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Abstract: An often-cited convention for discovery-oriented behavioral science 

research states that the general relative seriousness of the antecedently accepted false 

positive error rate of α = .05 be mirrored by a false negative error rate of  = .20. In 

1965, Jacob Cohen proposed this convention to decrease a -error typically in vast 

excess of .20. Thereby, we argue, Cohen (unintentionally) contributed to the wide 

acceptance of strongly uneven error rates in behavioral science. Although Cohen’s 

convention can appear epistemically reasonable for an individual researcher, the 

comparatively low probability that published effect size estimates are replicable 

renders his convention unreasonable for an entire scientific field. Appreciating 

Cohen’s convention helps to understand why even error rates (α = ) are “non-

conventional” in behavioral science today, and why Cohen’s explanatory reason for 

 = .20—that resource restrictions keep from collecting larger samples—can easily 

be mistaken for the justificatory reason it is not. 

 

Keywords: false positive and false negative test results; inductive risk; null 

hypothesis significance testing; type I and type II error; utility; value-free science 

 

1. Introduction 

As a review of publications in behavioral science would show, a widely cited (if less 

thoroughly implemented) convention on the error rates in discovery-oriented 

research originates with the statistician Jacob Cohen. In his book Statistical Power 

Analysis for the Behavioral Sciences (Cohen, 1969), this convention is supported by 
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what Cohen (1965) called the general relative seriousness of false positive and false 

negative errors (aka α- and -error rates or errors of Type I and II). 

 

“It is proposed here as a convention that, when the investigator has no 

other basis for setting the desired power value, the value [(1 – ) =] .80 

be used. This means that  is set at .20. […] This arbitrary but reasonable 

value is offered for several reasons (Cohen, 1965, pp. 98-9). The chief 

among them takes into consideration the implicit convention for α of .05. 

The  of .20 is chosen with the idea that the general relative seriousness 

of these two kinds of errors is of the order of .20 / .05, i.e., that Type I 

errors are of the order of four times as serious as Type II errors.” (Cohen, 

11969, 1988, p. 56; italics added) 

 

As in Cohen (1965), the general relative seriousness of an error would also 

later be understood in terms of its cost:  

 

“The author has proposed a convention for desired power of .80 (Cohen, 

1965, 1969). It is suggested for use when no other value is suggested by the 

ad hoc demands of the research, and for methodological surveys and the like. 

Taken together with the α = .05 convention, it suggests the stance that Type I 

errors are about four times as “costly” as Type II errors, i.e.,  / α = .20 / .05 = 

4.” (Cohen, 1970, p. 825; italics added) 

 

Later yet, in a five-page review wherein “the sample sizes necessary for .80 

power to detect effects [of various size] […] are tabled for 8 standard statistical 

tests” (Cohen, 1992, p. 155), a review that amasses some 60,000 citations today 

(Google Scholar), the term ‘costly’ is connected (more explicitly than in Cohen’s 

earlier writings) to the cost of collecting a sample. Cohen holds that, while “a 

materially smaller value than [1 –  =] .80 would incur too great a risk of a Type II 

error,” a “materially larger value would result in a demand for [the sample size] n 

that is likely to exceed the investigator’s resources” (Cohen, 1992, p. 156). Part of 

the motivation for Cohen’s convention, then, is the statistical fact that, other things 

equal, securing a small(er) -error rate requires a large(r) sample. 
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Here we evaluate Cohen’s convention within the debate on the value-laden 

character of science. We argue that the collectively unreasonable consequence of 

Cohen’s convention is that, while discoveries—understood as independently 

reproducible effect size estimates of sufficient size—presuppose small and even 

error rates (α =  << .05), Cohen’s convention (unintentionally) led to the wide 

acceptability in behavioral science of strongly uneven error rates. Although the 

justification Cohen offers can appear epistemically reasonable for individual 

researchers, the convention is collectively unreasonable for an entire scientific field 

because it entails a low probability that published effect size estimates are replicable. 

Consistent with how others explain the replication crisis in behavioral science, 

appreciating the role of Cohen’s convention not only helps to understand why even 

error rates (α = ) today are “non-conventional” in behavioral science but also why 

Cohen’s explanatory reason for  = .20—that resource restrictions often keep from 

collecting larger samples—is easily mistaken for the justificatory reason it is not. 

 

2. Discoveries, Cohen’s convention, and the body of scientific knowledge 

2.1 Discovery-oriented hypothesis testing research 

Because raw measurement scores (“observations”) are subject to error, the 

measurement scores of behavioral responses (as sampled from a population) must be 

related to an empirical hypothesis via intermediate statistical inference procedures. 

As these procedures transform raw measurement scores into probability density 

distributions (“data”), it is revealed as a “naïve fantasy that data have an immediate 

relation to phenomena of the world […], that they are the facts of the world directly 

speaking to us […]” (Longino, 2020, p. 391). Instead, when data inform hypothesis-

related decisions, the “right measure of evidential support generally has a 

probabilistic character” (Diez, 2011, p. 105; see Krüger et al., 1987).  

Despite the increasing prominence in behavioral science of the Bayesian 

approach to statistical inference (Fienberg, 2016), the default statistical paradigm is 

null hypothesis significance testing (NHST) (Gigerenzer, 1987; 2004; Morrison & 

Henkel, 1970). In Fisher’s (1956) version of NHST, data are compared narrowly to a 

null hypothesis (H0) that normally states a zero effect/correlation between variables. 

Whereas in the Neyman-Pearson version (Neyman & Pearson, 1967), which 

advances Fisher’s (1956), data are additionally compared to an alternative 
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hypothesis (H1), stating an effect/correlation that is non-zero (directional H1) or of 

some definite strength (point H1).  

A crucial limitation is that both versions of NHST only inform the decision 

to maintain or reject Hx (x = 0, 1), given the rejection criterion that the probability of 

data (D) in view of Hx is smaller than the statistical significance level. In the case of 

the conventional statistical significance level p = .05, for instance, ‘p(D, Hx) < .05’ 

means: the probability of D in view of Hx is smaller than .05. Beyond this limitation 

lies the decision to accept Hx as probabilistically supported by data. It generally 

requires defining a support threshold on such Bayesian measures as the likelihood 

ratio, LRH1/H0 = [L(H1 | D) / L(H0 | D)] = [P(D, H1)   P(H1) / P(D, H0)  P(H0)], or 

the Bayes factor, BFH1/H0 = [P(D, H1) / P(D, H0)] (Edwards, Lindman & Savage, 

1963; Edwards, 1972; Witte & Zenker, 2017; see our footnotes 1 and 2).  

While the decision to accept Hx is what NHST cannot provide, the decision 

to maintain H0 entails the decision to reject H1, and vice versa. Both kinds of 

decisions are associated with two types of error: a true hypothesis may be rejected 

and a false hypothesis maintained. The long-run chances of rejecting a true H0 is 

what the Neyman-Pearson version of NHST calls the α-error rate and those of 

rejecting a true H1 the -error rate. A hypothesis test thus has four possible outcomes 

(Table 1). 

 

Table 1: Confusion matrix of the possible outcomes of an NHST hypothesis test 

 

 H0 is maintained H0 is rejected 

H0 is true 
correct decision or  

test result 

α-error 

false positive error 

Type I error 

H0 is false 

-error 

false negative error 

Type II error 

correct decision or  

test result 
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2.2 Cohen’s Convention 

Forwarded against the background of the Neyman-Pearson version of NHST, the 

comparative version of Cohen’s convention states: 

 

(1) The consequences of a false positive error, i.e., the mistaken 

rejection of a true H0 hypothesis (α-error), are more serious than the 

consequences of a false negative error, i.e., the mistaken rejection of 

a true H1 hypothesis (-error). 

 

Consequently: 

 

(2) When statistically significant test results are reported, the ratio of 

the long-run chances of committing α- and -errors can, in the 

absence of other considerations, be set asymmetrically in favor of 

minimizing the α-error rate.  

 

The more informative, quantified version of Cohen’s convention states that 

the probability of mistakenly rejecting a true H0 (α-error) be set to one-fourth of that 

of mistakenly maintaining a false H0 (-error). Given the conventional α = .05, this 

means accepting  = .20, i.e., a ratio of α /  = (.05 / .20) = 1 / 4 (Fig. 1). Both 

values happen to be typical default settings of automated sample size planners (e.g., 

Kovacs et al., 2022). 

According to Cohen, (2) follows from (1) because “the notion that failure to 

find something is less serious than finding something that is not there accords with 

the conventional scientific view” (Cohen, 1977; 1988, p. 56, italics added). When 

comparing these two undesirable events, failing to find what is there amounts to a 

missed discovery, and “finding” what is not there to a mistaken discovery. Once 

published in the scientific literature—here called the ‘body of scientific 

knowledge’—a falsity is immediately added to this body if the finding is a mistaken 

discovery. By contrast, the effect of a missed discovery on this body is far less 

immediate.  
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Fig. 1: The probability density distributions for H0 (left) and H1 (right) in a one-

sided t-test for an effect size of d = [(m1 − m0) / s] = .20, given α = .05, (1 − ) 

= .80, and N  155 per group (Source: https://rpsychologist.com/d3/nhst/, 

Kristoffer Magnusson, CC-BY license). 

 

2.3 The body of scientific knowledge  

A major assumption in NHST is that the body of scientific knowledge can neither be 

harmed, nor improved, if a researcher responds to a statistically insignificant 

hypothesis test result (P(H0, D) > α) by maintaining H0. This assumption provides a 

system-rational reason for a preference phenomenon known as selective publishing,1 

 
1 Selective publishing reflects Popper’s (1959) falsification principle for theory 

choice: empirical hypotheses can be falsified but not verified. This principle makes 

statistically insignificant hypothesis test results uninformative in NHST because, 

while H0 can in response to such results be maintained, these results cannot be 

interpreted as confirming H0 (see Sect. 2.1). Statistically insignificant test results, 

therefore, often remain unpublished (file drawer problem; Rosenthal, 1979), making 

them harder to access when seeking to correct population effect size-estimates that a 

meta-analysis (which predominantly harvests published, statistically significant 

object-level test results) consequently overestimates (Rothstein, Sutton & 

Borenstein, 2005). Perhaps the best counter-measure against selective publishing is a 

combination of results-blind manuscript evaluation—where the decision to publish 

 

https://rpsychologist.com/d3/nhst/
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aka a publication bias in favor of discoveries. Over time, this bias affects the shape 

of the body of scientific knowledge because most contributions to it will be 

statistically significant findings. Conversely, this body is unlikely to be shaped by 

statistically insignificant findings regardless of whether maintaining H0 is a correct 

or incorrect response, i.e., whether nothing was to be discovered or something to be 

discovered was missed. A mistakenly maintained H0 (-error) can hence be 

compared to a safe bet. Whereas a mistakenly rejected H0 (α-error) entails that what 

is “contributed” to this body is a false H1, a falsity remaining in this body until 

future findings correct it. The epistemic risk of being misled by falsities thus makes 

a mistaken discovery (α-error) a more serious error than a missed discovery (-

error).  

Therefore, Cohen may have reasoned, researchers are on the one hand 

epistemically justified to prefer an unpublished missed discovery over a published 

mistaken discovery. On the other hand, if the -error rate exceeds .20, the entire 

field would in the long run “miss out” on too many missed discoveries. This on-

balance reasoning offers an epistemic justification to avoid a body of scientific 

knowledge that includes too much of what is not there (α-error) and excludes too 

much of what is there (-error).  

While offering a prima facie plausible justification, the idea that resource 

restrictions limit the sample size a researcher can collect (Cohen, 1992, p. 156) 

appears to be a practical reason for  = .20. But this suggests that an epistemic 

reason is associated only with α = .05. If so, then  = .20 as an acceptable long-run 

proportion of missed discoveries would be justified practically rather than 

epistemically. By Cohen’s own standards, however, that sounds absurd. The primary 

sufficient justificatory reason for  = .20 as an upper error-bound can only be the 

epistemic reason to limit the long-run proportion of missed discoveries that fail to 

 
a result occurring independently of its statistical significance increases the chance 

that insignificant results are published (Berlin & Ghersi, 2005; Chambers, 2013; 

Locascio, 2019)—and a likelihood ratio hypothesis test, which leaves statistically 

insignificant results informative to correcting population effect size-estimates and to 

(dis-)confirming H0 (Krefeld-Schwalb, Witte & Zenker, 2018; Witte & Zenker, 

2017). 
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inform the body of scientific knowledge. Resource restrictions, then, provide a 

supererogatory reason (i.e., an additional sufficient reason) for  = .20 as a lower 

error-bound. This latter reason, we argue, is explanatory rather than justificatory 

(Sect. 4). 

An alternative reconstruction of the justificatory structure, we submit, would 

fail to account fully for the considerations Cohen brings to bear. This is distinct from 

claiming that Cohen’s convention “gets it right.”  

 

3. The shape of the body of knowledge in behavioral science 

3.1 Observed effect size and sample size 

The statistical mark of the replication or confidence crisis is that published NHST-

based studies in behavioral science normally report effect sizes that were observed 

under low statistical test power, corresponding to a larger -error rate (Fletcher, 

2021; Krefeld-Schwalb, Witte, Zenker, 2018; Szucs & Ioannidis, 2017a; Ioannidis, 

2005; van Dongen & Sikorski, 2021; Wagenmakers et al., 2011). That studies in 

behavioral science yield publishable results despite being underpowered had already 

been recognized in Cohen (1962), who estimated the average statistical test power in 

the field, i.e., the (1 − )-error rate, as a disappointing .18. 

One reason for low statistical test power to arise is that published studies in 

behavioral science normally report small effects, defined as d = .20 (Cohen, 1965), 

that are observed in small samples (Cohen, 1962; 1992; Maxwell, 2004; Rossi, 

1990; Sedlmeier & Gigerenzer, 1989; Szucs & Ioannidis, 2017b). The estimated 

median sample size of published studies in psychology, for instance, is N = 40 

(Marszalek et al., 2011; Wetzels et al., 2011; see Bakker, van Dijk & Wicherts, 

2012). Other things equal, however, only a large(r) sample allows observing a small 

effect under high(er) test power. To illustrate, we present the sample size for a one-

sided t-test in Table 2. This explains why decreasing the -error rate taxes a 

researcher’s resources. 

 

 

Table 2: The total minimum sample size in the experimental and control group for a 

one-sided t-test as a function of statistical test power (1 − ) and effect size (d), 

given α = .05. 
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As suggested by subsequent similarly disappointing estimates of statistical 

test power (Cohen, 1992; Maxwell, 2004; Sedlmeier & Gigerenzer, 1989), not only 

did behavioral science continue to rely on undersized samples given the observed 

effect sizes, but low median statistical test power also resulted from questionable 

ways of increasing the probability of obtaining a publishable finding, i.e., a 

statistically significant one. Besides the practice of p-hacking, for instance, “most 

studies involve tests of multiple hypotheses, [thereby] creating a gap between the 

power for any single test and the power for the collection of tests,” wherefore 

despite every single test being underpowered, “the probability of rejecting at least 

one hypothesis in the collection of tests […] exceed[s] the probability that any 

specific hypothesis is rejected” (Maxwell, 2004, 148).  

We return to the importance of statistical test power for discovery-oriented 

research below. What is clear already now is that researchers continued to treat the 

p-value, respectively the α-error rate, as (much) more important than the (1 − )-

error rate. 

 

3.2 The p-value fallacy, statistical significance, and scientific importance 

That samples are typically too small to yield well-powered test results holds for 

NHST-based research in the Fisher tradition, which recognizes only the p-value, as 

well as for research in the α- and -error rate-recognizing Neyman-Pearson tradition, 

against the background of which Cohen advocated α = .05 and  = .20.2 A recent 

 
2 The p-value originates in the Fisher version of NHST. It states the probability of 

observing actual or more extreme data on the assumption that H0 is true. The α-error 

 

 

 d 

(1 − ) .01 .20 .50 .80 

.40 38,726 97 15 6 

.50 54,111 135 22 8 

.80 123,651 309 49 19 

.95 216,443 541 87 34 
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proposal to abandon NHST (Lakens et al., 2018; McShane et al., 2019; Trafimow et 

al., 2018)—because hypothesis tests that satisfy p(D, H0) < p = .05 (or p(D, H0) < α 

= .05) are regularly interpreted as implying a probability > 95% that H1 is true—lays 

much of the blame on the p-value fallacy (aka prosecutor’s fallacy), an invalid 

inference reflecting the unwarranted transition from a probability to a likelihood, as 

well as “the mistaken idea that a single number [e.g., p = .05] can capture both the 

long run outcomes of a scientific study and the evidential meaning of a single result” 

(Goodman, 1999, p. 995; see Cohen, 1994, p. 997).  

Yet, abandoning NHST is overly drastic. After all, avoiding the p-value 

fallacy requires no more than interpreting the p-value as the probability of observing 

an effect size equal to, or more extreme than, the observed effect size if H0 is true. 

Indeed, nothing is problematic with the p-value itself, but rather with its well-

documented misapplication and overinterpretation as a measure of evidence 

(Gómez-de-Mariscal et al., 2021; Halsey et al., 2015). This includes a quasi-

mechanical identification of p = .05 with an observed effect size’s statistical 

significance, the unwarranted transition from its statistical significance to its 

scientific importance, and a ritualistic practice of teaching a p-value, respectively an 

-error rate, of 5% “[…] because it’s what we do; [while] we do it because it’s what 

we teach” (Wasserstein & Lazar, 2016, 129).  

Already Fisher (1925), who proposed p = .05 as a conventional rejection 

criterion for H0, had offered no more than a convenience justification for its specific 

value (Hubbard, 2016; Kennedy-Shaffer, 2019): 

 

 
rate, originating in the Neyman-Pearson version of NHST, states the long-run 

chances of mistakenly rejecting H0 (false positive) as the proportion of mistaken 

decision among all decisions to maintain/reject H0. If the decision criterion is the p-

value, then this probability is estimated based on data (objective interpretation), 

whereas if the decision criterion is the α-error rate, this probability is estimated 

based on a researcher’s expected error rate (subjective interpretation). Because a 

sound evidence-based decision demands that the subjectively expected α-error rate is 

at least as large as the objective p-value, the conceptual differences between the p-

value and the α-error rate are, in praxis, easily “hidden.” 
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The value [of the standard deviation] for which p = .05, or 1 in 20, is 

1.96 or nearly 2; it is convenient to take this point as a limit in judging 

whether a [statistical] deviation is to be considered significant or not. 

Deviations exceeding twice the standard deviation are thus formally 

regarded as significant. Using this criterion we should be led to follow 

up a negative [test-]result only once in 22 trials, even if the statistics are 

the only guide available. Small effects would still escape notice if the 

data were insufficiently numerous to bring them out, but no lowering of 

the standard of significance would meet this difficulty. (Fisher, 1925, p. 

47; notation adapted) 

 

In this way, p = .05 was from the outset accepted by convention. As Fisher 

observed, when the strength of association between two variables is determined by 

Pearson’s (1900) χ2-test, p = .05 roughly states the probability that an observed 

mean falls more than two standard deviations away from the mean of a normally 

distributed random variable. So, “we shall not often be astray if we draw a 

conventional line at .05, and consider that higher values of χ2 indicate a real [rather 

than a mistaken] discrepancy” (Fisher, 1925, p. 79; italics added). As a threshold for 

rejecting H0, then, already Fisher’s (1925) statistical inference system (on which 

NHST is based) only offers a conventional justification for p = .05. Similarly, when  

Edgeworth coined the term ‘statistical significance’, in 1885, he merely wanted “a 

tool to indicate when a result warrants further scrutiny; [but] statistical significance 

was never meant to imply scientific importance” (Di Leo et al., 2020, p. 2; italics 

added; see Kennedy-Shaffer, 2019, p. 84).  

 

3.3 Conventions by convention? 

This makes it understandable why, despite the regular misinterpretation of its 

probability-based definition, a conventional acceptance of the p-value is convenient. 

But conventions hardly justify their application—a truism acknowledged not only by 

Cohen (1965) but also by Neyman and Pearson (1933), who are worth quoting in 

full:  

 

But whatever conclusion is reached, the following position must be 

recognized. If we reject H0, we may reject it when it is true; if we accept 
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H0, we may be accepting it when it is false, that is to say, when really 

some alternative Ht [i.e., H1] is true. These two sources of error can rarely 

be eliminated completely; in some cases, it will be more important to 

avoid the first, in others the second. We are reminded of the old problem 

considered by LAPLACE of the number of votes in a court of judges that 

should be needed to convict a prisoner. Is it more serious to convict an 

innocent man or to acquit a guilty? That will depend upon the 

consequences of the error; is the punishment death or fine; what is the 

danger to the community of released criminals; what are the current 

ethical views on punishment? From the point of view of mathematical 

theory all that we can do is to show how the risk of errors may be 

controlled and minimized. The use of these statistical tools in any given 

case, in determining just how the balance should be struck, must be left to 

the investigator. (Neyman & Pearson, 1933, p. 296; italics added) 

 

 While Neyman and Pearson task researchers themselves with striking the 

balance between both error rates, they too advocate α = .05 so that “in the long run of 

experience, we shall not too often be wrong” (Neyman & Pearson, 1933, p. 291). 

Indeed, Neyman (1950, p. 262) himself suggested that α-errors are more serious than 

-errors. To this, Cohen added the point-specific ratio α /  = 1 / 4. But in doing so, 

the reasons for the “arbitrary but reasonable value” (Cohen, 1988, p. 56)  = .20 

remained vague: 

 

First, I believe that generally the consequences of false positive claims 

(rejections of null hypotheses) are more serious than those of false 

negatives (acceptance of null hypotheses). This is in accord with the 

conventional scientific view of these matters. Present practice, which 

concerns itself solely with the former [i.e., the proportion of α-errors 

among published statistically significant test results], by ignoring the 

latter [i.e., the proportion of -errors] implicitly treats them as if they 

were of no, or at least little, consequence. My proposal maintains the 

usual emphasis but keeps the relation between the two risks within 

reasonable bounds. Since the convention of the 5 per cent level for α has 
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come to be generally used, my proposal implies a setting of a ‘subjective 

general relative seriousness’ of 20 per cent/5 per cent = 4. The second 

consideration, then, in setting the  risk convention of .20 is that it is 

consonant with a rough guess that type I errors are in general about four 

times as serious as type II errors. I would, of course, have no serious 

quarrel with anyone who claimed that the factor should be three or five 

(or even two o[r] six), but such is the nature of conventions. I offer this 

convention so diffidently because I would prefer to see [statistical test-] 

power values set ad hoc wherever possible. I deplore the slavish 

adherence to the quasi-official convention of 5 per cent for type I errors, 

which has resulted in its implicit equation with scientific truth for the 

positive claim and with respectability, if not ethical purity, for the 

claimant. But however abused, conventions have their use. (Cohen, 1965, 

11958, 98f.; italics added) 

 

While Cohen indicates—notice the reappearing term ‘serious’—the lack of 

serious reasons to oppose conventions other than α /  = 1 / 4, he avoided offering a 

clear interpretation of ‘general relative seriousness’. Instead, he put one convention 

on top of another. Because α = .05 was already conventionally accepted, he could 

advance the dependent convention  = .20. This is what recent scholarship simply 

reiterates. For instance, “in the internal dealings of science, errors of Type I [α] are 

in general regarded as more problematic than those of Type II []” because “those 

who claim the existence of an as yet unproven phenomenon have the burden of 

proof” (Hansson, 2018, p. 7; italics added). That is descriptively correct. But it, too, 

avoids offering reasons for allocating the burden of proof in this way.  

 

3.4 Balancing error rates 

The conventional α = .05 has been rightly criticized (e.g., Bakan, 1966; Benjamin et. 

al., 2017; Gigerenzer, 2018). One good reason to abandon a fixed α-error rate = .05 

is that an observed mean satisfying p < .05 can be more likely as statistical test 

power increases if there is no effect than otherwise, even though p > .05 is expected 

to be less likely if there is an effect than otherwise (aka Lindley’s paradox; see 

Maier & Lakens, 2022). That said, what proposals to further decrease only the α-
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error rate (e.g., Bartos & Maier, 2022; Benjamin et al., 2018; Lakens et al., 2018) 

ignore is that “setting a blanket level of either 0.05 or 0.005, or anything else, forces 

researchers to pretend that the relative importance of Type I and Type II errors is 

constant” (Trafimow & Earp, 2017, 3; see Trafimow et al., 2018).  

 Perhaps “the real lesson we should take away from Cohen is to determine the 

relative seriousness of Type 1 and Type 2 errors and to balance both types of errors 

[before running a study, i.e.,] when a study is designed” (Maier & Lakens, 2022, p. 

2; italics added). When faced with design choices, researchers understandably desire 

an efficient decision on H0 and H1. And, given limited resources dictate a fixed 

sample size, “it is typically possible to make decisions more efficiently by choosing 

error rates such that the combined cost of Type 1 and Type 2 errors is minimized” 

(Maier & Lakens, 2022, p. 3) by calculating the weighted combined error rate 

(WCE). Assuming prior probabilities for H0 and H1, as well as P(H0) and P(H1), 

WCE is calculated as:  

 

WCE rate = α-error rate  P(H0) + -error rate  P(H1)    (1) 

 

For instance, if P(H0) = P(H1) = .50, plugging Cohen’s convention into (1) 

yields WCE = (.05  .50) + (.20  .50) = .125, whereas symmetrical error rates yield 

WCE = (.05  .50) + (.05  .50) = .050, i.e., a combined error rate that is 2.5 times 

smaller. 

Because all kinds of cost and benefit considerations can, given all kinds of 

prior probability assignments, influence how researchers balance the error rates (for 

discussion, see Lakens, 2022; Maier & Lakens, 2022), Cohen would assumedly have 

recognized that the relative seriousness of a -error may exceed that of an α-error in 

certain contexts. For he writes, “[a]lthough the pure researcher cannot place a dollar 

utility value on the consequences of type II (and type I) errors, as can, for example, 

the industrial quality engineer, [they] can, by a subjective weighing of the 

consequences of an error in inference and the effort involved in producing data, 

approximate this approach” (Cohen, 1965, 98). Generally, the more serious the error 

type is, the less frequently one wants its token to occur. And yet, for discovery-

oriented research, as resource restrictions limit the sample size a researcher can 
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collect and as mistaken discoveries are deemed more serious errors than missed 

discoveries, Cohen’s default balance came to α /  = .05 / .20.  

 

4. Inductive risk 

4.1 Epistemic and non-epistemic considerations 

By the mid-20th century, concurrent with developments in statistics and probability 

theory that demonstrated the ability to rigorously express the degree of confidence in 

a scientific hypothesis under test (Andersen & Hepburn, 2016, p. 25), the debate on 

hypothesis testing in the philosophy of science had suggested that understanding 

‘hypothesis testing’ as a decision between possible actions requires acknowledging a 

value component (ibid.). Whether this component is what “drives” a decision to 

maintain or reject a hypothesis is today as controversial as whether such decisions 

require not only epistemic but also non-epistemic, practical considerations.  

Epistemic considerations (e.g., simplicity, explanatory power, or predictive 

accuracy) are associated with the truth-likeness of a hypothesis (e.g., Kuhn, 1962; 

1977), whereas non-epistemic or practical considerations (e.g., moral, legal, or 

social goods relevant to public policy) are associated with the utility of a scientific 

result. If both kinds of considerations inform the general relative seriousness of 

errors, and thus the balance between α- and -errors, then although 

  

[…] science gives higher priority to avoiding type I errors [α-errors] than 

to avoiding type II errors [-errors], the balance can shift when errors 

have practical consequences. This can be seen from a case in which it is 

uncertain whether there is a serious defect in an airplane engine. A type 

II error, i.e., acting as if there were no such a defect when there is one, 

would in this case be counted as more serious than a type I error, i.e., 

acting as if there were such a defect when there is none. (Hansson, 2018, 

p. 7) 

 

Examples that shift the balance towards preferentially avoiding a -error are 

easy to find (e.g., concerning legal cases, the environment, or public health). But 

these examples are orthogonal to Cohen’s convention, the seeming reasonableness 
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of which, we argued, is owed primarily to epistemic rather than practical 

considerations.  

Of course, a practical consideration such as the utility of a hypothesis is what 

Cohen may recur to implicitly, a speculation gaining initial plausibility from debates 

between, among others, Fisher and Neyman and Pearson (Howie, 2002; Lenhard, 

2006; Marks, 2000). For Fisher (1955), who understood ‘testing a hypothesis’ as 

applying a method to decide whether H0 can be accepted as true, the truth of H0 

counts more than its utility. In his view, even a true H0 should be rejected when 

evidence consistent with it is scant compared to evidence consistent with an equally 

plausible alternative hypothesis. Whereas Fisher viewed significance tests and p-

values as continuous measures of evidence against the truth of H0, Neyman and 

Pearson addressed the question of whether a researcher should act as if Hx is true 

(Neyman, 1956; Pearson, 1955). While they acknowledge, as we saw, that an 

evidence-based decision to maintain/reject Hx must be sensitive to both kinds of 

error, for them, unlike for Fisher, this decision also depends on a hypothesis’ utility. 

 Cohen thus agrees with Neyman and Pearson that α-errors are more serious 

than -errors. Moreover, he agrees with Fisher that a hypothesis test (rather than 

aiming to maximize a decision’s utility) aims at determining a hypothesis’s truth and 

that even a true hypothesis ought to be rejected if evidence consistent with it is 

scant. This latter agreement may suggest that utility considerations are implicit in 

Cohen’s notion of evidence. But even if so, Cohen’s primary reason for α /  = .05 

/ .20 remains an epistemic consideration. In justifying his convention, then, utility 

considerations do not appear to play a load-bearing role. 

  

4.2 The functional role of risk-related information 

The functional role of the probabilities associated with each error type implies that 

hypothesis-related decisions are risk-related (Hansson, 2018). The first kind of risk 

concerns the veracity of information included in the body of scientific knowledge. 

Limiting this risk is the purpose of proof standards.  

In the current standard model of physics, for instance, the five-sigma (5 × σ) 

proof standard—implying that H0 is rejected only if an observed mean deviates by at 

least five standard deviations from a theoretically expected mean (H1)—corresponds 

to an α-error rate of .000003. So, if H0 is true, a similarly small deviation is expected 
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only roughly once in three million tests (Bird, 2018, p. 17). While, given this 

standard, a mistaken discovery is very unlikely to enter the body of scientific 

knowledge in physics, the broad absence of predictive theories in behavioral science 

implies that observed means are here tested against chance (vs. a theoretically 

expected mean). And the conventional α-error rate of .05 (or a proof standard of 

1.96 × 𝜎; Bentley, 2021, p. 2) implies that a mistaken discovery occurs about once in 

20 tests.  

The second kind of risk concerns the utility of hypothesis-related decisions. 

A paradigm example is to diagnose a healthy person as diseased, or vice versa. 

Compared to the risk of contributing a mistaken discovery to the body of scientific 

knowledge, the seriousness of a mistaken medical diagnosis can—if greater negative 

utility is assigned to a -error than to an α-error—imply a change in the functional 

role of risk-related information. For instance, assume a reliable test to diagnose 

person X as free from a potentially fatal contagious infection I.3 Cohen’s convention 

would state that the seriousness of X not having I, given the test says X has I (α-

error), exceeds that of X having I, given the test says X does not have I (-error). But 

this cannot be right. Someone mistakenly diagnosed as non-infected presents a risk 

of spreading I, a risk someone mistakenly diagnosed as infected cannot present. In 

the false positive case, S may self-quarantine and become bored—no doubt a mild 

 
3 For example, the reliability of administering the Reverse-Transcription Polymerase 

Chain Reaction (RT-PCR) test, a common diagnostic test for SARS-COVID-19, 

varies with laboratory conditions and the kind of polymerase used. The test’s error 

rates under real conditions (vs. test validation conditions) are variously estimated 

as .03 < α < 3.0 and .09 <  < .19 (Arevalo-Rodrigez et al., 2020; Cohen, Kessel & 

Milgroom, 2020; Long et al., 2020).  Even if the true positive rate is at its peak 

level—such that test-sensitivity (the long-run rate of true positive over true positive 

plus false negative test results) is maximal—one should expect .167 < α < .29, while 

 = .21 (ibid.). The large -error rate implies that, while the joint -error rate of two 

(or more) independent RT-PCR tests decreases with the number of tests, a single 

RT-PCR test is insufficient “to ‘clear’ people as being non-infected” (Bentley, 2021, 

9). 
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negative consequence. But in the false negative case, the consequences may be 

tragic.  

The relative seriousness of both errors thus favors preferentially avoiding a 

missed discovery (-error) in the context of public health. While the above example 

of an individual medical test result takes Cohen’s convention out of its intended 

context, a reasoned preference to preferentially avoid -errors rather than α-errors 

also obtains when medical tests are administered at the population level, or when 

treatments are developed for a population that needs them—cases that fall squarely 

within the intended context of Cohen’s convention. Similar contexts point back at 

the question, considered by Laplace, of how many votes in a court of judges are 

needed for a conviction. As Neyman and Pearson acknowledge, the disutility of a 

mistaken verdict, test result, or diagnosis may vary (e.g., between boredom and 

death). In balancing error rates, then, ignoring such practical considerations would 

be poor advice. 

 

4.3 The argument from inductive risk 

If practical considerations cannot be ignored, and particularly if the error type to be 

preferentially minimized has policy implications, then a hypothesis-related decision 

should acknowledge the value-laden character of science (Diekmann & Peterson, 

2013; Lemons et al., 1997). This idea runs counter to the ideal of value-free science, 

stating that the justification of scientific knowledge should be free of non-epistemic 

considerations (Betz, 2016), an ideal that various authors (e.g., Douglas, 2009; John, 

2016; Rudner, 1953) object to using the argument from inductive risk, seeking to 

show that a balancing of α- and -errors requires appealing to both epistemic and 

practical considerations. 

 

The Argument from Inductive Risk (John, 2016, p. 3) 

1. Scientists accept or reject hypotheses. 

2. Hypotheses typically fail to be deductively entailed by the available evidence. 

3. Scientists face ‘problems of inductive risk’: they risk accepting false hypotheses 

(false positive errors) or rejecting true hypotheses (false negative errors). 

4. A determination of the trade-off between the two error types must appeal to non-

epistemic considerations associated with the consequences of these errors. 
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Therefore, scientific inference must appeal to non-epistemic considerations.  

 

Scientific inference primarily demands an epistemic standard. The more 

stringent this epistemic standard is—i.e., the more evidence of a specific kind is 

needed to decide on a hypothesis—the less likely scientists are to reject truths or 

maintain falsehoods. Of course, a stringent epistemic standard is no less appropriate 

if a hypothesis-related decision is sensitive to the disutility of error. Therefore, the 

claim that non-epistemic considerations are indispensable in scientific inference is 

plausible, only if striking a balance between error rates requires an appeal to non-

epistemic considerations—exactly as the argument from inductive risk suggests. 

While the argument’s first three premises are widely accepted, the fourth 

raises suspicion. Would not the appeal to non-epistemic considerations lead away 

from the truth, predictive accuracy, or even logical consistency, thus creating a bias 

(Hudson, 2022, 211)? While biases (e.g., anchoring, overconfidence, or 

confirmation bias) need not entail that scientific inference is value-laden, nor vice 

versa (Douglas & Elliot, 2022, p. 202), only an appeal to non-epistemic 

considerations can explain why, in some contexts of inductive risk (e.g., in medical 

diagnosis), a -error is more serious than an α-error. Non-epistemic considerations 

can thus be indispensable to explain a specific error-rate balance. 

While the greater seriousness of a -error provides a sufficient reason to 

reject Cohen’s convention outside of the context of discovery-oriented research, a 

sufficient reason to reject it within this context is the collectively unreasonable 

influence it has exerted on behavioral science.  

 

5. Long-run epistemic consequences 

5.1 The replication probability of a true observed effect size 

As systematic attempts to replicate a representative sample of published observed 

effect sizes have broadly failed (e.g., Many Labs Projects 1-5; Ebersorle et al., 

2020), most effect size estimates published in behavioral science journals are 

presumably best thought of as probably non-replicable. This status, we claim, is (at 

least partially) a consequence of the collective unreasonable influence of Cohen’s 

convention on behavioral science. This influence counts because probably non-
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replicable effect size estimates are unsuitable for theory construction research, thus 

dampening the prospects for developing a progressive science of human behavior. 

The replication probability of a true observed effect size is determined 

largely by the statistical test power (i.e., the (1 − )-error rate) of the study observing 

it. (The hedge ‘largely’ derives from a regression effect, inversely correlated with 

sample size, making it more likely than not that a replication study observes an 

effect slightly smaller than in the initial study (Fiedler & Prager, 2018).) A study’s 

(1 − )-error rate is a function of its α-error rate, the observed effect size, d, and the 

sample size, N. Even where N is determined primarily by a researcher’s resources, 

the observed effect size (d) is best thought of as being determined primarily by “how 

the world is.” Other things equal, if N increases, so does the (1 − )-error rate, i.e., 

the -error rate decreases. Specifically, given constant d, increasing N decreases the 

α- and β-error rates symmetrically, while, given constant d and only a single fixed 

error rate (e.g., α), increasing N decreases only the other error rate (e.g., β).  

A convention of the form α < β thus implies that, if d and N are constant, 

then the -error rate never matches the p-value, respectively the α-error rate. This 

has consequences for the veracity of the effect size estimates that researchers 

contribute to the body of scientific knowledge. If a statistically significant true effect 

size d = x is initially observed under (1 − ) = .80, as Cohen’s convention suggests, 

then the long-run chance of re-observing x in independent replication studies is 80%. 

So, 80 out of 100 replication studies would succeed, and 20 would fail. That 80 : 20 

proportion is what Cohen must have found acceptable, presumably because he had 

estimated the average observed statistical test power to be a disappointing (1 − ) 

= .18 (Cohen, 1962). For all we can assume, the laudable intention behind his 

convention was for behavioral science studies to achieve at least (1 − ) = .80.  

 

5.2 Statistical test power, heterogeneity, and theory construction 

However, in the largest behavioral science field, psychology, the median observed 

statistical test power of published effect sizes is estimated as (1 − ) = .35 (Bakker et 

al., 2012), massively undermining Cohen’s convention (Christopher, 2019; Open 

Science Collaboration, 2015; Stanley et al., 2018). More precisely, the estimated 

average statistical test power of published psychological studies that report small (d 

= .20), medium (d = .50), and large (d = .80) effect sizes is estimated as, 
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respectively, (1 − ) = .23, .62, .84 (Thorn et al., 2019, 13). An earlier estimate for 

observed effect sizes published in cognitive neuroscience and psychology comes to 

(1 − ) = .12, .44, .73 (Szucs & Ioannidis, 2017b). What approximates the 80 : 20 

proportion of probably replicable effects suggested by Cohen’s convention thus are 

large observed effects. 

But even large observed effects that feature (1 − ) ≈ .80 cannot 

automatically improve the prospects for a progressive science of human behavior. In 

behavioral science, after all, meta-analytically estimated effect sizes describe a 

specific pattern: they are either small and homogenous or large(r) and highly 

heterogeneous (Linden & Hönekopp, 2021; 366, Fig. 5; see Olsson-Collentine, 

Wicherts & van Assen, 2020; Schauer & Hedges, 2020). The heterogeneity of a 

meta-analytical effect size estimate measures the degree to which (topically related) 

object-level observed effect size estimates vary around the meta-analytical estimate. 

A high degree of heterogeneity indicates that the underlying object-level effects 

differ vastly in size, and a low degree of heterogeneity indicates that the underlying 

object-level effects are similar in size. 

This pattern suggests that a clearly observed object-level effect size in 

behavioral science translates into a small meta-level effect size, whereas a large(r) 

meta-level effect size is underlain by diffuse object-level observations. Given what 

meta-analytical research makes available, then, this pattern keeps from identifying 

population effect sizes that are worthwhile parameters for theory construction 

research. After all, that a homogenous population effect size is normally small 

means that such an effect explains little more of the observed variance (r2) than is 

“explained” by a random effect (d = 0). Given effect sizes d < .45, for instance, we 

find r2 < .05 % (Cohen, 1977, Table 2.2.1). So, particularly a very small population 

effect size can be accounted for by the measurement error alone, leaving it unclear 

whether there is an effect.  

This makes small effects poor parameters for theory construction. 

Conversely, if a large(r) population effect is normally highly heterogeneous, then 

the process of theoretically modeling it remains subject to vast uncertainty because it 

remains unclear exactly which effect size it is that a valid theoretical construct would 

model. Such effects, then, are equally poor parameters for theory construction. 

Adding gravity to this problem is that recent critiques of meta-analytical and 
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replication methods strongly suggest that, because of publication bias, population 

effect size estimates in behavioral science do anyway state overestimates (Klein et 

al., 2018; Schäfer & Schwarz, 2018).  

 

5.3 A progressive science of human behavior  

While a progressive science of human behavior thus depends on recognizing the 

precise identification of replicable effect size estimates of sufficient size as the 

ultimate goal of discovery-oriented research, the most immediate way of obtaining 

more precise object-level observations is to collect larger samples (law of large 

numbers). Of course, even if very similar effect sizes are observed in a series of only 

i = 3 independent replication studies under (1 − ) = .80, the joint statistical test 

power of the entire series, (1 − )i, registers already close to chance (.803 = .51) 

(Francis, 2012). Obtaining a well-powered series ((1 − ) > .95) thus requires that 

each study in this series achieves maximal statistical test power—again requiring a 

large N. While the (1 − )i measure strictly counts for theory confirmation, what 

counts for theory construction is that observed effect sizes across the entire series 

are similar. Alas, evaluating their similarity equally requires a precise effect size 

estimate, and that estimate’s precision increases with N (Witte, Stanciu, Zenker, 

2022). So, come what may, large(r) samples are needed. 

This need, however, is precisely what the  = .20 part of Cohen’s convention 

fails to reflect, and what behavioral science studies normally fail at when statistical 

test power is consistently too low. Indeed, as individual scientists typically publish 

an initially observed effect size d = x under a “tight” α-error rate but a “lax” -error 

rate, they leave assessing its replicability to their colleagues, “outsourcing” what a 

progressive behavioral science as a field cares about the most. This may appear to be 

good scientific practice, too, because for x to become a serious candidate for theory 

construction, colleagues must anyway report independent re-observations not just of 

the effect’s direction, but its size.  

Yet this practice is doomed to fail if, as is typical in behavioral science, x is 

initially observed (and published) under low statistical test power. We saw that 

already (1 − ) = .80 entails only an 80% probability of replication success. The fact 

that a typical study’s (1 − )-error rate is much smaller thus translates into a 

typically low probability of replication success. Therefore, a colleague would 
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typically lack rational reasons to even attempt replicating x, because a replication 

failure is too probable. That the probability of a replication success in behavioral 

science is typically low thus helps to understand why the field experiences a 

replication crisis in the first place. (Based on the median observed statistical test 

power of published effects, the crisis could have been (fallibly) predicted.) 

Without committing to small and even error rates (α =  << .05), and thus to 

using large(r) samples, then, it is hard to see how researchers might obtain the 

independently reproducible effect size estimates of sufficient size that are 

discoveries, discoveries on which the development of a progressive science of 

human behavior depends. 

 

6. Objections 

6.1 Overview 

We claimed that the replication crisis in behavioral science results in large part from 

publishing statistically significant effect sizes that are observed under low statistical 

test power, that this practice dampens the prospects for the development of a 

progressive science of human behavior, and that the practice itself reflects the 

asymmetrical error rates of Cohen’s convention. Key challenges to this claim pivot 

on the role of irreversible experimental units in different types of replication studies, 

the efficiency of scientific inquiry, the base rate of replicable hypotheses, and the 

remedial potential of meta-analysis. 

 

6.2 Replication types and irreversible experimental units 

Whereas exact replications identically operationalize an initial study (e.g., in the 

same lab, the next day), direct replications only operationalize aspects thought to be 

causally relevant to a finding (e.g., in another lab, one month later), and conceptual 

replications operationalize entirely different aspects while addressing the same 

theoretical concept or hypothesis (Hudson, 2023; Matarese, 2022). A conceptual 

replication can thus draw on different samples or operationalizations to manipulate 

the behavioral responses of what are in principle irreversible experimental units 

(e.g., people, social groups, systems). If, despite such differences, the observed 

effect size is sufficiently similar to that observed in an initial study, the effect is 

more likely to be a true positive than not (Crandall & Sherman, 2016). 
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In the case of exact and direct replications, the - and -error rates are 

intended to apply to a series of replication studies only if (i) each study samples 

randomly from the same population and (ii) identically operationalizes all aspects of 

an initial study, respectively all causally relevant aspects (Neyman, 1937, pp. 334-

335; Neyman & Pearson, 1928, esp. pp. 177, 231, 232; see Rubin, 2019). While 

most behavioral science studies rely on a convenience sample—making randomized 

sampling procedures counterfactually assumed—the second condition means that 

the set of causally relevant aspects “reflects current beliefs about what is needed to 

[re]produce a finding” (Nosek & Errington, 2017, p. 1). Thus, a false belief about 

what is needed, the influence of moderators, or a sample-specific lack of sensitivity, 

may explain why a direct replication fails. And, in virtue of dealing with irreversible 

experimental units, direct replication is all that behavioral science can achieve in the 

first place (Rubin, 2019).  

But to therefore resort, as Rubin (2019) argues, to the Fisherian sample-

specific concept of error rather than to Neyman-Pearson’s concept—interpreted “in 

relation to a series of samples that could have been randomly drawn from the exact 

same null population” (Rubin, 2019, p. 5816)—would render all observed effects in 

behavioral science contingently replicable. As experimental units, after all, “people 

are time- and context-sensitive units of analysis that have the potential to interpret 

identical situations in multiple different ways (Rubin, 2019, p. 5812). A finding that 

replicates would thus be as unnewsworthy as the opposite outcome.  

Like in the case of the explanatory relevance of potential moderators, 

however, the relevance of irreversible experimental units cannot be established by 

argument but must be modeled theoretically and demonstrated experimentally. Until 

then, Rubin’s (sophisticated) explanation offers an apology for failed replications in 

behavioral science. 

 

6.3 The efficiency of scientific inquiry 

Unlike researchers who take the replication crisis not to pose a serious problem for 

behavioral science (e.g., Redish et al., 2018), Lewandowsky and Oberauer (2020) 

argue that low replicability may reduce the cost of producing scientific knowledge 

while increasing its efficiency if questionable research practices (QRPs) were 

abandoned in an idealized transparent scientific community. In this community, 
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either “individual studies are published and are replicated after publication, but only 

if they attract the community’s interest” (ibid.)—itself equated with a citation 

pattern of a published study modeled by fitting an actual citation pattern in 

psychology (ibid. p. 10)—or “all findings are replicated before publication to guard 

against replication failures” (ibid., p. 1).  

Using simulations, Lewandowsky and Oberauer (2020) show that, compared 

to the first replication regime, the second “incurred an additional cost of around ten 

studies […] [,] represent[ing] ~10% of the total effort the scientific community 

expended on data collection” (ibid., p. 4). Although the “analysis of replicability 

confirms that citations do not predict replicability” (ibid.), the authors suggest that, 

regardless of the replication regime, “the probability of replication of a study 

increases with the number of citations” (ibid., p. 3; italics added). In discovery-

oriented research, then, the efficiency of generating scientific knowledge would be 

proportional to the citation counts of published studies.  

While this may sound encouraging, the simulated generation of scientific 

knowledge under ideal conditions (without QRPs) is trumped by actual conditions. 

And, in top psychology and economics journals, cited more frequently are published 

studies that report non-replicable effects (Sena-Garcia & Gneezy, 2021)—the exact 

opposite pattern of what the simulations suggest. Formally, moreover, well-powered 

observed effect sizes ( =  < .05) are less likely to be -errors than similarly-sized 

but underpowered observed effects ( < .05,   > .05) (Witte, Stanciu & Zenker, 

2022). So, even without QRPs, statistical test power remains crucial for a 

progressive science of human behavior. 

 

6.4 The base rate of false hypothesis 

Indirectly arriving at the same conclusion, Bird (2018) acknowledges publication 

bias and QRPs as exasperating the replication crisis, yet observes that a large 

proportion of failed direct replications can be consistent with high-quality science. If 

“the field of science in question produces a high proportion of false hypotheses prior 

to testing” (ibid., p. 1)—Bird stipulates a base rate of 90% of false hypotheses—then 

α = .05 and a well-powered hypothesis test—Bird stipulates (1 − )  = .95—would 

nevertheless let 1/3 of statistically significant (published) findings be false positives. 

As this 1/3 “survives” testing, it would show up as failed re-tests, i.e., as failed direct 
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replications. While formally correct, “driving” this explanation of replication 

failures in behavioral science is a stipulated base rate of false hypotheses. The true 

base rate, however, is highly uncertain. Pointing once again to the file-drawer 

problem (Rosenthal, 1979), estimating the true base rate depends on estimating the 

proportion of unpublished studies that correctly maintain H0. But this proportion is 

highly uncertain, too.  

In his conclusions, Bird agrees with Fisher (1934, 11925, p. 123) that 

“confidence to be placed in a result depends not only on the magnitude of the mean 

value obtained, but equally on the agreement between parallel experiments.” And for 

this agreement to be assessed properly—as Bird would acknowledge irrespective of 

the base rate of false hypotheses—requires precise effect size estimates, featuring 

the very small and even error rates ( =  << .05) that only large samples can offer. 

 

6.5 Meta-analysis to the rescue? 

Given that object-level effect size estimates are underpowered, it may appear 

compelling that meta-analytical procedures (Hunter & Schmidt, 2004; Stanley et al., 

2018) could aggregate a large number of (topically related) studies to produce better 

effect size estimates (Fletcher, 2022). However, the quality of a meta-analytical 

effect size estimate primarily depends on the quality of the underlying object-level 

estimates. Given publication bias, the quality criterion is the precision of a published 

object-level estimate, which increases with N. And, precision is precisely what is 

lacking when published object-level effect size estimates are underpowered. Indeed, 

modeling results suggest that 90% of published object-level effect size estimates be 

discarded, to meta-analytically estimate an effect size by “averag[ing] the most 

precise 10% of the reported [object-level] estimates” (Stanley et al., 2010, p. 1). The 

importance of statistical test power, therefore, also holds in meta-analysis. 

 

7. Conclusion  

In 1965, as Jacob Cohen advanced the convention that behavioral scientists 

conducting discovery-oriented research adopt default error rates that mirror the 

general relative seriousness of an error type, he coordinated the antecedently 

accepted α = .05 to  = .20, i.e., α /  = 1 / 4. Doing so, we argued, he sought to 

decrease a far larger -error rate that was then characteristic of behavioral science 
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studies. In effect, however, his convention made it acceptable that behavioral 

science studies came to rely on strongly uneven error rates of the form α << .  

Cohen’s primary sufficient reason for α /  = 1 / 4, we argued, was 

epistemic: to limit the proportion of mistaken discoveries that a published false 

finding would add to the body of scientific knowledge while limiting the proportion 

of missed discoveries that would fail to inform this body. By contrast, his 

supererogatory reason for  = .20—that resource restrictions normally keep 

researchers from collecting larger samples (that yield lower -error rates)—was 

practical. Because this practical reason is indispensable to explain the balance of 

errors that Cohen proposed, it is easily mistaken for the justificatory reason that, we 

argued, it is not. 

Cohen’s convention thus offers an epistemic reason for a missed discovery 

(itself unlikely to be published) to be preferred over a mistaken discovery by an 

individual researcher. For an entire field, however, the convention is collectively 

unreasonable because, in the long run, α <<  entails insufficient statistical test 

power, i.e., a low probability that published effect size estimates are replicable, thus 

dampening the prospects for a progressive science of human behavior. Without 

committing to small and even error rates (α =  << .05), and thus to large(r) samples, 

then, it is hard to see how one might obtain the independently reproducible effect 

size estimates of sufficient size that are discoveries, discoveries on which the 

development of a progressive science of human behavior depends. 
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