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Abstract

The physical meaning of the operators is not reducible to the intrinsic relations of the
quantum system, since unitary transformations can find other operators satisfying the
exact same relations. The physical meaning is determined empirically. I propose that
the assignment of physical meaning to operators spreads through observation, along with
the values of the observables, from the already observed degrees of freedom to the newly
observed ones. I call this process “physication”. I propose that quantum observations are
nothing more than this assignment, which can be done unitarily. This approach doesn’t
require collapse, many-worlds, or a conspiratorial fine tuning of the initial conditions.

[In] certain Indian theories of perception [...] the inner organ (antah. karan. a) proceeds out-
ward and illuminates the dark insentient world (like beams of light emitted from the eyes).

Richard King, Early Advaita Vedānta and Buddhism (King, 1995).

So whenever the ray that flows through the eyes issues forth into surrounding daylight,
like meets with like and coalesces with it, until a single, undifferentiated stuff is formed, in
alignment with the direction of the eyes, wherever the fire from inside strikes and pushes up
against an external object. The similarity between the fire from within and the fire outside
means that the stuff is completely homogeneous, and whenever it touches or is touched by
anything else, it transmits the object’s impulses right through itself and all the way up to the
soul, and the result is the perception we call ‘seeing’.

Plato, Timaeus, sections 45c–45d (Plato, 2008).

There exist simultaneously two states, one being a predictive state Ψp(t) which complies
with the initial condition at t = 0, and the other a retrodictive state Ψr(t) which complies
with the final condition at t = τ . Both Ψp(t) and Ψr(t) obey the same Schrödinger equationa.

(Watanabe, 1955). Also see (Aharonov et al., 1964).
aHere I propose that the correspondence between operators and physical properties spreads with each

observation from the “known” to the “unknown”, achieving the identity between Ψp(t) and Ψr(t).
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1. Introduction

This article discusses two problems, and suggests that they have a common explanation. One
is the well-known measurement problem, which is due to an apparent contradiction between the
evolution law of a quantum system, and the fact that quantum measurements have definite
results (von Neumann, 1955). The second problem, much more recent (Stoica, 2022, 2023a),
is that the relational, structural properties of the stuff making the world are unable to provide
a unique physical meaning. The first problem shows an overdetermination, and the second
problem exposes an underdetermination. This suggests that these problems are complementary
and solving the former also solves the latter.

Previously, it was shown that there is no way to determine what physical property an operator
represents, only from relational or structural considerations (Stoica, 2022, 2023a). This huge
underdetermination of the physical meaning by the structure can be resolved only by observation.
I propose that quantum observation does not “measure” or “collapse” the state of the observed
system, but rather, without disturbing the state, it simply assigns physical properties to the
operators. This transfer of physical meaning from the observer and the measuring device to the
observed system is called here “physication”.

This leads directly to an interpretation of quantum mechanics with the following features:

1. no modification of the Schrödinger dynamics, no additional entities,

2. evolution is always unitary, without collapse or branching,

3. measurements have definite outcomes, so there is always a single world,

4. physication is nondeterministic,

5. the wavefunction is ontic, space emerges through physication,

6. with respect to the resulting space, all interactions are local.

The idea is very simple. Consider for example the position basis. In non-relativistic quantum
mechanics, the Hamiltonian operator is a function of the position and the momentum operators,
as well as spin and internal degrees of freedom. But from a relational or structural point of view,
these operators can be chosen in infinitely many ways and still satisfy the exact same relations,
and the Hamiltonian operator has the same functional dependency in terms of them (Stoica,
2022, §2.2). I will say more about this in Section §2. Then, if we are interested in the position of
the observed system, for a given abstract state vector and a Hamiltonian, the symmetry reveals
that there is no preferred choice of the position basis.

Then, we can interpret quantum observations as determining not only the particle’s position,
but also the position basis of the observed system’s state space. Thus, while the state vector
evolves unitarily, the position basis of the universe emerges gradually, being extended to other
systems through quantum observations, a process that we call physication. The freedom given
by unitary symmetry makes this process to be random, even if the evolution is deterministic
(for being unitary). Since the physication of macroscopic systems is never complete, there is a
reservoir of unphysicated degrees of freedom in the preparation and the measuring apparatus.
This allows the process to be applied for successive noncommutting measurements. If we want to
assume that the position basis is predetermined, successive measurements appear as a conspiracy
between the initial conditions of the observed system and the experimental setup, but everything
is local. If we assume that the position basis is not predetermined, then physication is understood
as localization, so that it makes no sense to talk about a position prior to localization.

The problem of underdetermination of what operators represent what physical properties
is demonstrated in Section §2. The complementary problem, that quantum measurement is
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a problem of overdetermination, is discussed in Section §3. The proposed interpretation of
quantum mechanics, based on physication, and the way it avoids the contradiction implied by
the measurement problem, are presented in Section §4. A formulation in terms of Postulates is
given in Section §5. The article ends with a discussion of the possibility of empirical falsification,
in Section §6, and with a comparison with other proposals, in Section §7.

2. The underdetermination of the physical properties

Can everything about the world be reduced to structures and their purely relational prop-
erties? The successes of modern physics, especially its three pillars, relativity, quantum theory,
and gauge theory, taught us that this should indeed be the case. They taught us about the
power of symmetries, invariance, representations, relations, and how to understand them. Spe-
cial relativity taught us to give up the idea that there is a kind of material through which the
electromagnetic waves propagate. General relativity taught us that spacetime itself behaves
like a field that we call gravity. Gauge theory pushed the geometrization of matter even more.
Quantum mechanics taught us that whatever propagates, it appears to do this in the abstract,
high-dimensional configuration space, rather than in three dimensions. Quantum field theory
introduced even more abstractions and alternative ways to describe reality. Since the same phe-
nomena can be described in different ways, it would be all the same, we think, if we use one way
or another to describe the world, as long as these descriptions translate into one another biuni-
vocally. We can use the Heisenberg picture, the Schrödinger picture, or the interaction picture.
We can use the phase space or the configuration space. And if the AdS/CFT correspondence
(Maldacena, 1999) were correct, it would be all the same whether we prefer the gauge aspect
or the gravity aspect of this correspondence, even if they live in spaces with different numbers
of dimensions (Wallace, 2022). It seems that all that matters is that the relations between the
entities provide the appropriate description of the physical reality, so as long as the constituting
elements of different descriptions can be put in a one-to-one correspondence, they are equivalent.

So our theoretical models are based on the idea that all that matters is the structures formed
by these relations. Our theories admit mathematical descriptions precisely because they are
structural and relational (Chang and Keisler, 1990; Hodges, 1997; Grätzer, 2008). But this is
equally true of experiments, since whenever we can measure something, we do it by comparing
with some standard unit, which is another object, so again, all we can access are relations, out of
which we build structures. We used to “visualize” the world as made of more familiar materials,
but with modern physics, we gave up this circular ontology, especially when we realized that our
previous intuitions were broken, so now all that matters is the structure alone. The following
hypothesis became an inherent axiom of our modern theories:

Hypothesis 1 (Structural realism). Everything that can be known of the physical world, and
our descriptions of the world, are nothing but structures.

This understanding strongly suggested to us that, in quantum mechanics, the operators can
tell us everything there is to know about the physical properties they represent.

Consider for example the following Hamiltonian operator for n particles in non-relativistic
quantum mechanics, expressed in function of the position and the momentum operators:

Ĥ =
n∑

j=1

1
2mj

p̂2
j +

n∑
j=1

n∑
k=1

j ̸=k

V̂j,k (|x̂j − x̂k|) , (1)
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where mj is the mass of the particle j,

x̂j = (x̂j1, x̂j2, x̂j3)
p̂j = (p̂j1, p̂j2, p̂j3)

(2)

are the position, respectively the momentum operators for the particle j, p̂2
j = p̂2

j1 + p̂2
j2 + p̂2

j3,
and the potential V̂j,k depends only on the absolute value of the differences of the positions.

A unitary transformation with the operator Ŝ results in new operators,

x̂′
j =

(
x̂′

j1, x̂
′
j2, x̂

′
j3

)
:=
(
Ŝx̂j1Ŝ†, Ŝx̂j2Ŝ†, Ŝx̂j3Ŝ†

)
p̂′

j =
(
p̂′

j1, p̂
′
j2, p̂

′
j3

)
:=
(
Ŝp̂j1Ŝ†, Ŝp̂j2Ŝ†, Ŝp̂j3Ŝ†

)
.

(3)

These operators have the exact same spectra and stand with respect to each other in the exact
same relation as their original counterparts, that is, they satisfy the canonical commutation
relations (CCR): [

x̂′
jα, p̂

′
kβ

]
= i ℏδjkδαβ Î. (4)

Therefore, I will call the operators (x̂′
j)j∈{1,...,n} position-like operators. I will call their com-

mon eigenbasis, consisting of vectors of the form |x′
1,x

′
2, . . . ,x

′
n⟩, position-like basis.

Since there are infinitely many transformations Ŝ, how do we know if the operators (2), or
any of the pairs of operators (3), each of them satisfying the CCR (4), are the “true” position
and momentum operators? Note that the idea is to choose them based on relations, which should
consist of invariant identities or inequalities, that is, these relations should not change their form
when expressed in different bases, like the CCR (4). For example, we can choose those pairs of
operators that make the Hamiltonian be local when expressed in function of these operators, as
it is in equation (1). To be sure, let’s just impose the condition that the Hamiltonian has the
exact same form as (1),

Ĥ =
n∑

j=1

1
2mj

p̂′
j
2 +

n∑
j=1

n∑
k=1

j ̸=k

V̂j,k

(∣∣∣x̂′
j − x̂′

k

∣∣∣) . (5)

This is a local form of the Hamiltonian from equation (1), and moreover, it has the exact
same dependence of the position and momentum operators as (1). Does this condition, combined
with the CCR, ensure the uniqueness of the position and the momentum operators? It certainly
doesn’t, as we can see if we choose the unitary transformation Ŝ from equation (3) to commute
with Ĥ, that is,

Ĥ = ŜĤŜ†. (6)

In this case, Ĥ′ = Ĥ, so the Hamiltonian satisfies both equation (1) and equation (5),
regardless of the choice of the unitary transformation Ŝ commuting with Ĥ.

There are infinitely many ways to choose such a transformation. An obvious example is
to choose the transformation Ŝ := e− i

ℏ Ĥs, for any s ∈ R, s ̸= 0. The Hamiltonian doesn’t
commute with the position operators (a wavefunction concentrated at a definite position spreads
immediately), so in general these transformations result in x̂′

j ̸= x̂j.
But choosing as the generator of our transformations Ŝ leaving the Hamiltonian unchanged

the operator Ĥ itself this is only a way, there are infinitely many others. For example, even in
those systems with a two-dimensional state space, for whatever Hamiltonian there are infinitely
many ways to choose a transformation Ŝ so that equation (6) holds. Let’s check this in a basis
that diagonalizes the Hamiltonian:

Ĥ =
(
a 0
0 b

)
. (7)
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If a = b, any unitary operator Ŝ commutes with Ĥ. If a ̸= b, any operator of the form

Ŝ =
(

e− i c 0
0 e− i d

)
, (8)

where c, d ∈ R, is unitary and commutes with Ĥ. In general, if the state space has d dimensions,
the unitary operators that commute with the Hamiltonian form a manifold of real dimension
between d and d2. For an infinite-dimensional state space, the manifold of unitary operators
that commute with Ĥ has an infinite number of dimensions.

Therefore, this ambiguity is extremely large. One may hope that we can reduce it by imposing
more conditions, but as long as these conditions are expressed by invariant or basis-independent
relations, they will be preserved by such transformations, so the manifold of possible transfor-
mations remains the same.

Despite this simple observation, there are several research programs that aim to recover
the physical meanings of the operators, the three-dimensional space, the decomposition into
subsystems, the preferred pointer states, classicality etc, only from the Hamiltonian Ĥ and
sometimes from a unit vector |ψ⟩ representing the state of the system (Piazza, 2010; Tegmark,
2015; Cotler et al., 2019; Zanardi et al., 2022; Deutsch, 1985; Carroll and Singh, 2019; Carroll,
2022; Carroll and Singh, 2021). But the only structures that can be obtained uniquely are those
with respect to which the state exhibits no physical change in time, i.e. operators or structures
that can be built only out of the spectrum and the eigenspaces of the Hamiltonian. None of
these programs are about such structures. In (Stoica, 2022) it was proved that these programs
fail to achieve a unique result, whatever kinds of conditions they may want to impose to the
operators or the structures they want to obtain. More specific proofs and examples were given
in (Stoica, 2023b, 2024b).

Let’s summarize this:

Observation 1 (Incompleteness of structural realism). Only from structures and relations,
there is no way to know unambiguously what physical property an operator represents.

One may think that this is a false problem, since physics is basis independent. Physics
is indeed basis independent, but here I am not talking about expressing the same physical
phenomena in different bases. Such a change of basis would change the state vector too, so
the state vector and the operators will be in the same relations regardless of the basis, and
the physics described will be the same. But here I am talking about identifying what operator
represents each physical property based solely on the relational properties. And we’ve seen that
there is no way to do this.

But what can solve this ambiguity? How do we, the observers, know what physical proper-
ties are out there and correspond to the operators? A tempting answer would be “we know it
from experiments!”. Let’s consider this possibility. For an experiment, we need observers doing
the experiments. So we need to understand what an observer is. Are the observers themselves
structures? The physicalistic theories of mind would say they are nothing beyond structure, con-
sciousness itself is nothing but a computation, as in the computational theory of mind (Rescorla,
2020), or maybe it consists of more sophisticated functionalities of the physical structures, as in
functionalism (Levin, 2018). In no way would a physicalistic theory of mind accept that some-
thing beyond the structure is needed for consciousness, since this would allow for the in principle
possibility that two structurally identical systems can be so that one is conscious and the other
is not, depending on the stuff they’re made of. That is, it would allow for the possibility of
philosophical zombies – structures that have no consciousness at all, despite having the same
structure and behaving in the same way as a conscious being (Kirk and Squires, 1974; Kirk,
2023).
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Suppose then that we know exactly what kind of structure can be an observer. Let’s call
such a structure observer-like structure (Stoica, 2023a). If we would have an unlimited intellect,
we should be able to recognize such a structure in the patterns of the wavefunction. But the
wavefunction |ψ(x1,x2, . . . ,xn, t)⟩ consists of the components of the state vector in the position
basis, |ψ(x1,x2, . . . ,xn, t)⟩ = ⟨x1,x2, . . . ,xn|ψ(t)⟩. And since the position operators are not
uniquely defined by structures, how would we know the position basis? Wouldn’t the operators x̂′

j

give a different wavefunction for the same state vector, with different patterns, and hence different
structures that may or may not be conscious observers? It surely would, since the wavefunction
|ψ(x1,x2, . . . ,xn, t)⟩ looks completely different from the wavefunction |ψ(x′

1,x
′
2, . . . ,x

′
n, t)⟩, in

fact any state vector |ψ(t)⟩ can look like any wavefunction |ψ̃(x′
1,x

′
2, . . . ,x

′
n, t)⟩, if expressed in

a conveniently chosen basis. This is obvious if we remember that the unitary transformations
act transitively on the set of unit vectors. Therefore, any wavefunction |ψ(x1,x2, . . . ,xn, t)⟩
can appear like a completely different wavefunction |ψ(x′

1,x
′
2, . . . ,x

′
n, t)⟩ for some position-like

operators (x̂′
j)j∈{1,...,n} as in equation (3).

An observer-like structure with respect to the operators (x̂′
j)j∈{1,...,n} disagrees with an

observer-like structure with respect to the operators (x̂j)j∈{1,...,n} about what operators rep-
resent the positions.

Note that, based on the example of Hamiltonian from equation (1), so far I mentioned only
position-like operators and bases. In reality, in addition to the position degrees of freedom,
there are spin and internal degrees of freedom. Taking these into account doesn’t change the
conclusion, in fact it increases even more the range of possibilities to assign operators to the
physical properties.

An observer-like structure will always determine as position operators the operators with
respect to which it appears as observer-like structure.

Observation 2 (Relativity of structure). The observer-like structures cannot determine an
absolute correspondence between the operators and the physical properties these operators
are supposed to represent, based on structure and relations alone.

Structural realism implies that all assignments of operators to physical properties are equally
valid, provided that the operators are unitarily equivalent as, for example, in equation (3).
Then, if consciousness also reduces to structures, this implies that all observer-like structures
existing simultaneously as patterns of the wavefunctions expressing the same state vector in
different position-like bases should be equally conscious. This means that we could be any of
these observer-like structures. But it turns out that this can’t be the case. If an observer
knows the value of a property of an external object, there are infinitely many observer-like
structures that are identical with the observer, that contain in their brain-like structures the
same information about the external world, but whose external world contains in its structure
a version of the external object having different values for its property, as shown elsewhere
(Stoica, 2023a). It was also shown that this implies that the correlation between the records in
the observer-like structures and the properties of the external objects is zero (Stoica, 2023a). In
other words, observer-like structures know nothing about the external world. And this is true
even if we restrict the transformations Ŝ to those that commute with the Hamiltonian, so that
the wavefunctions in which the observer-like structures are patterns propagate according to a
Schrödinger equation of the same form.

Observation 3 (Absoluteness of meaning). The correspondence between operators and phys-
ical properties has to be unique, otherwise we would know nothing about the external world.

But this of course invalidates structural realism. Moreover, it requires that there are some
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special kind of observer-like structures that are sentient, while all the others, even if they have
the same structure and evolve in the same way, are philosophical zombies.

Observation 4 (Absoluteness of observers). Only the observer-like structures with a partic-
ular assignment of physical properties to the operators are conscious observers.

Details can be found in (Stoica, 2023a). To understand this, consider the hypothesis that
we can simulate conscious observers by simulating the wavefunction containing them. This is
in line with structural realism, and it is consistent with the theories of mind based on reduc-
tion to structure, like computationalism (Rescorla, 2020) and functionalism (Levin, 2018). The
simulation of the wavefunction can be understood as simulating the position operators by other
operators, carefully selected to have the same spectrum, and so that the simulated wavefunction
evolves, under the Hamiltonian of the system simulating it, in the same way as the original
wavefunction. But this is exactly what I discussed above, that, based on structure alone, there
is no unique choice of the position operators. This means that such simulations already happen,
but we don’t see them, because our wavefunction contains them in an “encrypted” form under
a unitary transformation. This “encryption” is only relative, being just a reinterpretation of
the assignment of operators to represent physical properties. If a simulation of an observer is
as conscious as the observer it simulates, then all these simulations should support conscious
observers. But, as shown in (Stoica, 2023a), this contradicts our observations, by implying that
there is no correlation between the values of the properties of the world and our own thoughts
about the values of these properties.

Now, one may try to reject this proof based on correlation by claiming that, just because
the reader happens to have a good correlation between their representation of the world and the
world itself, it doesn’t mean that the other observer-like structures are not observers. But for each
observer who has such a good correlation, there are infinitely many observer-like structures, in the
eigenbases of other position-like operators (x̂′

j)j∈{1,...,n}, and for these observer-like structures,
their external world is nothing as they think it is. Such observer-like structures are akin to
the Boltzmann brains (Eddington, 1934): even if in the present they are structurally identical
to the original observer, very soon they would experience a very unpredictable world, they
would even disintegrate. Note that the observer-like structures encoding the wrong information
about the properties of the external worlds are “like” the Boltzmann brains, but this is not the
same situation. Boltzmann brains don’t need a reassignment of the operators representing the
physical properties in order to exist, they are due to fluctuations. In our case, infinitely many
such observer-like structures exist whenever an observer exists, but they are “hidden” in other
assignments of operators to the physical properties. So, if the reader doesn’t experience such
unfortunate events, either they are extremely lucky, or simply the other observer-like structures
can’t support sentience, even if they have the right structure for this. The second option violates
structural realism. This is the meaning of the result from (Stoica, 2023a).

But now, we notice that it is not sufficient that the choice of the position operators is unique
(in spite of the fact that the structure alone doesn’t single out a unique choice). The reason is that
this choice should also prevent the real, conscious observers, from being observer-like structures
that are akin to the Boltzmann brains, that is, having mental representations unrelated with
the properties of the external world. In other words

Observation 5 (The past hypothesis). The choice of the position operators is such that the
initial state of the wavefunction in the position configuration space is constrained in the exact
way that ensures the existence of the arrow of time.

Without this very strong constraint, the universe would not be predictable and the memories
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of the observers would not be correct. It is presumed that the initial state had a very low
entropy, so that the Second Law of Thermodynamics is ensured (Boltzmann, 1910; Feynman,
1965). In fact, this constraint is much stronger than we used to think based on the increase of
entropy alone (Stoica, 2024a).

But now, given all these, the following question arises:

Question 1 (Unfinished operators-physical properties correspondence). Is the choice of the
position operators God-given at the Big Bang, or is it happening as we make new observations?

Given Observation 5, if this correspondence was completely given since the beginning, it
seems to be extremely fine-tuned (Stoica, 2024a). This justifies looking into the possibility that
it is not finalized, but it’s still happening. In this article, we will explore this possibility, and
see that it can provide a new kind solution to the measurement problem, a solution that avoids
breaking the Schrödinger equation by collapse, but also avoids the split into many worlds, and
at the same time doesn’t put the burden of this avoidance on a conspiratorial choice of the initial
conditions of the universe.

3. The overdetermination of the quantum states

The measurement problem is a problem of overdetermination, because it seems to require
the state vector to satisfy contradictory conditions. On the one hand, the evolution law, the
Schrödinger equation, predicts a certain future state from a present state. On the other hand,
for quantum measurements, the evolution of the state seems to result to a superposition of
distinct outcomes. The projection postulate is invoked to leave us with a definite outcome, in
conflict with the evolution law (von Neumann, 1955; Dirac, 1958). That is, to resolve the tension
between the evolution law and the results of quantum measurements, the standard choice is to
sacrifice the evolution law, so that the state jumps into the state revealed by the observation.

Observation 6 (Overdetermination). There seems to be a tension between the evolution law
and the projection postulate, resulting in an overdetermination of the quantum states.

Moreover, assuming that the property to be measured already has a definite value waiting
to be measured, the collapse seems to happen non-locally (Einstein et al., 1935; Bohm, 1951;
Bell, 1964). For someone who wants a compelling mechanism to explain what we see in a
quantum world, this non-locality seems to be the way to go (Bohm, 1952; Ghirardi et al.,
1986; Bell, 2004). It may be at odds with the relativity of simultaneity (Einstein, 1905), but
it can’t be used for faster than light signaling (Ghirardi et al., 1980; Peres and Terno, 2004).
However, if we care to have a compelling description of the quantum phenomena, beyond the
instrumentalist slogan “shut up and calculate”, shouldn’t we not be instrumentalists also about
relativity? A wavefunction collapse, but also a non-local mechanism, would violate the relativity
of simultaneity, not at the empirical level, but at the fundamental level.

Collapse would also violate the conservation laws. And, while in the many-worlds interpre-
tation (MWI) (Everett, 1957) and in the pilot-wave theory (PWT) (Bohm, 1952) there is no
collapse to break the evolution law, per branch the conservation laws would still be violated
(Burgos, 2010; Stoica, 2017, 2021). For all these interpretations, this happens even if we take
into account the possibility of conservation for the combined system, consisting of the measuring
device and the observed system. The only way out seems to be to have a single-world unitary
theory, without collapse, (Stoica, 2008), but this would require conspiratorial initial conditions
(Stoica, 2015, also see Bell, 1964; Kochen and Specker, 1967).
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At any rate, wouldn’t it be great if we would have a single-world unitary evolution without
collapse and without branching? This would avoid at once the violation of the evolution law,
the violation of the conservation laws, and it would be consistent with relativity (Stoica, 2008).
Attempts to resolve the measurement problem by single-world unitary evolution, that is, without
collapse and without branching, can be tracked back to the works of Schulman (Schulman, 1984,
2017), ’t Hooft (’t Hooft, 2016) and Stoica (Stoica, 2008, 2013, 2016, 2017, 2021).

And yet, these approaches seem to be plagued by the necessity of conspiratorial initial condi-
tions (Bell, 1964; Kochen and Specker, 1967; Stoica, 2015). Previous attempts to make sense of
this consisted of using the block universe picture drawn to us by relativity, and distributing the
initial conditions so that they are not given in their final form at the Big Bang, but, for some
yet unobserved degrees of freedom, they are delayed in various places and times across the block
universe (Stoica, 2008, 2013, 2021). Each observation is local, and the solutions compatible with
it are determined locally. The global solution has to be obtained by extending local solutions, as
in sheaf theory (Mac Lane and Moerdijk, 1992; Bredon, 1997). So each new observation reduces
the set of global solutions compatible with all observations done up to that moment. This should
be possible, because most degrees of freedom are unavailable at the macroscopic level, and this
may leave room for the state to be determined with a delay in a way that is consistent with all of
the observations. However, from the perspective of a description in which the initial conditions
are fixed from the beginning, this would still appear as conspiratorial (Stoica, 2015). But now,
in the light of Section §2, we have the opportunity to reconsider this apparent conspiracy.

Question 2. Is it possible that the underdetermination of the physical properties by the struc-
ture compensates for the apparent overdetermination of the quantum state, resulting in a single-
world unitary interpretation that is not conspiratorial?

Let’s explore this new avenue.

4. Observation as physication

In this Section I apply the idea of physication to show how the measurement problem does
not require violations of unitary evolution in a single world. First, I explain why it is possible to
avoid the wavefunction collapse and still obtain a definite outcome for quantum measurements,
with the price of conspiratorial initial conditions, which require preexisting correlations between
systems that will interact in the future. Then I show how the conspiratorial aspect can be avoided
by physication. In the next Section I will propose the Postulates of this new interpretation of
quantum mechanics.

Ensuring a definite outcome of measurements amounts to a very strong dependency of the
initial conditions of the observed system of the measurement settings. This means that the past
has to depend on future choices. In this article, I will show that this problem can be avoided if
we accept that only the already measured physical properties have assigned an operator on the
state space of our universe, and even this one is only partially assigned, while the properties yet
to be measured are not assigned yet. But for now, I will explain why it is possible to avoid the
wavefunction collapse.

The simplest case is the observation of a particle that was never observed so far. Suppose
it is a spin-1/2 particle, and we measure its spin along the z-axis. If the particle’s spin is in a
pure state, it is represented by a vector in a two-dimensional complex space. Let (|α⟩, |β⟩) be an
orthonormal basis of this space, and let the state vector be |v⟩ = a|α⟩+b|β⟩, where a∗a+b∗b = 1.

The operator representing the particle’s spin along the z-axis, let us denote it by Ŝz, is not
yet assigned, so it can be any Hermitian operator with the spectrum {−1

2ℏ,+
1
2ℏ}. There are

infinitely many such operators, and therefore there are infinitely many unitary transformations
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of the spin’s space that can map the basis (|α⟩, |β⟩) into the eigenbasis of such an operator.
Suppose we measured the spin along the z-axis and obtained the eigenvalue +1

2ℏ. Then, we can
choose

Ŝz = 1
2ℏ (|v⟩⟨v| − |u⟩⟨u|) , (9)

where |u⟩ is orthogonal on |v⟩. Such an operator always exists, and since |v⟩ determines |u⟩ up
to a phase factor, it is unique. Moreover, since the spin’s particle was never observed before, it
wasn’t revealed yet by the previous observations. Therefore, we can choose the spin operator
Ŝz freely, so that the observation of the spin along the z-axis yields a definite result without
requiring collapse. We arrive at the following observation:

Observation 7. When a system is observed for the first time, it is possible to assign the
operator representing the observed property so that the observation happens unitarily, without
having to appeal to collapse or branching.

The situation is more complicated if incompatible properties of the same system S are ob-
served. For example, the system S may be prepared in a state |ψ(0)⟩S at the time t = 0, and
found to be in a state |ψ(T )⟩S at the time t = T , T > 0. Let A and B be two physical properties
of the system S. We assume that the system S is prepared so that its property A has a definite
value a, and when it is measured, its property B has a definite value b. We need to find what
Hermitian operators Â and B̂, acting on the state space HS of S, represent the properties A
and B. Is it possible that S is prepared to be in an eigenstate represented by an eigenvector
|ψ(0)⟩S of Â, with the eigenvalue a, and it is found to be in an eigenstate represented by an
eigenvector |ψ(T )⟩S of B̂, with the eigenvalue b?

If this was possible, and if the property A is conserved from t = 0 to t = T , it seems that
the system S should have, at t = T , definite values for both A and B. But this is in general
not possible. For example, it cannot have definite spins along both the z-axis and the x-axis. It
seems that we are still forced to choose between a jump of the state of S from ÛS(T, 0)|ψ(0)⟩S

to |ψ(T )⟩S (wavefunction collapse), or a branching (as in MWI or PWT).
But, as we will see, we are not forced to make this choice. It only seems so, because we

believe that we observe directly the system S, both when we prepare it so that the property A
has a definite value, and when we measure its property B. But what we observe in fact are the
macroscopic properties of the pointer of the device making the preparation and of the pointer
of the measuring device. By taking this into account, we can both maintain unitary evolution
and avoid branching.

In the usual formulation of quantum mechanics, in which each physical property is repre-
sented by a pre-assigned operator, this can be achieved by allowing the environment change the
state of the observed system between the preparation and the observation, so that the mea-
surement has a definite outcome (Schulman, 1984, 2017; Stoica, 2008, 2013, 2016, 2017, 2021).
But such a solution requires very fine-tuned initial conditions for the state vector of the world,
and this fine tuning has to take into account what measurements will be done throughout the
history of the world. The initial state of the entire world should be arranged so that, at any
measurement, the interactions between the observed system and the environment perturbs the
observed system in the exact way needed to be found in a definite eigenstate.

However, now we are interested in something totally different: to see if the process of phys-
ication can happen in a way that ensures single-world unitarity while avoiding the need for a
conspiracy. I will argue that it can. And if this may look conspiratorial, it is only if we think
that the assignment of operators to the physical properties was made at the Big Bang. This is
why for the interpretation that I propose here the idea that this assignment happens gradually,
with each new observation, is of central importance.

The belief that the observation of a property B for a system prepared so that another property
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A has a definite value requires collapse may seem to be totally warranted, but it is not. We
don’t have 100% control of what’s going on during the two main interactions required for the
preparation and for the observation of the system, and also of the possible interactions with the
environment between these two events. We can only know the macroscopic properties of the
preparation device, the measuring device, and the environment in general. Since these systems
consist of a huge number of particles whose microstates are practically unknown to us, there are
an immense number of unknown variables, and they are totally out of our control.

In the standard paradigm of absolute assignment of operators to the physical properties, a
disturbance, a “kick” as Schulman calls it (Schulman, 1991), can make the system get into any
allowed eigenstate by unitary evolution alone. A version of the idea was rediscovered by Stoica,
who proposed in (Stoica, 2008) that the state of the total system can be seen, from the point
of view of standard quantum mechanics, as an entangled state between the observed system
and the preparation device, and when the observation is finalized, we can select retroactively
a separate state from this entangled state, so that the definite outcome is obtained without
branching or collapse. The idea is illustrated in Figure 1.

Suppose the observed system S is prepared in the state |ψ0⟩S ∈ HS. After a time interval T ,
we expect the observed system to be in the state |ψ⟩S, but our observation finds it in the state
|+⟩S. The other possible outcome, which was not obtained, is |−⟩S, so that |ψ⟩S = a|+⟩S +b|−⟩S,
where a, b ∈ C, |a|2 + |b|2 = 1.

We normally assume that a collapse happened (von Neumann, 1955), (Ghirardi et al., 1986),
or maybe that the wavefunction evolved into two branches, one for each of the two outcomes
(Everett, 1957), or maybe that branching happened but also there is a point-particle that “went
along” one of these branches, guided by the wavefunction (Bohm, 1952).

disturbance

preparation observation

time
t = 0 t = ε t = T

HS

HE

|ψ0⟩S

|−⟩S

|+⟩S

|ψ⟩S

|+⟩E

|−⟩E

|+⟩0E

|−⟩0E

Figure 1: An interaction between the observed system S and the environment E can disturb
the observed system, so that, at the time t = T , instead of the evolved state |ψ⟩S, we get one
of the observed outcomes |+⟩S or |−⟩S. This would allow us to avoid collapse and branching.

But it could happen as well that an unobservable interaction happened, say during the time
interval (0, ε), disturbing the observed system to put it on the right track to evolve into |+⟩S at
t = T . That part of the environment (in which we can include the preparation device, or even
the measuring device if ε ≈ T ) that interacted with the observed system is also affected, so that,
at t = T , its state becomes |+⟩E ∈ HE. This disturbance of the observed system can be the
kick proposed by Schulman. The alternative outcome could be obtained by another disturbance,
corresponding to the evolutions represented by dashed lines in Figure 1.
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We can see this as an entangled state a|+⟩S|+⟩E + b|−⟩S|−⟩E, in which the two outcomes
are correlated with changes in the environment, but we can select out of this entanglement a
single product state, for example |+⟩S|+⟩E, as in Figure 1 (Stoica, 2008).

As explained in (Stoica, 2008), this would also ensure the conservation laws, normally violated
by the wavefunction collapse (Burgos, 2010; Stoica, 2017, 2021). Moreover, in some cases there
is a reciprocity: the restoration of the conservation laws also restores unitarity, as shown in
(Stoica, 2017). To restore the conservation laws in standard quantum mechanics, Collins and
Popescu proposed a model based on entanglement (Collins and Popescu, 2024), similar to this
model proposed by Stoica in (Stoica, 2008).

This suggest the following possibility to update standard quantum mechanics to avoid col-
lapse:

Observation 8 (Uncontrollable microscopic variables). The unknown and uncontrollable mi-
croscopic variables characterizing the preparation device, the measuring device, and the envi-
ronment between them, may happen to have the right values so that these systems disturb the
observed system, prepared in an eigenstate of the operator Â, with the exact amount needed
to make it end out in an eigenstate of the operator B̂.

Of course, without a reason to constrain the initial conditions of all possible states specif-
ically to ensure the existence of the appropriate disturbance, such a fluke would be extremely
unlikely, having zero probability to happen by chance if the full state space is available for the
initial conditions (Stoica, 2015). However, there is an alternative: if there are enough physical
properties unassigned yet to operators, the freedom in assigning them can allow a single out-
come by unitary evolution alone, and without such a conspiracy. And there is a huge number of
microscopic variables in the environment that are still unassigned to physical properties before
the observation.

This can also account for more complicated experiments, like the EPR-Bell experiment (Ein-
stein et al., 1935; Bohm, 1951; Bell, 1964). This experiment consists of a preparation in the
singlet state, so that the two entangled particles propagate to two different locations, and a joint
measurement of two spin observables ŜA and ŜB, taking place at the two different locations, on
the two different particles. Therefore, the EPR-Bell is a particular case of a preparation followed
by a measurement. The fact that these measurements happen at different locations is irrelevant,
since what is measured is the joint observable ŜA ⊗ ŜB. Suppose a pair of spin-1/2 particles
is prepared in a singlet state 1√

2 (| ↑⟩A ⊗ | ↓⟩B − | ↓⟩A ⊗ | ↑⟩B), and Alice and Bob measure the
spin along the z-axis. The interaction with the device that prepares the observed system to be a
singlet state as in Figure 1, may in fact result in a product state, | ↑⟩A ⊗| ↓⟩B or | ↓⟩A ⊗| ↑⟩B, so
that the outcomes of the measurements done by Alice and Bob are anti-correlated as expected. If
Bob measures the spin along another axis at 45◦ with respect to the z-axis, the interaction with
the preparation device leaves the observed system in one of the separate states | ↑⟩A ⊗ | ↗⟩B,
| ↓⟩A ⊗ | ↗⟩B, | ↑⟩A ⊗ | ↙⟩B, or | ↓⟩A ⊗ | ↙⟩B. Again, such a conspiratorial interaction leading
unitarily to definite outcomes for Alice and Bob’s observations is possible in principle, on the
behalf of the interaction with the preparation device. And again, the conspiracy can be removed
by adopting the explanation of the delayed assignment of what operators represent the spins
along the two axes.

From this non-quantitative explanation it follows that

Observation 9 (Observation as physication). The delayed assignment of operators to physical
properties allows the observed system to evolve unitarily into the observed state, without
wavefunction collapse or branching, and without a special choice of the initial conditions.
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Such a non-conspiratorial solution can be obtained from a conspiratorial unitary solution in
the following way. Suppose we think that the system is in a state that leads, after the mea-
surement, to a superposition of indefinite outcomes. Then, I will argue that there is a unitary
transformation that “corrects” the presumed state of the system into a state that achieves a
unique outcome without collapse. Given the huge number of variables defining the total state
space, compared to the number of macroscopic variables, there must exist numerous unitary
transformations of the total state space that can change microscopic variables that are not
macroscopic, but not the macroscopic ones. In the standard formulation of quantum mechan-
ics, where the assignment is assumed to preexist, the possibility of a solution is based on the
same observation that the values of most microscopic degrees of freedom are unknown. Since
the conspiratorial solution achieves a definite outcome by unitary evolution alone, the same is
true of the one obtained by delayed assignment, which in addition is non-conspiratorial. The
conspiracy is avoided by delaying the assignment of some microscopic physical properties. If
all assignments were made at the beginning of the universe, this solution wouldn’t work. This
is the main difference between the interpretation of quantum mechanics proposed here and the
other interpretations, including standard quantum mechanics.

5. Postulates

In this Section I present the Postulates of the new interpretation sketched in the previous
Section. The first three Postulates and the fifth Postulate of the proposed interpretation are
common features of standard quantum mechanics, but they should be understood in a situation
where not all physical properties have a priori assigned operators, and the assignment happens
in time. This delayed assignment will be relevant in Postulate 4, which replaces the Projection
Postulate.

I take as a first postulate that there is a state vector undergoing a unitary evolution.

Postulate 1 (Unitary evolution). The state of the universe is represented by an abstract unit
vector |ψ(t)⟩ in a complex state space H. The evolution law is given by the Schrödinger
equation

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩, (10)

where Û(t, t0) := e−i/ℏ(t−t0)Ĥ and Ĥ is the Hamiltonian operator.

It is important to emphasize that

1. |ψ(t)⟩ is just an abstract unit vector, and all unit vectors are identical, in the sense that
there is a unitary transformation that maps any unit vector into any other unit vector,

2. I don’t assume an assignment of operators to physical properties at this explanatory stage.

In particular, there is no interpretation ψ(x1,x2, . . .) = ⟨x1,x2, . . . |ψ(t)⟩ of the unit vector
|ψ(t)⟩ as a wavefunction, where (x1,x2, . . .) are points in the configuration space of the classical
theory from which our quantum theory may be obtained by quantization.

The operator Ĥ is not a matrix Hjk := ⟨xj
1,x

j
2, . . . |Ĥ|xk

1,x
k
2, . . .⟩, where (xj

1,x
j
2, . . .) and

(xk
1,x

k
2, . . .) are points in some configuration space. The operator Ĥ is just an abstract operator.

The same is true of the unitary evolution operators Û(t, t0) := e−i/ℏ(t−t0)Ĥ.
However, the Hamiltonian operator Ĥ can be expressed in terms of some other operators

supposed to represent physical properties like positions, similar to equation (1), but there is no
a priori assignment of these other operators, and therefore no a priori configuration or phase
space. The assignment will be done gradually, as observations happen. But what happens in
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reality is that even this dependency of the Hamiltonian operator on other operators, like the one
from equation (1), follows from observations. Therefore, I will postulate the existence of such
a functional dependence of the Hamiltonian operator on other operators, which have specific
spectral properties, as we often do, but it is not necessary to postulate that the functional form
of this dependence is already known to us.

Postulate 2 (Structure of dynamical law). There is a set of Hermitian operators {â1, â2, . . .}
on H, so that the Hamiltonian operator Ĥ depends functionally on these operators,

Ĥ = H (â1, â2, . . .) . (11)

The operators {â1, â2, . . .} are characterized by their spectra, including multiplicity, and
they represent some physical properties {a1, a2, . . .}, but the assignment

aj 7→ âj, (12)

is not known a priori, it will gradually result from observations.

The operators {â1, â2, . . .} may be given only up to a unitary transformation. For example,
they can be position-like and momentum-like operators {x̂1, p̂1, x̂2, p̂2, . . .}, satisfying the CCR,
and the dependency equation (11) can be equation (1). But, for generality, I will not assume that
these operators are necessarily position and momentum operators, they can be field operators,
including gravitational field operators from an yet to be found quantum gravity.

The operators {â1, â2, . . .} may apply to subsystems, but they will be assumed to apply to
the entire world. That is, if the operator of interest âα

j is defined on a state space Hα, so that

H ∼= Hα ⊗ Hrest of the world, (13)

we will take the operator âj := âα
j ⊗ Îrest of the world, defined on the total state space H, instead

of the operator âα
j defined on Hα.

Moreover, the tensor product structure (TPS), the decomposition of the state space as a
tensor product of state spaces representing the subsystems, for example the one from equation
(13), is also not given a priori and should follow from experiments. The TPS is given by a set
of algebras of operators Aj, j ∈ {1, 2, . . .}, so that the elements of an algebra Aj commute with
the elements of another algebra Ak, j ̸= k (Zanardi et al., 2004). These algebras of operators
are not assigned a priori to physical properties of subsystems, so the TPS itself is not given a
priori1.

The unitary evolution law is very general, and a theory of the physical world should be much
more specific, but we don’t need to discover here the actual Hamiltonian of the world. Postulate
2 only states that there must be some operators and the Hamiltonian must depend on them in
an yet unknown way, but it leaves open the question of which way this is. This should follow as
well from experimental observations and future theoretical developments.

But an observation requires a measuring device and a system to be observed with the help
of the measuring device. Both of these are subsystems, and so they have to be represented on
some state spaces HM (for the measuring device) and HS (for the observed system). These state
spaces have to be factors in a tensor product structure of the total state space H,

H ∼= HS ⊗ HM ⊗ Hrest of the world. (14)
1Some authors claim that, under conditions like locality, the abstract Hamiltonian (or its spectrum) determines

a unique TPS (Cotler et al., 2019), but this was disproved in (Stoica, 2022, 2024b). Already for finite-dimensional
state spaces, regardless of the conditions that we impose to the TPS, if there is at least a TPS satisfying those
or any other conditions, the number of additional parameters that need to be fixed to specify a unique TPS
satisfying the same conditions grows exponentially with the number of factors in the TPS (Stoica, 2024b).
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In the following, I will rely again on the undeniable fact that the TPS can be obtained from
the operators, more or less along the lines from (Zanardi et al., 2004). Therefore, I will take
these operators as acting on the entire state space H, not restricted to factors like HS or HM .
For example, an operator ÂS on HS can be identified with an operator Â on H by tensoring it
with the identity operators Î of the other factors from equation (14),

Â := ÂS ⊗ ÎM ⊗ Îrest of the world. (15)

Therefore, the decomposition (15) depends as well on the assignment of operators to the
physical properties, and it is not completely determined by the observations, which reveal only
the assignments of the macroscopic physical properties.

The word “macroscopic” is not strictly about size:

Definition 1. A macroscopic physical property is a property that can be observed without
doing quantum experiments, and it always has a definite value.

But let’s keep in mind that, even though our universe is fully quantum, not all observa-
tions consist of quantum experiments done in a laboratory. In fact, most of them are direct
observations done at the macroscopic level (that is, they don’t require quantum experiments to
be observed). Most of us never did an explicitly quantum experiment, and humanity already
gathered much knowledge before the advent of quantum mechanics. Moreover, to even build a
measuring device, we need to rely on such direct knowledge of macroscopic properties. In fact,
even when we do a quantum measurement, we make only direct macroscopic observations:

1. We make sure, based on our macroscopic experience, that the measuring device and the
device that prepares the system to be observed are built and work properly, and that they
are set up properly.

2. We observe directly the pointer state of the measuring device, and our only knowledge of
the observed system’s state is inferred from the macroscopic properties of the whole set-up
and the pointer state.

Whatever knowledge we gather about the quantum world, we do it by direct reading of
macroscopic physical properties, combined with inference. Therefore,

Observation 10. Quantum measurements are a particular case of macroscopic observations.

That is, we never observe the microscopic properties that we think we measured, we only
infer them from the macroscopic ones. The physical properties available for observation include
the pointer states of the measuring devices, the records of outcomes of past experiments, and
everything else that is available to us by direct observation of the macroscopic world.

As in the case of Postulate 2, I will assume that the assignment of operators to the macro-
scopic physical properties doesn’t exist a priori. Each of the properties Mj is represented by a
Hermitian operator M̂j, and can be expressed by a numerical value which is an eigenvalue of
M̂j, but we don’t know a priori what are these operators. All macroscopic physical properties
are compatible, so they should be represented by some commuting operators M̂1, M̂2, . . ..

Postulate 3 (Macroscopic physical properties). There is a set

M := {M1,M2, . . .} (16)

of compatible macroscopic physical properties, in principle available for direct observation.
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There is an assignment of operators to the macroscopic physical properties,

Mj 7→ M̂j, (17)

so that, for all j ̸= k,
M̂jM̂k = M̂kM̂j, (18)

but this assignment is not a priori, it happens gradually in time.

Let us see how physication works to solve the measurement problem.
There is a unique decomposition of the state space H as a direct sum of maximal subspaces

consisting of common eigenvectors of the operators M̂1, M̂2, . . .,

H =
⊕
a∈A

Ha, (19)

where A is a set of labels of the factor spaces. Each subspace Ha consists of common eigenvectors
of the operators M̂1, M̂2, . . ., so that for each operator M̂j, all vectors from Ha are eigenvectors
for the same eigenvalue λj(a).

We call the subspaces Ha from the decomposition (19) macrostates. To each subspace Ha

we associate a macroprojector, i.e. a projection operator P̂a so that

Ha = P̂aH. (20)

Equation (20) implies that each macroscopic operator is of the form

M̂j =
∑
a∈A

λj(a)P̂a. (21)

Here the sum symbol is formal, the decomposition can consist of integrals as well, if the spectrum
of the operators representing macroscopic physical properties has continuous parts.

Let us consider now the initial state |ψ0⟩ of the universe at the Big Bang. According to
the Past Hypothesis 5, this state had minimal entropy and its macroscopic properties were
well-defined. That is, it belonged to an initial macrostate of low entropy, let it be H0,

|ψ0⟩ ∈ H0. (22)

As the time goes, the entropy of the state represented by |ψ(t)⟩ increases. That is, for times
t2 > t1 > t0, the vectors from the subspace Û(t2, t0)H0 represent states of higher entropy than
those from the subspace Û(t1, t0)H0. Each subspace Û(t, t0)H0 can be decomposed in terms of
macrostates,

Û(t, t0)H0 =
⊕

a∈A (t)
Ha, (23)

where A (t) ⊂ A is a subset of the set of labels A used in the decomposition (19). For example,
equation (22) states that A (t0) = {0}.

Since for different times t2 > t1 > t0 the entropy is different, it follows that

Û(t1, t0)H0 ⊥ Û(t2, t0)H0. (24)

Therefore,
A (t1) ∩ A (t2) = ∅. (25)

As |ψ⟩(t) evolves in time, it can became an eigenstate of some of the operators representing
macroscopic properties, the eigenvalues of the macroscopic operators may change, or |ψ(t)⟩ can
become a superposition of such eigenstates. However, since most physical properties don’t have
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assigned operators, this leaves us a freedom. Equation (22) fixes the assignment for the subspace
H0. As soon as |ψ(t)⟩ leaves the subspace H0, say at t1, it belongs to a subspace Û(t1, t0)H0,
which is a direct sum of other subspaces ⊕a∈A (t1) Ha. But since these subspaces are not assigned
yet to physical properties, they can be assigned at t1 so that |ψ(t1)⟩ belongs to only one of them!
This means that the simple fact that there is change all the time implies that

Observation 11. There is a freedom to choose the assignment of operators to the macroscopic
physical properties so that A (t) always has only one element.

As explained in Section §4, if the initial state |ψ0⟩ is not predetermined, it is possible to
choose it so that quantum measurements have definite outcomes. In our case, |ψ0⟩ is given a
priori, but most of the microscopic physical properties are not pre-assigned. And it turns out
that the freedom to choose the microscopic physical properties that are not assigned a priory is
the same as the freedom to choose |ψ0⟩ so that quantum measurements have definite outcomes.

This leads us to the Postulate where physication kicks in:

Postulate 4 (Assignment). Whenever |ψ(t)⟩ leaves the already assigned macrostates, the new
ones are assigned so that |ψ(t)⟩ is in a definite macrostate.

That is, there is an element a(t) ∈ A so that

|ψ(t)⟩ ∈ Ha(t). (26)

This accounts for definite outcomes, resolving the measurement problem, at least for non-
relativistic quantum mechanics or, in general for quantum theory with an absolute decomposition
of spacetime into space and time. But it is also consistent with the relativity of simultaneity,
since the order of assignment should not be taken as absolute. For example, for the EPR-
Bell experiment, Alice and Bob do local measurements at spacelike separated locations, so
the assignments they make are local and spacelike separated. So the order of assignment will
depend on the observer, an observer may see Alice doing the measurement before Bob does it,
while another observer may see Bob doing first the measurement. All that matters is that the
assignments they do are consistent with one another.

Based on the past history of the system we may anticipate that ψ(t) will become a superpo-
sition of macrostates

|ψ(t)⟩ =
∑

a∈A (t)
P̂a|ψ(t)⟩, (27)

but Postulate 4 states that the assignment happens so that P̂a|ψ(t)⟩ for all a ∈ A (t) except for
one of them, denoted by a(t).

Definition 2. We call the process of assignment physication.

But since the choice of assignment is not determined, we also need to specify the probability
that a(t) is one or another element of A (t).

Postulate 5 (Probability). The probability Pa(t) that the macrostate at the time t is Ha,
where a ∈ A (t), is given by the Born rule:

Pa(t) = ⟨ψ(t)|P̂a|ψ(t)⟩. (28)

It may be possible to derive the Born rule from the other Postulates, but for the moment I
state it as a separate Postulate, leaving the independence of the Postulates for future research.
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6. Can we test it?

The proposed interpretation relies on the existence in the environment of sufficiently many
variables whose physical meaning can be assigned later, so that its interaction with the observed
system leads to a definite outcome of the measurement. The more potentially influential particles
are in the environment, in particular in the preparation device, the more possibilities to assign
their parameters by an appropriate unitary transformation to achieve the result. Therefore,

Observation 12. The possibility of unitary assignment grows, roughly, with the number of
degrees of freedom with which the observed system interacted since the previous measurement.

That is, if the preparation device is too small, the assignment can’t be realized properly.
But, on the other hand, if it’s too small, it could also be the case that the preparation can’t
be done properly. A system can’t act as a measuring device if it is too “small”, in the sense of
having too few degrees of freedom. Smaller systems able to clone the state of another system
with which they interact, in the sense that it acts like a measuring device, are possible. But such
systems can count as actual measuring devices only if the degrees of freedom into which they
“copied” the state are stable and can be observed macroscopically. Such macroscopic variables
can only be aggregate variables of many particles, so that the action of the system is much larger
than Planck’s quantum of action h. This makes it so that the possibility of delayed assignment
correlates with the possibility that the measuring device, in particular the preparation device, is
large enough. Therefore, the interpretation proposed here predicts what we already know about
the measuring devices, that they have to be large enough.

But maybe we can do better than merely predicting independently that measuring devices
should consist of many degrees of freedom. Let us try some strategy to obtain empirical pre-
dictions, based on the possibility that, even if both measuring devices and delayed assignments
require many degrees of freedom, the ranges of these degrees of freedom don’t coincide.

The strategy can be to build a measuring device, to be used for preparations, whose func-
tionality can be described based on the projection postulate, but not by delayed assignment.
If the experiments confirm the description based on the projection postulate, this would reject
experimentally the interpretation proposed here. If we can build such a device, and if its degrees
of freedom that are not macroscopically observable are not sufficient to allow the assignments
as described in Sections §4 and §5, then this would reject the interpretation proposed here.

7. Comparison with other proposals

We have seen that the freedom of choosing assignment is used in these Postulates to allow
for a single-world unitary evolution. When our current macrostate encodes information that the
observed system was prepared in a particular way, if we apply the Schrödinger equation, we may
infer that a measurement will find the system in a superposition. But the macrostate of the world
after the measurement indicates that the measurement has a definite outcome. This is explained
in Section §4 by the fact that the macrostate before and the one after the measurement are
orthogonal, and this allows to assign the macroscopic properties in a way that accounts for both
of these by the unitary evolution of the world. In Section §5, this is interpreted microscopically
as a spontaneous interaction with the preparation device, which seems conspiratorial if we think
that all assignments are given a priori.

The central role of macroscopic physical properties, which are very similar to classical prop-
erties, may remind us of Bohr’s views. Bohr considered that the measuring device is a classical
system, and the outcomes of the measurements are seen as classical properties (Stoica, 2022,
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§7.1). The microscopic properties exhibit quantum effects, but these are not seen directly. The
observed system and the measuring device should be taken into account as an undivided whole.
Indeed, if we take only the macroscopic properties as observable, the “observed system” is not
actually observed, and so its properties are not macroscopic. But by taking it as forming an
indivisible whole with the measuring device, the properties of the measuring device can tell us
about the observed system, if we infer its properties from the macroscopic properties. This
necessity to take the measuring device as the context of the observed system allows different
experimental setups to measure complementary properties of the observed system.

In the Copenhagen Interpretation, Heisenberg saw the properties of the observed system
as gaining reality only due to the measurement. This is also similar to physication, which
allows us to assign operators to the physical properties of the observed system as a result of the
observations we make. Similar parallels can be made with neo-Copenhagen interpretations like
QBism (Fuchs et al., 2014).

A possibility to interpret the views of Bohr, Heisenberg, and others, is not as creating reality,
but merely as physication, i.e. as assigning physical meaning to an existing but abstract reality.

According to Jaynes (Jaynes, 1990),

But our present QM formalism is not purely epistemological; it is a peculiar mixture
describing in part realities of Nature, in part incomplete human information about
Nature – all scrambled up by Heisenberg and Bohr into an omelette that nobody
has seen how to unscramble.

I propose that the idea of physication can unscramble this omelette. The unscrambling
consist of distinguishing between structure, relational properties, which can be fully captured
by mathematics, and their physical meaning, which can be acquired gradually, through obser-
vations. Therefore, the unscrambling happens by replacing the epistemic aspect of quantum
measurements with a mixed process, involving both an epistemic aspect and physication.

The structure, given by the state vector |ψ(t)⟩ and the properties of macroscopic and other
operators, is already given, like a mold, a matrix, while the physical properties, which cast the
state vector into a wavefunction, are assigned as the observations take place, and this assignment
applies to the past too. For example, for non-relativistic quantum mechanics, position-like
operators x̂1, x̂2, . . . are assigned to the physical positions, and they, together with the state
vector, coalesce into the wavefunction ⟨x1,x2, . . . |ψ(t)⟩. Since the state vector evolves towards
the future, and the assignment of position-like operators “propagates” back in time to interpret
the past of the system, this reminds us of another view, in which a state vector |ψp(t)⟩ evolving
from the past to the future is used together with the outcome of the measurement, a state
vector ⟨ψr(t)| which then from the future to the past. This is the two-state vector formalism
(Watanabe, 1955; Aharonov et al., 1964; Aharonov and Vaidman, 2007). In the two-state vector
formalism there are two state vectors, which together allow us to describe what happens between
the preparation and the measurement in a novel and seminal way, but the collapse still seems to
be required for a third measurement. In the physication interpretation there is only one state
vector, which is interpreted physically, for example as a wavefunction, starting from the outcome
and going backwards in time, or, in the case of more complex experiments like the EPR-Bell
experiment, zigzagging through spacetime. But only the assignment of physical meaning is
interpreted as going backwards, the state vector simply evolves from the past to the future as
usual.

As seen in our discussion of quantum measurements in terms of observations of the macro-
scopic pointers, when operators are assigned to the macroscopic physical properties, one can
infer assignments to the microscopic physical properties as well. The assignments of macroscopic
properties for what happened in the past remains unchanged, but the inferred assignments of
microscopic properties are not absolute, they can be reevaluated when new observations are
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made. This is how physication avoids the necessity to invoke the wavefunction collapse.
If we forget this delayed assignment and assume it to be given a priori, we have the impression

of conspiracy, superdeterminism, or retrocausality. We understand that it is not conspiratorial
only if we recall that the assignments are delayed and applied retroactively, but the past of the
state vector |ψ(t)⟩ itself is not changed retroactively. Therefore, in the interpretation proposed
here, all of these are illusions, there is no conspiracy. And there is no collapse as in the collapse
theories, there is only one history and not many as in MWI, and there are no additional hidden
variables as in PWT.
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