, we took heat into A as
positive, heat flowing out of it, as negative. So a minimum value of heat out
means a maximum value of the (negative) quantity Q. We define Q̂T (b → a1)
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as the maximum expectation value of heat transfer from A to B among all
processes that take b to a1. We similarly define Q̂T (b → a2).

If QT
M(ai → b) is equal in absolute magnitude to Q̂T (b → ai), then the

manipulation M taking ai to b will be called reversible. In general, restoring
the state ai will require (on average) more heat to be expelled to the reservoir
than was obtained from the reservoir during the transition from ai to b. For
that reason, we will have,8

Q̂T (b → ai) +QT
M(ai → b) ≤ 0. (32)

In this context, we define the dissipation associated with the process M ,
when started on state ai, to be the absolute value of this quantity (that is,
how far below zero it is).

DT
M(ai → b) = −

(
Q̂T (b → ai) +QT

M(ai → b)
)
. (33)

So, given the manipulation M , we have two quantities, DT
M(a1 → b) and

DT
M(a2 → b), that we want to know about. In what follows, we will abbreviate

these as D1 and D2. What we will show is that, for all p in the interval (0, 1),

pD1 + (1− p)D2 ≥ −kT [p log p+ (1− p) log(1− p)] . (34)

As already remarked, this is equivalent to

e−D1/kT + e−D2/kT ≤ 1. (35)

We employ the same strategy as before. We consider a mixture āp, of a1 and
a2, with weights p and 1−p, respectively. As before, the expectation value of
heat exchanges associated with āp will be the corresponding weighted average
of heat exchanges associated with the two states a1 and a2. That is,

QT
M(āp → b) = pQT

M(a1 → b) + (1− p)QT
M(a2 → b). (36)

We will also use, for the case in which a1 and a2 are distinguishable (that is,
they have non-overlapping supports), the fact that

S[āp] = pS[a1] + (1− p)S[a2]− k [p log p+ (1− p) log(1− p)] . (37)

8This follows from the Fundamental Theorem.
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The proof involves three applications of the Fundamental Theorem. The
first two give us,

Q̂T (b → a1) ≤ T (S[a1]− S[b])

Q̂T (b → a2) ≤ T (S[a2]− S[b])
(38)

The third application is

QT
M(āp → b) ≤ T (S[b]− S[āp]) . (39)

What we want to prove is (34). We recall the definition of D1 and D2.

Di = −(Q̂T (b → ai) +QT
M(ai → b)). (40)

Therefore,

pD1 + (1− p)D2 = −
(
p Q̂T (b → a1) + (1− p)Q̂T (b → a2)

+pQT
M(a1 → b) + (1− p)QT

M(a2 → b)
)
. (41)

Using (36), this is,

pD1 + (1− p)D2 =

−
(
p Q̂T (b → a1) + (1− p)Q̂T (b → a2) +QT

M(āp → b)
)
. (42)

Employing (38) and (39), we have,

p Q̂T (b → a1) + (1− p)Q̂T (b → a2) +QT
M(āp → b)

≤ T (p S[a1] + (1− p)S[a2]− S[āp]) . (43)

Plugging this into (42) and doing a bit of rearranging gives us,

pD1 + (1− p)D2 ≥ T (S[āp]− p S[a1]− (1− p)S[a2]) . (44)

Inequality (44) holds whether or not the distributions a1 and a2 are distin-
guishable. But, in the case in which they are, (37) applies; plugging this into
the right-hand-side of (44) gives us, finally,

pD1 + (1− p)D2 ≥ −kT [p log p+ (1− p) log(1− p)] , (45)

which is what was to be proved.
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5 On the internal/external division

In our proof, we assumed that the composite system, consisting of the system
A and any heat reservoirs it interacts with, undergoes Hamiltonian evolution.
We didn’t assume that it’s isolated; the Hamiltonian may be changing with
time, and hence energy may be exchanged between AB and the systems
driving the changes. All that we require is that the course of the Hamiltonian
be independent of the state of the system AB.

That means that there will typically be, in addition to the dissipation
within the system A, also dissipation associated with the systems driving
the changes in the Hamiltonian. Also, in cases in which the work done on or
by the system A differs, depending on the initial state of A, the external world
might contain a record of the initial state of A, even though A itself does not.
We have obtained a result about dissipation associated with a manipulation
of A, in terms of heat transfer between A and heat reservoirs, associated with
any process that takes two or more distinguishable states of A to the same
state of A.

This set-up might strike some as odd. Shouldn’t we consider the sum
total of dissipations in all systems involved? And, if we’re concerned about
erasure, shouldn’t we ensure that the external world contains no trace of the
initial state of A?

The first thing to say about this is: if we can get a result about lower
bounds on dissipation within a system, associated with loss of distinguisha-
bility of states of that system, this is a stronger result than one that merely
deals with total dissipation in all systems involved. And if we have a theorem
that applies to any situation in which distinguishable states of A are brought
to the same state, whether or not there are traces of its initial state in the
external world, this is a stronger result than one confined to circumstances
in which all systems, including the ones we have externalized, are brought
to the same state. The more restricted scenarios can be obtained as special
cases.

But another reason for this way of proceeding is that we are seeking to
extend, as far as possible, thermodynamical concepts to statistical mechanics.
This, it might seem, would motivate taking all dissipations in all systems
involved in a process. It might be thought that, in fact, this is required by
the second law of thermodynamics, which is often glossed as saying that the
total entropy of all systems involved in a process must be non-decreasing.
Sometimes one hears it said that the second law, strictly speaking, applies
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only to isolated systems.
This isn’t right. To see why, let’s think about the second law for a bit.
In one of its forms, the second law says that, if a system undergoes a

cyclic process (that is, a process that returns it to its initial thermodynamic
state), exchanging heats Qi with heat reservoirs at temperatures Ti, then∑

i

Qi

Ti

≤ 0. (46)

If the process is thermodynamically reversible, it can go in the opposite
direction, reversing the signs of the heats Qi, and so we must have equality
in (46).

Another formulation of the second law is,

There exists a state function S such that, for any process that
takes a system from state a to state b,∑

i

Qi

Ti

≤ S(b)− S(a). (47)

If we add the further assumption, often tacitly assumed in thermodynamics,
that any two states can be connected reversibly, then any two state func-
tions satisfying (47) differ at most by an constant, and we have the familiar
thermodynamic entropy, defined up to an arbitrary additive constant.

The second law has the consequence that:

(*) If a system does not exchange heat with any other system, its
entropy does not decrease.

This, in turn, has the further consequence,

(**) The entropy of an energetically isolated system—that is, a
system not exchanging any energy at all, either as heat or as
work, with any other system—does not decrease.

The statement (**) is strictly weaker than (*), and hence, strictly weaker
than the second law of thermodynamics. If one could lower the entropy of a
system by extracting work from it, without any heat transfer from the system
to its environment, then (*) would be refuted, but, if the total entropy of all
systems involved increased, (**) would not be. Nonetheless, one sometimes
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sees (**) as a statement of the second law. It’s not. It’s a consequence of the
second law, but not equivalent to it.9

If one could manipulate a system A in such a way that a quantity of heat
is absorbed from a reservoir (increasing the energy of the system) and then
entirely extracted from the system as work (restoring its energy to its initial
value), and, at the end of the process, the system is restored to its initial
state, then the second of law thermodynamics, in the formulation (46), would
be refuted. This is true even if the process inevitably involved compensatory
dissipation in the system that system A does work on.

6 Erasure with dissipation but without in-

crease of Boltzmann entropy

In the minds of some, the somewhat rusty, old-fashioned concept of “entropy”
as Clausius defined it, more than a century and a half ago, has been replaced
by a newer, more scientifically respectable concept, namely, Boltzmann en-
tropy. Someone might with some justice wonder why I have not framed the
issue of dissipation during erasure in terms of increase of Boltzmann entropy.

The answer is that, though the concept of Boltzmann entropy has its uses,
it is not suited to the task of assessing dissipation associated with chancy
processes.

Consider, once again, a one-molecule gas. Suppose the initial state is L.
The partition is lifted, and the molecule is allowed to roam freely throughout
the container. After a decent interval of time, long compared to the charac-
teristic time-scale of thermalization for the gas, the partition is re-inserted.

The new state is either L or R. These two states have the same Boltzmann
entropy, the same Boltzmann entropy as the initial state.

The process is a dissipatory process. As we have shown, it would not be
possible to devise a procedure that is guaranteed to restore the initial state
that does involves no expulsion of heat from the gas to the reservoir, whether
the new state is L or R.

9Yes, I know that there are physics textbooks that give this as a statement of the second
law. And, yes, Clausius himself closed one of his papers (Clausius, 1865) with a playful
remark that the two laws of thermodynamics could be formulated as 1) The energy of the
universe is constant. 2) The entropy of the world strives towards a maximum. Don’t take
this too seriously; it’s not one of his official forms of the second law.
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It is also a process that produces erasure. Removal and then, after a
decent interval of time, re-insertion of the partition yields, when applied to
L, a state that is either L or R, with equal probability. The same is true
if it is applied to R. One can learn nothing about the initial state from
examination of the final state.

If one were to try to use increase of Boltzmann entropy as a measure
of dissipation, one would erroneously conclude that this is a procedure that
effects erasure with no dissipation. Of course, it’s not; this illustrates the fact
that, in cases in which the final macrostate is not predictable from the initial
macrostate, dissipation need not involve an increase in Boltzmann entropy.

The fact that erasure can be effected without increase of Boltzmann en-
tropy has been discussed by Hemmo and Shenker (2012, Ch. 12). They take
this to be a counter-example to Landauer’s thesis. It would be, if what was
claimed was that there could be no erasure without increase of Boltzmann
entropy. I have no interest, here, in engaging in textual exegesis of the pro-
ponents of Landauer’s thesis (e.g. Bennett 2003); let me just say that I am
skeptical that the relevant texts can be made to support that interpretation.

What this illustrates, I think, is the danger of burdening the poor word
“entropy” with so many different meanings. Someone might make a claim,
using one meaning, and someone else might, unknowingly, substitute a dif-
ferent meaning, and end up rebutting a claim different from the one that was
made.

7 Entropy and Information

The astute reader will have noticed that our proof did not rely on the identi-
fication of any of the quantities involved with thermodynamic entropy, and,
indeed, proceeded without using the word “entropy” at all. In particular,
nothing about the functional S was used that is not a consequence of its
definition. But some have called S an entropy, intended to be thought of as
such, not only for canonical distributions, but also for epistemic mixtures of
them.

Whether we do so is, of course, purely a matter of terminology. Nothing
about how physical systems behave, or what we can do with them, rides on
our choice of how to use the word “entropy.” But there is a choice to be made.
Clausius, who coined the term Entropie, was working within a framework
in which it was tacitly assumed that the results of our manipulations are

24



predictable. His definition doesn’t tell us how to apply it to situations in
which chance plays a role.

To help us think about this matter, consider two families of processes by
which the gas discussed in section 2 may be prepared. One is the determin-
istic family, which has two members, Det(L) and Det(R), which prepare
states L, and R, respectively, with certainty. The other is the chancy family :
for any number p in the interval (0, 1), the process Chance(p), using some
randomizing device, prepares state L with probability p, and state R with
probability 1− p.

If, having employed some preparationChance(p) from the chancy family,
we now want to prepare state L, there is, as we have seen, a thermodynamic
cost to doing so. Any process that is guaranteed to produce L from the
output of Chance(p) must incur some dissipation DL or DR, depending
on which of these states has been chosen, and the expectation value of the
dissipation must satisfy,

⟨D⟩p = pDL + (1− p)DR ≥ −kT [p log p+ (1− p) log(1− p)] . (48)

Should we now recognize this thermodynamic disadvantage of the prepara-
tion process Chance(p), compared to the deterministic processes, by asso-
ciating with Chance(p) an entropy that is greater than that of the state L,
by an amount equal to −k [p log p+ (1− p) log(1− p)]?

There are considerations for and against this extension of the term “en-
tropy.” On the nay side, one might say (and this is the sort of thing that
people do say),

Entropy should be a physical property of physical systems, not
an attribute of a state of knowledge. The physical state resulting
from Chance(p) is one of two low-entropy states, L or R; the
fact that we don’t know which doesn’t change the physical state.
If there were some oracle that could ascertain which of these
two states the system is in without disturbing it, and convey that
information to you, this would not change the state of the system,
and hence not change its entropy.

On the yea side, one might say,

Entropy is connected to the availability of energy for performing
useful work. If a system is in one of two states, L or R, but it
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is not known which, this is less useful for obtaining work than if
it is known. This motivates calling the quantity that tracks this
reduction in usefulness, entropy.

Note that this sort of reply would not warrant associating an entropy with
every state of ignorance in which epistemic probabilities can be given nu-
merical values. If I flip a coin, and afterwards assign epistemic probability
of one-half to each of the alternatives Heads and Tails, this is not automat-
ically a state that differs thermodynamically from a state in which the coin
is known to have landed Heads. It is only when I can use the knowledge
that the coin is Heads to obtain more work from the coin, or obtain it more
reliably, than I could if I were ignorant, that I should assign a lower entropy
to the state of more complete knowledge. That is, on the view that motivates
the yea answer to our terminological question, entropy is relative both to a
state of knowledge and to a class of available manipulations.10

These two sorts of replies stem from two conceptions of the nature of ther-
modynamics, which I have elsewhere referred to as Planckian andMaxwellian
(Myrvold, 2022). On the Maxwellian view, which was the conception of the
founders of thermodynamics, thermodynamics is what physicists these days
would call a resource theory, a theory about how agents with access to speci-
fied physical and informational resources and the ability to perform specified
operations can use those resources to accomplish specified tasks. On the
Planckian view, which came to dominate the twentieth-century textbook
tradition, thermodynamics is the study of the properties of macroscopic sys-
tems in equilibrium. It cannot be emphasized too much that these are both
perfectly legitimate fields of investigation, and are in no way to be thought
of rivals for the title of The One And Only Thermodynamics.

I myself don’t particularly care which choice of terminology is made, in
connection with extension of the use of the term “entropy” to chancy set-
ups. If I had my way, use of the term entropy would have been restricted
to the context in which Clausius originally defined it, and novel terms would
have been coined for the allied concepts in statistical mechanics, the so-

10It would be a mistake to take differences in the functional S corresponding to differ-
ences in a state of information about a system to correspond, in every case, to differences
in thermodynamic entropy, so conceived, without consideration of the class of available
manipulations. For a detailed discussion of the conditions under which a difference in
the functional S does indicate a difference in thermodynamic entropy, see §6 of Myrvold
(2020).
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called Boltzmann entropy and the so-called Gibbs entropies. Likewise for
the Shannon entropy in information theory.

8 Conclusion

I believe that there is nothing in the above that the critics of the literature
on Landauer’s principle will find objectionable. I haven’t made any attempt
to provide detailed references to the literature, but I think you will find that,
if you have qualms about Landauer’s principle that stem from something
you’ve read, you will find that the argument presented here addresses those
worries.
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