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ABSTRACT

Stephen Hawking’s derivation of Hawking radiation relied on one particular spacetime model, that
of a star collapsing into a black hole which then remains in existence forever. He then argued that
Hawking radiation implies this model should be thrown away in favour of a different model, that
of an evaporating black hole. This aspect of Hawking’s argument is an example of an idealization
that is pervasive in the literature on black hole thermodynamics, but which has not yet been widely
discussed by philosophers. The aim of this paper is to clarify the nature of Hawking’s idealization,
and to show a sense in which it leads to a paradox. After identifying this idealization paradox in
classic derivations of Hawking radiation, I go on to show how various research programmes in
black hole thermodynamics can be viewed as possible resolutions to the paradox. I give an initial
analysis of the prospects for success of these various resolutions, and show how they shed light on
both the foundations of Hawking radiation and on the nature of idealizations in physics.
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1 Introduction

He must, so to speak, throw away the
ladder after he has climbed up it.

Ludwig Wittgenstein, Tractatus
Logico-Philosophicus

Derivations of Hawking radiation are cornerstones of modern physics. The consensus
view is that Hawking radiation leads to the black hole information paradox, and huge
amounts of work in physics has been dedicated to understanding and resolving it (Page
[1994]; Raju [2022]). Philosophers have also analysed various aspects of Hawking ra-
diation, including: the black hole information paradox (Belot et al. [1999]; Manchak
and Weatherall [2018]; Maudlin [2017]; Wallace [2020]); black hole thermodynamics
(Dougherty and Callender [2016]; Prunkl and Timpson [2019]; Wallace [2018], [2019];
Wüthrich [2019]); and the universality of Hawking radiation (Gryb et al. [2021]).

In this paper I will argue that there is another problem, distinct from those listed above,
that arises because a seemingly essential idealization is used in three mainstream deriv-
ations of Hawking radiation: Hawking’s original derivation ([1975])1, Fredenhagen and
Haag’s ([1990]) “watertight” derivation, and algebraic approaches such as Dimock and
Kay ([1987]) and Dappiaggi et al. ([2011]). This paper establishes the paradox for these
derivations, categorises its possible resolutions, and offers an initial analysis of the suc-
cess of various resolutions. The resolution of this problem, which I call the idealization
paradox, can teach us about the kinds of idealizations used in science, how global space-
time structure encodes local spacetime structure, and the nature of Hawking radiation.

The paradox arises out of an argument of Hawking ([1975]), who derived the eponym-
ous radiation in a spacetime which represents a star that collapses into a black hole which,
once formed, is unchanging and exists for the rest of time. I will call this spacetime
collapse-Schwarzschild. In the same paper, Hawking also presented the first arguments
that the backreaction of the radiation on the spacetime will lead to a negative energy
flux into the black hole, thus causing the black hole to lose mass and evaporate. Given
that a black hole evaporates, Hawking reasoned, it is not well represented by collapse-
Schwarzschild. Instead, we should represent the black hole using a spacetime that models
an evaporating black hole. I will this spacetime evaporation-Schwarzschild. In other
words, the use of collapse-Schwarzschild in the derivation of Hawking radiation is an
idealization. Significantly, evaporation-Schwarzschild does not exhibit the same proper-
ties as collapse-Schwarzschild, and as I show in section 3.2, Hawking’s derivation cannot
be carried out in evaporation-Schwarzschild. We throw away the spacetime we were
using as a ladder to Hawking radiation, collapse-Schwarzschild, in favour of evaporation-
Schwarzschild, but the original derivation is not consistent with our new spacetime.

1 And a fortiori Wald ([1975]), as this is just a more mathematically rigorous version of Hawking’s
derivation.
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The thesis of this paper is that, according to Hawking’s and other mainstream deriva-
tions, Hawking radiation is inconsistent with black hole evaporation. It is possible to state
a sketch of the paradox (the details of which I will complete in the next sections) for a
derivation of Hawking radiation based upon a certain set of properties X :

The Idealization Paradox

1. (Hawking Radiation Derivation) If spacetime exhibits the set of properties X ,
then Hawking radiation occurs.

2. (Backreaction Arguments) If Hawking radiation occurs, then black hole evapora-
tion occurs.

3. (Inconsistency Claim) If black hole evaporation occurs, then spacetime does not
exhibit the set of properties X .

4. (Spacetime Postulate) Spacetime exhibits the set of properties X .

This set of premises is inconsistent. What justifies the first premise? Of Hawking’s
original calculations, Unruh ([2014]) writes they are “mathematically unimpeachable”,
and the other derivations discussed in this paper only improve upon the degree of math-
ematical rigour. Thus, the secure mathematical status of the derivations in question means
the first premise is hard to challenge.2 What about the second premise? Using global
definitions of energy one can derive a positive energy flux out toward infinity in the black
hole spacetimes, as I discuss further in section 2.2. Hence, assuming global energy con-
servation, one recovers a negative energy flux into the black hole, which is strong motiv-
ation for black hole evaporation. The third premise, Inconsistency Claim, is defended in
the bulk of this paper. So what about the fourth premise? It is hard to reject Spacetime
Postulate, because then we can’t use the derivation of the first premise to derive Hawking
radiation. So without the fourth premise, we lose our motivation for believing in Hawking
radiation. Hence, according to the derivation used in the first premise, Hawking radiation
is inconsistent with evaporation.

Notice that Hawking Radiation Derivation makes reference to a particular deriva-
tion.3 I call derivations to which the idealization paradox applies evaporation-inconsistent
derivations, and conversely those to which it does not evaporation-consistent deriva-
tions. Thus, I argue Hawking ([1975]), Fredenhagen and Haag ([1990]) and algebraic
approaches such as Dimock and Kay ([1987]), Dappiaggi et al. ([2011]) are evaporation-
inconsistent.

Due to the possibility of evaporation-consistent derivations (and resolutions to the
paradox for evaporation-inconsistent derivations), the idealization paradox does not im-
ply we ought to be skeptical about the existence of Hawking radiation or black hole
evaporation. To protect these phenomena from the paradox, one may claim that there

2 Unruh also calls the calculations “nonsense physically” due to the trans-Planckian problem, recently
discussed by philosophers Gryb et al. ([2021]). However, I ignore the trans-Planckian problem for the
purpose of this paper.

3 More precisely, a particular set of properties assumed in a derivation. If two derivations of Hawking
radiation assume the exact same properties, then we consider them equivalent for the purpose of this
paper.
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exists a derivation of Hawking radiation that uses physically reasonable properties and is
evaporation-consistent. Call this existence claim the consistency conjecture. The ‘physic-
ally reasonable’ qualification is necessary because a physically implausible evaporation-
consistent derivation (e.g. a derivation in a two-dimensional spacetime) should not alle-
viate our concerns. I expect the consistency conjecture is true.4 However, I will argue
that even if the consistency conjecture is true, the idealization paradox is still paradoxical
and must be resolved; the paradox identifies a mystery about how and why evaporation-
inconsistent derivations were successful.5

Some philosophers, such as Batterman ([2002], [2005], [2011], [2017]) and Morrison
([2012]), have argued that idealizations (construed as false descriptions) are essential for
our scientific theories and models to represent and explain reality: there is “something
deeply correct about the “unrealistic” idealization” (Batterman [2005], p. 237). Con-
versely, many have defended the view that idealizations are dispensable (for example,
Butterfield ([2011]), Menon and Callender ([2013]) and Norton ([2012]) and Palacios
([2019], [2022])). This attitude is captured in what Jones ([2006])6 has called Earman’s
principle: “no effect can be counted as a genuine physical effect if it disappears when the
idealizations are removed” (Earman [2004], p. 191).7

Applying Earman’s principle to Hawking radiation, dispensibalists will presumably
demand that the collapse-Schwarzschild idealization must be removed.8 This would
have the further benefit of helping to explain why new derivations of Hawking radiation
continue to be produced, despite Hawking’s original derivation being widely viewed as
successfully establishing the phenomenon. However, as we shall soon see, deidealizing
Hawking’s argument is not conceptually straightforward, lending some initial plausibility
to the essentialist claim. Nonetheless, a more careful look at recent research programmes
in the foundations of Hawking radiation also reveals several distinct options for the dis-
pensabilist.

Determining how one should resolve the paradox presented here will uniquely impact
our understanding of idealizations for at least two reasons. Firstly, the idealization un-
der consideration idealizes the global structure of entire physical evolutions, which con-

4 In the literature there are derivations which are plausible candidates for evaporation-consistency (e.g.
Jacobson ([1991]), Parikh and Wilczek ([2000]) and Visser ([2003])). I discuss these in section 6, but a
full analysis requires another paper, which the author intends to undertake in the future of the project.
See Curiel ([2023]) for an overview of the plethora of Hawking radiation derivations.

5 It is of course not logically necessary for a complete (consistent) theory of Hawking radiation to re-
spond directly to the paradox. Nonetheless, our current theory of Hawking radiation admits the incon-
sistency so, on our current theory, the paradox requires engagement. I thank an anonymous referee for
encouraging clarity on this point.

6 See also Fletcher ([2020]) and Landsman ([2013]).
7 A widely discussed example in this literature is the unrealistic use of infinite limits in statistical mechan-

ics to recover singularities in the thermodynamic theory of phase transitions. For a topical introduction
to the debate and bibliography see Shech ([2018], [2023]). Fletcher et al. ([2019]) and Shech ([2018],
[2023]) catalogue some of the philosophical issues that arise from the use of idealizations in physics;
and see Frigg and Hartmann ([2020]) and Potochnik ([2017]) and Frigg ([2022], sec. 11) for general
overviews on idealization in science.

8 Earman’s principle has also been applied to Hawking radiation by Gryb et al. ([2021]), in which the
authors note that the response to the trans-Planckian problem which models Hawking radiation as Gold-
stone bosons has only been carried out in stationary spacetimes, and it is an important open question
whether these models can be deidealized.
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trasts the more common-or-garden case of idealizing away certain details, for example
air-resistance, and then evolving under laws from initial conditions. Secondly, usually
idealized situations still obey the relevant laws; using the above example, a ball falling
without air-resistance is still obeys Newton’s laws. However, given one expects consist-
ent solutions to the semi-classical Einstein equation to require black hole evaporation in
the presence of Hawking radiation (due to backreaction arguments), it is not clear that the
idealized model, a non-evaporation spacetime, is still consistent with the relevant laws. It
remains to be established how best to treat these unique aspects of the present idealization.

My aim in this paper will be to establish the paradox for the three derivations and
then categorise possible dispensabilist responses to the paradox, each of which seeks
to deidealize the derivations. The plausible resolutions are associated with prominent
research programmes in the foundations of Hawking radiation, including an appeal to
quantum gravity, the approximation regime proposed by Hawking ([1975]), and what I
call “essential structure” derivations. I give an initial analysis of these approaches and
find their prospects of success vary significantly. In particular Hawking’s approximation
regime fails for his own derivation, but essential structure derivations represent a very
promising possible resolution. The lessons of the paradox vary across possible resolu-
tions, but initial hints suggest insight into: the nature of Hawking radiation, how global
physical properties encode local physical properties, and what sort of idealizations are
used in our best physical theories.

In section 2 I introduce the theory of black holes and quantum field theory on black
hole spacetimes that will be required. In section 3 I show that the idealization paradox
applies to Hawking’s derivation, and in sections 4 and 5 I show that the idealization para-
dox bites for Fredenhagen and Haag’s derivation and algebraic approaches respectively.
Finally, in section 6 I categorise and analyse resolutions to the paradox.

2 Primer on Quantum Field Theory in Black Hole Spacetimes

This section reviews the background material important to the claim that the derivations
I analyse are evaporation-inconsistent. I begin with black hole physics treated from the
global perspective (Hawking and Ellis ([1973]) and Wald ([1984])). I then introduce
quantum field theory on curved spacetimes which underwrites the particle concept in
Hawking radiation, before sketching the black hole evaporation heuristic. Readers famil-
iar with quantum field theory on curved spacetime may wish to skip to section 3.

2.1 Black Hole Spacetimes and Conformal Diagrams
For my purposes, a black hole spacetime is one that is asymptotically flat at past and
future null infinity (I ±) and for which there is a region of the spacetime causally isolated
from the rest of the spacetime for all time (J−(I +) ̸= M).9 The black hole region is the
causally isolated region (B = M − J−(I +)), and the event horizon bounds this region
(H E = Ḃ). There are in fact multiple inequivalent ways to define a black hole (Curiel
[2019]), but the one given here is standard in the formal and philosophical foundations

9 Heuristically, a spacetime is asymptotically flat at I ± iff it is approximately Minkowski at infinity,
approaches Minkowski smoothly, and is complete. For a formal definition see Wald ([1984], sec.
11.1), and see Landsman ([2021], sec. 10.3) for in depth discussion of these conditions.
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Figure 1: The conformal diagram for stellar collapse into a Schwarzschild black hole.
The shaded region represents matter undergoing collapse.

of general relativity. Birkhoff’s theorem states that any solution of Einstein’s vacuum
(Rab = Tab = 0) equations which is spherically symmetric10 in an open set V , is isometric
in V to part of the inextendible Schwarzschild solution (Hawking and Ellis [1973]). This
solution describes an uncharged, non-rotating black hole of mass m with the event horizon
at the Schwarzschild radius, r = 2m. A spacetime is said to be inextendible if there does
not exist a ‘larger’ spacetime into which there is a proper isometric embedding.

A spacetime is stationary if it admits a global timelike Killing vector field.11 Roughly,
a stationary spacetime does not change if one follows the integral curves of the Killing
vector field. Schwarzschild spacetime is stationary. However, physical black holes are
formed by some astrophysical process, such as stellar collapse, so the physical spacetime
will be neither stationary nor vacuum. Therefore, for a more realistic representation, we
analyse a spacetime that includes spherically symmetric, non-rotating and uncharged mat-
ter that collapses into a black hole. The collapse-Schwarzschild conformal diagram is the
resulting model, depicted in figure 1. This diagram will be important, so I identify some
of its distinctive features. Outside the matter the spacetime is isometric to Schwarzschild
by Birkhoff’s theorem, and thus is stationary. Inside the matter the metric will be com-
plicated and non-stationary. The spacetime is globally hyperbolic, meaning that it admits
a Cauchy surface and thus a well-posed initial value description.12 One such Cauchy sur-
face is denoted Σ in figure 1. Given any foliation into Cauchy surfaces, once one surface
has intersected the event horizon all subsequent surfaces also will. Thus, these models
describe black holes which exist forever after their formation.

The final version of a Schwarzschild black hole to consider is evaporation-Schwarzschild.
However, first we need Hawking radiation.

10 Admits the group SO(3) as a group of isometries, with the group orbits spacelike two-surfaces.
11 A Killing vector field is a vector field whose flow is a one-parameter group of isometries φt (φt : M →M

such that φ ∗
t g = g).

12 A Cauchy surface is one such that every causal curve (without an endpoint) intersects it exactly once.
Therefore, heuristically, a Cauchy surface registers some information about every point in spacetime,
and a globally hyperbolic spacetime is causally well-behaved. See also Geroch ([1970]).
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2.2 Quantum Fields in Black Hole Spacetimes
We now turn to how particles are defined in quantum field theory, and how non-stationary
spacetimes lead to particle creation. This is the core of Hawking radiation according to
the mainstream view. The idea is to quantise a classical field theory by defining a Hilbert
space, H , with respect to a time translation symmetry, giving a particle interpretation
of the field. Because time translation symmetries are generally local in curved space-
times, the particle interpretation is generally different in different regions, and this leads
to particle creation.

In more detail, one begins by modelling a massless complex-valued scalar field, Φ,
obeying the covariant wave-equation: gab∇a∇bΦ= 0. We can now take any of a variety of
paths to define a quantum field theory, but roughly one defines a Hilbert space by selecting
a subset of the solutions to the covariant wave-equation to represent physical solutions.13

In stationary spacetimes there is a preferred non-arbitrary way to select this subspace.
Namely, we can define a global time coordinate associated with a Killing vector field
that characterises time translation symmetry, and choose H to be the space of positive
frequency solutions with respect to this time coordinate (exactly as in Minkowski space-
time for an inertial time coordinate). By non-arbitrarily fixing H , we non-arbitrarily fix
a particle interpretation for our QFT.14 Thus, there is a preferred, global definition of a
particle in stationary spacetimes. However, in general curved spacetimes there will not
be a time translation symmetry which we can exploit to define positive frequency solu-
tions. Therefore, there will not exist a non-arbitrary way to define H ; so there will be no
unique, global definition of a particle. This applies to collapse-Schwarzschild, which is
non-stationary.

The central idea of Hawking radiation is that the failure of a spacetime to yield a
global preferred particle interpretation leads to particle creation. There are local Killing
vector fields at past infinity and future infinity but these differ due to non-stationarity in
the bulk region of the spacetime. Therefore, given a vacuum state in the past one has
particle content in the future. This is the basis of the Hawking ([1975]) derivation of
Hawking radiation. The details are saved for section 3.1, but in summary: we define
H ± on I ± and then choose Φ such that the state is vacuum on I −; by calculating the
unitary operator U : H − → H +, we can determine the particle number for Φ on I +

with respect to H +, and one finds that there is particle creation. Specifically, a thermal
spectrum of particles is found at I +. This leads to our next topic, evaporation.15

13 For example, following Wald ([1995], p. 38), first define a state space for a quantum theory called a
“one-particle structure”. The covariant wave equation admits a symplectic vector space of complex-
valued solutions, (S C,Ω), where Ω is the symplectic structure on the space of solutions S C. Define
the Hilbert space, H , representing physical solutions by selecting a subspace of solutions such that:
(i) The “inner product” (scare quotes because it is not positive definite on S C) (y1,y2) = −iΩ(ȳ1,y2)
is positive definite on H , (ii) span(H ,H̄ ) = S C, and (iii) for all z1 ∈ H and z2 ∈ H̄ , (z1,z2) = 0.
Importantly, there will many choices of H that satisfy these conditions. The Hilbert space of the full
QFT will then be FS(H ), the symmetrised Fock space constructed from H .

14 Given a positive frequency subspace with respect to a Killing vector field, time translating any state
along the Killing vector field will recover a positive frequency state. Thus, the energy of the particle
will always be positive when transformed by a time translation symmetry, as we desire for a particle
interpretation. See Halvorson and Clifton ([2002], pp. 3–4) for a brief discussion.

15 See Arageorgis et al. ([2002]) for a challenge to the possibility of formulating unitarily implementable
dynamics for quantum field theories on generic, curved spacetimes.
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Figure 2: The conformal diagram representing the evaporation of a Schwarzschild black
hole formed by collapse. The mass of the black hole is shrinking over time, and after the
evaporation, the spacetime is locally Minkowski. Neither Σ1 nor Σ2 is a Cauchy surface.

Black hole evaporation cannot be directly inferred from the claim that black holes ra-
diate, because they do not radiate like normal black bodies: no part of Hawking radiation
lies in the causal future of the black hole. Instead, evaporation is thought to occur due to
the backreaction of the radiation and, without a full theory of quantum gravity, this inter-
action between the spacetime and the radiation can’t be accounted for in full rigour. One
can approximate the backreaction in two ways: either by modelling the radiation as a flux
going out to infinity and using a conservation law to infer a flux down over the horizon,
or using the semi-classical Einstein equation, Gab = 8π⟨Tab⟩. The consensus view is that
Hawking radiation implies a black hole loses mass-energy on pain of a “drastic violation
of energy conservation”(Fredenhagen and Haag [1990], p. 282).16

The above approaches imply the black hole will radiate away all of its mass in finite
time. The semi-classical approximation is expected to break down at late times, when the
radius of the black hole is of the order of the Planck length. Beyond this point there much
disagreement about the description of Hawking radiation and evaporation. However, the
consensus has varied very little from Hawking’s original heuristic: “there is not much
it can do except disappear altogether.” (Hawking [1975], p. 219) Thus, black holes are
usually supposed to evaporate entirely, with the spacetime in the region after evaporation
isometric to a region of Minkowski spacetime. The conformal diagram for this spacetime,
which I call evaporation-Schwarzschild, is depicted in figure 2.

Since this spacetime will be central to my discussion, I will highlight a few important
features of it. It is very different from collapse-Schwarzschild: the metric in the region
exterior to the collapsing matter is not Schwarzschild, it is not globally hyperbolic, it does
not admit a timelike Killing vector field and it has a naked singularity, among other things.
A consequence of Hawking radiation is that collapse-Schwarzschild is the wrong space-
time to describe the target black hole; it is an idealization. Given Hawking radiation, an
uncharged, non-rotating black hole should be described by evaporation-Schwarzschild.

16 See Wald ([1995], sec. 7.3) for a treatment of the energy flux approach, and Wallace ([2018]) for a
general overview of results in the semi-classical Einstein equation approach.
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And yet, Hawking derived the eponymous radiation in collapse-Schwarzschild, in spite
of the fact that many properties of collapse-Schwarzschild that are used in Hawking’s
derivation do not hold in evaporation-Schwarzschild; this threatens an essential idealiza-
tion. Thus we arrive at the paradox discussed in the introduction. The rest of this paper
defends the claim that throwing away the ladder of collapse-Schwarzschild really leads to
inconsistency.

3 Idealization Paradox in Hawking’s Derivation

3.1 Sketch of Hawking’s Derivation
To understand exactly what goes wrong for Hawking’s derivation in evaporation-Schwarzschild,
we will need a more precise account of it. I give this here, stripped of unnecessary details.

In outline, we wish to compare the modes of a quantum field in the distant past with
those in the distant future. Consider collapse-Schwarzschild spacetime17 containing a
massless complex-valued scalar quantum field Φ (obtained as discussed above). Let { fi}
be a complete basis of solutions, so that we may write: Φ = ∑i{ fiai + f̄ia†

i }, where ai

and a†
i are the annihilation and creation operators corresponding to the ith solution. We

choose { fi} to be positive frequency solutions with respect to a time parameter defined
by a timelike Killing vector field asymptotically close I −.

We can also describe Φ as a decomposition into solutions at I + and on the event
horizon H E . At I + we can again form a Hilbert space generated by positive frequency
solutions, {pi}, with respect to a time parameter defined by a timelike Killing vector field
on I +. The modes on H E play no role in the derivation. bi, b†

i are the annihilation and
creation operators for the pi modes. Because the spacetime is globally hyperbolic, we can
express {pi} and bi as linear combinations of { fi} and { f̄i} and ai and a†

i respectively,

pi = ∑
j
{αi j f j +βi j f̄ j}, bi = ∑

j
{ᾱi ja j − β̄i ja†

j} (1)

Stipulate that the field is in the state |0−⟩ defined as the vacuum state at early times:
ai|0−⟩= 0 for all i. On I +, b†

i bi has expectation value

⟨0−|b†
i bi|0−⟩= ∑

j
|βi j|2 (2)

which will be non-zero because we have different Killing vector fields defining our Hilbert
spaces. Thus, to determine the expected number of particles in each mode, one needs to
determine the coefficients βi j.

For this calculation, Hawking writes the modes of Φ in terms of advanced and retarded
Eddington-Finkelstein coordinates:

v = t + r∗, u = t − r∗, r∗ = r+2m log | r
2m

−1| (3)

Hawking considers a mode pi on I + at late retarded time u of frequency ω , defined
with respect to retarded time, pω(u). He propagates this mode back along the event

17 Hawking also derived the radiation for charged, rotating black holes, but I focus on the simplest case.
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Figure 3: Conformal diagram used to visualise the mapping of modes of a quantum field
on I + to modes on I −, which pass through the non-stationary region of collapsing
matter.

horizon through the non-stationary region of the collapsing star onto the I − (see figure
3). The form of the mode on I − is determined by connecting the mode to the event
horizon by a null vector normal to the horizon, and parallel transporting this vector onto
I −.18 From the form of the mode on I −, one can read off the β coefficients. Thus
we arrive at Hawking’s discovery: the expected particle number at frequency ω at I + is
that of a black body with temperature, in geometric units, of κ

2π
, where κ is the surface

gravity of the black hole. The black hole is seemingly radiating at what is now called the
Hawking temperature.

Our task now is to investigate why this derivation cannot be carried out in evaporation
spacetime. I begin by identifying a globally hyperbolic sub-spacetime of evaporation-
Schwarzschild that might plausibly admit Hawking’s derivation. I then show that requisite
structure used in Hawking’s derivation is not present in evaporation spacetimes and so
Hawking’s derivation is evaporation-inconsistent.

3.2 Hawking’s Derivation Fails in Evaporation-Schwarzschild
Our first task is to find the region of evaporation-Schwarzschild in which to attempt to
recover Hawking radiation. In quantum field theory on curved spacetimes, global hy-
perbolicity is nearly always assumed because this guarantees an initial value problem in
the following sense: given an initial data surface in GR, there exists a unique (up to iso-
metry) spacetime that is the maximal globally hyperbolic development (MGHD) of the
data surface.

The initial data surface will be a Cauchy surface for this spacetime, and determines
the entire spacetime. Moreover, it is clear that derivations of Hawking radiation which
map modes in the past to modes in the future (as Hawking’s and Fredenhagen and Haag’s
do) will require global hyperbolicity. This is because the state of the field in the past

18 In fact Hawking conducts the calculation on the past horizon of maximally extended Schwarzschild
and argues that the conclusions would be the same on I −.
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Figure 4: Left: The two globally hyperbolic regions of evaporation-Schwarzschild. The
region below (a) is the causal past of the black hole, and the region below (b) is the MGHD
of I −. Centre: The casual past of the black hole, J−(B). Right: The MGHD of I −,
D(I −).

must determine the state of the field in the future. However, evaporation-Schwarzschild is
not globally hyperbolic. Therefore, we must find a region of evaporation-Schwarzschild
which is globally hyperbolic and has sufficient spacetime structure to admit Hawking’s
derivation of Hawking radiation. There are two reasonable sub-spacetime regions of
evaporation-Schwarzschild which are globally hyperbolic: a) the causal past of the black
hole region (J−(B)), or b) the MGHD of I −, (D(I −)). These two embedded regions
are demarcated in figure 4.

Which is more suited to deriving Hawking radiation? It is MGHD I −. To see this,
consider the causal past of the black hole spacetime. It is a spacetime such that, if a light
ray were admitted at a point, it could reach the black hole before it evaporates completely.
Near the evaporation event this is a tiny area, so we have deleted most of the spacetime
we need for the derivation.

More technically, ‘future null infinity’ in the causal past of the black hole will be the
boundary of the causal past, J̇−(B). There will not be a timelike Killing vector field
on this boundary; therefore, there will be no preferred time parameter with respect to
which we can define a particle interpretation. This is because the boundary bisects the
non-stationary exterior region of the spacetime. This also means the boundary won’t be
asymptotically flat; instead, it ends at the naked singularity and so it will contain a region
of arbitrarily large curvature. Clearly, the causal past of the black hole region is useless
for deriving Hawking radiation.

MGHD I − on the other hand does not suffer these problems, and includes the portion
of I + where all Hawking radiation will propagate to. Therefore this is the appropriate
globally hyperbolic spacetime region to use.19 So the question of this section is precisely
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stated as: which of the necessary assumptions for Hawking’s derivation of Hawking radi-
ation cannot be carried over into MGHD I −?

There are two important differences between MGHD I − and collapse-Schwarzschild:
the exterior solution is not Schwarzschild and the spacetime is not stationary. How do
these changes affect the derivation? Firstly, Hawking’s derivation makes use of ingo-
ing and outgoing Eddington-Finkelstein coordinates, defined in equation (3), which are
specified for a particular mass m. This constant mass term is unavailable in evaporation
spacetimes. Instead, one must analyse how modes defined with respect to coordinates that
cover MGHD I − behave on an evaporation metric, but nothing like this is carried out for
Hawking’s derivation.

Next, to calculate the form of modes on I −, Hawking exploits an isometry with the
maximally extended Schwarzschild solution, and analyses modes that propagate onto the
past horizon (see footnote 18). When the exterior solution is no longer Schwarzschild
this isometry can not be used. Furthermore, and perhaps most strikingly, the failure of
stationarity implies that the propagation of the modes back along the horizon will induce
an evolution of the modes different to that calculated in collapse-Schwarzschild. Indeed,
the normal null vector on the horizon which is used to compute the backwards evolu-
tion of the modes will have a different form in MGHD I − as compared with collapse-
Schwarzschild, precisely because the metric is different and the horizon area is changing.
Finally, the non-stationarity will affect the scattering of the modes by the gravitational
field.

Admittedly, the model of evaporation used here, evaporation-Schwarzschild, is heur-
istic only and not generally believed to be a realistic model of black hole evaporation.
One may wonder whether in more realistic models of black hole evaporation the prob-
lems listed here go away. It is in fact the opposite, things are worse in realistic models.
For example, in explicitly computed models Schindler et al. ([2020]) show that, as well as
the above worries still holding true, there is also no event horizon or Killing horizon for
an evaporating black hole. Thus there will be no null vector normal to the horizon at all;
the very structure Hawking uses to compute the form of the modes on I − is non-existent
in evaporation spacetimes. So, in realistic evaporation models, more of the spacetime
structure exploited by Hawking to derive the radiation is lost.

Hawking himself notes that the “negative energy flux will cause the area of the event
horizon to decrease and so the black hole will not, in fact, be in a stationary state” ([1975],
p. 219). He accepts this is a problem, but claims to have a solution, as one can approximate
the black hole as “quasi stationary”. In section 6.2 I show that this approximation regime
does not, in fact, save Hawking’s derivation because one cannot use the regime to recover
the necessary global structure. Therefore, the problems remain.20

A reader familiar with the vast literature of derivations of Hawking radiation may at
this point be thinking of their preferred derivations, and be under the impression that they
do not fall victims to the above challenges. I have no objection to such claims. Indeed

19 It can be shown that neither the causal past of the black hole nor MGHD I − is conformally equivalent
to collapse-Schwarzschild, so proofs of the conformal equivalence of the Hawking temperature (e.g.
Jacobson and Kang ([1993])) do not help resolve the paradox.

20 One interpretation of what’s at stake here is the thermality of Hawking radiation, which dovetails with
similar arguments associated with the information paradox. A serious discussion of this point would
require an extended analysis. I thank an anonymous referee for emphasising this aspect of the problem.
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I will present certain derivations as the best candidates currently available to resolve the
paradox for Hawking’s derivation in section 6.3. Nevertheless, this is not a problem for
my thesis as I am focused on particular derivations of Hawking radiation, in this case
Hawking’s original derivation. Thus, given the amount of structure exploited by Hawking
which does not carry over to MGHD I −, one must accept the conclusion that the de-
rivation of Hawking radiation found in Hawking ([1975]) falls victim to the idealization
paradox. That is to say, remarkably, Hawking’s derivation is evaporation-inconsistent!

Fredenhagen and Haag ([1990]) construct their derivation to avoid a different prob-
lematic assumption in Hawking’s derivation, the geometric optics approximation. Thus,
Fredenhagen and Haag’s derivation is what most consider to be the watertight derivation.
It is to this that I turn next.

4 Idealization Paradox in Fredenhagen and Haag’s derivation

Fredenhagen and Haag’s derivation is similar to Hawking’s in that it defines the state
outside the black hole at some early time and maps this state to some state at late time.
However, it differs in a few important respects. Firstly, the entire calculation is performed
on the region of spacetime after the stellar matter has passed the event horizon. Secondly,
they use a ‘detector’ at asymptotically late times to model the radiation. Thirdly, they
perform the calculation by propagating the detector along the timelike Killing vector field
in the exterior region. I sketch this derivation next, and in section 4.2 show that it is also
evaporation-inconsistent.

4.1 Sketch of Fredenhagen and Haag’s Derivation
This derivation, like Hawking’s, takes place on collapse-Schwarzschild. The region ex-
terior to the event horizon in Schwarzschild can be covered by the coordinates (t,r,θ ,φ),
where we call t Schwarzschild-time, and define τ-time coordinates, (τ,r,θ ,φ) where
τ = t + r∗− r = v− r, for v and r∗ defined in (3). τ is approximately Schwarzschild-time
near spacelike infinity, and becomes infinitely negative near the horizon. Let r = rs(τ)
define the surface of the collapsing star, with rs(0) = r0 the Schwarzschild radius, such
that the star crosses the Schwarzschild radius at τ = 0.

As before, let Φ be a massless complex-valued scalar quantum field which satisfies
the covariant wave equation. Fredenhagen and Haag model a detector in a spacetime
region O with an observable, Q∗Q, which is the counting rate given by ⟨Q∗Q⟩, where
Q =
´

Φ(x)h(x)
√

|g|d4x for a test function h(x) that has support in O. They ‘place’ the
detector at a large radius at the τ-time for which the collapsing star crosses the horizon (i.e.
h has support around (0,R,θ0,φ0) for R ≫ r0). The detector is then translated along the
timelike Killing vector field of the Schwarzschild metric. We are interested in the counting
rate of the detector at asymptotically late times (given by QT (T → ∞)), as displayed in
figure 5, in which a collapsing star and the time-translated detector are displayed in τ-time
coordinates.

The counting rate is determined by the data on a Cauchy surface in the past of the
late time detector. In the asymptotic limit, T → ∞, the contributing data on the Cauchy
surface decomposes into a sum of two wave packets, shifting asymptotically to r → ∞

and r → r0. Wald ([1995], pp. 159–62) explains this fact by noting that in maximally
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Figure 5: Set up of Fredenhagen and Haag’s derivation, in which a detector Q is propag-
ated along the timelike Killing vector field to asymptotically late times, QT (T → ∞).

future singularity r = 0

past singularity r = 0

i0 i0

i−

i+

i−

i+

I −

I + I +

I −

QT

Figure 6: Decomposition of modes contributing to detector response of maximally exten-
ded Schwarzschild.

extended Schwarzschild, any mode in the region exterior to the black hole will decompose
into modes on the past horizon and I −. Propagating this decomposition along Killing
vector fields infinitely far will place modes infinitely close to the future horizon and spatial
infinity, as depicted in figure 6. By isometry, we can draw the same conclusion for the
exterior of collapse-Schwarzschild.21 This fact can also be seen as a consequence of the
Schwarzschild potential pushing modes onto the horizon and out to infinity.

Assuming the state in the distant past is vacuum, the contribution to the counting rate
from spatial infinity is zero. The contribution from the wave-packet that accumulates at
the horizon is determined by the short-distance behaviour of the quantum field. Without
concerning ourselves with the details, the authors assume the leading singularity in the
short distance behaviour has a particular form that is implied by the Hadamard condition.
Armed with this assumption, Fredenhagen and Haag show that the modes on the horizon
contribute a thermal spectrum to the counting rate of the detector at asymptotically late
times, with temperature given by the Hawking temperature.

21 This inference is not in fact secure because the MGHD of the spacetime region exterior to the col-
lapsing matter is not maximally extended Schwarzschild, but I ignore this difficulty here as it does not
undermine Fredenhagen and Haag’s calculation but only Wald’s explanation of the behaviour of the
wave-packet decomposition.
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4.2 Fredenhagen and Haag’s Derivation Fails in
Evaporation-Schwarzschild

We are again interested in whether we can deidealize this derivation: can the assumptions
necessary to carry out Fredenhagen and Haag’s derivation be carried over to MGHD I −?

The most prominent difficulty for the derivation is that it relies on the stationarity of
the exterior metric. The detector is time translated along the Killing vector field of the
Schwarzschild metric. This sends the modes on the Cauchy surface that contribute to the
counting rate to spatial infinity and onto the horizon. Moreover, the behaviour of the mode
decomposition as the detector is time translated is analysed on the maximally extended
Schwarzschild spacetime and, following Wald, arises due to the global Killing field that
is timelike in the exterior region.

In MGHD I − there are no such timelike Killing vector fields and there is no isometry
with maximally extended Schwarzschild because the size of the black hole is changing.
Indeed, there do not even exist approximate Killing vector fields on the entire spacetime,
whatever notion of ‘approximate’ one might try to use. MGHD I − contains a large
mass black hole at τ = 0, and by the evaporation event it contains a negligible mass black
hole. This is clearly a radical change and so the spacetime is in no sense stationary. The
behaviour of modes under the time translation symmetry of collapse-Schwarzschild was
the core of the derivation, and this is simply not available in evaporation-Schwarzschild.

In addition, there is a further difference between the two spacetimes relevant to Fre-
denhagen and Haag. The global time function on MGHD I − does not extend to in-
finity into the future, whereas it is future infinite on collapse-Schwarzschild. The lack
of a future-infinite time coordinate is a problem for Fredenhagen and Haag’s derivation
because, whereas Hawking’s asymptotic time assumption was realised by future null in-
finity, Fredenhagen and Haag translate their detector along a timelike worldline. Every
timelike worldline will reach the Cauchy horizon of MGHD I − in a finite parameter
distance, so one cannot take the asymptotic time limit. This limit was essential to Freden-
hagen and Haag’s derivation as it pushed the modes asymptotically close to the horizon,
forcing them into the trans-Planckian regime. Fredenhagen and Haag can then describe
the modes by their short distance behaviour. Without this limit, we cannot be sure of the
derivation.

The Fredenhagen and Haag derivation cannot be carried out, in any obvious fashion,
in evaporation-Schwarzschild. The idealization paradox thus applies to this approach as
well: it too is evaporation-inconsistent. I now turn to algebraic approaches.

5 Idealization Paradox in Algebraic Approaches

5.1 Sketch of the Algebraic Derivation
I will not go into any sort of detail in the sketch of algebraic approaches, as they are on the
one hand very mathematically heavy, but on the other very conceptually simple. Algeb-
raic approaches function by showing a particular state is the uniquely natural stationary
Hadamard vacuum state on the collapse-Schwarzschild spacetime, and that this state is
thermal at the Hawking temperature at future null infinity.

Algebraic QFT begins with a ∗-algebra of observables A . A state ω is a completely
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positive map from A to C, ω : A → C. For self-adjoint operators the map is real val-
ued. We fix states by demanding they obey certain conditions, such as being vacuum.22

Conversely, we can discover facts about states by assessing what conditions they obey,
for example a state is thermal with respect to a given Hamiltonian if it obeys the KMS
condition.23 As usual, we demand that physical states are Hadamard. Finally, one can
define the algebra of observables for a scalar field by demanding that the functions used
to smear the observables solve the covariant-wave equation.

One finds (Dimock and Kay ([1987]), Dappiaggi et al. ([2011])) that the uniquely
natural stationary Hadamard vacuum state on the collapse-Schwarzschild spacetime is
the Unruh vacuum. The Unruh vacuum has the property of having no particles near I −,
but being thermal at the Hawking temperature near I +, with a flux going out to infinity.
Thus, one claims that the black hole is emitting Hawking radiation.

This sketch is sufficient to analyse the idealization paradox for algebraic approaches,
to which I turn now.

5.2 Algebraic Approaches Fail in Evaporation-Schwarzschild
Algebraic approaches are the most mathematically rigorous formulation of Hawking ra-
diation. However, they clearly fail to survive the move to evaporation-Schwarzschild, or
MGHD I −.

The spacetime we are now interested in is not collapse-Schwarzschild, and not even
approximately collapse-Schwarzschild. Therefore, the proof of the unique naturalness
of the Unruh vacuum simply does not apply; the Unruh vacuum is uniquely natural on
collapse-Schwarzschild, with no implication for the uniquely natural vacuum state on
MGHD I −. Moreover, given that one condition on the Unruh vacuum is that it is sta-
tionary, and collapse-Schwarzschild is not stationary, clearly the Unruh vacuum will be
the inappropriate vacuum state for MGHD I −. We can thus conclude that the idealiza-
tion paradox applies to the algebraic approaches.

To conclude, we have three different derivations, each of increasing mathematical
rigour, and each with open questions about how they can actually claim to be establishing
Hawking radiation in physically realistic models.

6 Paths Toward a Resolution

Physics uses idealizations all the time. The idealization used in the derivations here is only
particularly striking because it leads to a paradox, rendering the argument each derivation
presents for Hawking radiation inconsistent. This paradox is clearly unacceptable, and so
we should find a resolution. One aim of this paper, the aim taken up in this section, is to
categorise and assess solutions to the idealization paradox. The most natural resolutions
are those that deidealize the derivations, to show how they can proceed in evaporation
spacetimes. Three sub-categories of deidealization solutions are presented below:

• Quantum Gravity (section 6.1)

22 In curved spacetimes, the algebraic approach defines a vacuum as a state that is Gaussian and pure (see
Kay and Wald ([1991]) for details).

23 See Bratelli and Robinson ([1987], p. 13) for a definition.
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• Approximation Regime (section 6.2)

• Essential Structure (section 6.3)

The first argues that quantum gravity is needed to describe black hole evaporation and thus
resolve the paradox. The second looks to find an approximation regime between collapse-
Schwarzschild and evaporation-Schwarzschild. Specifically, I formalise and analyse an
approximation regime suggested in Hawking ([1975]). The third argues that one can
weaken the assumptions of the derivations, such that each derivation can derive Hawking
radiation whilst assuming only some essential spacetime structure that is present in both
evaporation and non-evaporation spacetimes.

I find that quantum gravity holds no prospects for resolving the paradox. I find Hawk-
ing’s approximation regime achieves varying degrees of success for the different deriv-
ations, but even where there are hints of success more work is needed. Finally, I find
that essential structure derivations constitute a very fruitful research direction which has
already been taken up in Barcelo et al. ([2011a],b) and Visser ([2003]). Indeed, this work
already points towards deep lessons about the nature of Hawking radiation.

The derivations analysed in this paper, as discussed in the introduction, are not ex-
haustive. So, plausibly, other derivations don’t face the paradox (indeed I will discuss
some examples in section 6.3), and such derivations are to be preferred assuming one
seeks a consistent physical theory. Given a paradox-free derivation, the consistency con-
jecture will be true, and so the phenomenon of Hawking radiation will be insulated from
the paradox.

However, this still leaves us with an idealization paradox for at least some derivations.
The paradox still needs to be resolved for these derivations because there are important
lessons available in at least three dimensions: 1) the relationship between evaporation-
consistent and -inconsistent derivations will inform our physical interpretation of Hawk-
ing radiation; 2) different de-idealizations connote different understandings of the ideal-
ization used, for example: an essential structure deidealization (section 6.3) suggests a
reduction and no idealized global structure, but an approximation regime (section 6.2)
suggests no reduction and idealized global structure; 3) it is historically important how
and when such a scientifically revolutionary piece of physics was rendered consistent.

I do not consider here resolutions which may be collected under the name deidealiza-
tion pessimism, examples of such views include: embracing evaporation-inconsistent de-
rivations as essential idealizations (aligning with Batterman ([2002], [2005], [2011])), and
denying the phenomenon of either black hole evaporation or Hawking radiation. Such ap-
proaches would resolve the paradox, but offer a somewhat pyrrhic victory by respectively
rejecting either Earman’s principle, or the consensus in black hole physics.24 Instead, the
categories I propose below (in sections 6.1, 6.2 and 6.3) help to distinguish different ways
a derivation may be deidealized to avoid the paradox.

6.1 Quantum Gravity
It is widely believed that a quantum theory of gravity will resolve the black hole informa-
tion paradox.25 This is because the consensus in the physics community is that a quantum
24 Wallace ([2018], [2019]) reviews the arguments in favour of this consensus.
25 For taxonomies of such proposals see Belot et al. ([1999]) and Unruh and Wald ([2017]).
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theory of gravity will be required to describe the final stages of black hole evaporation
(e.g. Rovelli and Vidotto ([2014])). Moreover, it is often claimed that the early stages
of black hole evaporation also cannot be fully described without a quantum theory of
gravity, as we can’t accurately describe the backreaction of Hawking radiation on the
metric. Therefore, a reasonable first suggestion is to expect quantum gravity to resolve
the idealization paradox. However, I argue this proposal cannot succeed.

The central idea of a quantum gravity resolution to the idealization paradox is that the
physics of spacetimes and Hawking radiation occurs in the semi-classical limit, whereas
black hole evaporation occurs in a full quantum gravity description. One would argue that
this allows one to reject the Inconsistency Claim, premise 3 of the idealization paradox
presented in the introduction, which asserts that black hole evaporation leads to the rejec-
tion of assumptions required for the derivation of Hawking radiation. In order to reject
the Inconsistency Claim, one may argue that because black hole evaporation is a quantum
gravity phenomenon, it is not describable in the semi-classical limit and as such tells us
nothing about the properties of spacetime in the semi-classical limit. Thus one cannot
infer from evaporation to the breakdown of the semi-classical limit spacetime properties
required for Hawking radiation. Thus, by acknowledging the need for a quantum theory
of gravity to describe black hole evaporation, we can escape the paradox.

Unfortunately, quantum gravity does not license us to reject the Inconsistency Claim.
To see this, note that any quantum gravity theory of black hole evaporation must be able
to represent: i) a black hole of given mass-energy, and ii) the mass-energy of a black hole
being reduced in the process of evaporation. If the mass-energy of a black hole is not
reducing then one cannot claim to be describing black hole evaporation, it is some other
phenomena. This is certainly a possibility, but such a theory would constitute evaporation
scepticism by claiming Hawking radiation does not lead black holes to lose mass-energy.

Given these minimal representational requirements, the state in our quantum theory of
gravity will represent a black hole of mass m1 in the semi-classical limit at some earlier
time, and a black hole of mass m2 in the semi-classical limit at some later time, where
m1 > m2. This immediately violates stationarity, one of the properties used in the de-
rivations of Hawking radiation discussed here. Therefore, even a completely quantum
gravity model of evaporation implies the breakdown of properties required for derivations
of Hawking radiation in the semi-classical limit. Hence we are not licensed to reject the
Inconsistency Claim.

Why does the black hole information paradox admit a quantum gravity resolution
whereas the idealization paradox does not? The difference is that there is no black hole
information paradox until the evaporation event26 because only then does one have to
accept the information has vanished from the universe. Moreover, there is no minimal
representational requirement on the evaporation event so we cannot anticipate any aspect
of the quantum gravity description. On the other hand, the idealization paradox arises
without the need to consider the evaporation event, due to the failure of properties in the
entire exterior region such as stationarity. We can then impose our minimal condition on
evaporation far before the evaporation event, and this leads to the paradox.

26 In the traditional sense, though not in the Page-time paradox sense; see Wallace ([2020]).
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6.2 Approximation Regime
Perhaps the derivations considered here can be carried out in some appropriate approx-
imation regime: One would find some spacetime region in collapse-Schwarzschild which
looks approximately like some corresponding region of evaporation-Schwarzschild. One
could then hope to carry out the derivation using this approximating region of collapse-
Schwarzschild, then infer the derived radiation back onto evaporation-Schwarzschild.
Thus, one would derive the existence of Hawking radiation in the evaporation spacetime.
Hawking ([1975], p. 219) proposed such a resolution to the paradox: “it is a reasonable
approximation to describe the black hole by a sequence of stationary solutions and to
calculate the rate of particle emission in each solution.”

The regime is justified as follows: The rate of change of the mass of the black hole
will (for masses larger than the Planck mass) be much slower than the time taken for
light to propagate to a region that can be modelled as approximately flat.27 Thus, one can
approximate the variable mass black hole spacetime as a sequence of stationary regions
and calculate the rate of particle emission in each solution, avoiding the non-stationarity
issues.

This is a very intuitive picture if one imagines a black hole as a compact three-
dimensional object that evolves in time and produces Hawking radiation via a local mech-
anism. However, as we have seen, the derivations of Hawking radiation discussed above
use global spacetime structure, including the propagation of modes through the collapsing
matter region (Hawking [1975]) and timelike Killing vector fields with time parameter ex-
tended into the infinite future (Fredenhagen and Haag [1990]). Consequently, we should
not assume that the slow rate of evaporation is sufficient to guarantee the derivations are
unaffected; indeed, to do so would be negligent of philosophers of physics seeking to
understand the derivations, idealizations, and phenomena at hand.

To give Hawking a more charitable treatment, let me propose a more promising way to
formalise this approximation. We want to identify regions of evaporation-Schwarzschild
which are approximated by regions of collapse-Schwarzschild so that the derivations can
be carried out using collapse-Scwharzschild. The best candidate regions are the parts
of spacetime which Hawking radiation propagates through as it escapes to future null
infinity. Figure 7 illustrates the structure of the regions (following Wald ([1995], p. 178)).
We model photons carrying energy away from the black hole to I + and a negative energy
flux propagating over the horizon. This is symbolised by two red arrows emerging from a
single point, one pointing over the event horizon, the other out to future null infinity. Two
such photon emission events are displayed in each conformal diagram in figure 7. The
shaded region between the two photon emission events in evaporation-Schwarzschild is
quasi-stationary. Thus the corresponding shaded region of the collapse-Schwarzschild
spacetime of mass m is approximately isometric to the shaded region of evaporation-

27 Initial work on modelling ‘infinity’ at a finite distance so asymptotic flatness can be defined for realistic
sub-systems of the Universe can be found in Ellis ([2002], p. 5). Such modelling frameworks will likely
be helpful for rigorously analysing approximation regimes such as the one proposed here. However,
finite-infinity models are tangential to our current concern because I accept the standard presumption
of the literature that astrophysical black holes are well modelled by collapse-Schwarzschild. If one
demands finite-infinity models, it is then necessary to show how derivations of Hawking radiation look
in these deidealized models, and what the relationship of such finite-infinity models to the models
discussed in this paper is.
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Figure 7: The two shaded regions are approximately isometric.

Schwarzschild, where m is the mass of the black hole according to the quasi-stationary
region.28

I denote such a quasi-stationary region of evaporation-Schwarzschild as RQS and
a corresponding approximately isometric stationary region of a collapse-Schwarzschild
spacetime as RS. The regime will work by using RS instead of RQS to derive Hawking
radiation. One then infers the same result, to some degree of approximation, in the ap-
proximately isometric RQS. Repeating this for every RQS should describe the Hawking
effect in evaporation-Schwarzschild.

This regime will face two central problems. First, for each of the derivations RS will
have insufficient structure to derive Hawking radiation because it is a smaller extendable
subspacetime. Thus it will be necessary to use the MGHD of RS. Problematically, al-
though RQS and RS are approximately isometric, the corresponding MGHD for each will
be very different. So although it is clear we can use RS to draw approximately correct
conclusions about RQS, it is less clear that we can use the MGHD of RS to draw approx-
imately correct conclusions about RQS. One must therefore justify using the MGHD of
RS rather than only the approximately isometric region, RS, despite the different global
structure.

Second, even if one can justify using the MGHD of RS to draw inferences about RQS,
neither RQS nor RS contain Cauchy surfaces for evaporation-Schwarzschild or collapse-
Schwarzschild respectively. This is obvious in figure 7 where, for example, a massive
particle can travel from i− and reach the singularity and never record data on the quasi-
stationary surface. The same is true for RS in collapse-Schwarzschild. This means that
neither RQS nor its approximately isometric stationary sibling RS determine the entirety
of their respective spacetimes. In fact, the past domain of dependence for RQS does not
extend outside of RQS, and so the past is significantly underdetermined.

Why can’t we just select a region which does contain a Cauchy surface? Because this

28 The mass of the slices will have to be modelled by the Bondi mass, as this is defined at future null
infinity whereas the ADM mass can only be defined at spacelike infinity.
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region would not be isometric, even approximately, to any region of collapse-Schwarzschild,
and so we won’t be able to use approximation to justify performing the derivation on
collapse-Schwarzschild and transferring the result of the derivation back over to evaporation-
Schwarzschild. Given this, let us see how each of the derivations fair.

Consider Hawking’s derivation: it depends on global spacetime structure in the sense
of an infinite past prior to collapse that is stationary, and an infinite future after collapse
that is stationary, and a non-stationary intervening period. He writes: “To understand
how the particle creation can arise from mixing of positive and negative frequencies, it
is essential to consider not only the quasi-stationary final state of the black hole but also
the time-dependent formation phase." (Hawking [1975], p. 204) RS contains none, or at
most very little, of this requisite structure. For example, any given RQS need not intersect
the collapse region; indeed, the majority not, as demonstrated in figure 7. Thus, the
approximately isometric region RS will also not intersect the non-stationary collapsing
matter and so will have insufficient structure to carry out Hawking’s derivation.

In order to recover the necessary structure, one needs to justify moving from RS to
a spacetime with the global structure of collapse-Schwarzchild, perform the derivation
on the global structure, and then make inferences from the global derivation back to the
slice. Even if we assume that the first problem discussed above is solved and so such an
inference is permissible, the inference still fails because, as per the second problem above,
RS does not contain a Cauchy surface for collapse-Schwarzschild. Therefore, even if one
could justify using the very different global structure to draw inferences about RQS, not
enough of the global structure is included in the MGHD of RS to carry out Hawking’s
derivation. Therefore, Hawking’s approximation regime fails for Hawking’s derivation.29

Turning to Fredenhagen and Haag’s derivation: it was designed to not require the
propagation of modes through the non-stationary collapse region, so the failure to recover
this structure in RS is not problematic. However, the asymptotic time limit is not re-
covered in RS; in fact the time over which the detector can be propagated is even shorter
than in MGHD I −. Therefore, the modes cannot accumulate arbitrarily close to the ho-
rizon, as is needed in Fredenhagen and Haag’s derivation. However, perhaps the result is
recovered approximately with this limited time evolution. Moreover, RS does determine
the entire future of the spacetime, so if we can overcome the first problem above and
justify using the MGHD of RS, we can in fact recover the asymptotic time-limit.

Hence, the approximation regime holds reasonable promise of succeeding for Freden-
hagen and Haag’s derivation. Nonetheless, it needs to be shown that either the use of the
MGHD of RS is justified, or RS admits sufficiently long stationary worldlines to allow
modes to accumulate sufficiently close to the horizon that the singularity structure of the
quantum field will dominate. Neither of these are trivial, but neither seems implausible
either.

Finally, the algebraic approach: one begins by restricting the algebra of observables

29 Given the equations governing quantum fields on curved spacetimes are local, states on local regions of
spacetime should be insensitive to global structure. However, this reasonable argument faces the same
challenges stated above. If we wish to justify the existence of Hawking radiation on a local region
of the spacetime using Hawking’s derivation, we must use the global structure Hawking uses, but this
global structure seems to violate the very laws of quantum field theory on curved spacetime use just
appealed to due to backreaction arguments. Making such an locality-based argument work would be a
interesting and valuable contribution to our understanding of global idealizations. I am grateful to an
anonymous referee for pushing me on this point.
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on collapse-Schwarzschild of mass m to an algebra on RS. One then infers the vacuum
state on this algebra by restricting the Unruh vacuum to RS. One then claims that the
algebra and vacuum state on RQS is approximately that of RS.

The central challenge for this approach is again the failure of RS to be Cauchy. This
means the uniqueness of the state on RS will probably not hold. Without uniqueness, we
can’t guarantee the state on RS is the restriction of the state on collapse-Schwarzschild.
Moreover, the states on each RQS must be smoothly joined together, and therefore one
needs to understand how the approximation changes the state, if only slightly.30

I do not claim that I have exhausted the possibilities and difficulties for Hawking’s
proposal. Nor do I claim that Hawking’s proposal exhausts the possible approximation
regimes. I simply claim that, as of yet, this approach hasn’t been completely worked out
for any of the derivations. Moreover, if the approximation regime is worked out for one
derivation, say Fredenhagen and Haag’s, then the idealization paradox remains for the
others, and so interesting open questions remain. The goal of this section has been to
emphasise that the inference from that fact that evaporation is slow to the claim that the
derivations go through approximately unaffected is non-trivial.

In the next section I consider whether we can weaken the premises of the derivations
to deidealize them.

6.3 Essential Structure
The idealization paradox arises because some derivation uses a set of properties X with
which to derive Hawking radiation, and then one finds that evaporation spacetimes don’t
instantiate the set of properties X . However, suppose that one could show that the deriva-
tion in fact did not require the complete set of properties X but only some subset of X , call
it set Y , the essential structure. Suppose further that evaporation spacetimes could instan-
tiate the essential structure Y . Then the inconsistency would be resolved. Moreover, the
essential structure that goes into deriving Hawking radiation would have been identified,
and the surplus structure is stripped away.

The task of identifying this essential structure is undertaken in Barcelo et al. ([2011a],b)
and Visser ([2003]). Visser ([2003]) argues that only three features are required for a
derivation of Hawking radiation: an apparent horizon, non-zero surface gravity of the ap-
parent horizon, and slow evolution. Therefore, using these as the set of properties Y could
potentially resolve the idealization paradox. Going further, Barcelo et al. ([2011a],b)
argue that Hawking-like radiation will occur whenever there is a continuous function
mapping an affine parameter on future null infinity to that on past null infinity and the
‘adiabatic condition’ is satisfied.31 In Barcelo et al. ([2011a]) the authors show how these
conditions, with added assumptions about the QFT, can be used to derive the Bogoli-

30 Work has begun to formulate algebraic QFT on non-globally hyperbolic spacetimes, e.g. Janssen
([2022]).

31 The authors argue that Hawking radiation will occur whenever the affine parameters, U and u, of
the null generators of I − and I + are approximately related by an exponential redshift such that
U ≈U∗−Ae−κ∗u as u → ∞. U∗ need not be the location of an event horizon but only a ‘best estimate’
at I +. κ∗ is the value of the ‘peeling’ function, κ(u) = −p̈(u)/ ṗ(u) at U∗ where p(u) is function
U = p(u), and A is an arbitrary constant (see also Hu ([1996])). The authors argue this condition
will be satisfied whenever |κ̇(u∗)| ≪ κ(u∗)2. This ‘adiabatic condition’ is essentially a slow evolution
condition. For details see Barcelo et al. ([2011a]).
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ubov coefficients, making explicit the relationship between their minimal conditions and
Hawking’s derivation of Hawking radiation.

Deidealization via essential structure derivations is strikingly different to that via the
approximation regime. Whereas Hawking sought to find stationary structure within a non-
stationary spacetime, these derivations do away with the need for quasi-stationary regions,
and instead provide a derivation which would be successful on the global structure of
an evaporation spacetime. Both Visser ([2003]) and Barcelo et al. ([2011a],b) require
the black hole to evolve slowly, but they do not use this slow evolution to approximate
stationarity. By using a different deidealization method, different lessons are drawn. For
example, given the very minimal structure used in these derivations, it can be argued that
they point towards a kinematic interpretation of Hawking radiation, contra the dynamical
picture given in Hawking ([1975]). Moreover, these derivations don’t require an event
horizon or Killing horizon to form. Similar lessons to those from an approximation regime
can be learned here also, for example the spectrum derived is only approximately thermal,
and the spectrum can be derived away from the asymptotic future (i.e. before the retarded
time coordinate goes to infinity).

I do not claim that these derivations face no difficulties, but only that they are very
promising candidates for resolving the idealization paradox. A full analysis will be carried
out in the future of the project. There is also a semantic issue of what one takes to be the
referent of ‘Hawking radiation’ which I ignore here, emphasising only that resolutions
to the paradox modify: i) what one takes to be required for something like Hawking
radiation to occur, and ii) what is observed at I +. On a cautious note, it is not clear that
one can distinguish between radiation due to the Unruh effect and radiation due to the
Hawking effect with these derivations. Although the Unruh effect and Hawking radiation
are closely related phenomena, they are not the same (Earman [2011]). If one cannot
distinguish between the two a derivation may have insufficient structure. However, this
does not seem to me a serious obstacle to these derivations resolving the paradox, but
rather an obstacle to the full interpretation of the Hawking effect.

The papers discussed here are not the only candidates for essential structure resolu-
tions. Quantum tunnelling approaches, for example Parikh and Wilczek ([2000]), give
a local dynamical account of Hawking radiation. A resolution to the paradox by these
derivations would tell a different story. Firstly, they would retain a dynamical ontology
for Hawking radiation. Secondly, they would point to lessons about the encoding of local
structure by global structure in semi-classical gravity. Unpacking this second point, the
definition of a black hole is global and Hawking’s derivation is global, but if a resolution
of the paradox along the lines of a local dynamical account is the correct one, we might
learn that this global structure is a red herring, and it just encodes local structure that in
ways that are, at times, opaque.

The goal of this section has been three-fold: 1) To highlight the differences between
different deidealization strategies, 2) To emphasise there is an alternative to approxima-
tion regimes which make an inference from slow-evaporation to unaffected derivations, 3)
To highlight the importance of research programmes such as that undertaken by Barcelo
et al. ([2011a],b) and Visser ([2003]). I do not claim that the paradox is definitely solved,
or even necessarily solved by an essential structure deidealization, but rather that this is a
promising option with many lessons to be learnt.

Summarising, deidealization can follow multiple different routes and these routes have
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varying degrees of success. Indeed, the success of a particular deidealization need not be
homogeneous across derivations. I only take the quantum gravity route to be completely
impotent. Hawking’s approximation regime fails for Hawking’s derivation, but prospects
for success are better for Fredenhagen and Haag’s derivation, and other approximation
regimes may fare better. The essential structure research programme is very promising, in
particular for deidealizing Hawking’s derivation. The lessons we draw from these varying
approaches to deidealization depend upon the type of deidealization, and the details of
how the deidealization operates.

7 Conclusion

Paradoxes are just the scar tissue.
Time and space heal themselves up
around them and people simply
remember a version of events which
makes as much sense as they require it
to make.

Douglas Adams, Dirk Gently’s
Holistic Detective Agency

I have argued that Hawking’s derivation of Hawking radiation, along with Fredenha-
gen and Haag’s and the algebraic approach, are all evaporation-inconsistent. They are car-
ried out on collapse-Schwarzschild but cannot be carried out on evaporation-Schwarzschild.
By throwing away the spacetime used to derive the phenomenon, we throw away the very
ladder we are standing on, and come tumbling back to inconsistency. There are reason-
able (and some unreasonable) paths towards deidealizing the derivations involved, and
thus reason to believe that the paradox is just scar tissue from the messy process of sci-
entific development. Presumably, there is a resolution along the lines of an approximation
regime or essential structure derivation which will teach us why the inconsistent deriva-
tions worked so well, and what they really represent. If so, this will be another victory
for the dispensabilists in the idealization literature, and a particularly striking one given
that the idealizations used in Hawking radiation derivations were not simply false, but in-
consistent. The differences between the different possible deidealizations emphasises the
non-triviality of the deidealization project, and the variety of lessons that may be learnt.
Most excitingly, deidealizing these derivations may remove the chaff from the concep-
tual framework of Hawking radiation and give a clear ontological picture of Hawking’s
eponymous discovery. Such lessons are the fruits of paying close attention to, and resolv-
ing, the idealization paradox; fruits won as reward for not settling with the unjustified
inference from slow-evaporation to unaffected derivations. No matter what road we take,
we are bound to learn something interesting.
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