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Abstract: The concept of information was introduced in the middle of the last century by 

Shannon and since then an entire branch of research has been developing into what is called 

Mathematical Theory of Communication which deals with studying the amount of 

information exchanged in a communication channel. In this article we want to use the 

concept of information to analyze the Dynamic Frames developed by Barsalou in Cognitive 

Science. 
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1. Information 

Information is a concept whose meaning we have not recovered from ancient philosophy or christian 

theology, but it is a purely modern concept; hence the difficulty in its definition and the multiple 

meanings that have been assigned to the concept. Shannon (1993) for example highlights this difficulty 

in the following way: “... It is hardly to be expected that a single concept of information would 

satisfactorily account for the numerous possible applications of this general fields.”  

Information is usually associated with something independent of the user, which has semantic content 

(has a meaning) and which is transmitted through multiple means (texts, websites, maps...).  

It is usually conceived in terms of “data + meaning” and Floridi (2010) gave a general definition by 

stating that σ – the basic unit of information (infon) – is an instance of semantic information if it consists 

of data that is correctly formatted and has meaning. Information is therefore composed of data, but is 

not determined only by them; so what is their role? To better understand these aspects, let's consider the 

following simple example: let's examine a page of a book written in an unknown language and notice 

that we are in possession of some data without meaning; if we delete half the page, we will have half 

the amount of data but still no meaning; even if we leave just one symbol on the page, we still have data 

– a small amount – and always no meaning. In these three cases we are in possession of data that is not 

significant and therefore we have no information. If we now delete the last symbol and leave the page 

completely blank, we are in the presence of data (the empty page), but with a meaning (the page has no 

semantic content); the latter case provides us with some information even if it seems like we don't have 

any data available. Information is therefore not linked only to the presence of data, but is rather 

conceived as a lack of uniformity, as Bateson (1973) reminds us when he asserts “In fact, what we mean 

by information ... is a difference which makes a difference”. 

1.1 Semantic Information 

When it comes to the concept of information, we are usually dealing with the Statistical Theory of 

Information proposed by Shannon, but it – as its name states – has to do with the statistical properties 

of the information transmitted in a communication channel. Shannon's theory does not deal with the 

most significant aspect of the term information, namely its semantic content. The first to address the 
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problem from this point of view were Carnap and Bar-Hillel (1953) and since then the theory they 

developed has been called semantic theory of information2. In both theories information is defined in 

terms of a certain concept of probability: 

inf(𝜎) = − log(𝑝(𝜎)) 

where 𝑝(𝜎) represents the probability of the infon 𝜎3 and from it, it is possible to obtain the concept of 

entropy associated with information: 

H = − ∑ 𝑝(σ)𝑖�̇�𝑓(σ)

σ

 

where the summation is done on each individual infon. Although the two theories use the same 

mathematical structure, the concept of probability on which they are based is different: in statistical 

theory – where we are interested in repeatable situations in the long term – a frequentist interpretation 

of probability is presupposed, while in semantic theory – in which we are interested in the different 

alternatives that are made available to us by language – we use a logical interpretation of probability4 

(Hintikka 1970). To assign probability to the different alternatives made available in a certain linguistic 

context it is necessary to identify some principle that facilitates us in this task; from a heuristic point of 

view, it can be stated that the more precise a proposition is, i.e. it eliminates any other possibilities, and 

the greater the information it conveys. This consideration is formalized in the Inverse Relationship 

Principle, which states that “the ammount of information associated with a proposition is inversely 

related to the probability of that proposition”. Based on this principle it is possible to define the content 

of information as: 

𝑐𝑜𝑛𝑡(σ) = 1 − 𝑝(σ) 

which can be easily traced back to the amount of information (inf) introduced previously, with the 

equation: 

𝑖𝑛𝑓(σ) = log
1

1 − 𝑐𝑜𝑛𝑡(σ)
 

Carnap and Bar-Hillel's semantic theory is based on the principle just described and is developed for 

monadic first-order logic. In this regard, consider a class of languages, each of which is made up of a 

finite series of monadic predicates (naming properties), which apply to an equally finite number of 

individual constants (naming individual) and which can be composed with the usual logical connectors. 

From a formal point of view, a language is defined as a set 𝐿𝑚
𝑛 = ({𝑐1 … 𝑐𝑛}, {𝑃1 … 𝑃𝑚}) made up of n 

individual constants 𝑐𝑖 and m predicates 𝑃𝑗. The propositions 𝑃𝑗𝑐𝑖 is an atomic sentence and indicates 

that the constant 𝑐𝑖 has the property 𝑃𝑗. It is possible to construct an arbitrary number of other 

propositions, based on the atomic ones and using logical connectors. Of particular importance are those 

combinations that involve the conjunction of predicates (negated or non-negated) applied to all 

 
2 The Carnap and Bar-Hillel Theory is defined by Floridi as Weak Semantic Theory of Information in contrast to 

the Strong Semantic Theory of Information proposed by Floridi himself. 
3 𝜎 represents an instance of information such as a symbol, a proposition or an event. 
4 Carnap reported the difference in two disjoint concepts of probability: propability1 for the statistical interpretation 

and probability2 for the logical interpretation (degree of confirmation: a quantitative concept representing the 

degree to which the assumption of the hypothesis h is supported by the evidence e.) 
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individual constants in such a way that each constant appears only once in the proposition: such 

propositions are called state-descriptions (they are usually represented with the letter 𝑤). The set of state 

descriptions constitutes the logical space and each state description represents a possible state of the 

world. On the logical space it is possible to define one or more probability measures  𝑚(−) 5 which are 

associated with the corresponding confirmation function: 

c(σ, 𝑒) =
𝑚(σ ∧ 𝑒)

𝑚(𝑒)
 

where 𝑒 represents the empirical evidence with respect to  σ6.  

To give a concrete example, let's examine a language made up of 3 individual constants and a single 

predicate, the formalization of which is  𝐿1
3 = ({𝑎, b, c}, {𝐹}): the logical space generated by this 

language is made up of 8 state descriptions and it is proposed in the following table: 

Table 1: Example of a language 𝐿1
3       

State Propositions m cont inf State Propositions m cont inf 

𝑤1 𝐹𝑎 ∧ 𝐹𝑏 ∧ 𝐹𝑐 0.125 0.875 3.0 𝑤5 ¬𝐹𝑎 ∧ ¬𝐹𝑏 ∧ 𝐹𝑐 0.125 0.875 3.0 

𝑤2 ¬𝐹𝑎 ∧ 𝐹𝑏 ∧ 𝐹𝑐 0.125 0.875 3.0 𝑤6 ¬𝐹𝑎 ∧ 𝐹𝑏 ∧ ¬𝐹𝑐 0.125 0.875 3.0 

𝑤3 Fa ∧ ¬Fb ∧ Fc 0.125 0.875 3.0 𝑤7 𝐹𝑎 ∧ ¬𝐹𝑏 ∧ ¬𝐹𝑐 0.125 0.875 3.0 

𝑤4 Fa ∧ Fb ∧ ¬Fc 0.125 0.875 3.0 𝑤8 ¬𝐹𝑎 ∧ ¬𝐹𝑏 ∧ ¬𝐹𝑐 0.125 0.875 3.0 

 

We can underline that each state is equiprobable –  𝑚(𝑤𝑖)  =  0.125 – and need 3 bits of information in 

order to be defined – 𝑖𝑛𝑓(𝑤𝑖)  =  3 𝑏𝑖𝑡. 

2. Dynamic Frame 

The concept of dynamic frame was introduced into cognitive psychology by Barsalou (Barsalou 1992; 

Barsalou, Hale 1993) and represents a cognitive structure in which conceptual and empirical information 

are represented in a precise and determined manner. Dynamic frames have been used profitably in the 

Philosophy of Science to analyze scientific concepts (Kornmesser 2018) and conceptual change 

(Andersen et al. 2006 and Chen et al. 2000), but also in the history of science (Gasco 2020 and Gasco 

2023). 

In short, a frame is an attribute-value matrix that has the task of representing how some characteristics 

(the values) are the instance of other properties (the attributes). The typical example used to illustrate 

what a dynamic frame consists of is the one associated with the concept of 'bird', the graphic 

representation of which is shown in Fig.1. The leftmost element is the concept bird which is called 

“superodinate concept”; in the central box there are the attributes {beak, foot} and the values associated 

 
5 The choice of the probability measure is determined for example by the symmetric structures that are identified 

in the logical space (consider for example Carnap's m* function). 
6 From now on we will replace the generic infon 𝜎 with a proposition/hypothesis h linked to the linguistic 

context being considered. 
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with them7. The last column of the diagram corresponds to “subordinate concepts” – or derived concepts 

– which are a specialization of the main concept and activate only certain values8. The red arrow instead 

represents a constraint that exists between the 'beak' attribute and the 'foot' attribute. The constraints are 

links that intervene between attributes or between values and the most significant ones are the constraints 

that exist between values 9. 

 

In the following, we will only consider constraints between values. To better understand the nature of 

constraints, let us examine the contribution offered by Strößner (Strößner 2020a), who proposed a 

probabilistic extension of frames in which the values assumed by the attributes and their constraints are 

associated with a probability distribution. If we take the classic example of the concept of bird, we know 

that the structure of the foot (clawed, webbed) determines the different modes of locomotion (flying, 

swimming and walking); so for example a 'flying bird' typically has 'clawed feet'. These correlations 

(the constraints in Barsalou's terms) are described by conditional probabilities which are reported in the 

following summary table (Strößner 2020b). 
 

Table 2: Probability distribution of bird concept  

  P(fly) P(swim) P(walk) 

  0.75 0.15 0.10 

  Joint probability distribution 

P(clawed) 0.80 0.72 0.00 0.08 

P(webbed) 0.20 0.03 0.15 0.02 

  Conditional probability 

P(… | clawed)  0.90 0.00 0.10 

P(… | webbed)  0.15 0.75 0.10 

 
7 E.g. the beak attribute has the values {round, pointed}. 
8 E.g. subordinate concepts are “water bird” and “land bird”. 
9 E.g. in the case of the subordinate concept 'water bird' there is the constraint that the webbed feet (foot = 

WEBBED) always correspond to the rounded beaks (beak = ROUND). 

 
Fig. 1. Dynamic frame ‘bird' concept 
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The second row shows the marginal probabilities of the values assumed by the 'Locomotion' attribute, 

while the second column shows the marginal probabilities associated with the values of the 'Foot' 

attribute. In the central part of the table, you have the joint probabilities of the various attributes; so for 

example we have that 𝑃(𝑓𝑜𝑜𝑡 = 𝑐𝑙𝑎𝑤𝑒𝑑, 𝑙𝑜𝑐 = 𝑓𝑙𝑦) = 0.72. Finally, at the bottom of the table, you 

have the conditional probabilities based on the 'Foot' attribute; for example 

𝑃(𝑙𝑜𝑐 = 𝑓𝑙𝑦|𝑓𝑜𝑜𝑡 = 𝑐𝑙𝑎𝑤𝑒𝑑) = 0.90. Note that 𝑃(𝑠𝑤𝑖𝑚|𝑐𝑙𝑎𝑤𝑒𝑑) = 0 represents a 'deterministic' 

constraint since a 'bird' is never observed that has swimming locomotion and 'clawed' legs. 

We can report the data of Table 2 in the following probabilistic dynamic frame: 

Where a column on the right has been added to show the probability of each value and the constraint 

between the webbed and swimming values has been specified through a conditional probability. Note 

however that in this case the constraint is defined between the ‘Foot’ attribute and the ‘Main locomotion’ 

attribute as the conditional probability is specified for each value, as highlighted in Table 2. 

But what is the effect of a constraint in these probabilistic frames? When the concept specializes, that 

is, when an attribute assumes a certain value belonging to a constraint, the probability of the constrained 

value is equal to the conditional probability; in our example we have 

 

foot  =  webbed → P(webbed) = 1; P(swimming) = P(swimming|webbed) = 0.75 

 

The constraint also modifies the probabilities of the other values according to a weighted formula. If we 

indicate with {𝑊𝑖} and {𝑉𝑗} the values assumed by the two attributes W and V and suppose that there is 

a constraint between 𝑉1and 𝑊1 represented by the conditional probability 𝑃(𝑊1|𝑉1) the probabilities of 

the values 𝑊𝑖 – with 𝑊𝑖 ≠ 𝑊1 – are changed according to the following formula:  

P′(Wi) = P(𝑊𝑖)
1 − 𝑃(𝑊1|𝑉1)

1 − 𝑃(𝑊1)
 

If we now consider the composite concept ‘foot-webbed-bird’ that is obtained when the foot attribute 

takes the value webbed and the locomotion values are modified according to the previous formula, we 

have a new probabilistic dynamic frame: 

 
Fig. 2. Probabilistic dynamic frame of ‘bird' concept 
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where it is observed that the attribute foot has assumed the value 'webbed' (probability = 1) and the 

probability distribution linked to the attribute 'Main Locomotion' has changed according to the formula. 

The changes of the probability distribution of an attribute’s values by a constraint, highlights that in the 

probabilistic approach the constraints are a global characteristic; this aspect is highlighted further if we 

observe that the link between two values  𝑉1and 𝑊1 is bidirectional as can be seen using Bayes' theorem: 

P(V1|W1) =
P(W1|V1) ⋅ P(V1)

𝑃(𝑊1)
 

In our example we can calculate 𝑃(𝑤𝑒𝑏𝑏𝑒𝑑|𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔) that have the value: 

P(webbed|swimming) =
𝑃(𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔|𝑤𝑒𝑏𝑏𝑒𝑑) ⋅ 𝑃(𝑤𝑒𝑏𝑏𝑒𝑑)

𝑃(𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔)
=

0.75 ⋅ 0.20

0.15
= 1.0 

which shows how the constraint on the foot structure imposes another constraint that determines how 

swimming birds have a webbed foot structure. We also have a derived constraint on ‘clawed-footed 

bird’, because this subtype of bird does not use swimming as main locomotion; in formula we have: 

𝑃(𝑐𝑙𝑎𝑤𝑒𝑑|𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔) = 0 and so 𝑃(𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔|𝑐𝑙𝑎𝑤𝑒𝑑) = 0. 

3. Semantic Information of a dynamic frame 

Dynamic frames are a structure that can be represented with a first-order formulas (Urbaniak 2009) and 

therefore the question of associating a quantity of information to the frame arises spontaneously based 

on the semantic theory of Carnap and Bar-Hillel. The starting point is to show how an attribute of a 

frame can be represented by a language composed of monadic predicates and individual constants. To 

do this, consider an attribute 𝐴 = (𝑎, {𝑉1
𝑎 … 𝑉𝑚

𝑎}) and note that it can be related to a language 𝐿𝑚
1  

composed of a single individual constant 𝑎 – the attribute itself – and by 𝑚 predicates, corresponding 

to the possible values assumed by the attribute. If attribute 𝑎 has the value 𝑉1 there is a proposition 𝑉1
𝑎𝑎. 

which describes its state. The state descriptions that can be obtained by combining the predicates and 

the single individual constant with the usual logical connectors are 2𝑛⋅𝑚 = 2𝑚. However, note that an 

attribute can take on one value at a time and this limits the number of state descriptions admissible to 

𝑚; such states are called base-state description and are formally defined as: 

 
Fig. 3. Probabilistic dynamic frame of ‘foot-webbed bird' concept 
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𝑏𝑖
𝑎 = 𝑉𝑖 (⋀ ¬𝑉𝑗

𝑗≠𝑖

) a = ¬𝑉1a ∧ … ∧ ¬𝑉i−1a ∧ 𝑉ia ∧ ¬𝑉i+1a … ∧ ¬𝑉ma 

Therefore, for an attribute we have the relation: 

𝐴 = (𝑎, {𝑉1
𝑎 … 𝑉𝑚

𝑎}) ⟹ 𝐿𝑚
1 ⟹ {𝑏1

𝑎 … 𝑏𝑚
𝑎 } 

Finally, if we consider the fact that a frame is a set of attributes, we will have: 

F = (𝐴1 … 𝐴𝑛) = (𝑎1, {𝑉1
𝑎1 … 𝑉𝑚

𝑎1}) … (𝑎𝑛, {𝑉1
𝑎𝑛 … 𝑉𝑟

𝑎𝑛}) ⟹ (𝐿𝑚
𝑎1 … 𝐿𝑟

𝑎𝑛)

⟹ ({𝑏1
𝑎1 … 𝑏𝑚

𝑎1} … {𝑏1
𝑎𝑛 … 𝑏𝑟

𝑎𝑛}) 

The state descriptions of the dynamic frame will be the conjunction of the various base-state descriptions 

of the individual attributes. For example, if we have 𝑛 attributes, each of which takes on certain values, 

the generic state description is given by the following formula: 

wVi
1…Vk

n = bi
a1 ∧ … ∧ bk

an 

The set of all state descriptions generates the logical space associated with the dynamic frame. Once the 

logical space is known, it is necessary to define a probability measure on it. If the constraints between 

the values are not considered, the state descriptions are equally probable and therefore we have for a 

generic state m (wVi
1…Vk

n) = 1/n. However, if we consider the constraints between the values we can 

use the confirmation function equation – introduced previously – to impose restrictions on the 

probability measure. A constraint corresponds to stating that in the face of evidence in which a certain 

attribute takes on a certain value (𝑉𝑗𝑏), the hypothesis that another attribute takes on a certain other value 

(𝑉𝑖a) is certain: in formulas we have10 

h = Via ,  e = Vjb ⟹ c(h, e) =
m(h ∧  e)

m(e)
=

m(Via ∧ Vjb)

m(Vjb)
= 1.0 

Once the probability measure on the logical space has been determined we can calculate the amount of 

information of a state-description as inf(wi) = − log(m(wi)) and hence the amount of information in 

the entire frame: 

𝑖𝑛𝑓(𝐹) = ∑ 𝑚(𝑤𝑖)

𝑖

⋅ 𝑖𝑛𝑓(𝑚(𝑤𝑖)) 

where index 𝑖 run on the state-descriptions of the logical space associated with the dynamic frame. 

To make the formulation developed so far clearer, let's consider our example of the dynamic frame of 

the concept 'bird', limiting ourselves to the attributes 'beak' and 'foot' (see Fig.1).  

 

 

 
10 The formula is also valid in the case in which for a given piece of evidence the probability of a certain hypothesis 

is zero. 
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The frame is represented by: 

𝑏𝑖𝑟𝑑 = (𝑏𝑒𝑎𝑘, 𝑓𝑜𝑜𝑡) = ((𝑏𝑒𝑎𝑘, {𝑅𝑜𝑢𝑛𝑑, 𝑃𝑜𝑖𝑛𝑡𝑒𝑑}), (𝑓𝑜𝑜𝑡, {𝑊𝑒𝑏𝑏𝑒𝑑, 𝐶𝑙𝑎𝑤𝑒𝑑}))

= ((𝑏, {𝑅, 𝑃}), (𝑓, {𝑊, 𝐶})) 

and the logical space is reported in the following table: 

Table 3: logical space of bird concept  

State Propositions Sub-concept m inf 

𝑤1 (𝑅 ∧ ¬𝑃)𝑏 ∧ (𝑊 ∧ ¬𝐶)𝑓 water-bird 0.5 1.0 

𝑤2 (R ∧ ¬P)b ∧ (¬W ∧ C)f - 0.0 0.0 

𝑤3 (¬R ∧ P)b ∧ (W ∧ ¬C)f - 0.0 0.0 

𝑤4 (¬R ∧ P)b ∧ (¬W ∧ C)f land-bird 0.5 1.0 

 

Note how the state descriptions  𝑤1 and 𝑤2 correspond to the sub-concepts of the frame. To calculate 

the probability measure, constraints have been used; for example, if we impose the constraint 𝑓𝑜𝑜𝑡 =

𝑤𝑒𝑏𝑏𝑒𝑑 → 𝑏𝑒𝑎𝑘 = 𝑟𝑜𝑢𝑛𝑑, where evidence 𝑒: 𝑓𝑜𝑜𝑡 = 𝑤𝑒𝑏𝑏𝑒𝑑 confirms hypothesis ℎ: 𝑏𝑒𝑎𝑘 = 𝑟𝑜𝑢𝑛𝑑 

we have the equation: 

𝑐(ℎ, 𝑒) =
𝑚(𝑅𝑏 ∧ 𝑊𝑓)

𝑚(𝑊𝑓)
=

𝑚(𝑤1)

𝑚(𝑤1) + 𝑚(𝑤3)
= 1 ⟹ 𝑚(𝑤3) = 0 

Note also that the amount of information in the individual state descriptions with non-zero probability 

is equal to 1 bit; which is expected since a single data is sufficient to determine the state. Finally, the 

amount of information of the entire frame is: 

𝑖𝑛𝑓(𝑏𝑖𝑟𝑑) = ∑ 𝑚(𝑤𝑖)

𝑖

⋅ 𝑖𝑛𝑓(𝑚(𝑤𝑖)) = 0.5 ⋅ 1.0 + 0.5 ⋅ 1.0 = 1 

In order to have the concept of bird completely determined we need the same ammount of information 

as its subordinate concepts; this strange behavior is due to the fact that the state descriptions are 

equiprobable. 

So far, we have used deterministic constraints – where the conditional probability is 1/0 depending on 

the case – to determine the probabilities of the state descriptions in order to derive the amount of 

information; this strategy becomes difficult once the structure of the frames becomes complex. To 

overcome the difficulty, we can use the probabilistic dynamic frames introduced by Strößner and focus 

our attention on the bird concept of Fig. 2 and Fig. 3 which have a non-deterministic constraint. 

The frame is represented as: 

𝑏𝑖𝑟𝑑 = (𝑓𝑜𝑜𝑡, 𝑚𝑜𝑡𝑖𝑜𝑛) = ((𝑓𝑜𝑜𝑡, {𝑊𝑒𝑏𝑏𝑒𝑑, 𝐶𝑙𝑎𝑤𝑒𝑑}), (𝑚𝑜𝑡𝑖𝑜𝑛, {𝐹𝑙𝑦, 𝑆𝑤𝑖𝑚, 𝑊𝑎𝑙𝑘}))

= ((𝑓, {𝑊, 𝐶}), (𝑚, {𝐹, 𝑆, 𝐾}), ) 
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We can consider three types of probabilistic dynamic frames, modifying the conditional probability 

distribution each time. Let us start by considering the case – which we call 𝑏𝑖𝑟𝑑1 – where the attributes 

of the concept are independent on each other, that is, let us suppose that the marginal probabilities 

expressed in Table 2 are associated to independent random variables. Then we can propose the example 

– that we call 𝑏𝑖𝑟𝑑2 – where we use the joint probability distribution of Table 2 and finally, we consider 

the distribution probability of ‘foot-webbed-bird’ – 𝑏𝑖𝑟𝑑3.  

The logical space that we construct is described in the following table: 

 

 Table 4: logical space of 𝑏𝑖𝑟𝑑𝑖       

State Propositions 𝑝1 𝐼𝑛𝑓1  𝑝2 𝐼𝑛𝑓2 𝑝3 𝐼𝑛𝑓3 

𝑤1 (𝑊 ∧ ¬𝐶)𝑓 ∧ (F ∧ ¬𝑆 ∧ ¬𝐾)m 0.15 2.73 0.03 5.05 0.22 2.18 

𝑤2 (𝑊 ∧ ¬𝐶)𝑓 ∧ (¬F ∧ 𝑆 ∧ ¬𝐾)m 0.03 5.05 0.15 2.73 0.75 0.41 

𝑤3 (𝑊 ∧ ¬𝐶)𝑓 ∧ (¬F ∧ ¬𝑆 ∧ 𝐾)m 0.02 5.64 0.02 5.64 0.03 5.05 

𝑤4 (¬𝑊 ∧ 𝐶)𝑓 ∧ (F ∧ ¬𝑆 ∧ ¬𝐾)m 0.60 0.73 0.72 0.47 0 0 

𝑤5 (¬𝑊 ∧ 𝐶)𝑓 ∧ (¬F ∧ 𝑆 ∧ ¬𝐾)m 0.12 3.05 0 0 0 0 

𝑤6 (¬𝑊 ∧ 𝐶)𝑓 ∧ (¬F ∧ ¬𝑆 ∧ 𝐾)m 0.08 3.64 0.08 3.64 0 0 

 

The columns 𝑝𝑖 e 𝐼𝑛𝑓𝑖 are related to the corresponding concepts 𝑏𝑖𝑟𝑑𝑖. If we consider the quantity 𝐼𝑛𝑓𝑖 

of state descriptions – which correspond to the various subconcepts – we note that some of them require 

a significantly greater amount of information than others; this behavior also allows us to define a ranking 

among the subconcepts to identify the most common ones from those that occur more rarely. So for 

example we note how the state 𝑤4 of the second dynamic frame is by far the most common; in fact – as 

we expect – it corresponds to a bird that has clawed feet and that moves by flying. 

We can finally calculate the amount of information for the three examples: 

𝑖𝑛𝑓(𝑏𝑖𝑟𝑑1) = 1.738 > 𝑖𝑛𝑓(𝑏𝑖𝑟𝑑2) = 1.303 > 𝑖𝑛𝑓(𝑏𝑖𝑟𝑑3) = 0.938 

From which it is easy to deduce that the stronger the constraints of the dynamic frame are, the smaller 

the amount of information needed to define them.; in fact in the example 𝑏𝑖𝑟𝑑1 there are no constraints 

between values/attributes, in 𝑏𝑖𝑟𝑑2 there are constraints that connect the values of the attribute 'foot' to 

the values of the attribute 'locomotion' expressed by a conditional probability distribution and finally in 

in 𝑏𝑖𝑟𝑑3 – which represents a composite concept – there is a deterministic constraint. 

4 Conclusion. 

In this article we presented a formalism that allows us to associate a quantity of semantic information 

with a dynamic frame and observed how the elimination of constraints between values determines a 

greater quantity of information necessary to define the frame. In order to obtain this result, we also use 
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the probabilistic dynamic frame introduced by Strößner that associate a probability distribution to each 

value of the frame and to their constraints. 
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