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Abstract

I present an argument against a relational theory of spacetime that

regards spacetime as a ‘structural quality of the field’. The argument

takes the form of a trilemma. To make the argument, I focus on relativistic

worlds in which there exist just two fields, an electromagnetic field and

a gravitational field. Then there are three options: either spacetime is

a structural quality of each field separately, both fields together, or one

field but not the other. I argue that the first option founders on a problem

of geometric coordination and that the second and third options collapse

into substantivalism. In particular, on the third option it becomes clear

that the relationalist’s path to Leibniz equivalence is no simpler or more

straightforward than the substantivalist’s.

1 Introduction

A relational theory of spacetime is a theory according to which all claims con-

cerning the geometric structure of spacetime have their ultimate truth conditions

in terms of spatiotemporal relations among material bodies, with the nature of

the bodies varying according to whether the world is built up out of particles or

fields. If particles, then the relevant bodies will be the points along the particle

worldlines. But if fields, then the relevant bodies will be the point-sized parts

of the fields. In the latter case, standard spacetime structures can be said to

inhere in the fields, with the ultimate truth conditions for claims concerning

the geometry of spacetime being given in terms of facts about how the different

parts of the fields are related to one another. The result, we might say, is a view

according to which spacetime can be said to emerge as a ‘structural quality of

the field’.1

This view of spacetime as a structural quality of the field promises two

key benefits. First, insofar as a field constitutes a plenum, the relationalist

1The phrase is from (Einstein [1961], pp. 155–6). I will have something to say about

Einstein’s use of the phrase in section 5.
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is promised an ontology robust enough to provide truth conditions for claims

concerning the geometry of spacetime that might otherwise be difficult to se-

cure—for example, the claim that spacetime has the structure of an affine space,

or the claim that spacetime has the structure of a smooth manifold. Second,

insofar as the view avoids having to posit the independent existence of a man-

ifold of substantival points, the relationalist is promised to be in a position to

endorse what Earman and Norton ([1987], p. 522) have termed ‘Leibniz equiv-

alence’. Consequently, the relationalist is promised to be in a position to avoid

familiar modal arguments like the hole argument.

In what follows, I will argue that the view of spacetime as a structural quality

of the field cannot deliver on its promises. The argument will take the form of

a trilemma. On one horn, I will argue that the view founders on a problem of

geometric coordination. On the other two, I will argue that the view collapses

into substantivalism. In particular, I will argue that the most plausible version

of the view—a version according to which spacetime is a structural quality of

the gravitational field—holds absolutely no advantage over substantivalism on

the issue of Leibniz equivalence.

2 Background

I want to present a problem for a relational theory of spacetime that regards

spacetime as a structural quality of the field. Toward this end, let me first say

a little more about what I mean by a ‘relational theory of spacetime’.

2.1 Relational theories of spacetime

As above, a relational theory of spacetime is a theory according to which all

claims concerning the geometric structure of spacetime have their ultimate truth

conditions in terms of spatiotemporal relations among material bodies. In this

respect, the relationalist aims to offer something like a ‘material reduction’ of

spacetime. In contrast, the substantivalist claims that spacetime is a funda-

mental entity, an object whose existence is independent of whatever particles or

fields happen to populate the world.

We can be more precise. Call a point along the worldline of a point-sized

particle a ‘stage point’. Then a relational theory of spacetime is a theory ac-

cording to which spacetime is most faithfully represented by a set R of models

of the form (D,R1, . . . , Rn), where D is a set of stage points and R1 . . . Rn are

spatiotemporal (or otherwise geometric) relations on D.2 On this approach, the

2To be clear: R1, . . . , Rn are relations of two places or more. In particular, I mean

to exclude primitive, monadic spatiotemporal properties like ‘being located at point p’ or

‘accelerating absolutely at a rate of one meter per second squared’. A theory including such

properties would not count as relational by my lights.
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set D comprises the theory’s ontology, the list R1, . . . , Rn comprises the the-

ory’s primitive, ‘structure-making’ relations, and each member of the set R is

understood to represent a kinematic, or geometric, possibility.3

Our setup highlights the fact that one can generate different relational the-

ories of spacetime by adjusting the available stock of relations. One example is

Leibnizian relationalism, a theory which includes a temporal distance relation

t(p, q) defined for any two stage points whatsoever, plus a spatial distance rela-

tion d(p, q) defined on pairs of simultaneous stage points. Another is Galilean re-

lationalism, which aims to account for the affine structure of spacetime by adding

a collinearity relation col(p, q, r) (Maudlin [1993], pp. 193–4; Binkoski [2016]). A

third example is Maxwellian relationalism, which replaces the Galilean’s three-

place collinearity relation with a four-place relation A(p, q, r, s) measuring the

angular difference between spatial vectors at different times (Saunders [2013];

Pooley [2013], p. 552). Turning to relativity, familiar examples include a rela-

tion I(p, q) corresponding to the spacetime interval, or else a two-place relation

p < q determining causal connectability.

What about when the basic objects are fields rather than particles? In this

case, it has been argued that the relationalist is in trouble. According to the

argument, fields are distributions of properties over regions of spacetime, and so

require what the substantivalist asserts and the relationalist denies, namely, the

independent existence of regions of spacetime (Field [1989], pp. 181–2; Earman

[1989], pp. 154–5, 158–9). But relationalists will have no truck with this notion

of a field. Instead, relationalists will want to adopt a view according to which

fields are themselves autonomous, self-standing physical objects. Thus, Gordon

Belot writes that, ‘relationalists—and others—can treat fields as they would,

say, rigid bodies—as extended objects whose parts stand in determinate spatial

relations to one another, and to which differing properties can be attributed’

([2000], p. 584). And along the same lines, Oliver Pooley observes that, ‘Accord-

ing to the relationalist, φ [a field] does not represent an assignment of properties

to space; it is an extended, material thing’ ([2001], p. 4).4

Call this the ‘material object view’ of a field (which we can distinguish from

the ‘property distribution view’). Then having adopted the material object view,

the domain of the relational model (D,R1, . . . , Rn) will take as its elements the

point-sized parts of whatever fields happen to exist, with the theory’s primitive

relations holding among the different parts of the fields. The result will be

a view according to which spacetime structure is something inhering directly

in the fields themselves; a view according to which spacetime is a ‘structural

quality of the field’.

3It is an interesting question how the relationalist ought to understand this brand of

modality. See (Belot [2011]) for a book-length discussion of the topic as it arises in connection

with the geometry of space.
4See also (Malament [1982], note 11) and (Teller [1991], pp. 381–2).
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2.2 Brief remarks on GR

Going forward, I want to focus on one field theory in particular, the general

theory of relativity (GR). We can understand GR extensionally in terms of the

set of spacetime models permitted by the theory. These will be mathematical

models of the form (M, gab, Tab), where M is a four-dimensional, smooth mani-

fold, gab is a semi-Riemannian metric tensor field of Lorentz signature, and Tab
is a second-rank energy-momentum tensor field. Our two fields couple with one

another via the Einstein field equation, and we count a model as ‘permitted by

the theory’ just in case the Einstein equation is satisfied.

Each model (M, gab, Tab) can be interpreted as representing a possible space-

time structure for the physical universe. Here, talk of ‘spacetime structure’

ought to be understood broadly so as to include not only the (pseudo) met-

ric structure represented by gab, but the topological and large-scale structure of

spacetime as well. Thus, with respect to topology, standard models are assumed

to be connected, boundaryless, paracompact, and Hausdorff. And with respect

to large-scale structure, models may be, for example, globally hyperbolic or

spatially orientable or such that they contain closed timelike curves. The task

for one who wants to ‘take the models seriously’, then, is to spell out the con-

ditions under which the physical universe can be truthfully said to instantiate

such properties.5

Given our discussion in the last section concerning relationalism and the

material object view of a field, the question arises whether either gab or Tab ought

to be interpreted as representing an autonomous, self-standing physical object.

With respect to the energy-momentum field, the answer is clearly ‘no’. In GR,

the energy-momentum field is sourced by a collection of ‘matter fields’. Familiar

examples include the electromagnetic field and the Dirac field. Associated with

each such matter field is an energy-momentum field T iab. For example, associated

with the electromagnetic field Fab is the energy-momentum field

TEMab = FamF
m
b +

1

4
gabFmnF

mn,

where the superscript on the T indicates the source of the field. These individual

T iab then sum to yield Tab =
∑n
i T

i
ab, which ought to be read as representing

the total distribution of energy-momentum in spacetime. It is this total energy-

momentum field that couples with the metric field in the Einstein equation and

5Why ‘take the models seriously’? One reason is that you would like to make straightfor-

ward sense of the predictive and explanatory power of the theory. However, another is that

you would like to make straightforward sense of important theorems covering everything from

the existence of black holes to the possibility of time travel. Such theorems are purely geomet-

ric: one assumes a relativistic spacetime (M, gab, Tab) with geometric properties P1, . . . , Pn

before going on to prove that such a spacetime must also have geometric property X. An

account of physical geometry that ‘takes the models seriously’ ought to specify the conditions

under which the physical universe can be truthfully said to instantiate such properties.
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which must satisfy the conservation condition ∇aT
ab = 0. (The individual T i’s

which contribute to the total need not).

Now, as a matter of practical concern, when proving theorems in GR one

almost always works directly with Tab. But when it comes to the question of

fundamental ontology, it is the matter fields that are fundamental. One way to

see this is to note that the energy-momentum field asymmetrically supervenes on

its matter fields. Let w and w′ be any two general relativistic worlds. Suppose

that w and w′ agree with respect to (1) their manifold structure, (2) their metric

structure, and (3) their matter fields. Then, necessarily, w and w′ agree with

respect to their energy-momentum fields. But the converse is false: let w and

w′ agree with respect to (1) and (2), and let them agree with respect to their

energy-momentum fields; it simply does not follow that, necessarily, they agree

with respect to their matter fields. This is just a consequence of the fact that

the energy-momentum field is a sum (and, of course, different sets of terms

can yield the same sum).6 Consequently, there is a ‘arrow of determination’

running from the matter fields to the total energy momentum field, an arrow

that simply cannot be run in the opposite direction. In this respect, the energy-

momentum field in GR has roughly the same status as the center of mass (COM)

of a collection of particles. Though we might gladly concede that the COM

of a collection of particles exists, no one would be tempted to regard it as a

fundamental object. The reason why is that if you fix the masses and locations

of the particles, then you get the COM for free, as it were—though not vice

versa. Likewise, in GR, fix some collection of matter fields (plus a manifold and

a metric) and you get the energy-momentum field for free, as it were—though

not vice versa.7

What about the metric field? Does it represent an autonomous, self-standing

physical object? Here, things are much more complicated. On one interpreta-

tion, the metric field represents a structural property of spacetime—its shape.

It does so by encoding information about spacetime distance relations. On this

interpretation, the metric field does not represent a self-standing physical ob-

ject. However, on another interpretation, it does. Thus, Earman and Norton

6In some cases, matter fields will couple with one another, and so the terms in the sum∑n
i T

i
ab may not be totally independent of one another. But not always—for example, not in

the case of a neutrally charged perfect fluid and an electromagnetic field.
7Here’s an objection to my claim that the energy-momentum field is not fundamental: it

features in a fundamental law, the Einstein field equation, and objects which feature in the

fundamental laws of nature are one and all fundamental. In response, I reject the premise

that objects which feature in the fundamental laws of nature are one and all fundamental.

Indeed, I think that the energy-momentum field is a counterexample. But here’s another

counterexample. Consider a parallel argument concerning properties (rather than objects).

Suppose that F = ma is a fundamental law. It refers to acceleration. But acceleration is not

a basic, fundamental property of a body; typically, we analyze it in terms of something else

(like deviation from a tangent geodesic). See (Hicks & Schaffer [2017]) for a detailed defense.
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have stressed that in GR ‘the metric tensor now incorporates the gravitational

field and thus, like other physical fields, carries energy and momentum. . . ’ Their

conclusion is that this ‘forces its classification as part of the contents of space-

time’ ([1987], p. 519). Along the same lines, Harvey Brown notes that while

gravity may differ from other interactions, ‘this doesn’t mean that it is categor-

ically distinct from, say, the electromagnetic field’ ([2005], p. 159). He goes on

to cite Carlo Rovelli, who remarks:

A strong burst of gravitational waves could come from the sky and

knock down the rock of Gibraltar, precisely as a strong burst of

electromagnetic radiation could. Why is the. . . [second] ‘matter’ and

the. . . [first] ‘space’? Why should we regard the. . . [first] burst as

ontologically different from the second? Clearly the distinction can

now be seen as ill-founded (Rovelli [1997], p. 193; Brown [2005],

p. 159).

As others have noted, the inference from ‘the metric field carries energy and

momentum’ to ‘the metric field is categorically of the same kind as other matter

fields’ is questionable.8 But I do not want to enter into this debate. Instead,

my strategy is going to be to grant the relationalist a reified metric field. Doing

so puts the relationalist in the strongest position possible by affording her an

important piece of ontology. As we will see in sections 3 and 4, without a reified

metric field the project of grounding spacetime structure in the fields founders

on a ‘problem of geometric coordination’. With it, one can escape the problem.

3 First Horn: Geometric Coordination

Substantivalists and relationalists agree over the mathematics of GR. Neither,

I will assume, demands a revision in the formal structure of the theory. And

each, I will assume, aspires to be a realist about the structure represented by

the theory’s models. Where the two sides disagree is in their account of the

physical instantiation of that structure.9 Substantivalists claim that an ade-

quate account of the structure of spacetime requires that one admit spacetime

as a fundamental entity. With a large base set of substantival points to work

with, the substantivalist is in a position to provide truth conditions for physical-

geometric propositions analogous to the truth conditions for the corresponding

mathematical propositions. It seems that no such option is available to the rela-

tionalist in the point-particle case—the ontology is ‘too thin’. But relationalists

8See especially (Hoefer [1996], [2000]) and (Pooley [2006]).
9My approach to the spacetime ontology debate is similar to the approach in (Belot

[2011]). Belot’s relationalist, like my relationalist, is a realist about structure who aspires to

give relationally kosher truth conditions for propositions concerning the geometry of space or

spacetime.
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with fields in their ontology appear to be in equally as strong a position, for if

fields are material objects then relationalists have access in their ontology to a

plenum of materialized field parts, and a plenum of field parts can instantiate a

geometry in precisely the same way as a manifold of substantival points can.

But if in the point particle case the relationalist’s ontology is too thin, in

the field theoretic case we might worry about the opposite problem: an over-

abundant ontology. We might ask: which field or fields instantiate the geometry

of spacetime and how? We can approach the problem by focusing on the case

in which there exist just two fields, an electromagnetic field and a reified met-

ric field—a gravitational field—each construed as an extended material object.

Then there are three possibilities: either (A) each field separately instantiates a

geometry, (B) both fields together instantiate a geometry, or (C) one field but

not the other instantiates a geometry. We’ll look at each in turn.

Start with (A), the hypothesis that each field separately instantiates a ge-

ometry. Here is one way of pursuing the idea. Let X denote the set of atomic,

point-sized parts of our gravitational field and let Y denote the set of atomic,

point-sized parts of our electromagnetic field. By hypothesis, each is a self-

standing, physical object. Now define on X some set of relations so that X can

be said to instantiate a spacetime geometry and then, separately, define on Y

some set of relations so that Y can be said to instantiate a spacetime geometry.

On this approach, the relational model will take the form (X,Y,R1, . . . , Rn),

where we have split the domain in an effort to capture the idea of each field

separately instantiating a geometry. Then, so long as we have allowed ourselves

the necessary relations, each field will instantiate its own geometry, so that

the structure of X can be faithfully represented by a model (M, gab) and the

structure of Y can be faithfully represented by a model (M ′, g′ab).
10

But now we run into the following problem. Since physical spacetime has a

single geometry, we require that the geometries defined over our fields coordi-

nate with one another. Thus, if some subset of elements of X instantiate some

set of relations, then we expect that the corresponding subset of elements of Y

10It is important to distinguish between the electromagnetic field qua extended, physical

object and the electromagnetic field qua mathematical object, qua second-rank tensor field. If

you start with the mathematical object Fab and ask ‘what geometry does it determine?’, the

answer will be ‘none’. First, a single Fab is compatible with different gab’s. (Here is a quick

‘proof’. Start with an Fab and a perfect fluid Φ. Suppose that there is no interaction between

Fab and Φ. Then we can vary Tab by changing Φ even while holding Fab fixed. Consequently,

by the Einstein equation, we can vary gab even while holding Fab fixed.) Second, no analysis

of Fab is going to yield full information about the large-scale structure of spacetime insofar as

tensor fields are local objects. (Not even gab fixes the large-scale structure of spacetime; for

example, gab puts rather weak constraints on M . See note 13). But the electromagnetic field

qua physical object can house all of the geometry we want so long as the right relations are

defined on its parts—in the same way that a point manifold can house all of the geometry we

want so long as the right relations are defined on its parts. I thank an anonymous referee for

pressing me on this.
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will instantiate the same relations. But now one wants to know: what explains

the coordination? What is there to prevent, say, X from instantiating a curved

geometry and Y a flat geometry? Usually, when two systems are coordinated

we expect to find some third factor, a common cause, that explains the coordi-

nation. But in this case, there is no third factor—by hypothesis, all that exists

are our two fields. Call this the ‘problem of geometric coordination’.

If spacetime is substantival, then there is no problem of coordination. If

substantivalism is true, then the geometry of spacetime is instantiated by a

manifold of substantival points and the spatiotemporal relations holding among

some configuration of events are determined by the spatiotemporal relations

holding among the regions of spacetime those events occupy. It follows that

if two configurations occupy the same regions of spacetime, then they will in-

stantiate the same set of spatiotemporal relations—they will be geometrically

coordinated. Relationalists who go for (A) have no access to such an explana-

tion.

One response to the problem would be to give up the assumption that space-

time has a single geometry and simply let each field instantiate its own structure.

But if what we are looking for is an interpretation of GR, then this won’t work.

General relativistic models suggest a physical world with a single geometry. We

need a response that will preserve this feature of the theory.

So give up on (A): it founders on the problem of geometric coordination.

The remainder of the paper will be spent dealing with the consequences of this.

Before moving on, it’s worth pausing to note a similarity between the prob-

lem of geometric coordination and another problem of coordination that has

received attention over the past couple of years. Harvey Brown ([2005]) has

argued for an approach to physical geometry according to which the geometry

of spacetime, in some theories, is grounded in the dynamical laws of nature.

In particular, in the case of the special theory of relativity, Brown has argued

that the Minkowski structure of spacetime is grounded in the Lorentz covariance

of the fundamental laws of nature; in his words, Minkowski’s geometry ‘is no

more than the Kleinian geometry associated with the symmetry group of the

quantum physics of the non-gravitational interactions in the theory of matter’

(Brown [2005], p. 9). But this raises a question: what explains the fact that the

laws of nature are one and all Lorentz covariant? From whence the coordina-

tion? According to Brown, the coordination is just a brute fact ([2005], p. 143).

But others see here the makings of a ‘common origin explanation’, with the

symmetries of spacetime explaining the symmetries of the laws (Janssen [2003];

Norton [2008]).

The problem of geometric coordination is structurally similar to this prob-

lem of dynamic coordination. In both cases we have structural coordination

among some set of distinct objects—fields in the one case, laws in the other.
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In both cases, substantival spacetime presents itself as an origin for the coordi-

nation. But the problems are aimed at very different targets. The problem of

dynamic coordination is a problem for those hoping to find a dynamic founda-

tion for physical geometry. Traditional relationalists have no special interest in

this project. Instead, traditional relationalists work from a stock of primitive

spatiotemporal relations and regard spacetime structure as emerging not from

the laws but from the pattern of instantiation of those relations. The problem

of geometric coordination is a problem for this latter sort of project.11

4 Second Horn: Problems of Coincidence

In the previous section, I listed three possibilities: either (A) each field sepa-

rately instantiates a geometry, (B) both fields together instantiate a geometry,

or (C) one field but not the other instantiates a geometry. The first option

founders on the problem of geometric coordination. You can avoid that prob-

lem by adopting either the second or third option. The question will be whether

there is a way of executing either (B) or (C) so that the resulting view can still

be considered a relational theory of spacetime.

First, consider (B), the hypothesis that both fields together instantiate the

geometry of spacetime. Here is one way of developing the idea. As in the previ-

ous section, let X denote the set of atomic, point-sized parts of the gravitational

field and let Y denote the set of atomic, point-sized parts of an electromagnetic

field. Then let D, the domain of the relational model (D,R1, . . . , Rn), be the

union X ∪ Y . The idea here is to gather everything that exists into a single

set and then put a single structure on that one set. The problem is that it

is difficult to see that this strategy can work. Since our two fields occupy the

same spacetime, they overlap one another: for every p ∈ X there exists a q ∈ Y

such that p and q are coincident, and vice versa. Because of this, X ∪Y cannot

instantiate many of the standard structures of GR. For example, physical space-

time cannot be Hausdorff. A space is Hausdorff if for all p and q in the base set,

there exist open sets U and V such that p ∈ U , q ∈ V , and U ∩ V is empty. No

open set structure on the base set X ∪ Y can satisfy this condition: coincident

elements will force a violation. But to surrender the Hausdorff condition would

be to surrender a great deal. As Earman points out in a different context, the

Hausdorff condition ‘is implicitly assumed in so many standard results in [GR]

that dropping it would require a major rewriting of textbooks’ (Earman [2008],

11That said, the problem of geometric coordination may pose a problem for the dynamic

foundationalist as well. Brown is happy to admit that some prior geometry is needed in order

to formulate the laws—at the very least, one will need some level of topological structure.

But then so long as that prior geometry is claimed to inhere in the fields, the dynamic

foundationalist will face the problem of geometric coordination and the trilemma of which it

is part.
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p. 199).

Nor can physical space have the structure of a metric space. Consider a

model of GR admitting a global time function so that it makes sense to talk

about space at a time. The spacetime metric field of such a model will induce

a metric structure on space. But if the structure of physical spacetime is in-

stantiated by X ∪ Y then no such structure is possible. Metric spaces are such

that for all p and q in the space, dist(p, q) = 0 iff p = q. The base set X ∪ Y
cannot satisfy this condition: again, coincident elements will force a violation.

But as with the Hausdorff condition, one should be loath to surrender the met-

ric structure of space. Indeed, Belot ([2011], pp. 8–14) goes so far as to assert

(albeit with some hedging) that metricity is an essential property of all spaces!

Now, there is an obvious and natural solution to these problems. The solu-

tion is to form equivalence classes of coincident field parts, gather these equiv-

alence classes into a set Z, and then let Z instantiate the geometry of physical

spacetime by having R1, . . . , Rn take elements of Z. On this approach, all spa-

tiotemporal relations are relations first and foremost among classes of coincident

field parts with the parts themselves entering into such relations in an indirect

way in virtue of membership in a class. That will solve the problem of coincident

parts. But the problem now is that the resulting view violates a central tenet of

relationalism, namely, the tenet that spatiotemporal relations among material

objects be ‘direct’. This is the proposition that Earman codifies as R2 in his

discussion of relationalism in (Earman [1989], p. 12).12 So the upshot is that

relationalists adopting this strategy will have to give up on R2. But if there is

an ‘acid test’ for relationalism, then R2 is it. Relationalists will do better to

look elsewhere.

5 Third Horn: GR and Gauge

So give up on (B): it cannot support standard structures in a relationally kosher

fashion. Turn instead to (C), the hypothesis that one field and not the other

instantiates the geometry of spacetime. The obvious candidate here is the grav-

itational field. Indeed, there are profound reasons for assigning special status to

the gravitational field, chief among them being the fact that the gravitational

field is the only field that can claim ‘universality’ insofar as it is the only field

12Here is what Earman’s R2 says: ‘Spatiotemporal relations among bodies and events are

direct; that is, they are not parasitic on relations among a substratum of space points that

underlie bodies or spacetime points that underlie events’ ([1989], p. 12). Of course, in our

case the ‘underlying substratum’ is one consisting not of spacetime points but of classes of

coincident field parts. But this just looks like another version of substantivalism, with the

membership relation replacing the occupation relation. In both cases, the important point is

that spatiotemporal relations among material bodies are indirect, being parasitic on relations

between other things, where those other things are the primary bearers of the relations.
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that interacts with every other field. Thus, Carlo Rovelli has advocated for the

view that ‘spacetime geometry is nothing but the manifestation of a particular

field, the gravitational field’ (Rovelli [1997], pp. 183–4). Here, Rovelli looks to

be echoing Einstein, who at one point endorsed a similar view:

If we imagine the gravitational field, i.e., the functions gik, to be re-

moved, there does not remain a space of type (1) [Minkowski space-

time], but absolutely nothing, and also no “topological space.” For

the functions gik describe not only the field, but at the same time

also the topological and metrical properties of the manifold. . . There

is no such thing as empty space, i.e., a space without field. Space-

time does not claim an existence of its own, but only as a structural

quality of the field (Einstein [1961], pp. 155–6).

Einstein contends that if one were to remove the gravitational field, then there

would remain behind absolutely nothing—no metric facts, no topological facts,

no facts whatsoever concerning the structure of spacetime.13 I read this as an

endorsement of a view according to which (1) what exist, fundamentally, are

just ‘matter fields’, that (2) included among these fields is the gravitational field,

and that (3) it is the gravitational field which is responsible for instantiating

the geometry of spacetime, so that spacetime structure, rather than inhering

in something that exists over and above the gravitational field, is something

inhering in the gravitational field itself. (This reading makes the most sense of

the conditional in the first sentence of the quote).

For us, the attraction of this view is that it solves the problem of geometric

coordination: with only one field instantiating the geometry of spacetime, there

are no worries about coordination. Instead, the worry is that we have once

again collapsed into substantivalism. Oliver Pooley sums it up:

What, then, is at stake between the metric-reifying relationalist and

the traditional substantivalist? Both parties accept the existence of

a substantival entity, whose structural properties are characterised

mathematically by a pseudo-Riemannian metric field. . . It is hard

13Einstein talks about removing ‘the functions gik’. This makes it seem as if he intends

to make a mathematical point. But if that’s the case, then what Einstein says is false. First,

if you remove the functions gik from a mathematical model of spacetime, then, contrary

to what Einstein says, there does remain a topological space, namely, the point manifold

M . Second, a metric tensor field (qua mathematical object) puts rather weak constraints

on its underlying manifold so that, contrary to what Einstein says, the functions gik do

not describe the topological properties of the manifold. To cite a familiar example, the fact

that spacetime carries a flat, Minkowski metric tensor field ηab fails to determine whether

spacetime is topologically R4 or R3 × S1. Instead, we should read Einstein as advancing an

ontological claim, and so, correspondingly, we should read his reference to ‘the functions gik’

as an intended reference to the gravitational field (or to a reified metric field).
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to resist the suspicion that this corner of the debate is becoming

merely terminological. At least this much that can be said for the

choice of substantivalist language: it underlines an important con-

tinuity between the “absolute” spacetime structures that feature in

pre-generally relativistic physics and the entity that all sides of the

current dispute admit is a fundamental element of reality (Pooley

[2013], p. 579).14

I will discuss this worry in the next section. For now, the fact that we are

sailing so close to substantivalism might prompt interest in other options. I’ll

discuss two. First, I have been supposing the existence of an electromagnetic

field and a gravitational field. But consider a relationalist who denies that the

gravitational field is a self-standing, physical object and who interprets gab as

the substantivalist is inclined to, as a mathematical representation of the shape

of spacetime. In other words, consider a relationalist who says this:

All that exists is the electromagnetic field, period. The electromag-

netic field has energy-momentum content, represented mathemati-

cally by Tab. Moreover, the electromagnetic field has a shape, repre-

sented mathematically by gab. And finally, the shape of the field and

its energy-momentum content are coupled with one another via the

Einstein equation. Since on this approach all that exists is a single

electromagnetic field, there is no problem of geometric coordination.

And since there is no reification of the metric field, there is no worry

about sailing too close to substantivalism.

This is an attractive view. But it cannot sustain a comprehensive, relational

interpretation of GR. In the imagined case, the energy-momentum field has a

single source, an electromagnetic field. But in any realistic model, there will

exist more than one matter field. So while the view described does indeed avoid

the problem of geometric coordination, the solution is of limited interest. The

moment we add even the slightest bit of complexity, the problem returns.

Another option along the same lines would be to replace the role of the elec-

tromagnetic field in the above speech with the energy-momentum field.15 On

this approach, all that exists is the energy-momentum field, period. Spatiotem-

poral relations are then defined on parts of the energy-momentum field. Here,

too, there exists just one field, and so the problem of geometric coordination

never arises. But I do not think that this represents a plausible ontology for GR.

14The argument in this last sentence stressing continuity with earlier theories is the same

as the argument in (Hoefer [1996]). We should note that the thesis that the debate collapses is

not the thesis, defended by (Rynasiewicz [1996]), that the debate is outmoded. For a response

to Rynasiewicz, see (Hoefer [1998]).
15I thank an anonymous referee for asking about this option.
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I have already argued (in section 2.2) that the matter fields at a world w fail

to supervene on the energy-momentum field at w. Consequently, taking Tab as

basic, there is simply no hope of recovering the matter fields in one’s ontology.

In my view, that’s a steep cost.

(It may be useful to contrast this last option with the following. It is com-

mon to think of the charge current density field Jb as the ‘source’ of the elec-

tromagnetic field Fab. On this approach, the current density field is construed

as the ontologically more basic of the two. But one can just as well run things

the other way around: one can take Fab as basic and then recover Jb as an

emergent object via the Maxwell equation Jb = ∇aF
ab. In contrast, the rela-

tion between the energy-momentum field and its source matter fields cannot be

similarly inverted.)

5.1 Preventing collapse

The only option that I see for avoiding the problem of geometric coordination

is to reify the metric field and to assign it a privileged role in instantiating

the various different geometric structures and properties that we are inclined

to think of as physically real. The worry, as I noted in the last section, is that

the resulting view is just a kind of substantivalism. In response, those attracted

to the view usually stress that there remains an important difference between

an ontology that grounds spacetime in the fields and one that regards it as a

substantival entity. The difference is a modal difference. Thus, if spacetime is

substantival, then there will be many different ways to position a collection of

fields in spacetime. Choose a placement at random—if spacetime is substanti-

val, then it will be possible to smoothly reposition the collection with respect

to the underlying spacetime in such a way that the resulting arrangement is

ontologically distinct though qualitatively indiscernible from the original. The

reified metric field relationalist, on the other hand, seems to face no such em-

barrassment. Because she denies that spacetime is something separate from the

gravitational field, she looks to be in a position to identify such repositioned

possibilities.

There is a way to make this rigorous. It is a formal property of the general

theory of relativity that its models are invariant under the group of diffeo-

morphisms, a diffeomorphism being a smooth map φ : M → M with smooth

inverse. Thus, if (M, gab, Tab) is a model of GR and φ is a diffeomorphism,

then (M,φ∗gab, φ∗Tab) is also a model of GR, where φ∗ is the push-forward

of φ. Moreover, it is a formal property of φ∗ that (φ∗gab)|φ(p)(η
aξb)|φ(p) =

(gab)|p(φ
∗ηaφ∗ξb)|p and likewise for Tab, so that pairs of models related by a dif-

feomorphism will differ only over how the fields are positioned with respect to

the underlying manifold.16 So, to connect back up to what we said concerning

16The equation in this sentence says that the pushed-forward metric φ∗gab at the image
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repositioned fields: if substantivalists are committed to counting repositioned

field placements as ontologically distinct ways for the world to be, and if we

wanted to represent such a pair of repositioned possibilities with a pair of space-

time models, then these would be models (M, gab, Tab) and (M,φ∗gab, φ∗Tab) for

some appropriately chosen φ. Relationalists, on the other hand—including those

who reify the metric field—will want to count these two mathematical models as

equivalent representations of the same physically possible state of affairs. And

more generally, they will want to interpret the invariance of relativistic models

under the group of diffeomorphisms as capturing a kind of ‘descriptive freedom’

in the theory analogous to the freedom accompanying the choice of where to

center a coordinate system.

So one way to keep the debate from collapsing is to maintain that though rei-

fied metric field relationalism may look like substantivalism, the views nonethe-

less disagree over how to understand a formal property of the general theory

of relativity, namely, the invariance of its models under the group of diffeomor-

phisms. Following Earman and Norton ([1987], p. 522), let ‘Leibniz equivalence’

name the proposition that diffeomorphic models represent the same physical

possibility. Then our two ontologies are supposed to differ with respect to Leib-

niz equivalence. The traditional assumption is that substantivalists must deny

it and that relationalists—including those who reify the metric field—are in a

position to accept it.17

Following the publication of (Earman & Norton [1987]), there has developed

a large and familiar body of work on Leibniz equivalence and the commitments

that come with adopting a substantival conception of spacetime. In particular,

sophisticated substantivalists have made a compelling case for the claim that,

so long as you get your metaphysics right, there does indeed exist a path to

Leibniz equivalence through substantivalism.18 But the committed relationalist

will not be moved. Some—the ‘strongly committed’—will deny the viability of a

sophisticated substantivalism altogether. Others—the ‘weakly committed’—will

acknowledge the viability of a sophisticated substantivalism but maintain that

the relationalist’s path to Leibniz equivalence is the simpler of the two.19

The argument in the next section is aimed at the committed relationalist. I

point φ(p) acts on vectors ηa and ξb at φ(p) in the same way that the original metric gab at

the point p acts on vectors φ∗ηa and φ∗ξb, where φ∗ηa and φ∗ξb are the vectors ηa and ξb

pulled back from φ(p) to p. For details, see (Malament [2012], pp. 35–42).
17Of course, denial of Leibniz equivalence is supposed to carry with it a commitment to

the conclusion that GR is an indeterministic theory. This is the famous hole argument.
18See, for example, (Butterfield [1989]), (Hoefer [1996]), (Maudlin [1990]), and (Pooley

[2006]).
19For example, Belot makes the point that substantivalists who adopt Leibniz equivalence

are ‘helping themselves to a position most naturally associated with relationalism’ ([2000],

p. 27; my emphasis). Similarly, Brown writes of the indeterminism that accompanies a denial

of Leibniz equivalence that ‘the simplest (and to my mind the best) conclusion. . . is that the

space-time manifold is a non-entity’ ([2005], p. 156; my emphasis).
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will argue that on the question of Leibniz equivalence, there is complete and total

parity between the substantivalist and the metric field relationalist. If sound,

then the weakly committed are in trouble: it will be seen that the nature of the

parity is such that the metric field relationalist’s path to Leibniz equivalence is

in no way simpler than the substantivalist’s. And if the weakly committed are

in trouble, then so too are the strongly committed: with parity in place, it will

be seen that there is no way for the metric field relationalist to pin a denial of

Leibniz equivalence on the substantivalist without pinning the same on herself.

5.2 The revised shift argument

I want to challenge the thought that the metric field relationalist’s path to Leib-

niz equivalence is any simpler than the substantivalist’s. To make the argument,

forget about diffeomorphisms for a minute and consider a simpler operation: a

spatial shift one foot to the right, at each time.20 The traditional assumption

is that substantivalists are committed to counting shifts to the right as repre-

senting ontologically distinct ways for the world to be. And traditionally this

has been seen as a problem. For the result of such a shift will be a state of

affairs ontologically distinct though qualitatively indiscernible from the origi-

nal—a state of affairs differing from the original only in some non-qualitative

respect. But, it is assumed, it is impossible for things to differ in only some

non-qualitative respect. The conclusion is supposed to follow that spacetime

cannot be substantival.

Relationalists are thought to avoid this ‘shift argument’ because they refuse

to reify spatiotemporal locations. But relationalists who countenance fields con-

strued as self-standing physical objects are subject to a very similar argument.

Here it is. Suppose that a field is a self-standing physical object, each part of

which instantiates some set of qualitative properties. Then it is possible to shift

each set of properties one foot to the right, at each time, so that each set of prop-

erties comes to be instantiated by some other part of the field. But then things

would be just as they are, qualitatively, differing only in some non-qualitative

respect. Since, as above, this is not possible, fields cannot be physical objects.

In the original shift argument, shifting results in a systematic reconfiguration

of location relations. In the original spacetime, material object x is located at

spacetime point p, while in the shifted copy x is located at q, where q is one

foot to the right of p. In our modification of the standard argument, shifting

20The argument requires some structural assumptions. We assume a spacetime with a

global time function so that it makes sense to talk about spaces at a time. We also assume

that space is isotropic and homogeneous so that no matter where you shift from or to, the

geometry is the same. The same assumptions will be in force when we turn to the ‘revised’

shift argument. Ultimately, when we transition back to the general group of diffeomorphisms,

these assumptions can be dropped (since diffeomorphisms shift geometric structures as well).
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results in a systematic reconfiguration of instantiation relations. In the original

spacetime, property F is instantiated by field part a, while in the shifted copy

F is instantiated by b, where b is one foot to the right of a.

Call this the ‘revised shift argument’. Those familiar with the literature

on modal arguments in the philosophy of space and time will have no trou-

ble coming up with strategies for responding to the argument. The problem,

however, is that all of the same strategies are available to the substantivalist.

Consequently, so long as uniform metaphysical assumptions are applied across

both arguments (uniform assumptions concerning issues of identity, substance,

property, and structure), the original and revised shift arguments stand or fall

together. A quick survey of some of the options available will make the point.

Since this is familiar ground, I will keep the discussion brief.

First response: reject the possibility of a shift. One of the premises in the revised

shift argument is the claim that if fields were physical objects, then it would be

possible to shift properties one foot to the right. Consequently, one can disarm

the argument by rejecting the possibility of a shift. Three options come to mind:

• Invoke Essentialism. Relationalists can reject the possibility of a shift

by imposing a sufficiently strong constraint on the de re modal properties

of field parts. One option would be to adopt the thesis that field parts

have their field-strength values essentially. In this case, a shift would fail

to represent a genuine possibility insofar as it would, generally speaking,

represent parts as lacking properties that are essential to their identity.

• Invoke Counterpart Theory. The revised shift argument requires, for

each part of our field, that we be able to identify that part in some coun-

terfactual situation—in some other possible world. One can argue that

(1) these kind of cross-world comparisons are best done via a qualitative

counterpart relation in the sense of (Lewis [1986]), and that (2) in the

context of evaluating a shift counterfactual, the right counterpart relation

is the one picked out by the shift operation itself. But then the proposition

‘possibly, each property is shifted one foot to the right’ is false.

• Invoke Structuralism. According to the moderate structural realist,

the identity of an object is grounded in the network of external relations

within which it sits—grounded, that is, in its place ‘within a structure’.

Since a uniform shift one foot to the right at each time preserves external

relations, we get that shifts are impossible insofar as pre- and post-shift

models represent one and the same physical possibility.

Each of the above will offer an exit from the revised shift argument. How-

ever, in each case the same move is available to the substantivalist. Indeed, each
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move has its advocate: (Maudlin [1990]) argues that spacetime points have their

metric properties essentially so that at most one of a set of diffeomorphic mod-

els represents a genuine physical possibility; (Butterfield [1989]) advocates on

behalf of a counterpart theoretic response to modal arguments like the shift

argument; and (Pooley [2006]) invokes a moderate brand of structuralism. In

each case, if the response will work for the relationalist in response to the revised

shift argument, then it will work equally well for the substantivalist in response

to the original shift argument.

Second response: reject substance-property dualism. With respect to the original

shift argument, the troublemaker is region-object dualism. Relationalists avoid

that argument because they deny that regions are ontologically autonomous

things. Similarly, with respect to the revised shift argument, the troublemaker

is substance-property dualism. A natural response then would be to get rid of

substances as ontologically autonomous things.

One way to do this would be to get rid of objects all together. Those who

go for this option tend to favor of a more radical brand of structuralism than

the moderate structuralism mentioned above. But this seems like unnecessar-

ily strong medicine.21 A more plausible option would be to keep objects in

one’s ontology but deny that they are ontologically autonomous. The standard

way to do so is to adopt a bundle theory of substance.22 According to the

bundle theory, objects are bundles of properties. Contrast this with the more

familiar substratum theory, according to which objects and properties are onto-

logically distinct, objects being thin particulars which combine with properties

to produce states of affairs. The bundle theorist attempts to do without thin

particulars, maintaining that properties can directly bundle with one another

to produce states of affairs. Let’s use angled brackets to distinguish a mere list

of properties F1, F2, . . . , Fn from a bundle of properties 〈F1, F2, . . . , Fn〉. Then

whereas on a substance-property metaphysic the world is ultimately describ-

able in terms of facts of the form Fa and Rab, the bundle theorist says that the

world is ultimately describable in terms of facts of the form a = 〈. . . , F, . . .〉 and

R 〈. . . , F, . . .〉 〈. . . , G, . . .〉, where a = 〈. . . , F, . . .〉 should be read as implying a

reduction of a to the bundle 〈. . . , F, . . .〉.
What are these bundled properties? Are they tropes or universals? We

had better say tropes. To see why, suppose that properties are universals and

consider field parts a = 〈F1, . . . , Fn〉 and b = 〈F1, . . . , Fn〉 with all of the same

universals. Then a = b. This follows from the fact that universals are wholly

present wherever they happen to be instantiated, so that each Fi in a is nu-

21See especially (Pooley [2006]). For a recent, brief overview of arguments against radical

ontic structural realism, see section 2 of (Wüthrich & Lam [2016]).
22Both (Pooley [2006]) and (Wüthrich & Lam [2016]) suggest the bundle theory as an

option for the radical ontic structural realist.
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merically identical to the corresponding Fi in b, together with the fact that

bundles with identical members are themselves identical. But this will create

problems in the case of any field having certain nice symmetries. For example,

since electric fields are spherically symmetric, we get that any two parts some

fixed distance d from the source charge Q are identical. Thus, instead of there

being an infinite number of field parts d units from Q, strictly speaking there’s

just one.23 On the other hand, if the bundled properties are tropes, then the

numerical distinctness of each part is maintained, even if those parts happen to

instantiate all of the same properties.

But now we have a problem: a trope bundle theory implies the possibility

of qualitatively indiscernible yet ontological distinct objects. Thus, consider ob-

jects 〈F,G〉 and 〈F ′, G′〉 where F and F ′ are exactly similar, and likewise for G

and G′. Then 〈F,G〉 and 〈F ′, G′〉 are qualitatively indiscernible though onto-

logically distinct, differing in some merely non-qualitative way. Consequently,

any relationalist turning to the bundle theory in an effort to disarm the revised

shift argument will disarm the original shift argument as well.

Third response: stress the difference between instantiation and location. Perhaps

there is something about location relations such that shifting them (as in the

original shift argument) is problematic, whereas shifting instantiation relations

(as in the revised shift argument) is not. But this third response won’t get us

very far. Substantivalists tend to endorse the property distribution view accord-

ing to which a field is a distribution of properties over points of spacetime. In

this case, the relation between a spacetime point and its field-strength property

is not so much the location relation as the instantiation relation. Consequently,

if there is something about instantiation such that it upsets the possibility of a

shift, then the original shift argument is upset as well.

Each response surveyed is such that if it will work for the relationalist in

response to the revised shift argument, then it will work for the substantivalist

in response to the original shift argument. So my conclusion is that the revised

shift argument is just as troublesome for the relationalist as the original shift

argument is for the substantivalist.

It only remains to note that the revised shift argument generalizes. There

is, of course, nothing special about shifts to the right. So long as fields are

self-standing physical objects it will be possible to smoothly reposition proper-

ties and relations in such a way that the resulting arrangement is ontologically

distinct though qualitatively indiscernible from the original. If one wanted to

represent such possibilities mathematically, then diffeomorphic mappings would

23See (Wüthrich [2009]) for a similar argument directed against a structuralist interpreta-

tion of spacetime.
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be the tools to use. Assuming a reified and privileged gravitational field, the M

in the model (M, gab, Tab) would represent the manifold structure of the gravi-

tational field, φ : M →M would be a function on the atomic, point-sized parts

of the gravitational field, φ∗gab would represent a smooth drag of the proper-

ties of the gravitational field with respect to its base M of substantive parts,

and φ∗Tab would represent a smooth drag of the energy-momentum field (or its

source matter fields) with respect to M .

6 Conclusion

I have presented a problem for a relational theory of spacetime according to

which spacetime is a structural quality of the field. I have argued that on

one way of setting things up, the view founders on a problem of geometric

coordination. The only viable option for avoiding the problem is to adopt a

reified and privileged metric field. But then, I have argued, the view collapses

into substantivalism.

The best option for preventing collapse was to find a modal difference be-

tween the views. Sophisticated substantivalists have denied the viability of this

sort of approach, arguing that substantivalists, too, can endorse Leibniz equiv-

alence. But the revised shift argument puts things into an even clearer light.

Once we see that relationalists who countenance fields are subject to their own

shift argument, we see that (1) the relationalist’s path to Leibniz equivalence is

in no way simpler than the substantivalist’s, so that (2) there is no way for the

relationalist to pin a denial of Leibniz equivalence on the substantivalist without

pinning the same on herself.

I do not believe that the problem of geometric coordination is easily avoided.

Assuming GR in its standard formalism, the problem is driven by just two

assumptions: first, that the relationalist would like to countenance the notion

of a field, and second, that the relationalist would like to be a realist about

the kinds of geometric properties that are part of the theory’s models. The

first assumption drives us toward a material object view of a field according

to which fields are autonomous, self-standing physical objects, while the second

prompts the need for an account of the physical instantiation of such properties.

Once one adopts these assumptions and begins putting fields to work housing

geometric properties, one is confronted with the trilemma discussed above.
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