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Abstract

The Higgs mechanism is invoked to explain how gauge bosons can be massive while Yang-Mills theory
describes only massless gauge fields. Central to it is the notion of spontaneous symmetry breaking
(SSB), applied to the SU(2) × U(1) gauge symmetry of the electroweak theory. However, over the past
two decades, philosophers of physics have challenged the standard narrative of the Higgs mechanism
as an instance of gauge symmetry breaking. They have pointed out the apparent contradiction between
the status of gauge symmetries as mathematical redundancies and the account of mass generation in the
Higgs mechanism by means of gauge symmetry breaking. In addition, they have pointed to Elitzur’s
theorem, a result from lattice gauge theory forbidding local gauge symmetry breaking. This has led
philosophers to the conclusion that there cannot be any SSB in the Higgs mechanism, an idea supported
by the dressing field method of gauge symmetry reduction. In this thesis we mitigate this conclusion
by showing that global gauge symmetries, i.e. transformations independent of spacetime, are not mere
mathematical redundancies but carry direct empirical significance. This can be seen from constrained
Hamiltonian analysis by the fact that the Gauss constraint in Yang-Mills theory only generates gauge
transformations which asymptotically become the identity. The classical Higgs mechanism can indeed
be reformulated as a breaking of only this global gauge symmetry. We subsequently extend this result
to quantum field theory by considering SSB in algebraic quantum field theory (AQFT). The Abelian
U(1) Higgs mechanism can be shown to be an instance of SSB in the algebraic sense and we discuss the
extent to which this can be generalised to the non-Abelian case. Finally we discuss the implications of
our results for the interpretation of the electroweak phase transition and the analogy between the Higgs
mechanism and superconductivity.
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Dedicated to Peter Ware Higgs, who passed away on 8 April 2024.
May this thesis serve as a living tribute to his memory.
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1. Introduction

Space is something absolutely uniform; and, without the things placed in it, one point of
space does not absolutely differ in any respect whatsoever from another point of space. Now
from hence it follows [...] that ’tis impossible there should be a reason, why God, preserving
the same situations of bodies among themselves, should have placed them in space after
one certain particular manner, and not otherwise; why everything was not placed the quite
contrary way, for instance, by changing East into West.1

Symmetries are ubiquitous in modern physics. In particular, gauge symmetries play a central role
in our understanding of particle physics and quantum field theory. An essential aspect of the role of
symmetries in physics is the idea that they can be broken, in the sense that certain states of a physical
system do not necessarily exhibit the same symmetry as the equations of motion describing that system.
However, the notion of symmetry breaking seems inherently paradoxical: how can symmetric equations
ever give rise to an asymmetric state? An intuition of this paradox is expressed in the above quote from
1716 by Leibniz, who wondered why God should place material bodies at any specific point in space, if
every point is exactly like any other. In a similar vein, Pierre Curie announced a principle in 1894 stating
that “when certain effects show a certain asymmetry, this asymmetry must be found in the causes which
gave rise to it” [2]. At first sight, though, Curie’s principle seems to fail in modern physics. A striking
example of this is the phenomenon of spontaneous symmetry breaking (SSB) [3], in which a physical system
supposedly evolves from a symmetric state to an asymmetric state spontaneously, i.e. by itself, without
external stimulus. More specifically, SSB is usually applied to systems in which the ground state is not
invariant under some symmetry transformation of the Lagrangian.

The concepts of symmetry and symmetry breaking have been extensively discussed by philosophers
of physics since the turn of the century [4]. Part of this discussion has focused on gauge symmetries
and the two best known examples of “gauge symmetry breaking”: superconductivity and the Higgs
mechanism. Conceptually speaking, gauge symmetry breaking is even more paradoxical than “reg-
ular” symmetry breaking, since, in addition to the questions surrounding Curie’s principle alluded to
above, there is the fact that gauge symmetries are often seen as expressions of mathematical redundancy
or “descriptive fluff” [5]. As the standard narrative would have it, superconductivity and the Higgs
mechanism are instances of spontaneous gauge symmetry breaking. But this immediately raises many
questions: how can the breaking of a mathematical redundancy represent a physical process? And what
would even be the cause of such a process? What is the gauge-invariant content of superconductivity
and the Higgs mechanism?

These and many others are the issues that philosophers of physics have tried to clarify over the past
two decades. While a general consensus has been reached that the textbook account of gauge symmetry
breaking is conceptually inadequate and that it is impossible to break local gauge symmetries, many
questions remain, and it is still not clear how the Higgs mechanism can really be seen as a mechanism,
i.e. as a “a natural or established process by which something takes place or is brought about.”2

In this thesis, we focus on the breaking of global (i.e. spacetime-independent) gauge symmetries, as
we believe that this cuts rights to the core of many of the philosophical mysteries surrounding the Higgs
mechanism and provides a unique, rigorous path towards a better conceptual understanding. The rest
of this introduction will serve to explain why we should expect global gauge symmetries to play such a
central role and to outline a roadmap for studying them.

1From Leibniz’ third letter in his correspondence with Samuel Clarke [1].
2This definition of ‘mechanism’ was generously provided by Google, based on Oxford Languages.
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1.1. History of the Higgs

It is useful to start with a short historical overview of superconductivity and the Higgs mechanism,
for this way we can introduce many of the most important ideas in a logical order. Our historical
preamble not only serves an introductory purpose though. It also allows us to better understand the
analogy between superconductivity and the Higgs mechanism, which will be relevant for some of the
later philosophical discussion. In addition, we can scan the history of the Higgs mechanism for hints
from the founders as to how to interpret it. Lastly, by providing a historical overview of the origin of
the Higgs mechanism, we can do justice to the physicists other than Peter Higgs himself who played a
role in its inception.

1.1.1. History of superconductivity

Some of the most important events in the history of superconductivity occurred in Leiden in the Nether-
lands. In 1908, Heike Kamerlingh Onnes managed to cool down helium to the point that it liquefied.
This was a great challenge, because helium boils at 4.2 K. Kamerlingh Onnes had reasons to investi-
gate the behaviour of electrical resistance at very low temperatures, making use of his ultracold, liquid
helium, because an important open problem of the time was the question of what would happen to
the resistance of metals at absolute zero [6, p. 38]. It was known that electrons were responsible for
electrical conductance, and it was known too that electrical resistance generally decreases as a metal is
cooled down. Lord Kelvin, however, expected the electrical resistance of metals to reach a minimum at
a certain temperature and then become infinite at very low temperatures, as electrons would then no
longer be moving and become fixed in the metal in question [6, p. 38].

Thus, Kamerlingh Onnes conducted an experiment on 8 April 1911 in which he determined the elec-
trical resistance of gold and mercury at extremely low temperatures. The experiment started at 07:00
and Kamerlingh Onnes himself arrived at 11:20, when the circulation of liquid helium began [6, p. 41].
At exactly 16:00 the resistance of the gold and mercury was measured, and Kamerlingh Onnes wrote
down his legendary words “Kwik nagenoeg nul” (“Mercury nearly zero”). In doing so he was the first
person to perceive the phenomenon of superconductivity, a discovery that would earn him the Nobel
Prize for physics in 1913.

Theoretical explanations for superconductivity came only decades later, although the German physi-
cists Walther Meissner and Robert Ochsenfeld did discover the so-called Meissner effect in 1933, which
is the phenomenon in which a superconductor expels a magnetic field. The Meissner effect can be un-
derstood as a consequence of photons obtaining an effective mass inside a superconducting material, in
which we first see the analogy between superconductivity and the Higgs mechanism. The brothers Fritz
and Heinz London subsequently published a theory in 1935 relating the superconducting current inside
a “supraconductor” to the electromagnetic field [7]. Their equations allowed them to derive the Meiss-
ner effect as a consequence of the minimisation of the free energy and calculate what is now called the
London penetration depth, i.e. the depth to which a magnetic field can penetrate into a superconductor
from the outside.

A great breakthrough in the theory of superconductivity came in 1950 with the Ginzburg-Landau
(GL) theory, published by the Russian physicists Vitaly Ginzburg and Lev Landau [8]. This was a phe-
nomenological model, meant not to give a microscopic explanation but only a macroscopic description
of the transition from a material’s normal phase to its superconducting phase [9, p. 76]. Despite its phe-
nomenological nature, the Ginzburg-Landau theory already brings the notion of spontaneous symmetry
breaking to the fore. It describes the free energy F in terms of a parameter ψ:

F = F0 + a|ψ|
2 + b|ψ|4 + |Diψ|

2 +
B2

8π
.

Here F0 stands for the free energy without superconductivity,Di = 1
2m∗ (∇−ie∗A) is the gauge-covariant

derivative for the vector potential A in terms of the effective mass m∗ and charge e∗, B = ∇ × A is the
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magnetic field and a, b are functions of the temperature T of the material [9, p. 76]. Importantly, the
function b(T) is taken to be positive, whereas a(T) is positive only above the critical temperature Tc and
negative below it. As a consequence, the minimum of the free energy F for a temperature T > Tc lies at
ψ = 0, while the minimum of F for T < Tc lies away from ψ = 0. Moreover, the free energy possesses
a local U(1) gauge symmetry given by ψ 7→ eie

∗αψ and A 7→ A + ∇α for α : R3 → U(1) an arbitrary
smooth function.

All in all we can understand the GL theory as follows: above the critical temperature Tc the system’s
free energy F has its minimum at ψ = 0. When the temperature drops below Tc, the free energy in
terms ofψ takes on a special shape, visualised as a mexican hat. The original localU(1) symmetry is then
broken, i.e. the system assumes a new minimum at ψ ̸= 0. More precisely, the minimum ψ = 0 for T > Tc
exhibits the same U(1) symmetry as the free energy, but for T < Tc the minima away from zero are not
invariant under this symmetry transformation. Thus, if the system moves from a ground state ψ = 0

to ψ ̸= 0, the U(1) symmetry transformation under which the free energy is always invariant no longer
leaves the ground state invariant. The ground state is said to break the U(1) gauge symmetry. We can
calculate the value of the minimum for T < Tc by differentiating:

∂F

∂|ψ|
= 2a|ψ|+ 4b|ψ|3 = 0.

This gives:

|ψ| = 0 or |ψ| =

√
−a

2b
.

Ginzburg en Landau assumed that the spontaneous breaking of U(1) gauge symmetry, in which |ψ|

moves from a value of 0 to
√

−a/2b, causes the electrons in the system to form a ‘superfluid’-like state,
which would then have superconductivity as a consequence. However, they were unable to provide an
explanation of the underlying causes and mechanism [9, p. 76].

Such a causal explanation came in 1957 with the BCS theory of superconductivity, discovered by
American physicists John Bardeen, Leon Cooper and Robert Schrieffer, for which they received the
Nobel Prize in 1972. They postulated a wave function which models how electrons in a superconductor
form so-called cooper pairs and showed how this cooper pair formation indeed makes electrons form a
superliquid in the metal, causing superconductivity. Lev Gor’kov derived the macroscopic GL theory
from the microscopic BCS theory in 1959 [10], thus completing the picture of (type I) superconductivity.
Gor’kov interpreted the fieldψ from the GL theory as the “wave function of a cooper pair” [10, p. 1366],
such that the effective charge is e∗ = 2e, where e denotes the electron charge.

Although this already reaches into the 1960s - treated in the next section - we mention here the 1962
discovery by Josephson [11], who showed that when two superconductors A and B are brought close
together, electron pairs can tunnel through the barrier separating them. This causes a current to flow,
called the Josephson current, which depends on the Josephson phase φ = φA − φB, i.e. the difference
between the global phases of the GL parameters ψA and ψB, interpreted as the wave functions of the
Cooper pairs in the superconductors. We therefore see that through the Josephson effect the global
U(1) symmetry in a superconductor attains empirical significance: if two superconductors break this
symmetry in different directions, we can detect that. This suggests that the global U(1) symmetry is
different from the local U(1) gauge symmetry - an idea that is central to this thesis and that we will
extend to the Higgs mechanism.

1.1.2. The Golden Decade

Where physicists’ theoretical understanding of superconductivity was revolutionised in the 1950s, the
1960s can veritably be called the golden decade for the Higgs mechanism and the electroweak theory.
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In a beautiful example of cross-fertilisation, ideas from superconductivity were applied to the very dif-
ferent domain of particle physics and used to solve an open problem there: the existence of massive
gauge bosons. It was known that the weak interaction is short-ranged and that its associated gauge
bosons must therefore be massive, but Yang-Mills theory incorporated only massless bosons. Like in
the GL theory, SSB was then applied to gauge symmetries to explain the fact that some gauge bosons
are massive.

This discovery, known as the Higgs mechanism, was preceded by invaluable work in the early 1960s.
In 1960 Yoichiro Nambu applied techniques from quantum electrodynamics (QED) to the BCS the-
ory [12], thereby first bridging the gap between superconductivity and particle physics. He then sug-
gested in 1961 that elementary particles might obtain their masses in a fashion similar to superconduc-
tivity, namely by a vacuum state spontaneously breaking a symmetry of the theory in question [13]. The
universe would then, in a sense, be one big superconductor. He published these ideas in a two-part
article titled Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity [14, 15].
Interestingly, Nambu explicitly mentions the analogy with superconductivity, and especially its dynam-
ical aspect. He states: “it is suggested that the nucleon mass arises largely as a self-energy of some
primary fermion field through the same mechanism as the appearance of energy gap in the theory of
superconductivity”, and stresses that “dynamical treatment of the interaction makes up an essential part
of the theory” [14, p. 345].

In that same year, Jeffrey Goldstone published an article in which he predicted the existence of mass-
less bosons from the spontaneous breakdown of symmetry in a superconductor [16]. These particles be-
came known as Goldstone bosons. In 1962 Goldstone, together with Abdus Salam and Steven Weinberg,
proved his prediction to be part of a more general theorem [17]. This theorem, known as Goldstone’s
theorem, states that when a Lagrangian is invariant under a continuous symmetry, either its ground
state is also invariant under that same symmetry, or else massless bosons must exist.

Initially the Goldstone theorem caused confusion, for Nambu’s suggestion that SSB could be respon-
sible for the masses of gauge bosons would also imply the existence of massless bosons. Other than
the photon, such massless bosons were not known at the time [13]. In 1964, three independent groups
simultaneously proposed the solution: the original U(1)× SU(2) symmetry of the electroweak theory is
broken down to a U(1) symmetry because there exists another field whose potential has the shape of a
mexican hat. This field assumes a vacuum expectation value away from zero, giving rise to three mas-
sive bosons: theW+,W− and Z bosons which carry the weak force. The three Goldstone bosons arising
from the broken symmetry are subsumed into these massive bosons (they “get eaten”). The unbroken
U(1) symmetry gives a massless gauge field, namely the electromagnetic field.

The three groups that made the discovery were Robert Brout and François Englert on 31 August
[18], Peter Higgs on 19 October [19, 20] and Gerald Guralnik, Carl Richard Hagen and Tom Kibble on
16 November [21]. The full name of the phenomenon is therefore the ‘Brout-Englert-Higgs-Guralnik-
Hagen-Kibble mechanism’, and the term ‘BEH effect’ is also encountered in the literature.

These groundbreaking papers treated the Abelian Higgs mechanism for a U(1) gauge theory, which
is also the version widely used as a toy model in the philosophical literature, because it is conceptually
adequate but mathematically simpler than the full non-Abelian version from the Standard Model. Its
starting point is the Lagrangian (with the metric signature “mostly plus” used throughout this thesis)

L = −(Dµφ)
∗Dµφ− V (φ∗φ) −

1

4
FµvFµv, (1.1)

where φ is a complex scalar field, Dµ = ∂µ − ieAµ is the gauge covariant derivative for the U(1) gauge
field Aµ with coupling constant e, Fµν = ∂µAν − ∂νAµ is the field strength (curvature) of the gauge field
and V(φ∗φ) = µ2φ∗φ + λ(φ∗φ)2 is the Higgs potential. The Lagrangian exhibits a local U(1) gauge
symmetry given by

φ(x) → eieα(x)φ(x),

Aµ(x) → Aµ(x) + ∂µα(x),
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for any smooth real function on spacetime α. Indeed, we know the field strength Fµν to be gauge-
invariant, and the covariant derivative transforms covariantly as Dµφ(x) → eieα(x)Dµφ(x).

Now, for µ2 > 0, the Higgs potential is parabola-like, with a minimum at φ = 0. For µ2 < 0, however,
the potential takes on the shape of the mexican hat, just like the GL-theory in section 1.1.1. Thus, the
minimum in the latter case lies away from zero. Indeed, it is at

|φ| =

√
−µ2

2λ
=:

v√
2
.

Field configurations that minimise the potential energy are therefore given by φ = v/
√
2eiθ, Aµ = 0,

where θ is some real number. We can change θ by means of a gauge transformation. Thus, we might
gauge fix the vacuum configuration of the fields by choosing θ = 0, giving simply φ = v/

√
2. We then

consider small perturbations around this vacuum configuration by introducing new small fields ρ and
θ through

φ(x) =
1√
2
(v+ ρ(x))eieθ(x)/v,

Aµ(x) = Bµ(x) +
1

v
∂µθ(x).

Using the quadratic order approximation φ = (v+ ρ+ ieθ)/
√
2, the original Lagrangian then becomes

L ≈ −
1

4
BµνBµν −

1

2
(ev)2BµBµ −

1

2
(∂µρ)∂µρ− µ

2ρ2,

where Bµν is the curvature of Bµ [9, 22]. We see that the gauge field Bµ and the real field ρ have mass
terms! This is the result that brought about the metaphor of the gauge field acquiring mass through
gauge symmetry “breaking”. Moreover, in the Standard Model, leptons also gain masses through the
Higgs mechanism. We will present the details of this calculation in the non-Abelian setting in chapter 2.

After 1964, the Golden Decade was far from over. The work mentioned above led to the unification of
the electromagnetic and weak forces into electroweak theory in 1967 [23]. This earned Sheldon Glashow,
Abdus Salam and Steven Weinberg a Nobel Prize in 1979. In 1971 Gerard ’t Hooft and Martinus Veltman
proved this electroweak theory to be renormalisable, for which they won the Nobel Prize in 1999. Before
2012 the Higgs boson was the last missing piece of the Standard Model of particle physics, and finding
it was one of the main motivations for building the Large Hadron Collider (LHC) at CERN (Centre
Européen pour la Recherche Nucléaire). The construction of the LHC - the biggest machine on Earth -
took about ten years and cost about five billion euros [24]. It is no wonder, then, that the announcement
of the detection of the Higgs boson became world news and was a great triumph for CERN.

Before turning to the philosophical discussion, let us briefly consider whether the founding fathers of
the Higgs mechanism made any suggestions on how to interpret it. Englert and Brout did not men-
tion any analogy with superconductivity or any possible interpretation of SSB in their 1964 article.
Higgs does, in his second article, state: “this phenomenon is just the relativistic analog of the plas-
mon phenomenon to which Anderson has drawn attention” [20, p. 508]. Guralnik, Hagen and Kibble
similarly say that “preliminary investigations indicate that superconductivity displays an analogous be-
havior” [21, p. 587]. In 1966, Higgs published an article providing a quantum mechanical consideration
of the mechanism [25]. In it, he says that the models are “inspired by the BCS theory” and even repeat-
edly calls them “superconductor models”. It is therefore likely that Higgs thought the analogy between
superconductivity and his own mechanism to be very tight. This analogy, however, has been argued
against, notably by Doreen Fraser [9]. In a sense this issue of analogy is very fundamental, for we know
from experiments that SSB occurs as an actual process in superconductors. By analogy, we may there-
fore expect the Higgs mechanism in particle physics to also be a temporal process that occured when the
early universe cooled below a certain critical temperature. However, such a direct causal interpretation
suffers from a number of conceptual problems that have been pointed out by philosophers of physics.
Let us now turn to these issues.
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1.2. The philosophical discussion

The attention of the philosophy of physics community was drawn to SSB and the Higgs mechanism
by Earman, in three articles from 2003 and 2004 [2, 5, 26]. In these articles, Earman identifies several
issues and solves some of them within the framework of algebraic quantum field theory (AQFT). Other
philosophers subsequently added to the discussion of the Higgs mechanism, answering some of Ear-
man’s questions but also raising new points [22, 27–32]. In parallel, other issues were discussed that
are not as directly about the interpretation of the Higgs mechanism, but nonetheless have a bearing
on this thesis. Among these are the debate between Wallace and Fraser on the right approach to the
philosophy of QFT [33–36] and Fraser’s study of the analogy between superconductivity and the Higgs
mechanism [9]. We come back to the latter in chapter 7.

More recently, work by Fröhlich, Morchio and Strocchi (FMS) from 1981 [37,38] that had been largely
ignored by philosophers has been brought to the fore by Maas and Berghoger et al. [39–41]. In addition,
Morchio, Strocchi and De Palma have proven several non-perturbative results on the Higgs mechanism
as an instance of global gauge symmetry breaking [42–48].

In this section we present an overview of this literature, focusing on the emergence of two seemingly
contradictory ideas: on the one hand the idea that the Higgs mechanism is not an instance of SSB at all,
and on the other hand the idea that the Higgs mechanism is a case of global gauge symmetry breaking.
From this seeming contradiction we will then distill the research question that this thesis aims to answer.

1.2.1. Earman’s questions and answers

In his rough guide to SSB [26], Earman identifies two main puzzles related to SSB in QFT, which he
subsequently attempts to solve using the formalism of AQFT. The first puzzle is the fact that in cases of
SSB such as the Higgs mechanism, vacuum states are not invariant under some symmetry the theory. In
fact, the broken symmetry group of the Lagrangian sends one vacuum state to another, i.e. the vacuum
is degenerate. But the vacuum in QFT is defined to be the unique state satisfying Poincaré invariance
and positivity of energy, so how can this be?

Earman solves this puzzle by recognising that the different vacuum states in a spontaneously broken
theory yield unitarily inequivalent Hilbert space representations of theC∗-algebra describing that theory
(see appendix A for an introduction to operator algebras). The uniqueness of the vacuum holds only for
a particular representation of the C∗-algebra, so the paradox is resolved.

The second of Earman’s puzzles arises from the response to the first. Earman has explained that for
SSB the relevant symmetry of the theory is not unitarily implementable on a Hilbert space. But how
can this be, if Wigner’s theorem tells us that symmetries in quantum mechanics always are unitarily
or anti-unitarily implementable? The answer, Earman tells us, lies in the crucial fact that in the case of
SSB, the C∗-algebra of the theory is not isomorphic to B(H), the algebra of bounded operators on the
Hilbert space H (see A.25 for a definition). We know by the Gelfand-Naimark theorem A.28 that every
C∗-algebra can be faithfully represented as a subalgebra of B(H), but it does not have to be isomorphic to
the whole of B(H). The broken symmetry is modelled as an automorphism of theC∗-algebra in question.
Wigner’s theorem, however, defines a symmetry as a probability-preserving map on a Hilbert-space, i.e.
within B(H). Thus, two different notions of symmetry are at play here, and the second puzzle is also
resolved. Earman stresses that these features of SSB can only arise for systems with infinite degrees
of freedom, for then the Stone-von Neumann theorem, which states that the canonical commutation
relations of a finite quantum system have a unique irreducible representation up to unitary equivalence,
is not applicable.

With the two puzzles solved, Earman goes on to discuss some interpretational issues of SSB, among
which those surrounding the Higgs mechanism, where SSB supposedly occurs when a gauge symmetry
is broken. This, however, seems contradictory, since a choice of gauge is supposed to be unphysical:
it represents a descriptive convention. How can SSB be understood as a physical event if all that is
“broken” is a gauge symmetry?
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In his subsequent paper [5], Earman expounds on the notion of symmetry in physics and on Nozick’s
theme of relating objectivity to invariance [49]. He argues for the merit of the constrained hamiltonian
formalism to find objective, gauge-invariant quantities and applies this theme to the Higgs mechanism.
In this light he notoriously remarks that “a genuine property like mass cannot be gained by eating
descriptive fluff, which is just what gauge is.” Earman thus demands a gauge-invariant account of the
Higgs mechanism, but seems to ignore the fact that such accounts had already been provided (even by
Higgs himself in 1966 [25]).

The issues raised by Earman in these two papers are treated in more detail still in his other 2004 ar-
ticle [2]. Here Earman starts by sketching a model of SSB in classical mechanics, but explains that the
appearance of actually asymmetric states must there be caused by some statistical fluctuations (in other
words: symmetry breaking cannot really be spontaneous). He moves on to quantum mechanics and
stresses that, under some interpretations of the measurement problem, genuinely spontaneous symme-
try breaking can occur when a wavefunction collapses.

Earman continues by considering these issues in the framework of algebraic quantum field theory
(AQFT) and calls for a programme in which the constrained Hamiltonian formalism is applied to the
Higgs mechanism, and says that: “while there are too many what-ifs in this exercise to allow any firm
conclusions to be drawn, it does suffice to plant the suspicion that when the veil of gauge is lifted, what
is revealed is that the Higgs mechanism has worked its magic of suppressing zero mass modes and
giving particles their masses by quashing spontaneous symmetry breaking. However, confirming the
suspicion or putting it to rest require detailed calculations, not philosophizing” [2].

From Earman’s considerations we can take away three main points: (1) to describe SSB in quantum
systems, one needs an infinite number of degrees of freedom so that there can be unitarily inequivalent
irreducible representations of the underlyingC∗-algebra; (2) since gauge symmetries are (to some extent)
a descriptive redundancy, their breaking cannot constitute a physical process and (3) the constrained
Hamiltonian formalism should be applied to the Higgs mechanism to find its gauge-invariant content.

1.2.2. Elitzur’s theorem

In his 2006 article [27], Smeenk further focuses on the issues raised by Earman. He stresses the fact that
the mathematical structure of the Higgs mechanism looks qualitatively different with respect to differ-
ent gauges [27, p. 496]. Indeed, in the Coulomb gauge, Goldstone’s theorem fails to hold, whereas in
the Lorentz gauge it does hold and there are Goldstone bosons, but these are part of a larger unphysical
Hilbert space (they are ghost fields). We explain this in more detail in chapter 6. These considerations ag-
gravate Earman’s worries about the gauge dependence of the Higgs mechanism. Indeed, fundamental
aspects such as whether there are massless bosons now seem to be gauge-dependent.

Therefore, Smeenk turns to “the problem of extracting gauge-invariant content” of the Higgs mech-
anism. He notes that what is really done in the Higgs mechanism is to construct an effective potential
that includes quantum corrections, such that standard perturbation techniques can be used to expand
around the minimum of this effective potential. The problem with this procedure, however, is that the
effective potential is itself gauge-dependent. This issue was solved by Nielsen [50], who “proved that
the gauge invariance of various quantities, such as the value of the effective potential at its minima, the
mass of the Higgs boson, the mass of the vector boson, and so on, follows from the Ward-Takahashi
identities for the Abelian Higgs model” [27, p. 496].

Smeenk’s also brings attention to Elitzur’s theorem from 1975 [51], which at first sight seems to forbid
the Higgs mechanism. This theorem was proven in the non-perturbative context of lattice gauge theory
and states that local observables cannot exhibit spontaneous breaking of local gauge symmetries. More
precisely, it shows that the vacuum expectation value (VEV) of any gauge-dependent quantity vanishes.
This seems to threaten the basic narrative of the Higgs mechanism, in which the gauge-dependent Higgs
field supposedly assumes a nonzero VEV. Crucially, however, Elitzur’s theorem does not apply to global
symmetries, which is an important indication that we should examine the role of global gauge symmetry
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breaking in the Higgs mechanism.
Smeenk concludes by stating that the abuse of terminology in the term ‘SSB of local gauge symmetry’

is “relatively benign” [27, p. 498], since the consequences of the Higgs mechanism have been rederived
within the gauge-invariant Fröhlich-Morchio-Strocchi (FMS) framework [37, 38]. He does, however,
pose an important open question about the dynamics of the Higgs mechanism, namely: “what is the
status of a semiclassical description of the scalar field rolling down the effective potential toward or
tunnelling to the minima during a phase transition, an idea invoked in inflationary cosmology?” We
will return to this question of the dynamics of the Higgs mechanism in chapter 7.

1.2.3. Does the Higgs mechanism exist?

In his provocatively titled 2008 article Does the Higgs mechanism exist?, Lyre considers the ontic status of
the Higgs mechanism. He presents the mechanism as a simple rewriting of a Lagrangian using different
choices of variables and gauge, which leads him to the suspicion that the whole mechanism “consists in
a mere reshuffling of degrees of freedom” which “eventually undermines the prospect of an ontological
picture of the Higgs mechanism” [28, p. 126]. According to Lyre, SSB in a ferromagnet does allow
for a dynamical interpretation, whereas SSB in the Higgs mechanism does not. He presents several
objections to viewing the Higgs mechanism as a real dynamical process in time, the most important of
which is: “whereas in the case of the ferromagnet SO(3) is instantiated by real rotations of the dipoles,
quantum gauge transformations possess no such real instantiations. This was already highlighted in
the introduction: neither global nor local unitary gauge transformations are observable, the status of
gauge symmetries is a non-empirical and merely conventional one” [28, p. 127]. This leads him to the
conclusion that “the Higgs mechanism does not exist” [28, p. 128].

However, Lyre’s statement that global gauge transformations are unobservable, just like local ones, is
incorrect. Indeed, on both a philosophical and mathematical level, global gauge transformations can be
argued to exhibit direct empirical significance. Our chapter 4 is entirely devoted to this point.

Lyre continues by stating that the Higgs mechanism does not carry any explanatory value either:
the Lagrangian of the Standard Model after SSB could be written down immediately, without going
through the steps of the Higgs mechanism. The value of the Higgs mechanism, then, lies purely in its
historical context. It is a useful guiding story to get from a Lagrangian that is easier to guess to the more
complicated, symmetry-broken Lagrangian of the Standard Model. “But at the end of the day, this is
only a matter of mathematical representation” [28, p. 130]. This statement also seems too simplistic
to us, and we will argue against it in chapter 2 by showing how the Higgs mechanism solves several
problems related to the definition of mass terms in the Standard Model, both for bosons and fermions.

Wüthrich has also argued against Lyre’s analysis: “none of Lyre’s worries, therefore, gives us reason
to doubt that the Higgs mechanism can have the same ontological status as any other mechanism of
spontaneous symmetry breaking, which we observe, for instance, in ferromagnets or superconductors”
[29, p. 10]. Lyre responded to Wüthrich’s objections, stating basically that there is no need nor reason for
physicists to postulate a phase transition from an unbroken to a broken phase in the early universe [52]
and claiming that Struyve’s gauge-invariant accounts [22] and Friederich’s analysis of remnant global
symmetries [31] support his position. In our view, Lyre’s position is incorrect, but can only be properly
addressed by clarifying what really is the physical content of the Higgs mechanism.

1.2.4. Gauge-invariant accounts

An important step towards this clarification was made by Struyve [22] by taking seriously Earman’s call
for a gauge-invariant treatment of the Higgs mechanism, though his work builds on that by Lusanna and
Valtancoli [53–55]. Struyve begins by recalling that Higgs himself already provided a gauge-invariant
treatment of the Abelian version of the mechanism in 1966 [25] and briefly presents this treatment.
He next discusses gauge freedom and the elimination of gauge symmetries through the reduction of
phase space, and notes that the gauge group depends on boundary conditions and does not necessarily
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correspond to the full group of all gauge transformations. Boundary conditions are imposed to ensure
finiteness of energy and action and to make variational operations on the action well-defined. Gauge
transformations must respect such boundary conditions.

Struyve explores these ideas within the context of the Abelian Higgs mechanism with a scalar field φ
and a vector field Aµ. He considers a set of appropriate boundary conditions such that transformations
preserving these boundary conditions are of the form g = eiα, with α a real function that goes to a
constant sufficiently rapidly as infinite distance is approached, i.e. as r → ∞. We denote the group of
these transformations by GI. The unphysical gauge group is G∞, the group of localU(1) transformations
that go to the identity at spatial infinity. Thus, we find that there is a non-trivial group of residual
physical gauge transformations GI/G∞ ∼= U(1). We will work this out in much more detail in chapter 4.

We are therefore led to the suspicion that the Higgs mechanism could be understood as SSB of this
residual group of physical symmetry transformations. Indeed, Struyve supports this idea by an analysis
in the constrained Hamiltonian formalism. He defines a complete set of gauge-independent fields in
order to eliminate local gauge symmetry, but these fields do leave the global U(1) symmetry. There
is then a degenerate set of ground states, such that when a vacuum state is chosen and perturbations
around it are considered, one obtains a Hamiltonian with a massive vector boson [22, p. 235]. We will
present this derivation in detail in section 4.2, but for now the important point is that global gauge
symmetries should not be seen as merely a special type of local gauge symmetries and actually have a
physical significance that local gauge symmetries do not have.

1.2.5. Remnant global gauge symmetries

This idea has been further developed by Friederich [31, 56], who considers so-called remnant global
symmetries at great length. These are global symmetries that are left over after a particular gauge-
fixing and evade Elitzur’s theorem, since that theorem makes the crucial assumption “that for any finite
volume of spacetime local gauge transformations can always be chosen such as to act non-trivially only
in that finite volume (and to reduce to the identity transformation everywhere else)” [31, p. 171]. This
assumption does not hold for global gauge transformations, which act non-trivially on all of spacetime,
since they are spacetime-independent. Friederich argues that the breaking of remnant gauge symmetries
is the only type of SSB in gauge theories worth studying at all: “since we do not presently have any
notion of a spontaneously broken local gauge symmetry in a gauge quantum field theory, the breaking
of these remnant global subgroups is the only sense of gauge symmetry breaking that remains to be
elucidated” [31, p. 175].

The question, then, is whether the breaking of remnant gauge symmetries corresponds to some phase
transition, and Friederich argues that there is in fact no such correspondence. To support this claim, he
refers to a study of an SU(2)-symmetric lattice gauge model with fixed-modulus Higgs field [57]. In this
study, it was shown that the breaking of global remnant gauge symmetries does not necessarily match
with phase transitions, and moreover that the symmetry breaking depends on a choice of gauge: “we
show that in an SU(2) gauge-Higgs system such symmetries do indeed break spontaneously, but the
location of the breaking in the phase diagram depends on the choice of global subgroup. The implication
is that there is no unique broken gauge symmetry, but rather many symmetries which break in different
places” [57].

It seems to us, however, that the major weakness in this argument is that it considers the various rem-
nant gauge symmetries on equal footing, instead of just the one particular global gauge group which is
the remnant symmetry group of the Coulomb gauge, and whose physical significance we derive in chap-
ter 4 by means of constrained Hamiltonian analysis. It is this physical global gauge symmetry whose
breaking should be studied in the context of the Higgs mechanism. Indeed, it should be expected that
SSB of remnant symmetries that are not precisely the one singled out by the constrained Hamiltonian
formalism yields ambiguous, gauge-dependent results. As the Coulomb gauge is the gauge with the
global gauge group as its remnant symmetry group, we will use it throughout chapters 4 and 6.

14



1.2.6. Higgs without SSB

Recently, however, Berghofer et al. have analysed the Higgs mechanism in a framework inspired by
FMS [37, 38], suggesting that SSB does not play a role at all in the Higgs mechanism. More precisely,
they implement two programmes: the dressing field method (DFM) and the FMS approach. What these
methods have in common is that instead of gauge-dependent elementary fields they use gauge-invariant
composite fields. The DFM is a purely classical method of rewriting a gauge theory in terms of dressed
fields which, when applied to the electroweak theory, supposedly shows that “the interpretation of the
model in terms of SSB is here superfluous, and indeed impossible” [41, p. 61]. The FMS approach
expresses n-point functions of gauge-invariant composite objects such as φ†φ in terms of n-point func-
tions of elementary fields and thereby explains how perturbation theory with gauge-dependent fields
deviates only slightly from gauge-invariant computations [40]. This is worked out in great detail for
the Standard Model by Maas [39], who adopts the term “gauge-invariant perturbation theory.” We will
present the DFM and FMS approach in chapter 3.

For now, let us consider the statement that “applied to the electroweak model, they [the DFM and
FMS approach] converge on the conclusion that the spontaneous breaking of gauge symmetry is not a
physical phenomenon in this case, [...] giving rise to a local gauge-invariant description of the massive
gauge bosons that renders the SU(2) symmetry an artificial one” [41, p. 80-81]. This alleged complete
absence of SSB in the electroweak theory contradicts the idea that global gauge symmetry breaking
plays a crucial role in the Higgs mechanism, and a tension arises with the results explained in sections
1.2.4 and 1.2.5. How to resolve this tension will be one of our research questions.

1.2.7. Going non-perturbative

The tension is further aggravated by rigorous non-perturbative results by Morchio and Strocchi, most
poignantly Theorem 6.2 in Strocchi’s book on non-perturbative QFT [46], which corresponds to Propo-
sition 6.1 in the original paper [42], Theorem 2.8.3 in Strocchi’s lecture notes [47] and to Theorem 19.3 in
Strocchi’s book Symmetry Breaking [44]. This result about global gauge symmetries in the Abelian Higgs
mechanism basically states that in the Coulomb gauge, the global U(1) gauge symmetry is unbroken
whenever one has only massless bosons, whereas if the global U(1) symmetry is broken, then there are
massive vector bosons but no Goldstone bosons. Landsman calls it “one of the very few rigorous result
about the Higgs mechanism (in the continuum)” [58, p. 429], so it is a rare but highly valuable piece of
insight into the structure of the Higgs mechanism in QFT and actually connects the Higgs mechanism
to the algebraic definition of SSB. We will prove it in detail in chapter 6 (Theorem 6.13).

In addition, De Palma and Strocchi have proven that for general Yang-Mills theory in the BRST gauge,
the breaking of the global gauge group gives only Goldstone modes which cannot belong to the phys-
ical spectrum, i.e. which are unphysical [43]. This result can be viewed as a step towards the Higgs
mechanism in the non-Abelian setting. We discuss this briefly in section 6.6.

1.3. Research questions and outline

Having reviewed how global gauge symmetries come to the fore in the (philosophical) literature on the
Higgs mechanism, we are in a position to formulate the main research question of this thesis.

RQ1: What role does global gauge symmetry breaking play in the Higgs mechanism?

Answering this question will require us to treat several sub-questions, which we now identify so that
we can revisit them throughout this thesis.
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RQ1.1: How can the apparent contradiction be resolved between the implication of the DFM that there is no SSB
in the Higgs mechanism, and results presenting the Higgs mechanism as SSB of global gauge symmetry?

RQ1.2: Why should the global gauge group not be considered merely as a subgroup of the local gauge group, but
rather as having a different physical significance?

RQ1.3: To what extent can results on the Abelian Higgs mechanism be used to interpret the complete non-Abelian
Higgs mechanism in the Standard Model?

Even if an answer to all these research questions is provided, it is not necessarily clear how the Higgs
mechanism should be understood as a dynamical process that may have occurred in the early universe.
We only address this issue directly in chapter 7, but we think can be clarified at least in part by the rest
of this thesis.

Before delving into the detailed analyses of gauge-invariant and non-perturbative formulations of
the Higgs mechanism that are needed to answer RQ1.1 and RQ1.2, we must familiarise ourselves in
as much detail as possible with the Higgs mechanism in the Standard Model of particle physics. We
do this in chapter 2. Firstly, this serves the purpose of rigourously introducing the notions that are
important to any treatment of the Higgs mechanism: gauge transformations, Yang-Mills theory, vacuum
configurations, unitary gauge, electroweak theory etc. Secondly, an elaborate understanding of the
Higgs mechanism in the Standard Model is necessary to properly answer RQ1.3, and throughout this
thesis we must constantly ask ourselves whether the methods considered can adequately handle the full
non-Abelian complexity of the Higgs mechanism as presented in chapter 2.

We then present the DFM and FMS approach in chapter 3, building on definitions and results from
chapter 2. As explained in section 1.2.6, these methods suggest that there is no SSB in the Higgs mecha-
nism at all, and they therefore most radically oppose the standard narrative of gauge symmetry break-
ing. Treating them in much detail allows us to answer RQ1.1, but to do this we must also obtain a
deeper understanding of the meaning of global gauge symmetries - in other words: we must answer
RQ1.2. This we do in chapter 4 by means of constrained Hamiltonian analysis.

The results from chapter 4 mark the end of our study of classical field theory and form the transition
into chapters 5 and 6, where we introduce important notions of AQFT, examine global gauge symmetries
in QFT and also address RQ1.3. We think the order thus sketched is most logical: we begin with the
standard narrative, then we treat the approaches that aim to completely get rid of SSB, subsequently
we mitigate these approaches by carefully considering the significance of global gauge symmetries and
finally we support our classical ideas by results from axiomatic QFT.

Lastly, we summarise our results, address the question of global gauge symmetry breaking as a dy-
namical process in time, discuss the analogy with superconductivity and present our conclusions in
chapter 7. There we also suggest promising directions for further philosophical inquiry into the Higgs
mechanism.
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2. The Higgs Mechanism in the Standard Model

When investigating the Higgs mechanism, philosophers of physics usually focus on the Abelian version.
In the Standard Model of particle physics, however, the Higgs field is coupled to a non-Abelian gauge
field as well as to fermions through the Yukawa interaction. In other words: the situation in the Standard
Model is vastly more involved. Thus, the question arises of whether the philosophical studies hitherto
performed really have a bearing on the Higgs mechanism as particle physicists see it. This relates to our
RQ1.3, which asks to what extent results on the Abelian Higgs mechanism can be used to make claims
about the Standard Model.

To our mind, the only way to address this issue is to familiarise ourselves with the gauge-theoretical
foundations of the full Higgs mechanism in the Standard Model, and we aim to do so in this chapter,
making heavy use of [59]. We begin by introducing some important definitions and results on gauge
transformations in section 2.1. Subsequently, we define Yang-Mills theory and the complete Lagrangian
of the Standard Model in section 2.2, and finally we treat the full Higgs mechanism in section 2.3. Defin-
ing fermions in the Standard Model requires spinors, to which appendix B provides a self-contained
introduction. We show how the Higgs mechanism in the Standard Model solves not one but three
issues related to mass terms:

• mass terms for gauge bosons;

• different masses for fermions in the same gauge multiplet;

• mass terms for twisted chiral fermions.

Any adequate perspective on the Higgs mechanism, including the one based on global gauge sym-
metry breaking put forward in this thesis, must be able to account for all its aspects. Whether we can do
this will be a point of discussion in chapter 7.

Before we begin, let us stress that this chapter also serves the purpose of introducing many important
concepts that are used in later parts of this thesis, even those parts that deal only with the Abelian Higgs
model. Especially sections 2.1 and 2.3 are essential in that regard and should therefore be read carefully,
even by someone who is interested in conceptual rather than technical aspects.

2.1. Gauge transformations

First of all, we must understand precisely what is meant by notions such as gauge, gauge transforma-
tion and gauge group. This is very important with an eye towards understanding how global gauge
transformations differ from local ones, which we will explain in chapter 4. We present gauge transfor-
mations in section 2.1.1 and consider how they affect local expressions for connections, curvature and
covariant derivatives in section 2.1.2. We assume familiarity with Lie theory and differential geometry.

2.1.1. Gauges and the gauge group

We commence with the mathematical definition of a gauge.

Definition 2.1. Let π : P → M be a principal bundle. A global gauge for this bundle is a global (smooth)
section s : M→ P. Similarly, a local gauge is a local section s : U→ P on some open subset U ⊂M.
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Thus, gauges are just sections, but the important point is that sections correspond to trivialisations -
this is a well-known fact about principal bundles. More precisely, we have the following basic result,
which corresponds to Proposition 4.2.19 in [59].

Proposition 2.2. Let π : P → M be a principal G-bundle and s : U → P a local gauge. Then the map
U × G → PU given by (x, g) 7→ s(x) · g is a G-equivariant diffeomorphism (here PU = π−1(U)). In
particular, if s : M → P is a global gauge then P is trivial with trivialisation given by the inverse of the
above map.

If we have a (local) section of a principal bundle, we want to know how this affects the way we
describe associated bundles. The following theorem tells us how we can use a (local) gauge to (locally)
trivialise any associated vector bundle (cf. Proposition 4.7.6 in [59]).

Theorem 2.3. Let π : P → M be a principal G-bundle and E = P ×ρ V an associated vector bundle
through the representation ρ : G → GL(V). Let s : U → P be a local gauge. Then there is a bijective
correspondence between local frames τ : U→ E and maps f : U→ V , given by

τ(x) = [s(x), f(x)], x ∈ U.

This means that the local gauge defines a preferred isomorphism between V and every fibre Ex for x ∈ U.

Proof. Let f : U → V be a smooth map. Then the map U → P × V given by x 7→ (s(x), f(x)) is clearly
smooth and hence τ : U → E is smooth, since it is just the composition of this map with the projection
P × V → E. Moreover, τ is indeed a section since

(πE ◦ τ)(x) = πE([s(x), f(x)]) = (π ◦ s)(x) = x,

as s is a local section. Conversely, let τ : U → E be a smooth section. By definition Ex = (Px × V)/G
and the action of G on Px is simply transitive, so there is a unique f(x) such that τ(x) = [s(x), f(x)]. To
check that f is smooth we define a bundle chart ϕU : PU → U×G using s by setting ϕ−1

U (x, g) = s(x) · g.
Writing ϕU(p) = (π(p), φU(p)) with φU : PU → G, we get φU(s(x)) = x for any x ∈ U and therefore

(ψU ◦ τ)(x) = ψU([s(x), f(x)]) = (x, ρ(φU(s(x)))f(x)) = (x, f(x)), (2.1)

where ψU : EU → U× V is the induced associated bundle chart given by

[p, v] 7→ (π(p), ρ(φU(p))v), p ∈ PU, v ∈ V.

This map is a diffeomorphism with inverse ψ−1
U : U × V → EU given by (x, v) 7→ [ϕ−1

U (x, e), v]. But
equation 2.1 shows that f is smooth since ψU and τ are smooth.

Having defined (local) gauges, we want to formalise the notion of a transformation between these
gauges. These turn out to just be maps from the principal bundle to itself.

Definition 2.4. Let π : P →M be a principal G-bundle. Then a gauge transformation is a bundle automor-
phism of P, i.e. a diffeomorphism f : P → P which is G-equivariant and preserves the fibres: π ◦ f = π

and f(p · g) = f(p) · g for all p ∈ P, g ∈ G. A local gauge transformation is a bundle automorphism of the
principal bundle πU : PU → U, where U ⊂M is an open subset.

The automorphisms of a principal bundle P → M form a group G(P) under composition, and this
group is called the gauge group. However, in physics parlor, gauge transformations usually are not
defined as bundle automorphisms, but rather as G-valued maps on spacetime. Let us define C∞(P,G)G

to be the set of smooth maps f : P → G satisfying σ(p · g) = g−1σ(p)g for all p ∈ P, g ∈ G. This set is a
group under pointwise multiplication with its identity element being the constant map on P with value
e ∈ G. As a first step to understanding how the two notions of gauge transformations relate we prove
the following result.
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Proposition 2.5. Let π : P → M be a principal G-bundle. Then the map G(P) → C∞(P,G)G given by
f 7→ σf, where f(p) = p · σf(p) for all p ∈ P, is a well-defined group isomorphism.

Proof. To see that f(p) = p · σf(p) makes σf well-defined, note that since π ◦ f = π we know that f(p) is
in the fibre of p, which means there is a unique g ∈ G such that f(p) = p · g. We thus define σf(p) = g.
We need to check that σf ∈ C∞(P,G)G. The smoothness of σf follows locally from the smoothness of f
and the smoothness of the G-action.1 Moreover, for any p ∈ P, g ∈ Gwe have

p · (gσf(p · g)) = (p · g)σf(p · g) = f(p · g) = f(p) · g = (p · σf(p)) · g = p · (σf(p)g).

This shows that gσf(p · g) = σf(p)g, i.e. σf(p · g) = g−1σf(p)g, as required.
It is evident that the inverse of the map in the proposition is a map C∞(P,G)G → G(P) that sends

σ 7→ fσ defined by fσ(p) = p · σ(p). We do need to verify that fσ is a bundle automorphism for any
σ ∈ C∞(P,G)G. Clearly fσ(p) is in the same fibre as p for any p ∈ P, and also f−1σ = fσ−1 , so fσ is a
diffeomorphism. Lastly, we have

fσ(p · g) = (p · g) · σf(p · g) = (p · g) · g−1σf(p)g = (p · σf(p)) · g = fσ(p) · g, p ∈ P, g ∈ G,

so fσ is G-equivariant and thus fσ ∈ G(P). We have now shown that the map in the proposition is a
bijection, but it remains to check that it respects the group structure. Let f1, f2 ∈ G(P). We need to show
that σf1◦f2 = σf1σf2 . For all p ∈ P we have

p · σf1◦f2(p) = (f1 ◦ f2)(p) = f1(p · σf2(p)) = f1(p) · σf2(p) = (p · σf1(p)) · σf2(p) = p · σf1σf2(p).

Thus, the map in the proposition is a bijective group homomorphism.

We are now in a position to define gauge transformations as it is usually done in the physics literature
and to show how this relates to automorphisms of principal bundles. We use the terminology from
section 5.3.2 in [59].

Definition 2.6. Let π : P →M be a principal G-bundle. A physical gauge transformation is a smooth map
τ : U → G defined on some open subset U ⊂ M. A global or rigid physical gauge transformation is a
constant map τ : U → G. The set of all physical gauge transformations on U forms a group C∞(U,G)
with pointwise multiplication.

Proposition 2.7. Let s : U→ P be a local section of a principalG-bundle. Then s defines a group isomor-
phism C∞(PU, G)

G → C∞(U,G) given by σ 7→ τσ = σ ◦ s. The inverse of this map is given by τ 7→ στ,
where στ(s(x) · g) = g−1τ(x)g for any x ∈ U, g ∈ G.

Proof. Since any point in PU can be written uniquely as s(x) · g with x ∈ U, g ∈ G, we see στ is well-
defined, though we do need to verify that is is in C∞(PU, G)

G. For x ∈ U and g1, g2 ∈ Gwe have

στ((s(x) · g1) · g2) = στ(s(x) · g1g2) = (g1g2)
−1τ(x)g1g2 = g

−1
2 g

−1
1 τ(x)g1g2 = g

−1
2 στ(s(x) · g1)g2.

Let us also check that the two maps are actually inverses.

τστ(x) = στ ◦ s(x) = τ(s(x) · e) = τ(x), x ∈ U,
στσ(s(x) · g) = g−1τσ(x)g = g−1σ(s(x))g = σ(s(x) · g), x ∈ U, g ∈ G.

In the last equality we used that σ ∈ C∞(PU, G)
G. We have established that we have a well-defined

bijection. Lastly, it is easy to see that τσ1σ2 = τσ1τσ2 . We conclude that the map is a group isomorphism.

1If we consider a trivialisation PU → U × G, then f ∈ G(U × G) can just be viewed as a smooth map fU : U → G via
f(x, g) = (x, fU(x)g). We then see σfU : U×G→ G is defined by σf(x, g) = g

−1fU(x)g, which is smooth.
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Thus, we see that after choosing a local gauge, physical gauge transformations correspond to maps in
C∞(PU, G)

G, which in turn correspond to local gauge transformations, as shown by Proposition 2.5. It
is not hard to show that the group of bundle automorphisms G(P) of a principal G-bundle π : P → M

acts on an associated vector bundle πE : E = P×ρ V →M through bundle isomorphisms (Theorem 5.3.8
in [59]) via

f · [p, v] = [f(p), v] = [p · σf(p), v], f ∈ G(P), p ∈ P, v ∈ V. (2.2)

More interesting for the relation to physics, however, is the action of physical gauge transformations on
associated bundles, as detailed in the following result.

Proposition 2.8. Let π : P → M be a principal G-bundle with associated bundle πE : E = P ×ρ V → M

and local sections s : U → P and Φ : U → E. Let us write the section Φ with respect to the local gauge
s as Φ(x) = [s(x), ϕ(x)], where ϕ : U → V is a smooth map. Let f ∈ G(PU) and let τf : U → G be the
physical gauge transformation associated to f (cf. Proposition 2.7). Then for all x ∈ Uwe have

(f ·Φ)(x) = [s(x), ρ(τf(x))ϕ(x)],

where f ·Φ is defined as in equation 2.2 above.

Proof. We simply calculate.

(f ·Φ)(x) = f · [s(x), ϕ(x)] = [f(s(x)), ϕ(x)] = [s(x) · σf(s(x)), ϕ(x)] = [s(x) · τσf(x), ϕ(x)]
= [s(x) · τσf(x), ρ(τσf(x)

−1)ρ(τσf(x))ϕ(x)] = [s(x), ρ (τσf(x))ϕ(x)].

Writing τf = τσf the claim follows.

The upshot is that the action of a local bundle automorphism on a local section of an associated bundle
is given through the action of the corresponding physical gauge transformation on the vector-valued
map ϕ : U → V . This is what we see in physics, where the action of a physical gauge transformation
τ : U → G on a field ϕ : U → V is written as ϕ(x) 7→ τ(x)ϕ(x). The more general treatment in terms of
bundle automorphisms has the advantage that it works for topologically non-trivial situations, when
considering instantons for instance.

2.1.2. Connections, curvature and covariant derivatives

We have considered the relation between the mathematical definition of gauge transformations and
the physics parlor, and in particular we have seen how matter fields (sections of associated bundles)
transform. We have, however, not considered the transformation of gauge fields themselves. Since
gauge fields are modelled as connection 1-forms on principal bundles, we have to understand how such
1-forms can be described locally on spacetime and see how this local description changes under gauge
transformations. The same must be done for curvature 2-forms and covariant derivatives on associated
bundles.

Definition 2.9. Let π : P → M be a principal G-bundle and A ∈ Ω1(P, g) a connection 1-form. Let
s : U → P be a local gauge on an open subset U ⊂M. Then the local connection 1-form or local gauge field
determined by s is As = s∗A ∈ Ω1(U, g). If U is a chart on M with local tangent bundle frame ∂µ then
we write Aµ = As(∂µ) ∈ C∞(U). If in addition we choose a basis {ea} of the Lie algebra g and expand
Aµ = Aaµea, then we call the Aas = Aaµdx

µ the local gauge boson fields.

Famously, if P → M is a principal G-bundle with G ⊂ GL(n,R), and si : Ui → P, sj : Uj → P are local
gauges with Ui ∩Uj ̸= ∅, and we write si(x) = sj(x) · gji(x) for all x ∈ Ui ∩Uj, where gji : Ui ∩Uj → G is
the transition function, then on Ui ∩Uj:

Ai = g
−1
ji ·Aj · gji + g−1ji · dgji,
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where · denotes matrix multiplication and dgji is the componentwise differential. For a proof see The-
orem 5.4.2 of [59]. In the Abelian case this reduces to Ai = Aj + g

−1
ji · dgji. Let us now consider the

curvature 2-form or gauge field strength in the same fashion.

Definition 2.10. Let π : P → M be a principal G-bundle and A ∈ Ω1(P, g) a connection 1-form with
curvature F = dA + 1

2 [A,A]. Let s : U → P be a local gauge on an open subset U ⊂ M. Then the local
curvature 2-form or local field strength is Fs = s∗F ∈ Ω2(U, g). If U is a chart with frame ∂µ then we write
Fµν = Fs(∂µ, ∂ν), and if ea is a basis of g we expand Fµν = Faµνea.

The following result makes the link to the physics notation entirely clear. Its proof is a matter of
simple calculation.

Proposition 2.11. The structure equation holds locally, i.e. Fs = dAs +
1
2 [As, As] in a local gauge s.

Moreover, in coordinates we have Fµν = ∂µAν − ∂νAµ + [Aµ, Aν].

Using the same notation as above for G ⊂ GL(n,R), the local field strength transforms in the well-
known way Fi = g−1ji · Fjgji. For a proof see Theorem 5.6.3 in [59]. In the Abelian case this implies that Fs
is independent of the local gauge s, so we can construct a global closed 2-form FM ∈ Ω2(M, g). Indeed,
in that case we locally have Fs = dAs by Proposition 2.11, which locally implies dFs = d2As = 0. Still,
this global closed 2-form FM need not be globally exact, because the base space might be topologically
non-trivial.

Lastly, it remains to see why the covariant derivative is called covariant. Let π : P →M be a principal
G-bundle with connection A ∈ Ω1(P, g) and associated bundle πE : E = P×ρ V →M. Then the induced2

covariant derivative ∇A : Γ(E) → Ω1(M,E) can be expressed in terms of a local gauge s : U → P by
writing a section Φ ∈ Γ(E) as Φ|U = [s, ϕ], with ϕ : U → V , and writing ∇A

XΦ = [s,∇A
Xϕ] along a vector

field X ∈ X(M). Then

∇A
Xϕ = dϕ(X) + ρ∗ (As(X))ϕ. (2.3)

In physics notation, we locally write

∇A
µϕ = ∇A

∂µϕ = ∂µϕ+Aµϕ,

where we mean Aµϕ = ρ∗(Aµ)ϕ. Why, then, is the covariant derivative called covariant? From the
expression ∇A

µ = ∂µ+Aµ we only see that if the gauge field changes under a gauge transformation, then
so does the covariant derivative. But for a sectionΦ ∈ Γ(E) of an associated bundle E = P×ρV the object
∇A
XΦ is not yet defined with respect to some gauge. It lives on the untrivialised bundle. However, if we

have two local gauges s1, s2 : U→ P, then for both we can write

[s1,∇A
Xϕ1] = ∇A

XΦ = [s2,∇A
Xϕ2].

Thus, if we relate the gauges by a gauge transformation g : U→ G such that s2 = s1 · g, then we see

[s1,∇A
Xϕ1] = [s1 · g, ρ(g)−1∇A

Xϕ1] = [s2, ρ(g)
−1∇A

Xϕ1] = [s2,∇A
Xϕ2].

In other words, we have ∇A
Xϕ1 = ρ(g)∇A

Xϕ2, which is where the nomenclature covariant derivative comes
from - the derived field transforms in the same way as the underived field.

2.2. The Standard Model

Having worked our way through the basic notions of gauge theory, we have all the material we need
to define the full Lagrangian of the Standard Model. In this section we consider its four parts: the
Yang-Mills, Higgs, Dirac and Yukawa terms. We spend some time especially on the details of Yang-
Mills theory, as we must understand this deeply for the remainder of this thesis. For an introduction to
spinors and the Dirac operator, we refer the reader to appendix B.

2The induced covariant derivative is defined on a section of E, viewed as an equivariant map f : P → V , by ∇A
X f = df(XH),

where XH ∈ X(P) is the unique horizontal lift of X ∈ X(M).
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2.2.1. Yang-Mills theory

Before we can define the Yang-Mills Lagrangian, we need to understand why it is said that gauge bosons
transform under the adjoint representation. We recall that a k-form ω ∈ Ωk(P, g) is called horizontal if
it vanishes whenever at least one vector it eats is vertical, i.e. for all p ∈ P we have ωp(X1, ..., Xk) = 0

if Xi ∈ VpP for some 1 ≤ i ≤ k. Furthermore, we say a k-form is of type Ad if r∗gω = Adg−1 ◦ω for any
g ∈ G. We denote the set of horizontal k-forms of type Ad byΩkhor(P, g)

Ad. We have the following result.

Proposition 2.12. Let P → M be a principal G-bundle. If A,A ′ ∈ Ω1(P, g) are two connection 1-forms
then A−A ′ ∈ Ω1hor(P, g)

Ad and for anyω ∈ Ω1hor(P, g)
Ad we have that A+ω is a connection 1-form. For

the curvature we have FA ∈ Ω2hor(P, g)
Ad.

Proof. The fact that A − A ′ is horizontal follows from the fact that connection 1-forms identically yield
A(X̃) = A ′(X̃) = X when applied to the fundamental vector field of X ∈ g, since the fundamental vector
fields span the vertical subspace at each point. Since r∗g is linear it also follows that A−A ′ is of type Ad.
These same observations ensure that A+ω is a connection 1-form for anyω ∈ Ω1hor(P, g)

Ad.
The horizontality of the curvature 2-form can be most readily seen from the definition FA(X, Y) =

dA(πH(X), πH(Y)), where πH : TP → H denotes the projection onto the horizontal subbundle. The fact
that curvature 2-forms are of type Ad is well-known and can be checked with a simple calculation.

The interest of this proposition lies in the following theorem, in which the adjoint bundle appears,
i.e. the associated real vector bundle Ad(P) = P ×Ad g constructed through the adjoint representation
Ad : G→ GL(g), defined by Ad(g)(X) = gXg−1 for a matrix Lie group G.

Theorem 2.13. Let P → M be a principal G-bundle. Then Ωkhor(P, g)
Ad and Ωk(M,Ad(P)) are canoni-

cally isomorphic as vector spaces.

Proof. We define a map φ : Ωkhor(P, g)
Ad → Ωk(M,Ad(P)) by (φ(ω))x(X1, ..., Xk) = [p,ωp(Y1, ..., Yk)],

where ω ∈ Ωkhor(P, g)
Ad, x ∈M,p ∈ P such that π(p) = x and Xi ∈ TxM,Yi ∈ TpP such that π∗(Yi) = Xi.

Of course, we need to check that this is well-defined. The independence of the choice of vectors Yi is
not hard to see: if π∗(Y ′

i ) = Xi = π∗(Yi), then π∗(Yi − Y ′
i ) = 0, implying that Yi − Y ′

i is vertical. The
horizontality of ω then makes it vanish on this difference Yi − Y ′

i in any slot. As for the independence
of the point p ∈ Px, suppose p ′ ∈ Px. By free transitivity there exists a unique g ∈ G such that p · g = p ′.
We then have

[p ′,ωp ′(Y1, ..., Yk)] = [p · g,ωp·g(Y1, ..., Yk)] = [p,Adgωp·g(Y1, ..., Yk)]
=[p, (r∗g−1ω)p·g(Y1, ..., Yk)] = [p,ωp((rg−1)∗Y1, ..., (rg−1)∗Yk)] = [p,ωp(Y1, ..., Yk)].

In the last step we have used that π∗((rg−1)∗Yi) = π∗(Yi). In a local gauge it is easy to see that φ(ω) is
smooth, so indeed φ(ω) ∈ ΩK(M,Ad(P)). The map φ is also linear, but we need to verify its bijectivity.
Letω ∈ Ωk(M,Ad(P)). Thenφ−1(ω) is given by [p,φ−1(ω)p(Y1, ..., Yk)] = ωπ(p)(π∗Y1, ..., π∗Yk). Clearly
φ(φ−1(ω)) = ω. Moreover, φ−1(ω) is horizontal since it is defined through the projected vectors π∗Yi
and of type Ad by construction.

From the above two results it follows that differences of connection 1-forms on a principal bundle
can be identified with elements ofΩ1(M,Ad(P)), and the curvature FA of a connection 1-form A can be
identified with an element FAM ∈ Ω2(M,Ad(P)). This can be seen as a generalisation of the Abelian case,
in which the curvature defines a 2-form in Ω2(M, g), as explained under Proposition 2.11. Indeed, if G
is abelian then Ad(P) is the trivial vector bundleM× g.

Remark 2.14. In gauge quantum field theory, particles are described as excitations of a vacuum field.
This vacuum gauge field is described by some connection 1-form A0. Thus, classically speaking, gauge
bosons as excitations of the vacuum field are described by a differenceA−A0 of two connection 1-forms.
This difference can be identified with an element of Ω1(M,Ad(P)) and it is therefore that gauge boson
fields are said to transform under the adjoint representation [59, p. 311].
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To define the Yang-Mills Lagrangian we now fix an n-dimensional pseudo-Riemannian manifold
(M,g) and a principal G-bundle π : P → M, where G is compact of dimension r, with an Ad-invariant
positive definite scalar product ⟨·, ·⟩g. On simple Lie algebras this scalar product is unique up to a pos-
itive factor and is given by the negative Killing form, and for direct sums of simple Lie algebras (like
in the Standard model), it is an orthogonal direct sum of such scalar products on each of the terms (cf.
Theorems 2.5.3 and 2.5.4 in [59]). The physical constants that determine the Ad-invariant positive scalar
product on the compact Lie algebra of the theory are called the coupling constants, and for the Standard
Model there are three of them.

Now, for any representation ρ : G→ GL(V), aG-invariant scalar product ⟨·, ·⟩V : V×V → K determines
a so-called bundle metric ⟨·, ·⟩E on the associated bundle E = P ×ρ V by

⟨[p, v], [p,w]⟩Ex = ⟨v,w⟩V p ∈ P, v,w ∈ V.

The G-invariance of the scalar product guarantees that this is well-defined. A bundle metric on a vector
bundle is just a metric on each fibre which varies smoothly with the basepoint, i.e. it is a section in
Γ(E∗ ⊗ E∗), defining a metric at each base point. The bundle metric allows us to define a scalar product
of twisted forms

⟨·, ·⟩E : Ωk(M,E)×Ωk(M,E) → C∞(M,K)

by choosing a local frame e1, ..., el for EU, expanding F,G ∈ Ωk(M,E) locally as FU =
∑l
i=1 Fi ⊗ ei and

GU =
∑l
j=1Gj ⊗ ej, with Fi, Fj ∈ Ωk(U,K), and locally setting

⟨F,G⟩E(x) =
l∑

i,j=1

⟨Fi, Gi⟩(x)⟨ei, ej⟩E(x), x ∈ U,

where ⟨·, ·⟩ : Ωk(M,K) × Ωk(M,K) → C∞(M,K) is the scalar product of forms which for real forms is
given locally by

⟨ω,η⟩(x) =
∑

µ1<···<µk

ωµ1...µk(x)η
µ1...µk =

1

k!
ωµ1...µkη

µ1...µk(x), x ∈ U, (2.4)

and for complex forms gets a complex conjugate on the ωµ1...µk . For the adjoint bundle and the Ad-
invariant scalar product ⟨·, ·⟩g we thus also get a bundle metric ⟨·, ·⟩Ad(P) ∈ Γ(Ad(P)∗⊗Ad(P)∗) and also
a scalar product of twisted forms ⟨·, ·⟩Ad(P) : Ω

k(M,Ad(P)) ×Ωk(M,Ad(P)) → C∞(M,R). We use this
to define Yang-Mills theory.

Definition 2.15. The Yang-Mills Lagrangian for a connection 1-form A ∈ Ω1(P, g) and its associated
curvature 2-form FAM ∈ Ω2(M,Ad(P)) (cf. Theorem 2.13) is given by

LYM[A] = −
1

2
⟨FAM, FAM⟩Ad(P) ∈ C∞(M,R).

The Yang-Mills action is then

SYM[A] = −
1

2

∫
M

⟨FAM, FAM⟩Ad(P)dvolg.

Proposition 2.16. The Yang-Mills Lagrangian is gauge-invariant.

Proof. Let f ∈ G(P) be a principal bundle automorphism. The well-known transformation behaviour of
FA ∈ Ω2(P, g) is Ff

∗A = Adσf ◦ FA, where σf is defined as in Proposition 2.5. Denoting by f· the action
on the associated adjoint bundle as explained around equation 2.2, we have Ff

∗A
M = f−1 · FAM. From the

construction in Theorem 2.13 and the Ad-invariance of ⟨·, ·⟩g it follows that ⟨·, ·⟩Ad(P) is invariant under
the action of f−1, and the claim follows.

23



Remark 2.17. The Hodge star operator ∗ : Ωk(M,K) → Ωn−k(M,K) is the linear map which for real-valued
forms satisfies ⟨ω,η⟩dvolg = ω ∧ ∗η and for complex-valued forms ⟨ω,η⟩dvolg = ω̄ ∧ ∗η. In the case
of twisted forms on a vector bundle E it can be generalised in a local frame {ei} as ∗F =

∑r
i=1(∗Fi) ⊗ ei

for F ∈ Ωk(M,E). This allows us to alternatively write the Yang-Mills action for G = U(1), SU(N) as

SYM[A] = −
1

2

∫
M

Tr FAM ∧ ∗FAM.

To describe the Yang-Mills Lagrangian locally, let us choose a ⟨·, ·⟩g-orthonormal basis T1, ..., Tr of g and
a local gauge s : U→ P. We define a scalar product of local forms ⟨·, ·⟩g : Ωk(U, g)×Ωk(U, g) → C∞(U, g)
in the same way as in equation 2.4, i.e.

⟨ω,η⟩g =
∑

µ1<···<µk

⟨ωµ1...µk , η
µ1...µk⟩g =

1

k!
⟨ωµ1...µk , η

µ1...µk⟩g.

Writing the local field strength FAs = s∗FA ∈ Ω2(U, g) in coordinates as FAµν = FAs (∂µ, ∂ν), we expand
FAs = Fas ⊗ Ta and FAµν = FaµνTa, where Fas ∈ Ω2(U), Faµν ∈ C∞(U). Then the local expression for the
Yang-Mills action becomes

LYM[A] = −
1

2
⟨FAs , FAs ⟩g = −

1

4
FaµνF

µν
a .

Defining the structure constants fabc through [Ta, Tb] =
∑r
c=1 fabcTc we can express the local field strength

FAµν = ∂µA
ν − ∂νAµ + [Aµ, Aν] in the Lie algebra basis as

Faµν = ∂µA
a
ν − ∂νA

a
µ + fbcaA

b
µA

c
ν.

Writing out the entire Lagrangian in these terms yields

LYM[A] = −
1

4
FaµνF

µν
a = −

1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAνa − ∂

νAµa) (2.5)

−
1

2
fabc

(
∂µA

a
ν − ∂νA

a
µ

)
AbµAcν −

1

4
fabcfadeA

b
µA

c
νA

dµAeν. (2.6)

This shows that in quantum Yang-Mills theory, there are cubic and quartic interactions between gauge
bosons, but only in the non-Abelian case in which the structure constants do not vanish.

2.2.2. Scalar fields

To describe scalar fields coupled to a gauge field A, we consider a complex representation written
ρ : G → GL(W), where W = Cd. We also need a G-invariant Hermitian inner product ⟨·, ·⟩W which
induces a bundle metric on the associated bundle E = P ×ρW →M. We again have a scalar product of
forms ⟨·, ·⟩E and we denote the covariant derivative by ∇A : Γ(E) → Ω1(M,E).

Definition 2.18. The Higgs Lagrangian for a gauge field A ∈ Ω1(P, g) and a multiplet of scalar fields
Φ ∈ Γ(E) is

LH[A,Φ] = ⟨∇AΦ,∇AΦ⟩E − V(Φ),

where V(Φ) = V(⟨Φ,Φ⟩E) is a gauge-invariant potential and V : R → R is a polynomial. The Yang-Mills-
Higgs Lagrangian is LH[A,Φ] + LYM[A].

The gauge-invariance of the Higgs Lagrangian follows immediately from the covariance of the co-
variant derivative and the fact that the potential is a polynomial in a gauge-invariant term.
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2.2.3. The Dirac term

To describe fermions in physics we use spinors, introduced in detail in appendix B. We thus fix an
n-dimensional oriented and time-oriented (Definition B.11) manifold (M,g) of signature (s, t) (for the
remainder of this thesis this will be (1, 3)), together with a spin structure Spin+(M) → M (Definition
B.21) and complex spinor bundle S → M (Definition B.24). We also need an R-bilinear form denoted
⟨·, ·⟩ : ∆ × ∆ → C on the Dirac spinor space (Definition B.6), which must be invariant under the action
of Spin+(s, t) and is called a Dirac form. The Dirac conjugate ψ̄ of a Dirac spinor ψ ∈ ∆ is then defined
by ψ̄ = ⟨ψ, ·⟩ : ∆→ C. For Minkowski spacetime we use the Weyl representation of the Clifford algebra
Cl(1, 3), which is given by

Γ0 =

(
0 I2
I2 0

)
, Γi =

(
0 σi

−σi 0

)
,

where σi are the Pauli matrices. The Dirac form is then ⟨ψ,ϕ⟩ = ψ†Γ0ϕ. The Dirac form gives us an
induced Dirac bundle metric ⟨·, ·⟩S, written ⟨Ψ,Φ⟩S = Ψ̄Φ.

Definition 2.19. We define the Dirac Lagrangian of a free spinor field Ψ ∈ Γ(S) of massm to be

LD[Ψ] = Re(Ψ̄DΨ) −mΨ̄Ψ,

where D : Γ(S) → Γ(S) denotes the Dirac operator (Definition B.29).

If we want to couple fermions to a gauge field on a principal G-bundle P → M, we need to consider
a complex representation ρ : G → GL(V) with associated bundle E = P ×ρ V and G-invariant scalar
product ⟨·, ·⟩V with induced bundle metric ⟨·, ·⟩E. Together with the Dirac bundle metric ⟨·, ·⟩S we then
get a Hermitian scalar product ⟨·, ·⟩S⊗E on the twisted spinor bundle S ⊗ E (Definition B.30), again
abbreviated ⟨Ψ,Φ⟩S⊗E = Ψ̄Φ.

Definition 2.20. The Dirac Lagrangian for a twisted spinor field Ψ ∈ Γ(S ⊗ E) of mass m coupled to a
gauge field A ∈ Ω1(P, g) is

LD[A,Ψ] = Re(Ψ̄DAΨ) −mΨ̄Ψ,

where DA : Γ(S⊗ E) → Γ(S⊗ E) denotes the twisted Dirac operator (Definition B.32).

Remark 2.21. The Dirac Lagrangian for spinors coupled to a gauge field is gauge-invariant and all
components of the gauge multiplet get the same mass from the mass termmΨ̄Ψ. If we would try to give
the components of the multiplet different masses by introducing separate mass terms, we would run
into the issue of the Lagrangian no longer being gauge-invariant when multiplet components are mixed
under gauge transformations [59, p. 433]. We will treat this in more detail in section 2.3, where we will
also show how the Higgs mechanism solves this issue.

For dimM = n even we want to extend this Lagrangian to account for twisted chiral fermions. This
can straightforwardly be done for the massless Dirac Lagrangian, but it turns out that this is not so
easy for massive twisted chiral fermions. Instead, a coupling to the Higgs field is needed through the
Yukawa term. We will explain why and how in section 2.3.

2.2.4. Yukawa couplings

Before we get there, we briefly introduce the Yukawa sector of the Standard Model Lagrangian.

Definition 2.22. Let VL,W, VR be unitary representation spaces of the compact structure group G. Then
a Yukawa form is a map τ : VL ×W × VR → C which is invariant under the G-action, complex antilinear
in VL, real linear inW and complex linear in VR.
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Definition 2.23. If τ : VL×W×VR → C is a Yukawa form and gY ∈ R a (coupling) constant then the map
(∆L ⊗ VL)×W × (∆R ⊗ VR) → R given by

(ψL ⊗ vL, ϕ,ψR ⊗ vR) 7→ −2gYRe(ψ̄LψRτ(vL, ϕ, vR))

is called the Yukawa coupling and defines a gauge-invariant term

LY [ΨL, Φ,ΨR] = −2gY Re
(
Ψ̄LΦΨR

)
= −gY

(
Ψ̄LΦΨR

)
− gY

(
Ψ̄LΦΨR

)∗
for the fields ΨL ∈ Γ(SL ⊗ EL), Φ ∈ Γ(F), ΨR ∈ Γ(SR ⊗ ER) where EL, F, ER are the associated bundles for
the representation spaces VL,W, VR and SL, SR are the spinor bundles for the Dirac spinor spaces ∆L, ∆R.

We have now considered all the basic ingredients of the Standard Model, of which the Lagrangian is
the sum of all the terms we have seen, i.e. the Yang-Mills-Higgs-Dirac-Yukawa Lagrangian. It is time,
then, to examine how the Higgs mechanism relates to all these terms.

2.3. The full Higgs mechanism

We recall from the preamble to this chapter that the Higgs mechanism solves not only the problem of
massive gauge bosons, but three problems related to mass terms:

• the existence of massive gauge bosons;

• different masses for fermions in the same gauge multiplet;

• non-zero masses of twisted chiral fermions.

We begin this section by showing how these problems arise in the first place. We then rigourously
define vacuum configurations and the Higgs condensate and examine how these appear in the well-
known unitary gauge. Subsequently we present the details of the “generation” of gauge boson masses,
and we end with the meaning of the Higgs mechanism for fermions through the Yukawa couplings.

2.3.1. Massive problems

To describe massive particles in QFT we need quadratic terms in the fields. However, adding quadratic
terms directly in the Standard Model Lagrangian turns out to be impossible both for bosons as well as
for fermions. We will now explain why.

In Yang-Mills theory it is quite easy to see why quadratic terms lead to problems. In a local gauge
the Lagrangian is that of equation 2.5, which contains kinetic terms, cubic and quartic terms, but no
quadratic terms in the gauge field A. We could therefore try to add a term 1

2m
2AaµA

µ
a, but it is immedi-

ately clear that this is not gauge-invariant. We could try to use the Ad-invariant scalar product ⟨·, ·⟩g as
in Definition 2.15, but we can only do so if we have a form in Ω1(M,Ad(P)), and Theorem 2.13 shows
that only differences of connection 1-forms can be interpreted that way. Thus, we need to find a different
way to write down a gauge-invariant Lagrangian which contains quadratic terms in the gauge field.

Let us now consider fermions. Here the problem of mass terms seems less pressing, since in Definition
2.20 we have given the Dirac Lagrangian for a massive spinor field coupled to a gauge field. As noted
in Remark 2.21 however, in the case of a gauge multiplet, all components of the multiplet get the same
mass in the massive Dirac Lagrangian. Indeed, choosing a local section s : U → P and a basis v1, ..., vr
of the associated bundle vector space V to locally write a twisted spinor Ψ = (Ψ1, ..., Ψr) with Ψi ∈ Γ(S)
(cf. equation B.30), we have mΨ̄Ψ = m

∑r
i=1 Ψ̄iΨi. In other words, all components have mass m. If we

wanted to give different masses to different components, we would need termsm1Ψ̄1Ψ+ ...+mrΨ̄rΨ.
To see why this could never be gauge-invariant unless all mi were equal, we need to understand

what a gauge transformation does on the spinor components. Since the spinor components are defined
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in the trivialisation of the associated bundle through the local gauge, as under definition B.30, they
transform under gauge transformations as in Proposition 2.2, i.e. by the action of ρ(τ), where τ : U →
G is a gauge transformation. Thus, if ρ : G → V does not leave the basis vectors v1, ..., vr invariant,
gauge transformations mix the spinor components. This will of course be the case for the standard
representation, which is irreducible. Consider for instance the simple case of a spinor Ψ = (Ψ1, Ψ2)
whose components are rotated into each other by some gauge transformation, i.e. Ψ1 → Ψ2, Ψ2 → −Ψ1.
If we were to have different masses m1 ̸= m2, then this gauge transformation would act by sending
m1Ψ̄1Ψ1 + m2Ψ̄2Ψ2 → m1Ψ̄2Ψ2 + m2Ψ̄1Ψ1, so the gauge transformation would exchange the masses
of the fields! We must therefore find another way to give fields in the same gauge multiplet different
masses. This is crucial in the Standard Model, because at least all left-handed fermions appear in isospin
multiplets: left-handed leptons appear as electron-neutrino doublets (plus heavier generations) and the
up and down quarks also form a doublet (plus heavier generations). All such particle masses can thus
only be differentiated by different Yukawa couplings to the Higgs field.

In addition to the problem of mass in gauge multiplets there is the issue of chirality, making the
massive problems for the Standard Model even heavier. Chirality plays a central role in the Standard
Model: the left- and right-handed representations of the structure group are 24- and 21-dimensional
respectively. The problem arises from the following fact (see Propositions 6.7.13 and 7.6.7 in [59]).

Proposition 2.24. On an even-dimensional oriented and time-oriented Lorentzian spin manifold, any
choice of Dirac form gives a bundle metric that vanishes on SL and SR separately and thus only pairs
left-handed with right-handed spinors.

The same holds for twisted spinors on S⊗E = (SL⊗E)⊕ (SR⊗E), so the Dirac Lagrangian for spinors
coupled to a gauge field can be written

LD[Ψ,A] = Re
(
Ψ̄DAΨ

)
−mΨ̄Ψ = Re

(
Ψ̄LDAΨL + Ψ̄RDAΨR

)
− 2mRe

(
Ψ̄LΨR

)
,

since the Dirac operator interchanges left- and right-handed spinors. So far there is nothing wrong:
this Lagrangian has a mass term pairing left-handed and right-handed spinors. However, the problem
arises when we consider twisted chiral spinors, i.e. if we have two representations ρL : G→ GL(VL) and
ρR : G → GL(VR) and define the twisted chiral spinor bundle (SL ⊗ EL) ⊕ (SR ⊗ ER) (Definition B.33).
The massless Dirac Lagrangian LD[Ψ,A] = Re

(
Ψ̄LDAΨL + Ψ̄RDAΨR

)
then still works, but the mass term

−2mRe
(
Ψ̄LΨR

)
is not defined. To see this, recall that the Hermitian scalar product ⟨·, ·⟩S⊗E is constructed

from the associated bundle metric ⟨·, ·⟩E and the Dirac bundle metric ⟨·, ·⟩S. But this construction only
makes sense if the left-handed and right-handed spinors have the same representation space, i.e. if
VL ∼= VR [59, p. 435]. Indeed, to construct a Hermitian scalar product for the twisted chiral spinor bundle
we would need a G-invariant mass pairing κ : VL ×VR → C (complex antilinear in the first argument and
complex linear in the second) of unitary representations. This mass pairing would then give a form
κE : EL × ER → C which we could use to define a scalar product and thence a mass term for twisted
chiral spinors. Unfortunately, we have the following version of Schur’s lemma.

Lemma 2.25. Let ρL : G → GL(VL) and ρR : G → GL(VR) be irreducible, unitary, non-isomorphic repre-
sentations. Then every mass pairing κ : VL × VR → C is zero.

Proof. We consider the dual V̄∗
L of the complex conjugate of VL, i.e. V̄∗

L = {α : VL → C | α C-antilinear}.
This is also a representation space ofG through (g·α)(vL) = α(ρL(g−1)vL) for any g ∈ G,α ∈ V̄∗

L , vL ∈ VL.
Denoting by ⟨·, ·⟩VL the Hermitian form for which ρL is unitary, the C-linear isomorphism VL 7→ V̄∗

L given
by vL → ⟨·, vL⟩VL is G-equivariant:

ρL(g)vL 7→ ⟨·, ρL(g)vL⟩VL = ⟨ρL(g−1)·, vL⟩VL = g · ⟨·, vL⟩VL , g ∈ G, vL ∈ VL.

Suppose now that a mass pairing κ ̸= 0 exists. Then we get a C-linear map VR → V̄∗
L defined through

vR 7→ κ(·, vR), and this map is also G-equivariant since κ is G-invariant:

ρR(g)vR 7→ κ(·, ρR(g)vR) = κ(ρR(g−1)·, vR) = g · κ(·, vR), g ∈ G, vR ∈ VR.
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Combining these maps with the inverse of the isomorphism VL → V̄∗
L , we get a G-equivariant C-linear

map VR → VL which is non-zero because κ ̸= 0. But Schur’s lemma states that if VL and VR are not
isomorphic there exist no such non-trivial G-equivariant maps. We arrive at a contradiction.

In conclusion, directly adding mass terms is highly problematic in any realistic theory of particle
physics, which must include massive gauge bosons, gauge multiplets whose components have different
masses and massive twisted chiral fermions. We need a different way of thinking about mass terms in
a gauge-invariant Lagrangian. This way is the Higgs mechanism, in which mass is thought of not as
something intrinsic to a quantum field, but as something arising through the interaction of a field with
the Higgs field. This Higgs field must have a potential with a minimum away from zero so that it can
function as a non-zero background called the Higgs condensate, with which massive particles can interact
to varying degrees. Such an extrinsic view of mass is also advocated by Rivat [32]. As we will see in
section 2.3.5, all massive particles in the Standard Model obtain their masses this way.

2.3.2. Vacuum gauges, vectors and configurations

For the gauge-theoretical definition of the Higgs condensate we consider the Yang-Mills-Higgs La-
grangian from Definition 2.18. Thus, we fix an n-dimensional pseudo-Riemannian manifold (M,g),
a principal G-bundle π : P → M with compact structure group G of dimension r, a complex represen-
tation ρ : G → GL(W) with associated complex vector bundle πE : E = P ×ρW → M and a G-invariant
Hermitian scalar product ⟨·, ·⟩W with associated bundle metric ⟨·, ·⟩E. We assume the Higgs vector space
to beW = Cn with standard Hermitian product ⟨v,w⟩W = v†w.

Definition 2.26. A vacuum configuration for LYM[A] + LH[A,Φ] is a pair (A0, Φ0) such that A0 is flat (i.e.
FA0 = 0), Φ0 is covariantly constant (i.e. ∇A0Φ0 = 0) and Φ0 is a minimum of V at every point ofM.

Definition 2.27. An elementw0 ∈W is called a vacuum vector if it is a minimum of the potential function
V(w) = V(⟨w,w⟩W) fromW to R. The set of vacuum vectors inW is called the vacuum manifold for V .

The following result then shows how vacuum configurations correspond to vacuum vectors when the
base space is connected and simply connected and the principal bundle is trivial.

Proposition 2.28. Assume M to be connected and simply connected and P → M to be trivial. Let
(A0, Φ0) be a vacuum configuration. Then there exists a global gauge s0 : M → P, called the vacuum
gauge, such that s∗0A0 = 0 andΦ0 = [s0, w0], wherew0 ∈W is a constant vacuum vector. Conversely, for
any fixed global gauge s0 : M→ P, every vacuum vectorw0 ∈W defines a unique vacuum configuration
(A0, Φ0) of this form, i.e. through s∗0A0 = 0,Φ0 = [s0, w0].

Proof. Let (A0, Φ0) be a vacuum configuration. We work on P =M × G and use the well-known result
that, on a simply connected base space, for every flat connection on the trivial bundle there is a bundle
map that maps this flat connection to the canonical flat connection Acan (c.f Corollary II.9.2 in [60]). The
canonical flat connection’s horizontal subspace at a point (x, g) ∈M×G is the tangent space toM× {e},
and it can be written A0 = Acan = proj∗θ, where proj : M×G→ G is the projection and θ ∈ Ω1(G, g) the
Maurer-Cartan form g−1dg. Let s0 : M → M × G denote the section that sends x → (x, e). Then clearly
s∗A0 = s

∗proj∗θ = (proj ◦ s)∗θ = 0. Writing Φ0 = [s0, ϕ0] with ϕ0 : M→ W, the local expression for the
covariant derivative (equation 2.3) then gives ∇A0ϕ0 = dϕ0+ρ∗(s

∗A0)ϕ0 = dϕ0. SinceΦ0 is covariantly
constant we conclude that ϕ0 is constant, so that we can writeΦ0 = [s0, w0] for some w0 ∈W. ButΦ0 is
also a minimum of V at every point, so w0 must be a vacuum vector.

Conversely, let us fix a global gauge s0 : M → P. By the result referred to above, any flat connection
A0 ∈ Ω1(P, g) is isomorphic to the canonical flat connection Acan ∈ Ω1(M×G, g) in the sense that there
exists a bundle map f : P → M × G such that A0 = f∗Acan. Thus, if we are to find a flat connection
A0 ∈ Ω1(P, g) such that s∗0A0 = 0, then we must find a bundle map f : P → M × G for which it holds
that s∗0f

∗Acan = (f ◦ s0)∗Acan = 0. But since the horizontal subspace of Acan at (x, g) ∈ M × G is
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the tangent space to M × {e}, this just amounts to finding a bundle map f : P → M × G such that
f ◦ s0(x) = (x, e) for any x ∈M. This requirement uniquely defines f. Again, by the local expression for
the covariant derivative it is clear that any vacuum vectorw0 ∈W defines a covariantly constant section
Φ0 = [s0, w0].

We now fix a global vacuum gauge s0 : M → P and a vacuum vector w0 ∈ W and we let (A0, Φ0)
denote the associated vacuum configuration.

Definition 2.29. We call the isotropy group H = Gw0
⊂ G of the vacuum vector w0 ∈ W the unbroken

subgroup. If H is a proper subgroup of G then we call the gauge theory spontaneously broken.

Assuming the Higgs potential V(w) to have a minimumw0 away fromw = 0 such thatw0 ̸= 0, we call
the nowhere vanishing field Φ0 the Higgs condensate. In the Standard Model we have the well-known
V(w) = µ2 ∥w∥2 + λ ∥w∥4 with λ > 0, µ2 < 0.

Example 2.30. For the electroweak model we take M to be 4-dimensional Minkowski spacetime. The
structure group is G = SU(2)×U(1) and the Higgs vector space isW = C2 with the standard Hermitian
scalar product. The representation ρ : SU(2)×U(1) → GL(W) is unitary and given by(

A, eiα
)
·
(
w1
w2

)
= A

(
einYα 0

0 einYα

)(
w1
w2

)
,

where nY is non-zero natural number that we fix to to nY = 3, following [59]. Vacuum vectors for the
Higgs potential satisfy ∥w0∥ =

√
−µ2/2λ = v/

√
2, so the vacuum manifold is a 3-sphere in C2 with

radius v/
√
2, and G acts transitively on this vacuum manifold. Choosing w0 = (0, v/

√
2) we get

H ∼= U(1) ∼=

{((
eiδ/2 0

0 e−iδ/2

)
, eiδ/(2nY)

)
| δ ∈ R

}
⊂ G.

Crucially, the unbroken subgroup H ∼= U(1) is not just the second component of G = SU(2) × U(1) but
lies diagonally in it. This leads to the famous Weinberg mixing angle, as we will explain in chapter 3.

2.3.3. Nambu-Goldstone and Higgs bosons

In the vacuum gauge s0 : M → P we can write the Higgs field as Φ = [s0, ϕ] with ϕ : M → W, where ϕ
is also called the Higgs field. If we then shift ϕ = w0 + ∆ϕ with respect to the vacuum vector w0 ∈ W,
we uncreatively call ∆ϕ the shifted Higgs field. Denoting by Ow0

= G ·w0 ⊂ W the orbit of w0, we have
that Ow0

is an embedded submanifold ofW isomorphic to G/H (see Corollary 3.8.10 in [59]). We split

W ∼= Tw0
W = Tw0

Ow0
⊕ (Tw0

Ow0
)⊥,

with respect to the positive definite scalar product Re⟨·, ·⟩W . We will now consider the Hessian Hess(V)
(the symmetric matrix of second derivatives) of the potential, which at every point w ∈ W is a map
Hess(V)w : TwW → TwW. More generally, the Hessian can be defined on a Riemannian manifold with
Levi-Civita connection ∇ by Hess(V)(X) = ∇Xgrad V , and it is symmetric in the sense that

Re⟨Hess(V)(X), Y⟩W = Re⟨X,Hess(V)(Y)⟩W , X, Y ∈ X(M).

Proposition 2.31. The Hessian Hess(V)w0
preserves the splittingW ∼= Tw0

Ow0
⊕ (Tw0

Ow0
)⊥.

Proof. The potential V is minimal on the entire orbit Ow0
= G ·w0, so the gradient grad V is zero along

the orbit, i.e. for all Xw0
∈ Tw0

Ow0
we have Hess(V)w0

(Xw0
) = 0 ∈ Tw0

Ow0
. In addition, for any

Xw0
∈ (Tw0

Ow0
)⊥, Yw0

∈ Tw0
Ow0

we have by symmetry that

Re⟨Hess(V)w0
(Xw0

), Yw0
⟩W = Re⟨Xw0

,Hess(V)w0
(Yw0

)⟩W = Re⟨Xw0
, 0⟩W = 0,

so indeed Hess(V)w0
(Xw0

) ∈ (Tw0
Ow0

)⊥, which proves the result.

29



Definition 2.32. Setting d = dimOw0
= dimG−dimH, by Proposition 2.31 there exist real orthonormal

bases e1, ..., ed of Tw0
Ow0

and f1, ..., f2n−d of (Tw0
Ow0

)⊥ (where 2n = dimW = dim Cn) consisting of
eigenvectors of Hess(V)w0

, such that the ei have eigenvalue 0 and the fj have non-negative (since w0
is a minimum the second derivatives are non-negative) eigenvalues 2m2

j with mj ≥ 0. Through the
isomorphismW ∼= Tw0

W we expand the shifted Higgs fields in these bases:

∆ϕ =
1√
2

d∑
i=1

ξiei +
1√
2

2n−d∑
j=1

ηjfj,

where the ξi and ηj are real scalar fields called Nambu-Goldstone bosons and Higgs bosons respectively.
There are as many Nambu-Goldstone bosons as there are broken degrees of freedom and as many Higgs
bosons as the real dimension of the Higgs vector space minus the number of Nambu-Goldstone bosons.

A Taylor expansion up to second order then gives V(ϕ) ≈ V (w0) +
1
2

∑2n−d
j=1 m2

fj
η2j for the Higgs

potential [59, p. 454]. Since the Lagrangian contains kinetic terms for the scalar fields, we can interpret
the Higgs fields as scalar fields with massesmfj and the Nambu-Goldstone fields as massless bosons.

Example 2.33. For the electroweak theory from Example 2.30, in which the 4-dimensional structure
group G = SU(2)×U(1) is broken to the 1-dimensional U(1), there are three Nambu-Goldstone bosons
ξ1, ξ2, ξ3 and one Higgs boson η (also written H), since the Higgs vector space C2 has four real dimen-
sions. Again choosing w0 = (0,

√
−µ2/2λ) = (0, v/

√
2), we see that Tw0

Ow0
is spanned (as a real vector

space) by the vectors (1, 0), (i, 0), (0, i) and (Tw0
Ow0

)⊥ is spanned by (0, 1). In this basis we decompose
the Higgs field as

ϕ =

(
ϕ1
ϕ2

)
=

1√
2

(
ξ1 + iξ2
iξ3

)
+
1√
2

(
0

v+H

)
,

where H is a real scalar field. In the standard coordinates x1 + ix2, x3 + ix4 of W = C2 the potential is
V(x) = µ2 ∥x∥2 + λ ∥x∥4, of which the second derivatives (i.e. the Hessian matrix) are given by

∂2V

∂xi∂xj
= 2µ2δij + 4λ

(
2xixj + ∥x∥2δij

)
.

We take e1 = (1, 0), e2 = (i, 0), e3 = (0, i), f = (0, 1) for the bases described in Definition 2.32. To find the
eigenvalue 2m2

f of the eigenvector f ∈ (Tw0
Ow0

)⊥ we calculate the Hessian’s x4x4-component in w0:

∂2V

∂x4∂x4

(
0,
v√
2

)
= 2µ2 + 4λ

(
2

(
1√
2
v

)2
+
v2

2

)
= 2µ2 + 6λv2 = 2µ2 − 6µ2 = −4µ2.

So 2m2
H = −4µ2, i.e. mH =

√
−2µ2 = v

√
2λ. This shows how the Higgs mass is itself dependent on the

parameters of the potential.

2.3.4. Unitary gauge

The Nambu-Goldstone bosons are unphysical in the Higgs mechanism. Indeed, their appearance is
gauge-dependent: gauges can be chosen in which they vanish, as we will now show. Still denoting by
s0 : M→ P the vacuum gauge and writing the Higgs field asΦ = [s0, ϕ], we consider gauge transforma-
tions τ : M→ Gwith respect to the vacuum gauge as in Proposition 2.7, such that ϕ(x) 7→ ρ(τ(x))ϕ(x).

Definition 2.34. For a Higgs field ϕ : M → W a physical gauge transformation τ : M → G is called a
unitary gauge with respect to a vacuum vectorw0 ∈W if all Nambu-Goldstone bosons of the transformed
field ρ(τ)ϕwith respect to w0 vanish identically onM. We then say the transformed field ϕ ′ = ρ(τ)ϕ is
in unitary gauge with respect to w0.
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Theorem 2.35. Consider the electroweak theory (Examples 2.30 and 2.33) with G = SU(2) × U(1) and
Higgs field ϕ = (ϕ1, ϕ2), where ϕ1, ϕ2 : M → C. Assume ϕ2(x) ̸= 0 for all x ∈ M. Then there exists a
gauge transformation τ : M → G such that ρ(τ)ϕ = (0,ψ) for some ψ : M → R and ρ(τ)ϕ is in unitary
gauge with respect to the vacuum vector w0 = (0, v/

√
2).

Proof. We perform an SU(2) gauge transformation τ1 : M→ SU(2) ⊂ G given by

τ(x) =
1√

|ϕ1(x)|2 + |ϕ2(x)|2

(
ϕ2(x) −ϕ1(x)
ϕ∗
1(x) ϕ∗

2(x)

)
.

This is well-defined since ϕ2 is nowhere zero, and gives the transformed fields (ρ(τ)ϕ)1 = 0 and
(ρ(τ)ϕ)2(x) =

√
|ϕ1(x)|2 + |ϕ2(x)|2. Clearly ρ(τ)ϕ is in unitary gauge with respect to w0 because the

transformed field can be expressed purely in the Higgs basis vector f = (0, 1) from Example 2.33.

2.3.5. Mass generation

Let us now finally consider how particle masses are “generated” through the Higgs mechanism in the
Standard Model, both for the weak gauge bosons as well as the leptons and quarks. We continue with
the Yang-Mills-Higgs Lagrangian as in the previous section, with unbroken subgroup H = Gw0

⊂ G

for the vacuum vector w0 ∈ W. We denote by h ⊂ g the Lie algebra of H and let h⊥ ∼= g/h denote
its orthogonal complement with respect to the Ad-invariant positive definite scalar product ⟨·, ·⟩g. We
define a mass form such that we can distinguish between broken and unbroken gauge bosons.

Definition 2.36. For the vacuum vectorw0 ∈W we define the positive semi-definite symmetric bilinear
mass form m : g × g → R by (A,B) → ⟨ρ∗(A)w0, ρ∗(B)w0⟩g, where ρ∗ is the Lie algebra representation
induced from the representation ρ : G→ GL(W).

Note that the kernel of the map g → W sending A 7→ ρ∗(A)w0 is precisely h and that this map is
injective on h⊥. Thus, we can diagonalise the symmetric mass formm and find ⟨·, ·⟩g-orthonormal bases
α1, ..., αd of h⊥ and αd+1, ..., αr of h such that m is diagonal in this basis and satisfies m(αa, αa) =

1
2M

2
a

with Ma > 0 for 1 ≤ a ≤ d and Ma = 0 for d + 1 ≤ a ≤ r. The α1, ..., αd are called the broken
generators and the αd+1, ..., αr are called the unbroken generators. We can then expand a local gauge field
Aµ =

∑r
a=1A

a
µαa into broken and unbroken gauge bosons, such that the broken gauge bosons have masses

Ma. These masses depend on ∥w0∥ and on the coupling constants used to define ⟨·, ·⟩g. Let us then
express the local Yang-Mills-Higgs Lagrangian LYMH = −1

4F
a
µνF

µν
a − V(ϕ) − (∇A

µϕ)
†∇Aµϕ in terms of

the shifted Higgs field ∆ϕ = ϕ−w0 up to second order:

LYMH ≈ −
1

4
FaµνF

µν
a − V(ϕ) − (∂µ∆ϕ)

†(∂µ∆ϕ) − 2Re((∂µ∆ϕ)†(ρ∗(Aµ)w0)) − (ρ∗(Aµ)w0))
†(ρ∗(A

µ)w0)).

This expression can be obtained by writing ∇A
µϕ = ∂µ∆ϕ+ ρ∗(Aµ)(w0 + ∆ϕ) and using that

2Re((∂µ∆ϕ)†(ρ∗(Aµ)w0)) = (∂µ∆ϕ)
†(ρ∗(Aµ)w0) + (ρ∗(Aµ)w0)

†(∂µ∆ϕ).

We now assume ϕ to be in unitary gauge with respect to w0, such that the Nambu-Goldstone bosons
vanish. We saw in Theorem 2.35 that the unitary gauge always exists for the electroweak theory if the
second component of the Higgs field is non-zero. This is the case if the fluctuations of the Higgs field
around the vacuum vector w0 are not too large. In unitary gauge, the term 2Re((∂µ∆ϕ)†(ρ∗(Aµ)w0))
vanishes because ∆ϕ is orthogonal to the orbit of w0 by assumption, whereas ρ∗(Aµ)w0 is tangential to
this orbit. We can thus also write (∂µ∆ϕ)

†(∂µ∆ϕ) = 1
2

∑2n−d
j=1 ∂µηj∂

µηj purely in terms of the real Higgs
fields ηj from Definition 2.32 (we have f†j fj = 1 by orthonormality). We also saw that up to second order
V(ϕ) ≈ V (w0) +

1
2

∑2n−d
j=1 m2

fj
η2j . Lastly, we get

(ρ∗(Aµ)w0))
†(ρ∗(A

µ)w0)) = m(Aµ, A
µ) =

1

2

d∑
a=1

M2
aA

a
µA

µ
a,
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since the mass form vanishes for the unbroken gauge bosons. Putting this all together and ignoring the
constant V(w0) we get the Lagrangian

LYMH ≈ −
1

4
FaµνF

µν
a −

1

2

2n−d∑
j=1

m2
fj
η2j −

1

2

2n−d∑
j=1

∂µηj∂
µηj −

1

2

d∑
a=1

M2
aA

a
µA

µ
a

=

d∑
a=1

(
−
1

4
(∂µA

a
ν − ∂νA

a
µ)(∂

µAνa − ∂
νAµa) −

1

2
M2
aA

a
µA

µ
a

)
−

r∑
b=d+1

1

4
(∂µA

b
ν − ∂νA

b
µ)(∂

µAνb − ∂
νA

µ
b)

−

2n−d∑
j=1

1

2

(
∂µηj∂

µηj +m
2
fj
η2j

)
.

In other words, in unitary gauge we have d broken gauge bosons with masses Ma, r − d unbroken,
massless gauge bosons and 2n−d scalar fields with massesmfj . For the electroweak theory specifically
we have three broken gauge bosons (the W+, W− and Z), one unbroken gauge boson (the photon) and
one Higgs field.

Mass generation for fermions occurs through the Yukawa couplings. We focus on leptons because this
is what we will apply the dressing field method to in chapter 3, but we also briefly consider quarks for
the sake of completeness. Leptons exist in three generations i = e, µ, τwith SU(2)×U(1) representation
spaces LiL = C2 ⊗ C−1, LiR = C ⊗ C−2 and W = C2 ⊗ C1, where C2 denotes the standard representation
of SU(2), C denotes the trivial 1-dimensional representation of SU(2) and Cy denotes the 1-dimensional
representation in which α ∈ U(1) acts by z 7→ α3yz. It is not hard to see then that τil : L

i
L ×W × LiR → C

defined by (lL, ϕ, lR) 7→ gil
†
LϕlR is an SU(2) × U(1)-invariant Yukawa form, where gi is a coupling

constant.
Writing the first generation left-handed SU(2)-doublet as lL = (ν1L, eL) and ϕ = (0, v+H) /

√
2 in

unitary gauge and denoting vR = eR, we get τ1L(vL, ϕ, vR) = geēL(v + H)eR/
√
2 and similarly for the

other generations. Here νiL denotes the left-handed neutrino. For the first generation, the Yukawa term
from Definition 2.23 then becomes

LeY = −2meRe(ēLeR) −
2

v
meRe(ēLeR)H, (2.7)

and similarly for the other generations. Here mi = giv/
√
2 are the lepton masses, which depend on the

coupling constant and Higgs field vacuum value. We thus have massive leptons which can interact with
the Higgs field by changing handedness through the cubic term.

Mass generation for quarks is analogous, with SU(2) × U(1) representation spaces QL = C2 ⊗ C1/3
and QR = (C ⊗ C4/3) ⊕ (C ⊗ C−2/3) for every quark generation. The strong force is not taken into
account here. A Yukawa form is then also defined for the quarks (see Lemma 8.8.4 in [59]) such that by
expanding the Higgs field around a vacuum vector the quarks obtain masses mi = giv/

√
2 for every

flavour i = u, d, c, s, t, b and interact with the Higgs field by changing handedness. The Lagrangian for
every quark generation (up-down, charm-strange, top-bottom) then looks exactly like 2.7.

Thus, it has become clear that every massive particle in the Standard Model gets its mass by inter-
acting with the Higgs field. Even if right-handed neutrinos are added in order to account for neutrino
masses, this happens by Yukawa coupling to the Higgs field in a similar way as for quarks [59, p. 532].
Philosophically speaking we may therefore be inclined to say that the Higgs mechanism has explana-
tory value even if it is not viewed as an instance of dynamical symmetry breaking. It explains that mass
terms in the Standard Model cannot be added naively, but must always come from interaction with
some other field. It supports an extrinsic instead of intrinsic perspective on the property of mass.
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3. The Dressing Field Method

As announced in section 1.3, we begin our journey through the landscape of alternative accounts of the
Higgs mechanism with the dressing field method (DFM), since it provides the most radical viewpoint,
namely, that there is no SSB at all. The DFM traces back to work by Dirac from 1955, in which he
recognised that “the requirement of manifest gauge invariance prevents one from using the concept of
an electron separated from its Coulomb field” [61]. Its basic idea is that one should not consider gauge-
dependent elementary fields, but rather gauge-invariant dressed fields. This is what Dirac means when
he says one cannot separate an electron from the Coulomb field it generates, i.e. from its “dress”. To
create dressed fields one in turn uses a dressing field. This approach is claimed to provide “an alternative
interpretation of the BEHGHK mechanism that is more in line with the conclusions of the community
of philosophers of physics” [62, p. 4]. In particular “the DFM approach to the electroweak model
is consistent with Elitzur’s theorem stating that in lattice gauge theory a gauge symmetry cannot be
spontaneously broken” [41, p. 66]. François’ article even contains a section titled “there is no SSB in the
electroweak model and we long suspected it” [63].

In this chapter we present and criticise the DFM from the perspective of mathematical gauge theory.
We introduce it in section 3.1, based on [41, 62–66]. We then apply it to the Abelian Higgs model and
the electroweak theory in section 3.2 and discuss how the FMS approach allows us to transfer DFM-like
ideas into the context of perturbative QFT in section 3.3. We end with some philosophical reflections on
the DFM in section 3.4.

3.1. Dressing fields and dressed fields

In the following we work with a principal G-bundle π : P →M, where G ⊂ GL(n,R), and we let H ⊂ G
denote a closed subgroup. Let us define the fundamental object of the DFM.

Definition 3.1. A map u : P → H satisfying u(ph) = h−1u(p) for all h ∈ H is called an H-dressing field.

Taking inspiration from Proposition 2.5, an H-dressing field u allows us to define a map fu : P → P by
fu(p) = pu(p). This map, however, is not a bundle automorphism (i.e. a gauge transformation), since

fu(ph) = (ph)u(ph) = phh−1u(p) = pu(p) = fu(p), p ∈ P, h ∈ H.

In other words, fu is not H-equivariant and therefore also not G-equivariant if H is non-trivial. This
equation shows that fu is constant along the orbits of the action ofH, which means that it factors through
P → P/H [64]. In the case where H = G this means that fu defines a global section, since in that case
P/H = P/G ∼=M, implying that P is trivial. Thus, we can think of dressing fields as trivialisations in the
direction of the subgroup H [65]. This is formalised in the following result.

Proposition 3.2. A dressing field u : P → H exists if and only if there is an isomorphism of H-spaces
P ∼= P/H×H, where the action of H on P/H is trivial.

Proof. If P ∼= P/H×H asH-spaces, then we can find an isomorphism ofH-spaces f : P → P/H×H that we
can write as f(p) = ([p], f̃(p)) with f̃ : P → H. We then define the dressing field u(p) = f̃−1(p). Indeed,
we then have u(ph) = f̃−1(ph) = (f̃(p)h)−1 = h−1f̃−1(p) = h−1u(p).

Conversely, suppose a dressing field u : P → H exists. Then u is surjective since for any h ∈ H we
can take any p ∈ P, and then u(pu(p)h−1) = hu(p)−1u(p) = h. We now consider Q = u−1({e}) ⊂ P
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with the trivial action of H. Then we have an isomorphism of H-spaces P ∼= Q × H defined through
p 7→ (pu(p), u(p)−1), with inverse (q, h) 7→ qh. But since the map P → Q given by p 7→ pu(p) satisfies
ph 7→ phu(ph) = phh−1u(p) = pu(p) for any h ∈ H, it factors through the quotient P → P/H. In
fact, P/H → Q given by [p] 7→ pu(p) is an isomorphism of (trivial) H-spaces with inverse q 7→ [q].
Indeed, for any q ∈ Q we have [q] 7→ qu(q) = qe = q and for any [p] ∈ P/H we have [pu(p)] = [p]
since u(p) ∈ H. With the two isomorphisms of H-spaces P ∼= Q × H and Q ∼= P/H we thus get an
isormorphism P ∼= P/H×H.

Proposition 3.2 tells us how dressing fields trivialise the principal bundle, but it does not say anything
about the fields on that bundle. The point of dressing fields, however, is that they can dress other fields.

Definition 3.3. Let u be an H-dressing field and A ∈ Ω1(P, g) a connection 1-form with curvature F. Let
ρ : G → V be a representation giving an associated bundle E = P ×ρ V and ϕ : P → V a G-equivariant
map (equivalently a section of E). Then we define the dressed fields

Au = f∗uA = u−1Au+ u−1du,

ϕu = f∗uϕ = ρ(u−1)ϕ,

Fu = f∗uF = u
−1Fu = dAu +

1

2
[Au, Au].

We note that Au is not itself a connection 1-form. Similarly we define a dressed covariant derivative

Duϕu = f∗u(Dϕ) = ρ(u
−1)Dϕ = dϕu + ρ∗(A

u)ϕu.

These equalities follow from the transformation behaviour of the respective fields under gauge trans-
formations, although the dressing field is of course not itself a gauge transformation.

The idea behind this definition is that the dressed fields have been rendered invariant under the H-
valued gauge group C∞(P,H)H. To see this, note that in the same way as in Proposition 2.5, an H-gauge
transformation γ ∈ C∞(P,H)H defines fγ : P → P by fγ(p) = pγ(p), such that we have

fu ◦ fγ(p) = fu(pγ(p)) = pγ(p)u(pγ(p)) = pγ(p)γ(p)−1u(p) = pu(p) = fu(p).

This shows that f∗γf∗u = (fu ◦ fγ)∗ = f∗u, so that all the dressed fields are invariant under the action of any
γ ∈ C∞(P,H)H, which works on the dressed fields via the pullback f∗γ. Now, we would like to formalise
the idea that a dressed connection is trivial in the direction of the dressing field, but can at the same
time be viewed as a new connection 1-form on the reduced bundle with the residual group G/H as its
structure group. This can indeed be done in the case where H ⊂ G is a normal subgroup, such as for
product groups G = H× J like the SU(2)×U(1) structure group of the electroweak theory.

Corollary 3.4. Suppose u : P → H is a dressing field andG = H×J, whereH, J ⊂ G are closed subgroups.
We split g = h ⊕ j accordingly. Then Q = u−1({e}) ⊂ P is a principal J-bundle and we can write any
dressed connection Au ∈ Ω1(P, g) as a direct sum Au|Q = A

h
Q ⊕ Aj

Q on Q, where Ah
Q ∈ Ω1(Q, h) is an

H-gauge-invariant 1-form and Aj
Q ∈ Ω1(Q, j) is a J-connection 1-form.

Proof. From the proof of Proposition 3.2 we knowQ ∼= P/H, which is the quotient bundle with structure
group G/H ∼= J. Writing a connection 1-form A ∈ Ω1(P, g) as A = Ah ⊕ Aj, we have Au = (Ah)u ⊕ Aj,
since u is H-valued. Denoting by ι : Q→ P the inclusion, we get ι∗Au = ι∗(Ah)u⊕ ι∗Aj. Here Aj

Q := ι∗Aj

is a J-connection 1-form (this follows from the properties of A) and

A
h
Q := ι∗(Ah)u

is H-gauge invariant since it is dressed by u : P → H.
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Thus, when reducing a gauge symmetry using a dressing field, the dressed connection fields can be
viewed as gauge fields for the residual structure group. Similarly, a dressed matter field ϕu : P → V

reduces to a J-equivariant map Q → V , i.e. a section of Q ×J V , and the dressed covariant derivative
becomes a proper covariant derivative for this reduced associated bundle [62]. Accordingly, we define a
gauge symmetry to be artificial if we can find a local dressing field for the corresponding structure group.
We then replace the fields in the Lagrangian by their dressed versions, such that we can reinterpret
the Lagrangian as a functional of gauge-invariant fields. However, a theory might display a trade-off
between locality and gauge-invariance in the sense that it can either be written in local gauge-dependent
variables or in non-local gauge-invariant variables, but not in local gauge-invariant variables. Then we
can only find a non-local dressing field, and in that case we call the gauge symmetry substantial [41].

3.2. The Higgs mechanism

Having introduced the DFM, we consider our two main theories of interest: the Abelian Higgs model
and the electroweak theory. We present and criticise the argument that the DFM shows that the respec-
tive U(1) and SU(2) gauge symmetries are actually artificial, implying that SSB of these symmetries
cannot represent anything physical. The derivations we present come from [41].

3.2.1. Abelian Higgs model

For the Abelian Higgs model we take the Yang-Mills-Higgs Lagrangian from Definition 2.18, with struc-
ture group G = U(1) and standard representation ρ : U(1) → GL(C). A complex scalar field ϕ ∈ Γ(E)
with E = P ×ρ C is equivalently a G-equivariant map ϕ : P → C, and we can use such a scalar field
to define a dressing field. We do so by considering the polar decomposition ϕ = u

√
ϕ∗ϕ and taking

u : P → U(1) to be the U(1)-dressing field [41]. To do this we must assume ϕ to be nowhere vanishing
- we will shortly return to this issue. The G-equivariance of ϕ precisely guarantees that u is a dressing
field. We then replace the Lagrangian LYMH[A,ϕ] as a function of the gauge field A and scalar field ϕ
by the same Lagrangian but in terms of the dressed fields, i.e.

LYMH[A
u, ϕu] = −

1

2
⟨FuM, FuM⟩Ad(P) + ⟨Duϕu, Duϕu⟩E − V(ϕu).

The fact that LYMH[A,ϕ] = LYMH[A
u, ϕu] follows from the expressions Fu = u−1Fu and ϕu = ρ(u−1)ϕ,

the Ad-invariance of the scalar product ⟨·, ·⟩Ad(P) in the Yang-Mills Lagrangian, as well as from the G-
invariance of the Hermitian inner product ⟨·, ·⟩C, which is here of course just given by ⟨ϕ,ϕ⟩C = ϕ∗ϕ.
The dressed scalar field is actually just ϕu = ρ(u−1)ϕ =

√
ϕ∗ϕ, i.e. the modulus of ϕ.

Since we can apparently find a local dressing field through the polar decomposition, Berghofer et
al. conclude that the U(1) symmetry in the Abelian Higgs model is artificial and should therefore be
reduced by means of the dressing field. But what are the implications of this for the standard account
of the Higgs mechanism as an instance of SSB? Clearly, there is no more SSB to occur, since the dressed
fields Au and ϕu are U(1)-invariant. The potential V : R+ → R is now a function of the positive real field
ϕu = |ϕ| and therefore has a unique ground state for any values of the parameters µ2 and λ. For µ2 > 0
this is just ϕu = 0 and for µ2 < 0 it is ϕu =

√
−µ2/2λ.

In the phase µ2 < 0 an expansion around the unique vacuum configuration away from zero still
gives a mass term for the dressed gauge field Au, and in the µ2 > 0 phase the dressed gauge field is still
massless. The mass of the gauge field is therefore still generated through a vacuum phase transition, but
one in which SSB plays no role [41, p. 60]. However, something does not seem right in this analysis. If
there really is a local dressing field for the Abelian Higgs model, then by Proposition 3.2 the underlying
principal bundle is trivial. This is absurd, for we can very well define the Abelian Higgs model on a non-
trivial principal U(1) bundle with non-trivial associated bundle. The reason that we thought ourselves
able to construct a dressing field through ϕ = u

√
ϕ∗ϕ is that we ignored the fact that u is ill-defined
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if ϕ = 0. In other words, the DFM does not allow the dressed field ϕu to be zero: the dressed field
space excludes field configurations in which the field is zero somewhere and the potential is now a map
V : R+ → R [41]. This is rather problematic, since in the massless phase we supposedly have a vanishing
vacuum value ϕu = 0, which is a field configuration that is not included in the field space of the DFM.
On the other hand, when directly writing ϕu =

√
ϕ∗ϕ this expression is actually always well-defined

and for ϕ = 0 simply vanishes itself. It just cannot be considered to arise through a dressing field u, but
must instead be viewed as a gauge-invariant composite objects which we might try to use to detect SSB.
More on this in section 3.3.

In the massive phase the problem of a vanishing scalar field seems less pertinent, for there the vacuum
configuration is away from zero. We could therefore consider small fluctuations around this vacuum
configuration without running into the issue. We will return to this point shortly, for it similarly appears
when the DFM is applied to the electroweak theory.

3.2.2. Electroweak theory with leptons

The picture of the DFM for the electroweak theory is similar to that of the Abelian Higgs model, albeit
more involved, since in this case a residual U(1) symmetry remains when the SU(2) symmetry is re-
duced through a dressing field. In other words, we are in the situation described in Proposition 3.2 and
its corollary. Moreover, we also add in leptons as in [41, 66].

We work in a gauge s : M → P (assuming P to be trivial), where M is Minkowski spacetime, as in
Example 2.30. We split the gauge field A ∈ Ω1(P, u(1) ⊕ su(2)) into a + b, where a ∈ Ω1(M, u(1) and
b ∈ Ω1(M, su(2)), and write the Higgs fieldφ : M→ C2 asφ = (φ1, φ2), with the action of SU(2)×U(1)
as in Example 2.30. In addition, we consider one generation of leptons consisting of a left-handed
doublet ψL = (νL, eL) and a right-handed singlet ψR = eR (see equation B.3 for the definition of a gauge
multiplet). We recall from section 2.3.5 that the respective representation spaces of SU(2) × U(1) are
C2 ⊗ C−1 and C ⊗ C−2. Following [41] we therefore write the covariant derivatives as

Dφ = dφ+ (gb+ g ′a)φ,

DψL = dψL + (gb− g ′a)ψL,

DψR = dψR − 2g
′aψR.

Here g and g ′ are coupling constants and the factor 2 for ψR comes from the representation C−2 of
U(1) for the right-handed lepton. Of course this is physics notation, and we should keep in mind that
the gauge fields a and b only work on the fermion fields through their respective induced Lie algebra
representations, as in equation 2.3. The Lagrangian of the theory is [41]

LEW[a, b,φ,ψL, ψR] = −
1

2
Tr F∧ ∗F− 1

2
Tr G∧ ∗G+ ⟨Dφ, ∗Dφ⟩− V(φ)dvolg

+ ⟨ψL, /DψL⟩+ ⟨ψR, /DψR⟩+ gl⟨ψL, ∗φ⟩ψR + glψ̄R⟨φ, ∗ψL⟩,

where F and G are the curvatures of a and b and gl denotes the lepton Yukawa coupling.
Since we have included the coupling constants in the covariant derivatives, these must also appear in

the action of gauge transformations α : M→ U(1) and β : M→ SU(2). Using the notation from [41], the
transformation behaviour of the fields is

a→ a+ α−1dα/g ′, a→ a,

b→ b, b→ β−1bβ+ β−1dβ/g,

φ→ α−1φ, φ→ β−1φ,

ψL → αψL, ψL → β−1ψL,

ψR → α2ψR, ψR → ψR.
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Again, these transformation rules follow from the definitions of the representation spaces C2, C2⊗C−1

and C ⊗ C−2 for the Higgs field and left- and right-handed leptons.
Just as for the Abelian Higgs model, we try to find an SU(2) dressing field through the polar decom-

position of the Higgs field. Since we are now working in a global gauge, a dressing field is equiva-
lently a map u : M → SU(2) that transforms as u → β−1u under the action of a gauge transformation
β : M→ SU(2). We decompose the Higgs field into φ = uρ, where ρ = (0, ∥φ∥) ∈ C2 and

u(φ) =
1

ρ

(
φ∗
2 φ1

−φ∗
1 φ2

)
∈ SU(2),

where ρ = ∥φ∥ is viewed as R-valued. This should remind the attentive reader of Theorem 2.35 on the
existence of the unitary gauge for the electroweak theory. The gauge transformation used there serves
as inspiration for the dressing field here, though a dressing field is of course not a gauge transformation.

We must check that u defined this way is actually a dressing field. Now, ρ is clearly gauge-invariant,
so under a gauge transformation β : M → SU(2) sending φ = uρ → β−1φ = β−1uρ, we must have
u→ β−1u, as required. Thus, we can use u to dress all the fields in the theory, and since u is local, we call
the SU(2) gauge symmetry artificial. The Higgs mechanism in terms of SSB is then no longer possible,
since there is no symmetry left to break. Indeed, the dressed Higgs field is φu = u−1φ = u−1uρ = ρ,
like in the Abelian Higgs model.

But what of the residual U(1) symmetry? The dressing field u is not invariant under it: for a gauge
transformation α : M→ U(1) we have

u(φ) =
1

ρ

(
φ∗
2 φ1

−φ∗
1 φ2

)→ u(α−1φ) =
1

ρ

(
αφ∗

2 α∗φ1
−αφ∗

1 α∗φ2

)
=
1

ρ

(
φ∗
2 φ1

−φ∗
1 φ2

)(
α 0

0 α∗

)
=: u(φ)α̃.

Moreover, it follows from this that the dressed fields transform as

bu = u−1bu+ u−1du/g→ α̃−1buα̃+ α̃−1dα̃/g,

Gu = u−1Gu→ α̃−1Guα̃,

ψuL = (νuL , e
u
L) = u

−1ψL → α̃−1u−1αψL = αα̃
−1ψuL .

Two observations are in order here. Firstly, since the dressed field bu still transforms like a connection
1-form underU(1) gauge transformations, it seems the problem of defining gauge-invariant mass terms
remains. Secondly, we have

αα̃−1 =

(
1 0

0 α2

)
,

which means that the top component νuL of the dressed left-handed doublet is U(1)-invariant, whereas
the bottom component euL transforms in the same fashion as ψR, which allows us to easily pair them in
the Yukawa term. As for the first observation, let us write out bu = buaσa in terms of the Pauli matrices
and define

bu = buaσ
a =

(
bu3 b1 − ib

u
2

bu1 + ib
u
2 −bu3

)
=

(
bu3 W−

W+ −bu3

)
.

If we now consider the U(1) transformation behaviour of these fields, we find

bu → α̃−1buα̃+ α̃−1dα̃/g =

(
α∗ 0

0 α

)(
bu3 W−

W+ −bu3

)(
α 0

0 α∗

)
+
1

g

(
α∗ 0

0 α

)(
dα 0

0 dα−1

)
=

(
bu3 + α

−1dα/g α−2W−

α2W+ −bu3 − α
−1dα/g

)
.
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Thus, the W± fields transform tensorially and can be massive [62]. In addition, the combination term
gbu3 − g

′a is U(1)-invariant, whereas g ′bu3 + ga transforms as a U(1) connection 1-form. These observa-
tions lead us to the introduction of the famous weak mixing angle tan θW = g ′

g , so that we can rotate(
A

Z0

)
=

(
cos θW sin θW
− sin θW cos θW

)(
a

bu3

)
=

1√
g2 + g ′2

(
ga+ g ′bu3
gbu3 − g

′a

)
.

Finally, the Lagrangian then becomes [41, p. 65]

LEW[A,W±, Z0, ρ, eu
L, eR, v

u
L] = −

1

2
Tr F∧ ∗F− 1

2
Tr Gu ∧ ∗Gu + dρ∧ ∗dρ− g2ρ2W+ ∧ ∗W−

−
(
g2 + g2

)
ρ2Z0 ∧ ∗Z0 − V(ρ)dvolg +

〈
ψu
L, /D

u
ψu
L

〉
+
〈
ψR, /DψR

〉
+ gl (ē

u
LρeR + ēRρe

u
L)dvolg .

It contains the massive W± and Z bosons, the massless photon, and massive left-handed and right-
handed leptons. What, then, has become of the idea that SSB is responsible for the generation of mass
terms for the weak gauge fieldsW± and Z0, as well as for the leptons eL and eR? Like in the Abelian case,
the potential V(ρ) has a unique minimum ρ0 =

√
−µ2/2λ, and it is not hard to see from the Lagrangian

that a split ρ = ρ0 + H gives masses mW± =
√
2gρ0 and mZ0 =

√
2ρ0
√
g2 + g ′2 for the weak gauge

bosons, mH = 2ρ0
√
λ for the Higgs field via its self-interaction and ml = glρ0 for the leptons eL and

eR through the Yukawa coupling. Yet no breaking of gauge symmetry can occur since the fields are
gauge-invariant, though we can imagine that there is a vacuum phase transition from µ2 > 0 to µ2 < 0
in which the fields “slide down the potential” without any SSB. However, the problem that ρ = 0 is not
an available configuration because of ill-definedness of the polar decomposition at that value persists. It
is argued in [41] that this is not necessarily a severe issue, at least in the perturbative regime. However,
not admitting field configurations in which the Higgs field vanishes somewhere amounts to changing
the very field space one is working on. As we will see in chapter 4, this means that one is really avoiding
the central difficulty of the empirical significance of gauge symmetries, namely the fact that the gauge
group does not act freely on infinite-dimensional field space. It is precisely on the configurations with
vanishing scalar fields that this happens. We will also return to this point in chapter 7.

3.3. The Fröhlich-Morchio-Strocchi approach

So far, we have not seen how the DFM could relate to perturbative QFT. Here, the Fröhlich-Morchio-
Strocchi (FMS) approach can help. Its basic idea is that one can expand n-point functions of gauge-
invariant composite fields in terms of n-point functions of gauge-dependent elementary fields, such
that when one performs perturbation theory one finds that quantities like particle masses match up on
both sides of the equality. The FMS approach is therefore not a quantised version of the DFM, but rather
it carries over the idea of using gauge-invariant composite objects to the perturbative domain.

Indeed, FMS originally used the scalar field φ to create gauge-invariant objects in the electroweak
theory, such as φ†ψL and φ†φ [38], similar to the way in which we used the polar decomposition of
the Higgs field as a dressing field in section 3.2 above. This has led François to remark that “as far as I
know the first to give a fully SU(2)-gauge invariant formulation of the electroweak theory were Fröhlich,
Morchio and Strocchi in 1981. Their account is actually fully equivalent to ours, but much less synthetic
and systematic: They are working on individual scalar components of all the fields involved!” [63].
Compared to the DFM, however, the FMS approach has the advantage that no polar decomposition is
necessary so that one does not run into the issue of it being ill-defined at φ = 0 [41].

Let us make our exposition of the FMS approach more precise by considering an example, namely the
propagator ⟨(φ†φ)(x)(φ†φ)(y)⟩. We wish to expand it by splitting the Higgs field into a vacuum expec-
tation value and a field fluctuating around it. However, this cannot be done in a gauge-invariant way, as
is shown by the following heuristic path integral argument, which can be viewed as a generalisation of

38



Elitzur’s theorem [40]. Let O be any expression transforming as a representation of the structure group
G, Dµ a gauge-invariant measure and eiS an invariant action as weight measure. Then if g denotes a
gauge transformation, we have

⟨O⟩ =
∫
DµOeiS =

∫
Dµg−1

OeiS =

∫
DµOgeiS = ⟨Og⟩ . (3.1)

But if this is to hold for an arbitrary transformation g, we must conclude that∫
DµOeiS = 0.

This result can be thought of as the idea that “if all possible gauge transformations are included in the
path integral, no particular direction reachable by a gauge transformation can survive” [39, p. 156]. The
Higgs field vacuum expectation value (VEV) is just a particular instance of this result. Thus, we need to
fix a gauge, so that we can split the scalar field as

φ(x) =
v√
2
φ0 + ∆φ(x),

where v is the non-zero VEV in our gauge and φ0 is the unit vector describing the VEV direction, for
which φ0 = (0, 1) is the common choice [41]. Defining the Higgs field h =

√
2Re(φ†

0∆φ) to be the radial
component of the fluctuation field ∆φ in the direction of the VEV, we get the following expression for
the connected part of the propagator [41]〈(

φ†φ
)
(x)
(
φ†φ

)
(y)
〉
= v2⟨h(x)h(y)⟩+ 2v

〈
h(x)

(
∆φ†∆φ

)
(y)
〉
+
〈(
∆φ†∆φ

)
(x)
(
∆φ†∆φ

)
(y)
〉
.

We note that this is an exact rewriting which holds both perturbatively and non-perturbatively. The
right hand side has been suggestively ordered by the order of the fluctuation field ∆φ. Indeed, when
performing perturbation theory we consider only the first term on the right hand side, i.e. the Higgs field
propagator v2⟨h(x)h(y)⟩. If the fluctuation field ∆φ is very small, then this gives a good approximation
to the gauge-invariant composite object on the left hand side. This way, we can extract properties of
the gauge-invariant composite propagator from the gauge-dependent elementary Higgs propagator.
Berghofer et al. succinctly summarise this idea:

For instance, let us consider the mass and decay width of the state generated by φ†φ. These
properties are encoded in the pole structure of its propagator. Ignoring for a moment the
higher-order terms of the FMS expansion, we obtain that the pole of the gauge-invariant
bound state propagator coincides with the pole structure of the elementary Higgs propa-
gator. In addition, it can be shown to all orders in a perturbative expansion of the n-point
functions that the higher-order terms of the FMS expansion do not alter the pole structure
on the right-hand side. Therefore, the on-shell properties of φ†φ are well described by the
propagator ⟨h(x)h(y)⟩. [41, p. 69]

The FMS approach has been applied in great detail to the Standard Model [39], but we are mostly in-
terested in its philosophical implications for SSB in the Higgs mechanism. Now, the basic point about
this made by Berghofer et al. is the same as for the DFM. That is, it is claimed that the FMS approach
shows that there is no SSB in the Higgs mechanism, because gauge-invariant composite objects do not
exhibit any gauge symmetry at all, not even a global one. The FMS approach shows that, conceptually
speaking, the notion of SSB is not necessary for obtaining the empirically highly succesful perturba-
tive results, because quantities that depend on the gauge-dependent Higgs VEV have can be related to
gauge-independent objects. These composite objects are then taken to constitute the fundamental ontol-
ogy of the theory: “the only physical degrees of freedom would be those that correspond to hadrons, the
electroweak objects of the FMS approach, and photon-cloud dressed QED states. The conventional no-
tions of quarks, electrons etc. would need to be regarded as mere auxiliaries that are technically useful
but do not have any physical reality” [41, p. 83].
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3.4. Reflections on the DFM

But how justified is this idea that gauge-invariant composite fields are fundamental and that therefore
there can be no SSB, including SSB of global gauge symmetries? And for the DFM specifically: why
should we take the existence of a local dressing field to be the criterion for distinguishing artificial
and substantial gauge symmetries? In Proposition 3.2 and its corollary we have formalised the idea
that a dressing field trivialises the principal bundle in the direction of the subgroup it takes values
in, but trivialisability is not the same as artificiality. On Minkowski spacetime every principal bundle
is trivialisable, but it is not evident that every gauge symmetry on Minkowski spacetime is artificial,
especially when boundary conditions are taken into consideration, as we do in chapter 4.

One might say that the point of using a dressing field or composite field is to find a rewriting of
a theory in terms of local gauge-invariant fields. It is then not claimed that the existence of a local
dressing field is a necessary criterion for artificiality, but it does demonstrate that we can rewrite the
Lagrangian in terms of local gauge-invariant fields. The existence of a local dressing field is therefore a
sufficient condition for concluding that a gauge symmetry is artificial. But are we sure that rewriting a
Lagrangian in terms of dressed fields does not discard valuable information? The configuration space
of dressed fields is of course smaller than that of elementary fields, so do we know for certain that the
part of field configuration space that is eliminated by the DFM is entirely unphysical? To our mind,
this is not the case. Indeed, a proper examination of this issue must occur by means of a constrained
Hamiltonian analysis or phase space reduction, as will be done in the next chapter.

A concrete indication that the DFM goes too far in its reduction of gauge symmetry is the example
of complex scalar electromagnetism, which is very similar to the Abelian Higgs model: the polar de-
composition of the scalar field can be used to find a local dressing field which removes the U(1) gauge
symmetry. In this framework, the Aharonov-Bohm effect supposedly “loses its puzzling edge [...] since
it can be interpreted as resulting from the local interaction of the gauge-invariant local fields Au and φu

outside the cylinder” [41, p. 59]. But in this application we once again run into the problem that the
polar decomposition does not exist for φ = 0. Thus, it seems that the principal bundle describing the
Aharonov-Bohm effect is trivial, whereas in reality the fact that is not is precisely the central point (at
least according to one mainstream interpretation of the effect). A naive application of the DFM in which
this issue is discarded therefore leads to error.

All of these problems relate to the general question of the physical significance of gauge symmetries,
which has been studied extensively by philosophers of physics. It seems that the DFM is too drastic a
method, in the sense that it aims to completely reduce certain gauge symmetries, even though it is not
at all clear that this should be our aim. If gauge symmetries are completely reduced, then we also ignore
the associated conserved Noether currents, superselection sectors, SSB and other aspects, whether they
have direct or indirect empirical significance.

As for the theme of this thesis, i.e. global gauge symmetry breaking, the DFM and FMS approach
suggest that it does not play a role in the Higgs mechanism because global gauge symmetries are also
removed when working with composite fields. This seems to be some sort of “collateral damage” that
comes with the reduction of local gauge symmetries. To examine whether the DFM and FMS approach
are really justified in doing this, we must carefully consider the status of global gauge symmetries in
relation to local gauge symmetries. We turn to this now.
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4. Constraints and Global Gauge Symmetries

The overarching aim of this thesis is to show that spontaneous breaking of global gauge symmetry can
serve as the physical content of the Higgs mechanism. If we are to achieve this, we must understand in
what way global gauge symmetries differ from their local counterparts. In particular, we need to elu-
cidate their empirical significance, an issue which has been debated over the past twenty years [67–74],
in parallel with the philosophical discussion on the Higgs mechanism. Building on this debate, Gomes
and others have recently developed sophisticated techniques for singling out global (rigid) symmetries
as the ones with direct empirical signifance [75–80]. The aim of this chapter is to bring together these
ideas to illuminate the significance of global gauge symmetries for the Higgs mechanism.

A useful starting point for this formidable task is the constrained Hamiltonian analysis, which Struyve
uses in his treatment of the Abelian Higgs mechanism [22], though this had already been done for both
the Abelian and non-Abelian cases by Lusanna and Valtancoli [53–55]. From Struyve’s account it be-
comes clear that the Abelian Higgs model can be reformulated in terms of fields which are invariant
under all transformations except global ones, such that the electromagnetic field gains mass only when
that remaining global symmetry is broken. However, this breaking of global gauge symmetry by fields
which are invariant under local gauge symmetries can only be interpreted as a physical explanation
of the Higgs mechanism if global gauge symmetries are not mere “descriptive fluff” or “mathemati-
cal redundancy”. To understand why global gauge symmetries are physical we must delve into the
philosophical discussion referred to in the above paragraph. This, then, we shall do in section 4.3, after
having introduced the constrained Hamiltonian formalism in section 4.1 and having applied it to the
Higgs mechanism in section 4.2. We end this chapter with a reflection on what we have achieved so far
and what is yet to be done.

4.1. Constrained Hamiltonian analysis

In the Hamiltonian formulation of a theory we go from a Lagrangian, defined in terms of coordinates
qi which parametrise the configuration space Q, and their velocities q̇i, to a Hamiltonian, which is a
function of the coordinates and their conjugate momenta pi (or the fields and their conjugate momentum
fields). The Hamiltonian equivalent of the Euler-Lagrange equations are Hamilton’s equations, and the
evolution of a system is represented by a trajectory in phase space solving those equations. For a field
theory phase space is infinite-dimensional.

More precisely, a Lagrangian is a function L : TQ→ R on the tangent bundle, whereas a Hamiltonian
is a function H : T∗Q → R on the cotangent bundle. The Legendre transform TQ → T∗Q takes us from
one to the other, sending a generalised velocity q̇i to its canonical conjugate momentum pi = ∂L/∂q̇i
and yielding the Hamiltonian H =

∑
i q̇
ipi − L. It might be, however, that the conjugate momenta are

not invertible as functions of the generalised velocities, in which case there are constraints among the
momenta [81]. Mathematically speaking, we say that the Legendre transform is not hyperregular, i.e. not
a diffeomorphism [82]. This is the case for gauge theories and we shall explain why in section 4.1.1.
We then consider electromagnetism as a constrained system in section 4.1.2, before we continue to the
application to the Higgs mechanism in section 4.2.
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4.1.1. Gauge theories as constrained systems

In a gauge theory the evolution of a system is prima facie indeterministic, in the sense that the equations
of motion do not uniquely determine the future values of all dynamical variables from given initial
conditions [83]. This is because we can always perform a gauge transformation that maps a point in
phase space to another, such that a system can evolve to different phase space points from the same
initial conditions. This indeterminism manifests itself in the fact that the solution to the equations of
motion of a gauge theory contains arbitrary functions of time [83, p. 3]. The presence of arbitrary
functions of time in turn results in constraint relations between the canonical variables, so we say that
gauge systems are constrained systems.

If we have a Lagrangian L(qi, q̇i) in terms of coordinates qi with conjugate momenta pi, and a canon-
ical Hamiltonian density H = q̇ipi − L, then the Lagrangian is called singular if the matrix

(
∂pi/∂q̇

i
)

is
not invertible, for then one cannot uniquely get back the velocities q̇i from the fields and their conjugate
momenta. This means that there are momenta in the system which do not depend on the time deriva-
tives of the fields and are subject to primary constraints: not all conjugate momenta are independent, but
there are relations

cm(q
i, pj) = 0, m = 1, ...,M

between them (as many as there are zero eigenvalues of the Hessian matrix [84]). These relations de-
fine the primary constraint set C ⊂ T∗Q, which is the image of the Legendre transform (provided the
Lagrangian L is regular [82, p. 237]). Primary constraints are called primary to emphasise that the equa-
tions of motion are not used to obtain them [83]. Secondary constraints arise as the requirement that the
primary constraints be preserved in time and the equations of motion are used to define them. This can
be iterated to obtain tertiary constraints etc. [85]. The space that is defined by requiring all constraints
to be satisfied is called the constraint surface. It is assumed to be a submanifold smoothly embedded in
phase space. Two variables F and G are then said to be weakly equal, written F ≈ G, if they coincide on
the constraint surface [83, p. 13]. A strong equality F = G instead implies that two quantities are equal
on all of phase space T∗Q. Imposing some regularity conditions on the constraints (see [83, p. 7]), we
have the following result (Theorem 1.1 in [83]).

Theorem 4.1. If a smooth phase space function F vanishes on the constraint surface defined by cm = 0,
then F = fmcm for some functions fm.

It follows immediately from this theorem that

F ≈ G ⇐⇒ F−G = fmcm.

Now, the classification of constraints as primary or secondary is not actually so important, although it is
useful as an introduction. There is, however, a different classification of constraints and more generally
of functions on phase space that is crucial.

Definition 4.2. A function F on phase space is called first class if its Poisson bracket with every constraint
vanishes weakly, i.e. for allm = 1, ..,Mwe have {F, cm} ≈ 0. Otherwise it is called second class.

Let us now consider the underlying symplectic formalism. The cotangent bundle T∗Q is a symplectic
manifold, i.e. a manifold carrying a closed non-degenerate 2-formω ∈ Ω2(T∗Q). It is the canonical one,
expressed locally as

ω =
∑
i

dqi ∧ dpi.

On a symplectic manifold (M,ω), every smooth function H ∈ C∞(M) defines a Hamiltonian vector
field XH ∈ X(M) through

dH = ω(XH, ·).
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The Poisson bracket between f, g ∈ C∞(M) is then defined as

{f, g} = ω(Xf, Xg).

It is not difficult to see that for the canonical 2-form on the cotangent bundle this locally gives the
familiar Poisson bracket

{f, g} =
∑
i

∂f

∂qi
∂g

∂pi
−
∂f

∂pi

∂g

∂qi
.

The idea behind Hamiltonian vector fields is that their integral curves are precisely the trajectories
through phase space satisfying Hamilton’s equations. Similarly, we can consider the vector fields Xcm
coming from the constraints cm : M → R. If all constraints are first class, then these vector fields flow
tangentially to the constraint surface. If not all constraints are first class, then one can use the Dirac
algorithm to guarantee so. We will not be concerned with that possibility since in our case of interest all
constraints are first class.

If all constraints are first class then their associated vector fields are null directions of the symplectic
form on the constraint surface, i.e. ω(Xcm , Xcn) = {cm, cn} ≈ 0. It is for this reason that we call these direc-
tions gauge and their integral curves gauge orbits. Points within one orbit are interpreted as physically
equivalent, so any physical quantity must be gauge-invariant in the sense of being constant on every
gauge orbit. As a consequence of the existence of null directions, the Hamiltonian flow is not unique
on the constraint surface. That is: XH and XH + amXcm , with am arbitrary functions of time, give the
same dynamics on the constraint surface. To see this, let i : Γ → M denote the inclusion of the constraint
surface into M. Then we have i∗ω(XH, ·) = d(H|Γ ), and since the constraints vanish on Γ we know

i∗ω(Xcm , ·) = d(cm|Γ ) = 0.

This implies that

i∗ω(XH + amXcm , ·) = i∗ω(XH, ·) = d(H|Γ ),

i.e. the Hamiltonian vector field XH is not unique. This is possible because i∗ω is degenerate on Γ ,
whereas ω is non-degenerate on the full phase space M [81]. However, the non-uniqueness of the
Hamiltonian flow is not a detrimental form of indeterminism, because, whether we evolve a point in
phase space according to H or H + amcm, we always end up in the same gauge orbit. We thus arrive
at the familiar slogan that “first class constraints generate gauge transformations”, although there are
many subtleties that we do not consider here, see e.g. [86]. In fact, Pitts has objected to this slogan [87],
but this objection has again been objected to, vindicating orthodoxy [88].

4.1.2. Electromagnetism

Let us now work out what constraints appear in electromagnetism. Following [81] we also show how the
constrained Hamiltonian formalism for Maxwell theory naturally leads to the Coulomb gauge, which is
interesting in light of both Friederich’s discussion of remnant gauge symmetries from section 1.2.5, and
will be very important for the results in sections 6.4 and 6.5.

We work on the trivial bundle P = M × U(1), where M denotes Minkowski spacetime. We consider
a space-time split M = Σ × R with Σ a Cauchy surface, such that the configuration space consists of
all spatial potentials Ai with i = 1, 2, 3, plus the possible matter configurations on Σ. To guarantee that
A falls of sufficiently rapidly towards spatial infinity, let us assume it to be compactly supported, i.e.
Ai ∈ C∞

c (Σ). We will return to this crucial issue of asymptotic behaviour in the next sections. From the
kinetic term − 1

4FµνF
µν of the Lagrangian we find the conjugate momenta

Πi =
∂L
∂Ȧi

= −
1

2
Fµν

∂

∂Ȧi
(∂µAν − ∂νAµ) = −

1

2
Fµν(δ0µδ

i
ν − δ

0
νδ
i
µ) = −

1

2
(F0i − Fi0) = Fi0 = −Ei.
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We also take Ei ∈ C∞
c (Σ). These momenta, however, are not independent, for one of the four Maxwell

equations is the Gauss law ∇ · E = ∂iE
i = ρ, where ρ = j0 is the charge density of the current jµ. In

other words, the Gauss law gives the constraint c(A,E, j) = ∂iEi− ρ. If we use a function λ : Σ→ R, also
called a Lagrange multiplier, to integrate the Gauss law, we obtain what is known as the smeared Gauss
constraint

Gλ =

∫
Σ

dx3λ(∇ · E − ρ),

which is a function on phase space, which consists of pairs (A,E). In section 4.3.3 we will show how to
understand this phase space as the cotangent bundle of the infinite-dimensional configuration space of
connection 1-forms on Σ. We can now calculate how the smeared Gauss constraint acts on the fields, i.e.
what its Poisson brackets with Ai and Ei are. The symplectic form is

Ω =

∫
Σ

dx3dAi ∧ dEi, (4.1)

where, following [81], we have used the double struck d to indicate that this is the differential operator
on the infinite-dimensional phase space coordinatised by the fields Ai and Ei, and not on the three-
dimensional Cauchy surface Σ, for which we use the regular d. From the expression for the symplectic
formΩ it follows that the Poisson bracket of two functionals F and G of the fields is given by [81]

{F,G} =

∫
Σ

dx3
(

δF

δAi(x)
δG

δEi(x)
−

δF

δEi(x)
δG

δAi(x)

)
,

where δ/δAi(x) and δ/δEi(x) denote the functional derivatives of phase space functions with respect to
the fields Ai(x), Ei(x), which are themselves functions on Σ. The poisson bracket of the smeared Gauss
constraint with the gauge potential thus becomes

{Gλ, Ai(x)} = −
δGλ
δEi(x)

= −
δ

δEi(x)

∫
Σ

dy3λ(y)(∇ · E(y) − ρ)

= −

∫
Σ

dy3λ(y)∂iδ(x − y) =
∫
Σ

dy3∂iλ(y)δ(x − y) = ∂iλ(x).

Here we have performed partial integration and assumed the boundary term to vanish. However, we
shall shortly return to the issue of the behaviour of λ “at infinity”, which is the central point of this
chapter and possibly of our understanding of the Higgs mechanism more generally. For now we ignore
these details, because the important result is that Gλ generates the familiar gauge transformation of Ai:
when we apply Gλ to Ai by taking the Poisson bracket we get the pure gauge term ∂iλ. In addition, it is
not hard to see that

{Gλ, E
i(x)} =

δ

δAi(x)

∫
Σ

dy3λ(y)(∇ · E − ρ) = 0.

In other words: the smeared Gauss constraintGλ leaves the electric field invariant, as expected since the
electric field is observable and must therefore be gauge-invariant.

Now, the Gauss law equates the divergence of the electric field with the distribution of charge in space.
It is natural, then, to seek for a decomposition of the electric field into a Coulombic part, whose divergence
equals the charge distribution, i.e. which automatically satisfies the Gauss constraint, and a transverse
part, which carries no divergence but all the curl. In other words, we seek the Helmholtz decomposition
Ei = EiL + E

i
T of the electric field into longitudinal (irrotational, i.e. curl-free) and transverse (solenoidal,

i.e. divergence-free) components. Since the longitudinal part EiL is curl-free, it can be written as the
gradient of a scalar function (Poincaré lemma), i.e. EiL = ∂iϕ with ϕ ∈ C∞

c (Σ). We then generate the
Coulombic electric field coordinates in phase space by the vector field [81]

EL =
∫
Σ

dx3ELi
δ

δEi(x)
=

∫
Σ

dx3∂iϕ
δ

δEi(x)
,
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where again we have used the double struck notation to stress that this vector field lives on infinite-
dimensional phase space. We now extend the Coulombic-radiative split to the vector potential A, in
the sense that we look for the component AT of A that is symplectically orthogonal to EL. To find this
radiative component we define another vector field in phase space

AT =

∫
Σ

dx3ATi
δ

δAi(x)
,

and we require

0 = Ω(AT ,EL) =
∫
Σ

dx3ATi (E
L)i =

∫
Σ

dx3ATi ∂
iϕ = −

∫
Σ

dx3ϕ∂iATi (4.2)

for all ϕ ∈ C∞
c (Σ), again using partial integration and assuming the boundary term to vanish. This

equation must hold for any ϕ ∈ C∞
c (Σ), so we find ∂iATi = 0, which is of course the Coulomb gauge

condition. The projection onto the component of A satisfying this condition is called radiative projection
and is given by [81]

ATi (A) = Ai − ∂i(∆
−1∂jAj), (4.3)

where ∆−1 = ∇−2 is the inverse of the Laplacian with Green’s function − 1
4πr , i.e.

∆−1f(x) = −

∫
Σ

dy3
f(y)

4π|x − y|
.

The radiatively projected vector potential is indeed gauge-invariant: under a gauge transformation
Ai → Ai + ∂iλwe have

ATi → Ai + ∂iλ− ∂i(∆
−1(∂jAj + ∂

j∂jλ)) = Ai + ∂iλ− ∂i(∆
−1∂jAj) − ∂i∆

−1∆λ

= Ai + ∂iλ− ∂i(∆
−1∂jAj) − ∂iλ = Ai − ∂i(∆

−1∂jAj) = A
T
i .

Just like for the electric field, the vector field in phase space generating the pure gauge part ALi = ∂iλ of
the potential is

AL =
∫
Σ

dx3ALi
δ

δAi(x)
=

∫
Σ

dx3∂iλ
δ

δAi(x)
,

for λ ∈ C∞(Σ) with appropriate asymptotic behaviour. In analogy to equation 4.2 we can then require

0 = Ω(AL,ET ) =
∫
Σ

dx3ETi ∂
iλ = −

∫
Σ

dx3λ∂iETi ,

giving ∂iETi = 0, i.e. precisely the divergenceless component of E. In summary, the radiative part of
the electric field is symplectically orthogonal to the pure gauge part of the gauge potential, while the
Coulombic part of the electric field is symplectically orthogonal to the radiative part of the potential. As
a corollary, the symplectic form in these coordinates reduces to [81]

Ω =

∫
Σ

dx3
(

dATi ∧ dETi + dALi ∧ dELi
)
.

4.2. Application to the Higgs mechanism

We shall now put the constrained formalism to use by applying it to the Higgs mechanism, following
Struyve’s treatment of the Abelian Higgs model [22], which is in turn based on the work of Lusanna and
Valtancoli [53], who also applied the Hamiltonian formalism to a non-Abelian SU(2) Higgs model [54]
and the full Standard Model [55]. We will not consider the non-Abelian Higgs mechanism in this section
because we would get bogged down in lengthy expressions, losing sight of the conceptual points, but
of course we must ask ourselves to what extent results from the Abelian case generalise to the full
electroweak model (our RQ1.3). We take up this issue in section 4.3 and chapter 7.
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4.2.1. Hamiltonian formulation

In order to get a proper grasp of Struyve’s presentation, it is important to understand his view on
gauge symmetries and their physical significance. He recalls a definition according to which gauge
transformations map solutions of the equations of motion to other solutions and preserve the initial
data. In addition, boundary conditions are imposed to ensure finiteness of energy and action, and gauge
transformations need to preserve these boundary conditions too. There is thus room for a residual group
of physical transformations, namely those that do preserve boundary conditions but not the initial data.
In the next section, we will make these statements more precise by showing that the residual group of
physical transformations consists of those gauge transformations that preserve the boundary conditions
but are not generated by the Gauss constraint.

Struyve considers the Abelian Higgs mechanism in Minkowski spacetime with scalar field φ and
vector field Aµ on a trivial bundle, with boundary conditions

Aµ → 0+O
(
r−2
)
, ∂µAv → 0+O

(
r−2
)
, φ→ 1√

2
veiθ +O

(
r−2
)
, ∂µφ→ 0+O

(
r−2
)
,

as r → ∞ and where v/
√
2 =

√
−µ2/2λ is the positive minimum of the Mexican hat potential V(φ)

and θ ∈ [0, 2π] a constant [22, p. 231]. In other words, these boundary conditions require the gauge
field to vanish sufficiently quickly and the scalar field to become a constant minimum of the potential
at infinity. The transformations preserving the boundary conditions are of the form g = eiλ, with λ a
real function that goes to a constant sufficiently rapidly as infinite distance is approached, i.e. as r→ ∞.
We denote the group of these transformations by GI. The unphysical gauge group is the subgroup
G∞, consisting of the local U(1) transformations that go to the identity at spatial infinity. Clearly, a
transformation that goes to the identity at infinity is in particular a transformation of the form eiλ with λ
vanishing asymptotically. Thus, we find that there is a non-trivial group of residual physical symmetries
GI/G∞ ∼= U(1) (see Proposition 4.4 for a precise statement). This latter identification is made by noting
that the requirement in GI that transformations become asymptotically constant is equivalent to adding
one point at infinity on which the transformations take their asymptotic value. The transformations in
G∞ are required to be the identity at this point at infinity, and so an element in the quotient GI/G∞ is
just a choice of element of U(1) for the point at infinity.

Of course, to even talk about the identity at infinity we need a section of the principal bundle at
infinity. Since we are working on the trivial bundle P = M × U(1) we already have a canonical such
section, but in general this is not the case. We will come back to this in section 4.3. For now, the central
point is that Struyve thinks of global gauge transformations as carrying a physical significance that the
local transformations G∞ do not have, and that the group of these global transformations eiλ with λ
constant is isomorphic to the structure group U(1).

With this idea in mind we seek to present the Higgs mechanism as a breaking of the group of global
gauge symmetries only, using the constrained Hamiltonian formalism. The Lagrangian is as always the
one from equation 1.1, with conjugate momenta

ΠA0
= 0, ΠAi

= Fi0 = −Ei = ∂iA0 − ∂0Ai, Πφ = (D0φ)∗, Πφ∗ = D0φ.

The canonical Hamiltonian density is then

HL = ȦiE
i + φ̇(D0φ)∗ + φ̇∗D0φ− L

= ȦiE
i +D0φ(D

0φ)∗ + ieA0φ(D
0φ)∗ + (D0φ)

∗D0φ− ieA0φ
∗D0φ+Dµφ(D

µφ)∗ + V(φ) +
1

4
FµνFµν

= (∂iA
0 + Ei)E

i +D0φ(D
0φ)∗ +A0j

0 +Diφ(D
iφ)∗ + V(φ) −

1

2
EiEi +

1

4
FijFij

= A0(j0 − ∂iE
i) + ∂i(A

0Ei) +D0φ(D
0φ)∗ +Diφ(D

iφ)∗ + V(φ) +
1

2
|E|2 +

1

2
|B|2

= A0(j0 + ∂iΠAi
) − ∂i(A

0ΠAi
) + Πφ∗Πφ +Diφ(D

iφ)∗ + V(φ) +
1

2
ΠAi

ΠAi
+
1

4
FijFij,
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subject to two first class constraints c1, c2 = 0, namely

c1 = ΠA0
, c2 = j0 + ∂iΠAi

= ie(φ(D0φ)
∗ −φ∗D0φ) − ∂iE

i.

We recognise the second constraint as the Gauss law, since j0 = ρ. In order to obtain unconstrained
gauge-invariant fields we use the radiative projection:

φ̄ = e−ie∆
−1∂iAiφ, Πφ̄ = eie∆

−1∂iAiΠφ,

φ̄∗ = eie∆
−1∂iAiφ∗, Πφ̄∗ = e−ie∆

−1∂iAiΠφ∗ ,

ATi = Ai − ∂i∆
−1∂jAj, ΠAT

i
= ΠAi

− ∂i∆−1∂jΠAj
,

ALi = ∂
i∆−1∂jAj, ΠAL

i
= ∂i∆−1

(
j0 + ∂jΠAj

)
.

Here the subscripts T and L stand for ‘transverse’ and ‘longitudinal’, as in section 4.1.2. The Gauss
constraint has becomeΠAL

i
= 0 in terms of the new fields, so the two constraints are now both of the form

of a vanishing momentum, the other being ΠA0
= 0. Thus, on the constraint surface the momenta of A0

andALi are zero and a complete set of gauge-independent fields is φ̄, Πφ̄, φ̄∗, Πφ̄∗ , ATi , ΠAT
i
. Dropping the

total derivative ∂i(A0ΠAi
) (we come back to whether this is permitted in section 4.3), the Hamiltonian

can be expressed on the constraint surface in terms of these gauge-independent variables as [22, p. 234]

H = Πφ̄∗Πφ̄ +DTi φ̄(D
i
T φ̄)

∗ + V(φ̄) +
1

2
ΠAT

i
ΠAT

i
+
1

2
j̄0∆

−1j̄0 −
1

2
ATi ∆A

i
T ,

where DTi = ∂i − ieA
T
i and j̄0 = ie(φ̄Πφ̄ − φ̄∗Πφ̄∗). We get the current term 1

2 j̄0∆
−1j̄0 from writing out

ΠAi
= ΠAT

i
−∂i∆−1j0 and the last term from 1

4F
ijFij, using thatATi is divergence-free. We note that neither

the scalar field nor the gauge field has a mass term in this Hamiltonian.

4.2.2. Global gauge symmetry breaking

Crucially, although in terms of the new fields the local gauge group G∞ has been eliminated, in the
sense that the new fields are invariant under the action of G∞, there is still the physical U(1) symmetry
of transformations in the quotient eiλ ∈ GI/G∞ (with λ constant), whose action on the new fields is

φ̄→ eiλφ̄, φ̄∗ → e−iλφ̄∗, Πφ̄ → e−iλΠφ̄, Πφ̄∗ → eiλΠφ̄∗ .

Thus, the reduction of gauge symmetry here is less radical than that of the DFM in chapter 3, where the
fields were made invariant under all transformations, including the global ones. Like in the standard
account of the Higgs mechanism, there is a degenerate set of ground states φ̄ = veiθ/

√
2, φ̄∗ = ve−iθ/

√
2

with θ constant and [22, p. 234]

Πφ̄ = Πφ̄∗ = ATi = ΠAT
i
= 0.

The residual GI/G∞ ∼= U(1) symmetry may now be spontaneously broken by choosing a vacuum value
φ̄ = v/

√
2 and performing a field split around this choice of vacuum:

φ̄ =
1√
2
(v+ η+ iξ), Πφ̄ =

1√
2
(Πη − iΠξ) ,

φ̄∗ =
1√
2
(v+ η− iξ), Πφ̄∗ =

1√
2
(Πη + iΠξ) ,

where η, ξ, Πη, Πξ are real and η, ξ are small. Then we can approximate the Hamiltonian as [22, p. 234]

H =
1

2
Π2η +

1

2
∂iη∂iη+ µ

2η2 +
1

2
Π2ξ −

e2v2

2
Πξ∆

−1Πξ +
1

2
∂iξ∂iξ+

1

2
ΠAT

i
ΠAT

i
+
e2v2

2
AiTA

T
i −

1

2
AiT∆A

T
i .
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Viewing ∂iξ as the longitudinal (Coulombic) component of the vector potential, i.e.

ALi = −
1

ev
∂iξ, ΠAL

i
= ev∂i∆−1Πξ,

such that we have the canonical pairs

Ai = A
T
i +A

L
i , ΠAi

= ΠAT
i
+ ΠAL

i
,

we finally obtain the Hamiltonian [22, p. 235]

H =
1

2
Π2η +

1

2
∂iη∂iη+ µ

2η2 +
1

2
ΠAi

ΠAi
+

1

2e2v2
(∂iΠAi

)2 +
e2v2

2
AiA

i +
1

4
FijFij.

We recognise a scalar field η with mass µ
√
2 and a vector field with mass ev. In other words: we have

formulated the Higgs mechanism in terms of the breaking of the global U(1) gauge symmetry. The
Hamiltonian before the field split did not contain massive particles, so we do indeed attribute the mass
generation to the breaking of the global gauge symmetry. Whether we can truly interpret this as mass
generation in a causal, temporal sense is a question that we will come back to in chapter 7. One may also
be worried about the fact that our result here is perturbative: we assumed ξ and η to be small when
expanding around a specific vacuum value. In chapter 6 we shall assuage this worry by considering
non-perturbative results.

The derivation just presented is a major piece of evidence for our argument that the physical content
of the Higgs mechanism can be understood as the spontaneous breaking of global gauge symmetry.
However, the question of the empirical significance of gauge symmetries remains: our argument only
works if we can also argue that global gauge symmetries should indeed be understood to carry a phys-
ical meaning that local gauge transformations do not have.

As a transition into the philosophical discussion on this question we briefly consider some remarks by
Lusanna and Valtancoli on their treatment of the Higgs mechanism for U(1) and SU(2). In both cases,
the theory is reformulated such that the original spacetime-dependent gauge symmetry is reduced to
only a global symmetry [53,54]. By Noether’s first theorem, this means that there are conserved charges
Qa associated to this global symmetry, one for every symmetry generator Ta. By the Gauss theorem,
these charges are equal to the total flux QVa (notation of Lusanna and Valtancoli) of the electric field at
spatial infinity. In the broken symmetry phase, however, the electric field decays exponentially towards
spatial infinity, implying that QVa = 0 [54, p. 25]. In this sense, the Gauss theorem “breaks down” in
the broken phase: “the electric charge in the Higgs phase is a Noether constant of motion (first Noether
theorem) but one cannot measure it by means of the electric flux at space infinity (as in the case of
exact, not broken, local gauge symmetry; second Noether theorem). This fact may be taken as a gauge-
invariant signal of gauge symmetry breaking, rather than the non-gauge-invariant quantum statement
⟨φ⟩ = φ0” [53, p. 27]. We will come back to these ideas in chapter 6, where the Higgs mechanism will
be explained as a failure of the electric charge to generate the global U(1) symmetry.

4.3. Empirical significance

Having shown that the Higgs mechanism can be formulated as the breaking of a global gauge symmetry
exhibited by fields which are invariant under local gauge transformations, we turn to the question of the
physical significance of these global symmetries. If the conceptual problem of mass generation is to be
solved along this path, then we must show global gauge symmetries are not “descriptive fluff”. A first
hint that they are indeed physical is the aforementioned fact that global symmetries give conservation
laws through Noether’s first theorem. However, this sort of physical meaning is usually called indirect
empirical significance (IES) by philosophers of physics, in contrast to the direct empirical significance (DES)
of, say, a spatial translation which literally moves an object from one place to another. In this section we
shall show that global gauge symmetries exhibit DES and not only IES.
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4.3.1. Galileo’s ship

To exemplify DES, philosophers refer back to a thought experiment from Galileo Galilei’s 1632 book
Dialogue Concerning the Two Chief World Systems. In this thought experiment, Galilei imagines himself
inside the cabin of a ship at sea, together with several flying animals [72]. Within the cabin, there is no
noticeable difference between the ship standing still and it moving with a constant speed: the animals
do not fly differently in the two cases, as long as the ship does not accelerate. Boosting the ship with a
constant velocity has no physical consequences inside the cabin, but only in relation to the environment:
someone on the shore will notice whether the ship stands still or sails. The question that philosophers
have focused on is whether gauge symmetries can exhibit such relational DES.

At the turn of the millenium, Kosso identified two criteria for empirical significance of a symmetry:
“observation of a symmetry will always require two components: one must observe that the specified
transformation has taken place, and one must observe that the specified invariant property is in fact the
same, before and after” [67, p. 86]. He subsequently applied this criterion to four cases, corresponding to
the combinations of external (acting on spacetime points) versus internal (not acting on spacetime) global
(spacetime-independent) versus local (spacetime-dependent). According to Kosso, gauge symmetries
fall in the category of internal, local symmetries. Contra Kosso, we also consider global, internal gauge
symmetries, because we adhere to the abstract definition of a gauge symmetry as in Definition 2.6, which
includes global symmetries.

Building on this work, Brading and Brown make Kosso’s two components of DES more concise by
stressing the role of subsystems: “we require that two conditions are met in order for a symmetry to have
direct empirical significance:

1. Transformation Condition: the transformation of a subsystem of the universe with respect
to a reference system must yield an empirically distinguishable scenario; and

2. Symmetry Condition: the internal evolution of the untransformed and transformed subsys-
tems must be empirically indistinguishable” [68].

They then argue that all gauge symmetries, both local and global, fail to satisfy (1): one cannot observe
the effect of gauge symmetries on subsystems, and there is no Galileo’s ship scenario for gauge sym-
metries [72]. In short, they claim that gauge symmetries do not exhibit DES, and this claim has become
widespread in the philosophy of physics literature, thus leading to expressions such as “descriptive
fluff”. After all, it is the conventional wisdom that states related by a gauge symmetry represent the
same physical situation. This has led philosophers to often equate the notion of gauge symmetry with
mathematical redundancy. In section 4.3.2 we act against this common idea by carefully distinguishing
between the mathematical and redundant aspects of gauge transformations.

Greaves and Wallace (GW) challenged the conventional wisdom by developing a framework for treat-
ing symmetries and using it to construct an analog of Galileo’s ship for electromagnetism [70]. Their
framework starts from the idea that a symmetry of the entire universe cannot exhibit any DES, an intu-
ition that is already present in the quote by Leibniz with which we opened this thesis. If we translate
the entire universe, or change East into West in all of space, then this effects no physical difference. GW
assume the same holds for any type of symmetry, including gauge symmetry.

The framework of GW assumes that we can define sets of states of the universe, a subsystem and its
environment (which together compose the universe), denoted U ,S and E respectively. They also assume
the existence of a “partial function” ∗ from S×E to U . This function is defined for s ∈ S, e ∈ E by s∗e = u
if there exists some u ∈ U such that we can project πS(u) = s, πE(u) = e, where it is also assumed that
there exist projections πS : U → S and πE : U → E . If there is no such u then s ∗ e is undefined, which is
why GW call ∗ “partial”. The idea is that the ∗-operation glues a subsystem state and an environment
state together to form a universe state, but only if there actually exists a universe state such that its
restrictions to subsystem and environment give back the states we started with. Denoting by ΣU the
group of symmetries σ : U → U of the universe, we can project a symmetry σ to a subsystem symmetry
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σS or an environment symmetry σE through σS(s) = πS(σ(u)) or σE(e) = πE(σ(u)) respectively, where
u ∈ U such that πS(u) = s and πE(u) = e. We can then extend ∗ to a map of symmetries via

σS ∗ σE(s ∗ e) = σS(s) ∗ σE(e).

This allows one to define two characterisations of symmetries [72].

1. An interior symmetry σS ∈ ΣS is one such that for all s ∈ S, e ∈ E for which s∗e is defined,
we have that the map

σS ∗ 1E(s ∗ e) = σS(s) ∗ e

is a universe symmetry (i.e. an element of ΣU ), where 1E is the identity on E .

2. A boundary-preserving symmetry σS ∈ ΣS of a specific state s ∈ S is a symmetry such that
for all e ∈ E compatible with s, we have that s and σS(s) satisfy (i.e. are elements of) the
same boundary condition Ce. Here Ce denotes the set of all s ′ ∈ S such that s ′ ∗ e exists.

We interpret the second characterisation as follows: a symmetry σS is called boundary-preserving if it
does not spoil the compatibility of the subsystem with its environment.

Now, according to GW, interior symmetries are precisely the ones that do not have DES because they
can be extended to universe symmetries by combining them with the identity 1E on the environment,
and universe symmetries were assumed to have no empirical consequences. Moreover, GW argue that
the essence of scenarios such as Galileo’s ship is captured by non-interior, boundary-preserving sym-
metries [72]. Indeed, if a non-interior symmetry σS is boundary-preserving for a state s ∈ S , then it can
be combined with 1E , as for any e ∈ E compatible with s we know σS(s) ∗ e exists since σS(s) ∈ Ce.
However, since σS is non-interior this combination σS ∗ 1E is a map of the universe to itself that is not
a universe symmetry, thus effecting a physical difference on the entire universe that is not visible from
the subsystem only, as is the case for Galileo’s ship.

Let us now consider how GW’s method can be applied to gauge symmetries. This amounts to the
following question: how can we circumvent the central problem with DES of gauge symmetries, namely
that a gauge transformation applied to any region of spacetime seems to just be a particular instance of
a gauge transformation on all of spacetime? If this is so, then any gauge transformation applied to a
region is in fact a universe symmetry and therefore does not exhibit DES. The key point stressed by
GW, however, is that this is not so. Indeed, consider the usual scalar electrodynamics with fields Aµ, φ.
Suppose we divide space into two regions A and B with overlap A ∩ B ̸= ∅, such that the matter field
φ vanishes on this overlap. If we then perform a constant gauge transformation φ|A → eiλAφ|A, with
λ /∈ 2πZ, on A only (which leaves Aµ invariant) while doing nothing on B, then the transformation
on A is boundary-preserving since φ|A∩B = 0. However, this constant transformation on A cannot be
combined with the identity transformation on B to form a gauge transformation of the entire universe
A ∪ B, since there is a discontinuity where the region A ends, and gauge transformations are assumed
to be smooth. Thus, the transformation on A is boundary-preserving but not interior and exhibits DES.

4.3.2. Galileo’s gauge

In Galileo’s Gauge [72], Teh further develops the ideas of GW by using the constrained Hamiltonian
formalism that we introduced earlier in this chapter. His results are highly interesting for our purposes,
as they explicitly single out from the total gauge group G the subgroup of global gauge transformations
as the ones carrying DES. Teh’s work is based on an argument by Balachandran [89] about Poisson
brackets. We shall examine this argument in detail and generalise and formalise it in the language of
momentum maps in symplectic geometry.

To understand why Teh sees the need to develop GW’s work by recourse to Hamiltonian analysis,
we need to highlight what he calls the “logical puzzle about gauge.” This puzzle is the aforementioned
confusion between two notions of gauge [72, p. 97].
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(Formal) The gauge group G is the group of maps M → G from spacetime to the structure
group, as in Definition 2.6.

(Redundant) A necessary condition on gauge transformations is that they connect differ-
ent descriptions of the same physical state of affairs, where a ‘description’ is taken to be a
(mathematical) state of a well-defined dynamical system (i.e., where we have fixed the type
of solution of interest, the initial conditions, and the boundary conditions) [72, p. 97-98].

Of course, the Formal characterisation of gauge symmetry requires a trivialisation of the principle bun-
dle. In this thesis we take ‘gauge’ to refer to the Formal notion, except in our presentation of the con-
strained Hamiltonian formalism in section 4.1, where we defined gauge directions as null directions of
the symplectic form on the constraint surface, which aligns with the Redundant notion.

Teh is convinced that, although GW’s distinction between interior/non-interior symmetries corre-
sponds to non-DES/DES, the logical puzzle about gauge has not been solved. “That is, how can the
Redundant aspect of gauge transformations be squared with the claim that such transformations ex-
hibit DES?” [72, p. 111]. To resolve the puzzle, we need to identify what elements of the gauge group
G are actually Redundant, and this is where the Hamiltonian formalism comes to play, which identifies
Redundant gauge transformations as those generated by the primary constraints.

For Maxwell theory the primary constraint is the Gauss law. To guarantee that the Poisson brackets of
the smeared Gauss constraint with physical quantities are well-defined, one needs to impose asymptotic
conditions on the gauge transformations generated by that constraint [72, p. 113]. Teh simply quotes
Balachandran’s result stating that the simplest such condition on g ∈ G is [89, p. 22]

g(x) → 1 as |x| → ∞. (4.4)

We denote the subgroup of maps satisfying this condition by G∞ (we will shortly discuss the appropriate
rate of convergence). It is important to note that, in order to even be able to speak of the identity at
infinity, we need a section or frame, i.e. a trivialisation, of the bundle at infinity. If we assume we are
working on a trivial bundle anyway then we need not worry about this.

In addition, the transformations generated by the smeared Gauss constraint through the Poisson
bracket are small (homotopic to the identity map x 7→ 1 ∈ G), and we write G∞

0 for the subgroup of
small transformations satisfying condition 4.4. To see this, note that the Gauss constraint works on ele-
ments of the infinite-dimensional Lie algebra Lie(G), and these must be exponentiated to get an element
of the Lie group G. It is a well-known fact that the image of the exponential map lies in the connected
component of the identity of the Lie group, so this explains why the Gauss constraint generates only
small gauge transformations. Smallness is an empty condition for electromagnetism in three spatial
dimensions, but it does play a role for the non-Abelian structure group SU(2), as we shall see below.

Denoting by GI the subgroup that leaves invariant whatever (asymptotic) boundary conditions are
imposed on the fields, we get a hierarchy of subgroups [72, p. 115]:

G∞
0 ⊂ G∞ ⊂ GI ⊂ G.

If, then, we improve GW’s definition of symmetries exhibiting DES, i.e. those that are boundary-
preserving but non-interior, to those that are boundary-preserving but non-Redundant (in the sense of
being generated by the primary constraints), we obtain [72, p. 116]

GDES = GI/G∞
0 .

For Maxwell theory with a scalar field, the transformations preserving the asymptotic boundary con-
dition of the fields going to zero are those that tend towards a constant value asymptotically at an
appropriate rate. Thus, the quotient GDES can be identified as the possible values a constant transfor-
mation could take at infinity, i.e. with U(1) implemented through the global gauge transformations. In
the non-Abelian case we get topological contributions: for G = SU(2) on flat space, for instance, we
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can view GI as the smooth maps R3 ∪ {∞} → SU(2), which equivalently are the maps S3 → S3. Since
π3(S

3) ∼= Z we have different homotopy classes of gauge transformations labelled by integers [22, 89].
The class of 0 ∈ π3(S

3) then corresponds to G∞
0 . For U(1) there are no such homotopy classes since

π3(S
1) is trivial.

Now, this required asymptotic behaviour of gauge transformations comes rather out of the blue. Let
us therefore closely examine Balachandran’s argument on which Teh’s analysis is based. We consider the
Hamiltonian formulation of electromagnetism on a Cauchy surface Σ as in section 4.1.2. For a function
λ ∈ C∞(Σ) the smeared Gauss constraint Gλ =

∫
Σ dx

3λ∂iEi generates the gauge tranformations, i.e.
{Gλ, Ai} = ∂iλ. Balachandran then considers the generators of rotations [89, p. 21]

Ji =

∫
Σ

dx3Ej ((x ×∇)iδjk + ϵijk)A
k =

∫
Σ

dx3(ϵijnx
jEk∂nAk + ϵijkE

jAk) =

∫
Σ

dx3ϵijk(x
jEn∂kAn + E

jAk).

The Poisson bracket of Gλ with the Ji should be well-defined, but there are two orders of integration,
yielding different results. Indeed, by calculating

{∇ · E(x), Ji} =
∫
Σ

dy3
(
δ(∇ · E(x))
δAm(y)

δJi
δEm(y)

−
δ(∇ · E(x))
δEm(y)

δJi
δAm(y)

)
= −

∫
Σ

dy3
δ(∇ · E(x))
δEm(y)

δJi
δAm(y)

= −

∫
Σ

dy3∂mδ(x − y)
δJi

δAm(y)

= −

∫
Σ

dy3∂mδ(x − y)
∫
Σ

dz3(ϵilnz
lEk(z)∂nz δ(z − y)δkm + ϵijkE

j(z)δ(z − y)δkm)

= −

∫
Σ

dy3∂mδ(x − y)
∫
Σ

dz3δ(z − y)(−ϵiln∂nz (z
lEm(z)) + ϵmij E

j(z))

= −

∫
Σ

dy3∂mδ(x − y)
∫
Σ

dz3δ(z − y)(−ϵiln(δnlEm(z) + zl∂nz E
m(z)) + ϵmij E

j(z))

= −

∫
Σ

dy3∂mδ(x − y)(−ϵilnyl∂nEm(y) + ϵmij E
j(y))

= −

∫
Σ

dy3δ(x − y)(−ϵiln∂m(yl∂nEm(y)) + ϵijm∂mEj(y))

= −(−ϵiln(δ
ml∂nEm(x) + xl∂m∂nEm(x)) + ϵijm∂mEj(x))

= ϵilnx
l∂n∇ · E(x) = (x ×∇)i∇ · E(x),

we can find the Poisson bracket of the Gauss constraint with Ji by first evaluating on ∇ · E, that is:

{Gλ, Ji} =

∫
Σ

dx3λ{∇ · E(x), Ji} =
∫
Σ

dx3λ(x ×∇)i∇ · E(x)

= −

∫
Σ

dx3(x ×∇)iλ∇ · E = −G(x×∇)iλ.

On the other hand, we could also calculate the Poisson bracket by first evaluating with the integrand of
Ji as follows:

{Gλ, Ji} =

∫
Σ

dx3{Gλ, Ej

(
(x ×∇)iδ

jk + ϵijk
)
Ak} =

∫
Σ

dx3Ej

(
(x ×∇)iδ

jk + ϵijk
)
{Gλ, Ak}

=

∫
Σ

dx3Ej

(
(x ×∇)iδ

jk + ϵijk
)
∂kλ = −

∫
Σ

dx3∂kEj

(
(x ×∇)iδ

jk + ϵijk
)
λ

= −

∫
Σ

dx3(∇ · E(x ×∇)iλ− (∇× E)iλ) = −G(x×∇)iλ +

∫
Σ

dx3λ(∇× E)i.
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We see that the two methods of integration only agree up to the term
∫
Σ dx

3λ(∇ × E)i, which can be
re-expressed as a boundary term through Stokes theorem as [89, p. 22]∫

Σ

dx3λ(∇× E)i =
∫
|x|→∞ dΩ|x|2

x · E
|x|

(x ×∇)iλ =

∫
|x|→∞ dΩ|x|(x · E)(x ×∇)iλ. (4.5)

Balachandran then argues that in order to make sure that the Poisson brackets are well-defined, we need
this term to vanish and therefore require that λ → 0 sufficiently rapidly. Since λ is a gauge parameter
that needs to be exponentiated as eiλ to get an element of the gauge group, the asymptotic condition on
λ yields the asymptotic condition 4.4 on gauge transformations.

4.3.3. Symplectic underpinnings

However, Balachandran’s argument looks rather ad hoc. Its deeper meaning is not immediately clear:
why really are the Poisson brackets ill-defined if we do not impose the condition 4.4? Why, apparently,
can the Gauss constraint not generate all gauge transformations, but only those that become the iden-
tity at spatial infinity? And more specifically: in Balachandran’s derivations partial integration is used
repeatedly and the boundary terms are always assumed to vanish. But why should this be so? And if
those boundary terms vanish, does the RHS of 4.5 not vanish automatically too, regardless of the asymp-
totic behaviour of λ? To understand these issues, let us take the more general approach of examining
the momentum map for the action of the gauge group on the space of Yang-Mills connections.

Following [90, 91] we consider a four-dimensional, connected, oriented and time-oriented (see Def-
inition B.11) Lorentzian manifold (M,g) with a compact Cauchy surface Σ and let a denote the affine
space of g-valued connection 1-forms on Σ (assuming the bundle to be trivial), as in Theorem 2.13.
The phase space is the cotangent bundle T∗a. We understand this phase space to consists of of pairs
(A,E) ∈ Ω1(Σ, g)×Ω2(Σ, g), such that E(A) = ⟨A,E⟩ is defined through the conjugate pairing

⟨A,E⟩ =
∫
Σ

Tr A∧ E.

The constraint equations for Yang-Mills theory are the Gauss law [91, p. 364]

DAE := dE+ [A∧ E] = 0.

For electromagnetism these reduce to dE = 0. The action of the gauge group G lifts to phase space:

g · (A,E) = (g−1Ag+ g−1dg, g−1Eg), g ∈ G.

The Lie algebra Lie(G) is isomorphic to C∞(Σ, g). We equip T∗a with the canonical symplectic form
ω =

∫
Σ dA ∧ dE. We should now like to check that, with this symplectic form, the Gauss constraint

actually generates gauge transformations. To this end we recall the definition of a momentum map.

Definition 4.3. Let (N,ω) be a symplectic manifold andH a Lie group that acts onN by symplectomor-
phisms. Let h denote the Lie algebra of Hwith dual h∗, and write ⟨·, ·⟩ : h∗ × h → R for the pairing. Then
a momentum map for the H-action on N is a map µ : N→ h∗ such that for all ξ ∈ h we have

d⟨µ, ξ⟩ = ιXξ
ω = ω(Xξ, ·).

Here Xξ denotes the fundamental vector field generated by ξ and ⟨µ, ξ⟩ is understood as a function
M→ R through ⟨µ, ξ⟩(x) = ⟨µ(x), ξ⟩.

The momentum map µ : T∗a → Ω3(Σ, g) for the action of the gauge group G on T∗a is the Gauss
constraint µ(A,E) = DAE [90, p. 364]. Here we identify η ∈ Ω3(Σ, g) as an element in the dual g∗

through the pairing ⟨η, ξ⟩ =
∫
Σ Tr ξ∧ η. Thus, for some ξ ∈ C∞(Σ, g) we have

⟨µ, ξ⟩(A,E) =
∫
Σ

Tr DAE∧ ξ = −

∫
Σ

Tr E∧DAξ+

∫
∂Σ

Tr E∧ ξ, (4.6)
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where we can also understand the boundary term asymptotically as a limit x → ∞ in the case of
Minkowski spacetime - we return to this shortly. Evidently, the momentum map µ applied to an el-
ement ξ ∈ C∞(Σ, g) is just the Gauss constraint smeared with ξ. But, if µ(A,E) = DAE really is to define
the momentum map for the action of G, then by definition it must satisfy, for every ξ ∈ C∞(Σ, g):

d⟨µ, ξ⟩ = ιXξ
ω := ω(Xξ, ·), (4.7)

where Xξ ∈ X(T∗a) denotes the fundamental vector field on T∗a generated by the Lie algebra element ξ.
To check 4.7, let us first calculateω(Xξ, ·). By definition, for any function F ∈ C∞(T∗a) we have

Xξ(F)(A,E) =
d

dt

∣∣∣∣
t=0

F
(
etξ · (A,E)

)
=
d

dt

∣∣∣∣
t=0

F
(
e−tξAetξ + e−tξd(etξ), e−tξEetξ

)
.

Now, for the functions F = A,E this simply gives

Xξ(A) =
d

dt

∣∣∣∣
t=0

(
e−tξAetξ + e−tξd(etξ)

)
= −ξA+Aξ+ dξ = [A, ξ] + dξ = DAξ,

Xξ(E) =
d

dt

∣∣∣∣
t=0

(
e−tξEetξ

)
= −ξE+ Eξ = [E, ξ]

Thus, if we plug Xξ into the first slot of the symplectic formω =
∫
Σ Tr dA∧ dEwe obtain

ω(A,E)(Xξ, ·) =
∫
Σ

Tr (dA(Xξ)∧ dE− dE(Xξ)∧ dA) =
∫
Σ

Tr (Xξ(A)∧ dE− Xξ(E)∧ dA)

=

∫
Σ

Tr (([A, ξ] + dξ)∧ dE− [E, ξ]∧ dA) =
∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA).
(4.8)

For G = U(1) this reduces to the simpler expression ιXξ
ω =

∫
ΣDAξ ∧ dE =

∫
Σ dξ ∧ dE. Now, the left

hand side of 4.7 gives

d⟨µ, ξ⟩ = d
∫
Σ

Tr DAE∧ ξ =

∫
Σ

Tr (d(DAE)∧ ξ−DAE∧ dξ) .

However, we cannot immediately see how this agrees with 4.8, because 4.8 is an expression in DAξ,
whereas our last result is an expression in ξ. We need to perform the partial integration from 4.6, giving

d⟨µ, ξ⟩ = −

∫
Σ

Tr (dE∧DAξ− E∧ d(DAξ)) + d
∫
∂Σ

Tr E∧ ξ. (4.9)

The second term in the first integral can be rewritten as

E∧ d(DAξ) = E∧ d(dξ+ [A, ξ]) = E∧ d[A, ξ] = E∧ [dA, ξ] = E∧ dAξ− E∧ ξdA

= −Eξ∧ dA+ ξE∧ dA− ξE∧ dA+ E∧ dAξ = −[E, ξ]∧ dA+ [E∧ dA, ξ].

Thus, the first integral in 4.9 equals∫
Σ

Tr (DAξ∧ dE+ E∧ d(DAξ)) =
∫
Σ

Tr (DAξ∧ dE− [E, ξ]∧ dA+ [E∧ dA, ξ]).

But the trace of the full commutator term gives zero (or, since the trace is Ad-invariant, we could also
immediately have rewritten Tr E∧[dA, ξ] = −Tr [E, ξ]∧dA), so we obtain precisely 4.8! This implies that,
if the Gauss constraint µ(A,E) = DAE is to be the momentum map for the action of the gauge group,
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then the boundary term in 4.9 must be zero. In order to guarantee this, we require that ξ vanishes on
the boundary.1

But what if we are working on Minkowski spacetime with Cauchy surface Σ ∼= R3? Then we cannot
speak of an actual boundary, but we must have some asymptotic condition such as 4.4. To understand
what happens in this case we need to consider the asymptotic fall-off behaviour of A and E. Indeed, to
make integrals like

∫
ΣA∧E or

∫
Σ dEwell-defined, we should requireA→ 0+O(r−2) and E→ 0+O(r−2)

as r → ∞. After all, in spherical coordinates the integral over Σ picks up a factor r2, meaning that
the rest of the integrand should fall of with order O(r−3−ϵ) at least. The requirement that A vanish
asymptotically also puts restrictions on the elements g ∈ G of the gauge group. If the gauge group
action A 7→ g−1Ag + g−1dg is to respect the asymptotic condition on A, we should at least require
dg → 0, i.e. that g asymptotically tends to a constant value. If we can write g = eξ this just means
ξ → const. We want g−1dg to fall off at the same rate as A, so we then need ξ → const +O(r−1). As in
section 4.3.2 we write GI for the group of gauge transformations that become constant asymptotically.

However, if we want to define the momentum map µ(A,E) = DAE as above, then further restrictions
on the asymptotic behaviour of ξ ∈ C∞(Σ, g) are in order. After all, we need integrals like

∫
ΣDAE ∧ ξ

and
∫
Σ E ∧ DAξ to exist and the boundary term in 4.9 to vanish. Considering that we have already

assumed E → 0 + O(r−2), it suffices to then also require ξ → 0 + O(r−1). Exponentiating these Lie
algebra elements gives the unphysical gauge group G∞

0 . We thus recover the quotient GI/G∞
0 of the

well-defined gauge transformations whose momentum map is not the Gauss constraint, i.e. which are
not generated by it. Now, this thesis is about global gauge transformations because they are elements of
that quotient. Indeed, we have the following result.

Proposition 4.4. Let G = C∞(Σ,G) denote the gauge group of the trivial G-bundle over Σ with Lie
algebra Lie(G) ∼= C∞(Σ, g). Write GI0 = {eξ(x) : ξ(x) → const + O(r−1)} for the group of small gauge
tranformations respecting the boundary conditions and G∞

0 = {eξ(x) : ξ(x) → 0+O(r−1)}. Then

GI0/G∞
0

∼= G0 = {eζ : ζ ∈ g}.

Proof. It is clear that G0 ⊂ GI0/G∞
0 , since the global gauge transformations are already constant every-

where. Conversely, suppose g = eξ(x) ∈ GI0/G∞
0 . We need to show that we can write g as the product

of a global gauge transformation eζ with an element of G∞
0 . If G is Abelian this is immediate: we then

have eξ(x) = eξ(x)−LeL, where L = lim|x|→∞ ξ(x). For the general case, however, we need to use the Baker-
Campbell-Hausdorff formula. We need to find ρ : R3 → g such that ρ(x) → 0+O(r−1) and eξ(x) = eρ(x)eL,
i.e. eρ(x) = eξ(x)e−L. The BCH formula then gives

ρ(x) = ξ(x) − L−
1

2
[ξ(x), L] −

1

12
[ξ(x), [ξ(x), L]] −

1

12
[L, [ξ(x), L]] + ...

It needs to be checked that ρ(x) defined this way is actually an element of G∞
0 . Now, it is clear that

ρ(x) → 0, since in the limit ξ(x) → L, meaning that the commutators vanish in the limit and that
ρ(x) → ξ(x) − L = 0. Additionally, since ξ(x) attains L with a fall-off behaviour of O(r−1), any product
of ξ(x) with L appearing in the nested commutators also has at least this fall-off behaviour. Thus, we
find that indeed ρ(x) → 0+O(r−1).

Of course, G0 does not equal all of G if the exponential map is not surjective, but we need not worry
about that for U(1) or SU(N) since these groups are connected and compact. In addition, we generally
will not have that GI equals GI0 because there might be topological contributions, such as the winding
numbers we have met before. For SU(2), for instance, we have seen that the homotopy classes of maps

1Another possibility would be to consider the group G∗ of pointed gauge transformations, i.e. those transformations which
are the identity at some arbitary fixed point x0 ∈ Σ. Then the only global transformation is the trivial one and the action
of G∗ is free, such that the symplectic reduction T∗a//G∗ is well-defined. This approach is pursued by Belot [92]. We could
also consider so-called irreducible connections, i.e. connections for which the holonomy group acts irreducibly. The gauge
group does act freely on the space of irreducible connections [93].
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R3 ∪ {∞} → SU(2) are labelled by Z. In such cases, then, the physical quotient of gauge transformations
is given not only by the global gauge transformations, but by a copy of G0 for every homotopy class.
For G = U(1) we do not have topological contributions since π3(S1) = 0, so in that case

GI/G∞
0 = GI0/G∞

0
∼= U(1)0 = U(1).

4.3.4. Holism and horizontal symplectic geometry

There remains a body of work that is of interest to our purposes with which we have not yet engaged:
the articles by Gomes, Riello and Hopfmüller cited in the introduction to this chapter.2 In these articles,
a “unified geometric framework” [75,76] is developed which encompasses and refines notions from this
chapter such as DES, boundaries, subsystems and the transverse/longitudinal split and even relates to
the DFM from chapter 3. The approach is based on the introduction of a horizontal 1-form ϖ on field
space, considered as a principal fibre bundle with the gauge group as its structure group. Here “hori-
zontal directions are essentially a choice of non-gauge directions in field space transforming covariantly
along the fiber” [78, p. 18].

Before we introduce the field space formalism, let us consider the less technical exposition of these
ideas which focuses on the notion of holism as the empirical significance of gauge symmetries. More
precisely, in [78] Gomes shows how DES of gauge symmetries can be understood as a failure of global
supervenience on subsystems (GSS). That is, there are cases in which the states of a number of subsystems
do not uniquely define the state of the entire universe consisting of those subsystems (the parts do not
completely determine the whole, hence the term ‘holism’). In those cases additional relational data,
i.e. data on how the various subsystems relate to each other, is needed. A very elementary example of
such a failure of GSS would be two separated collections of particles. We can describe each individual
collection of particles by specifying only the relative distances between the particles. However, if we
want to describe the entire system consisting of the two collections, we need the additional datum of
the distance between the respective centers of mass of the particle collections.

For gauge symmetries, Gomes works out how the gauge-invariant data describing subsystems do not
suffice to uniquely determine the gauge-invariant description of the composition, a possibility that GW
do not even consider. This leads to the following result for the case of electromagnetism (cf. Theorem 1
in [78]), which is similar to the situation pictured at the end of section 4.3.1.

Theorem 4.5 (Rigid variety for U(1)). For electromagnetism as coupled to a Klein-Gordon scalar field
in a simply-connected universe: given the physical content of two regions, for matter vanishing at the

2Others have also continued the discussion of the work of GW and Teh. Using the very framework developed by GW,
Friederich has argued that gauge symmetries cannot in fact exhibit DES [71, 94]. This led Ramirez to identify a “puzzle
concering local symmetries and their empirical significance” [73]. Ramirez singles out a particular premise in Friederich’s
articles as the point of conflict between GW and Teh on the one hand and Friederich on the other and argues against it,
thereby defending the results of GW and Teh and restoring the view that gauge symmetries can indeed have DES. Ramirez
and Teh subsequently decided to “abandon Galileo’s ship” in order to look for non-relational empirical significance of gauge
symmetries [95]. Wallace has also returned to the debate [96,97], considering the Abelian Higgs Lagrangian and the relation
between symmetry breaking and asymptotic boundary conditions. He claims the broken and unbroken phases of the Higgs
model have different boundary conditions: in the unbroken phase the boundary condition on the Higgs field is supposedly
φ(x) → 0 as x → ∞, such that the condition for a gauge symmetry g(x) to be boundary-preserving is g(x) → eiθ, with
θ fixed [97, p. 22]. In the broken phase, however, he claims that the asymptotic condition on the gauge symmetries is the
more stringent g(x) → 1, since the minimum of V is now some non-zero value which transforms non-trivially even under
constant gauge transformations. We have developed a different view in this chapter, namely that the asymptotic boundary
condition for the gauge field is A → 0, but the Higgs field φ need only become constant at infinity. Thus, the gauge
transformations g = eiξ ∈ G preserving these boundary conditions are those that become constant asymptotically, for then
the pure gauge term g−1dg vanishes so that A remains zero at infinity, and the Higgs field is only changed by a constant
factor at infinity and therefore still respects the required boundary condition. These boundary conditions do not change
when we go form the unbroken to the broken phase and it is not the case that in the broken phase the boundary-preserving
gauge transformations are only those that become the identity asymptotically. Rather, we identified the transformations
satisfying g→ 1 as those that are redundant, i.e. unphysical.
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boundary but not in the bulk of the regions, the universal state is undetermined, resulting in a residual
variety parametrised by an element of U(1). Here the particular action of U(1) is that which leaves the
gauge-fields invariant, but not the matter fields.

Here rigid is used in our sense of ‘global’. Now, although this result singles out the global gauge trans-
formations as those exhibiting DES through a failure of GSS, two issues come up: how can we interpret
this for asymptotic boundary conditions and how does this generalise to the non-Abelian setting? As for
the first, Gomes is aware of this and refers to [98] for a “recovery of the asymptotic results [...] using the
present framework” [78, p. 17]. Secondly, Gomes treats the non-Abelian case in the appendix and states
that “one is able to retain, for the non-Abelian context, all the interesting results obtained” [78, p. 14].

Let us now introduce the field-space formalism used by Gomes and Riello to derive the above theo-
rem. Following [75] we write ΦYM for the space of Yang-Mills gauge fields A with matter fields φ on
a Cauchy surface Σ, with gauge group G whose infinitesimal action on the fields is, for a Lie algebra
element ξ ∈ Lie(G)

δξA := DAξ = dξ+ [A, ξ], δξφ = ξφ.

We have the usual fundamental vector field map Lie(G) → X(ΦYM) given by

Xξ(F) =
∫
δξF

d
dF
, F ∈ ΦYM.

The flows of the vector fields Xξ generate gauge orbits in ΦYM, which can be interpreted as the fibres of
an infinite-dimensional principal G-bundle π : ΦYM → ΦYM/G if the action of G is free and proper (for
which G must be equipped with the structure of a Banach-Lie group). If this is not the case, ΦYM/G is a
so-called stratified space, meaning that the space is not a manifold but admits a decomposition into strata,
which are themselves manifolds. For ΦYM/G the strata are related to the conserved global charges [75].
Vector fields X ∈ X(ΦYM) tangential to the Xξ are called vertical and they span the vertical tangent
space VF ⊂ TFΦYM at every point F ∈ ΦYM. There is no canonical horizontal complement such that
TΦYM ∼= H ⊕ V (where V denotes the vertical subbundle), so by analogy to the finite-dimensional case
we are led to the introduction of a connection-like 1-form, which is Definition 2.1 in [79].

Definition 4.6. Let ϖ ∈ Ω1(ΦYM,Lie(G)). Then ϖ is called a G-compatible functional connection form
on ΦYM, or simply a functional connection, if it satisfies the following properties for all field-dependent
gauge transformations ξ : ΦYM → Lie(G):

ϖ(Xξ) = ξ

LXξ
ϖ = [ϖ,ξ] + dξ.

Here L denotes the Lie derivative onΦYM.

The horizontal vector fields are those that lie in the kernel of ϖ. Writing Ĥ : X(ΦYM) → X(ΦYM) for
the horizontal projection of vector fields we can define a horizontal exterior derivative dH = d(Ĥ(·)) [77].
On the gauge and matter fields it is given by dHA = dA−DAϖ and dHφ = dφ+ϖφ [76].

But what is the point of introducing ϖ? Where does its unifying power lie? How does it help us
understand the significance of global gauge symmetries? To understand this, let us consider Maxwell
theory. By a derivation much like that in section 4.1.2 (which was also based on work by Gomes),
one tries to find the orthogonal horizontal complement of vectors

∫
δξA

d
dA and it is found that, for

electromagnetism on Σ ∼= R3 with fast-decaying boundary conditions [75]:

ϖ(x) =
(
∇−2 div(dA)

)
(x) =

∫
Σ

d3y
4π

∂idAi(y)
|x− y|

.
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This is of course precisely the expression for the Coulombic component ∂i(∆−1∂jAj) of the electromag-
netic field that we found in section 4.1.2 and thought of as the pure gauge part of A. We call this func-
tional connection ϖ the Dirac-Singer-De Witt connection for electromagnetism, or the SdW connection
more generally [79]. Since the functional connection is horizontal, i.e. leaves alone the vertical vector
fields Xξ which are the gauge directions, we would think it cannot be used to pick out the physical
transformations in G. Such physical transformations or “actual symmetries” [75] should lie in the kernel
ofϖ, but we have assumed thatϖ(Xξ) = ξ, i.e. thatϖ leaves alone the vertical vectors. However, it has
been implicitly assumed that there is a 1-1 correspondence between the Lie algebra elements ξ ∈ Lie(G)
and the horizontal subbundle V , but such a 1-1 correspondence holds only pointwise [75]. Indeed, for
the Dirac-Singer-De Witt connection the constant maps in ξ0 ∈ Lie(G) are precisely the ones that lie in
the kernel ofϖ, as can be seen from the fact that

∇−2div(dA(Xξ0)) = ∇−2div(Xξ0(A)) = ∇−2div(0) = 0.

Thus, “we see that the Dirac-Singer-DeWitt connection automatically picks out global gauge transfor-
mations in electromagnetism as being physically distinct from local ones” [75]. In the non-Abelian case,
things are less straightforward, for then gauge transformations are field-dependent, leading to a field-
space curvature F = dHϖ ̸= 0. One is then forced to resort to perturbation theory [76].

Besides the Singer-De Witt connection, a Higgs connection is also considered in section 7 of [76] for
the Yang-Mills-Higgs theory. To our mind, however, it does not tell us very much about the Higgs
mechanism that we do not already know. This Higgs connection is flat and exists only if the Higgs
field is everywhere non-vanishing, i.e. in the symmetry-broken phase. This reminds us of the dressing
fields from chapter 3, which were also definable through the polar decomposition of the Higgs field only
for a non-vanishing field. In fact, there is an intimate connection between the formalism of horizontal
symplectic geometry and the DFM. The following result is Proposition 2.23 in [79].

Proposition 4.7. A dressing field on field space, i.e. a function h : ΦYM → G, such that R∗gh = hg for
any g ∈ G, exists if and only if a flat connection ϖ = h−1dh exists. In that case the dressed fields are
gauge-invariant and their differentials are related to the horizontal differential and the original fields:

Â = hAh−1 + hdh−1, dÂ = h(dHA)h
−1;

Ê = hEh−1, dÊ = h(dHE)h
−1;

φ̂ = hφ, dφ̂ = hdHφ.

This should not surprise us, since what we did in this chapter is to dress the Higgs field in the
Coulomb gauge with the dressing field exp(−ie∆−1∂iAi), where the longitudinal component ∆−1∂iAi
is provided by the SdW connection. However, this is a dressing field only for the local gauge group G∞
and not for the global gauge transformations. After all, the global gauge transformations lie in the ker-
nel of the functional connection and should therefore not be thought of as gauge orbits in the Redundant
sense of Teh. Thus, we should not even want to dress them away.

All in all, we see that the horizontal formalism really has a unifying power: it connects the DES
of global gauge symmetries, the transverse/longitudinal split and the DFM. It clearly supports our
analysis in this chapter by singling out global (rigid) gauge transformations as the ones that carry DES
in rigourous theorems. Yet, for the Higgs mechanism, the fact that a field space connection exists only
if the Higgs field is everywhere non-vanishing, just like for the DFM, remains problematic. If the Higgs
field can vanish nowhere we are able only to consider small variations around the Higgs condensate,
i.e. stay at the perturbative level of analysis. It is high time, therefore, that we examine Strocchi’s non-
perturbative results on the Higgs mechanism in chapter 6. But before we do so, we briefly reflect on
where we stand now.
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4.4. Discussion

We are approximately halfway through this thesis. In chapter 1 we gave an overview of the philosoph-
ical discussion on the Higgs mechanism and explained the main conceptual issue leveled against the
standard narrative: how can gauge symmetry breaking lead to something physical like mass if gauge
symmetry is mere “descriptive fluff” and if Elitzur’s theorem tells us that gauge symmetries cannot
be broken at all (a result that can heuristically be understood via the path integral argument 3.1)? In
chapter 2 we then presented the full Higgs mechanism in the Standard Model and in chapter 3 we ex-
plained how we can reformulate it without invoking SSB at all, thereby avoiding Elitzur’s theorem and
the dubious idea of gauge symmetry breaking altogether.

However, Elitzur’s theorem does allow for the breaking of global gauge symmetries, and in section 4.2
we have seen that, in the Abelian case, the Higgs mechanism can indeed be understood that way. We
can rewrite the Abelian Higgs model in terms of massless fields that are invariant under all but global
gauge transformations, such that when we do break this global symmetry we get massive vector bosons.
How to think of this breaking as a temporal process, and in what sense the masses are really generated
and not the result of a mere reshuffling of degrees of freedom, are important questions that we address
in chapter 7.

But, the problem of “descriptive fluff” is only solved if we can show that global gauge transforma-
tions are physical. To support this claim was the second aim of this chapter, and we have used the
language of symplectic geometry to do so. In a nutshell, we have shown that the gauge transformations
that exhibit redundancy, i.e. those that are generated by the first class constraints - the Gauss constraint
for Yang-Mills theory, do not fully exhaust the group of permissible gauge transformations. This group
of permissible gauge transformations consists of those transformations that respect boundary condi-
tions, which for fields on R3 are asymptotic fall-off requirements, and we have shown it to consist of
the transformations that become asymptotically constant. The transformations generated by the Gauss
constraint, however, become the identity asymptotically. The quotient of these two groups is therefore
non-trivial, and for electromagnetism it is isomorphic to U(1) implemented as the group of global (also
called rigid, or constant) gauge transformations. All these results are further supported still by the for-
malism of horizontal symplectic geometry presented in section 4.3.4. In that formalism, however, it also
becomes yet more clear that not all results on electromagnetism can automatically be generalised to the
non-Abelian setting.

Looking forward, we will see in chapter 6 that the mass generation through the Abelian Higgs mech-
anism in QFT can indeed be understood as the breaking of global gauge symmetry. The main result
presented there, Theorem 6.13, is derived in the Coulomb gauge. In this chapter we have seen why
that is not surprising: the Coulomb gauge is designed precisely to remove the Redundant part of the
gauge group and leave the global gauge transformations intact. Before we present these exciting results
by Morchio and Strocchi, however, we introduce AQFT to get a general perspective on the role of the
global gauge group in QFT.
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5. Algebraic Quantum Field Theory

So far we have been almost exclusively concerned with classical field theory as a context for the Higgs
mechanism. In the end, however, the Higgs mechanism is a phenomenon in quantum field theory, and
we cannot expect to fully unravel it if we confine ourselves to the classical world. It is time, then, to
consider Hilbert spaces, operators and algebras.

The overarching research question of this thesis is about the role of SSB in the Higgs mechanism, and
there is in fact a precise definition of SSB for quantum systems (sketched in section 1.2.1), in terms of
the unitary inequivalence of GNS representations (Definition A.26). This definition is formulated in the
algebraic approach to quantum theory, i.e. the description of quantum systems in terms of C∗-algebras
(see Definition A.16). Thus, if we wish to study SSB in QFT this way, then we must first formulate
QFT algebraically: we must describe a QFT as some C∗-algebra on which we can define states. This
is what the approach called algebraic quantum field theory (AQFT) does, and in this chapter we shall
introduce it. AQFT abstracts away from the concrete Hilbert spaces normally encountered in quantum
theory and focuses on the abstract algebra of operators containing the observables of the theory. In that
sense its axioms, which we present in section 5.1, are more abstract than the well-known Wightman
axioms [99], which we introduce in chapter 6. In section 5.2 we discuss important concepts such as
unitarily inequivalent representations (UIR’s), folia and superselection rules, such that in section 5.3 we
are able to understand a beautiful result which shows that, under basic physical assumptions, there
necessarily arises a global gauge group in AQFT. It is of course precisely in terms of the breaking of this
global gauge that we are aiming to understand the Higgs mechanism. Thus, we end this chapter by
considering SSB in section 5.4.

Our aim is to present the general framework in which SSB of global gauge symmetry can be under-
stood. In the next chapter we concentrate on the details of the Higgs mechanism, basing our work on
the background of ideas developed in this chapter.

5.1. Haag-Kastler axioms

In the algebraic formulation of the axioms of QFT, we consider operator algebras U(O) on regions of
spacetime O. In terms of the Wightman axioms (section 6.1), we think of these algebras as being gener-
ated by all operator-valued distributions Φ(f) with f having support in O. However, the Haag-Kastler
axioms [100] do not require us to think about fields as operator-valued distributions: they mention only
the abstract assignment O → U(O), called a net (a map on a directed set, i.e. a non-empty set carrying
a partial order). In fact, the fields in the Wightman sense are unbounded operators, whereas the Haag-
Kastler axioms consider algebras of bounded operators. The question of whether the Wightman axioms
can actually yield a net of bounded operators and whether, vice versa, a net in the Haag-Kastler sense
can be understood as being generated by operator-valued distributions, is highly involved [101, p. 106].

The purely algebraic axioms, then, are as follows [101–103]. We define a QFT as a net O 7→ U(O) of
C∗-algebras on the directed set of open, bounded regions of Minkowski spacetimeM, with inclusion as
the partial order. We call U(M) =

⋃
O U(O) the quasilocal algebra, where the closure is taken in the norm

topology, and require the net to satisfy the following axioms:

• Isotony: for O1 ⊂ O2 we have U(O1) ⊂ U(O2).

• Locality: if O1,O2 are spacelike separated, then [A,B] = 0 for all A ∈ O1, B ∈ O2.
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• Covariance: the Poincaré group is implemented as a group of automorphisms of the net. That is,
we have an assignment g ∈ P → αg such that

αgU(O) = U(gO).

• Time slice axiom: if Ô is the causal completion of the region O, then U(Ô) = U(O). In particular,
if OΣ = Σ× (−ϵ, ϵ) is an open neighbourhood of a Cauchy surface Σ ⊂M, then U(M) = U(OΣ).

• Existence of vacuum: the net U possesses an irreducible representation π0 called the vacuum sec-
tor, in which αg is implementable, i.e. there exists a strongly continuous family U(g) of unitary
operators such that

U(g)π0(a)U
−1(g) = π0(αga).

• Spectrum condition: the joint spectrum of the generators Pµ of translations, i.e. those operators
satisfying ex·P = U(x), where U(x) denotes the unitary operator implementing a translation by x,
is contained in the closed future light cone V̄+.

These axioms may be formulated slightly differently across different sources. The locality axiom is
also called Einstein causality or microcausality, and we refer the reader to [104] for a philosophical
discussion of it.

We could go into many details concerning these axioms, such as the structure of the vacuum sector
in terms of the GNS representation of a vacuum state ω0 (III.4 in [101]) and smoothness properties of
the net (III.3.1 in [101]). However, these details are not very relevant for our purposes, since in this
chapter we only aim to explain the general structure of the algebraic approach to quantum (field) theory
and the insights it can bring for SSB. It is only in chapter 6 that we actually prove results on the Higgs
mechanism, but based on the Wightman axioms - not the Haag-Kastler axioms.

5.2. Representations, folia and all that

The most distinctive feature of the algebraic approach to quantum theory, as opposed to the Hilbert
space approach, is probably the fact that we can represent a C∗-algebra A on a Hilbert spaceH in a wide
variety of ways. Indeed, every state ω : A → C gives a representation πω : A → B(Hω), but there is
also the universal representation, which by Theorem A.28 is faithful, and many other representations
are conceivable. This leads to conceptual questions: should we attempt to represent the abstract algebra
on a concrete Hilbert space at all? If so, then through which representation? When can we say that
two representations are equivalent? If two inequivalent representations are both physical, then how do
states in the two representations relate to each other? Or do they live in “separate worlds”? These and
many more issues are addressed by Ruetsche [103], on which we base much of the following expostion.

5.2.1. Unitary equivalence and quasi-equivalence

The mathematically most natural characterisation of equivalence of representations ofC∗-algebras is the
unitary equivalence that we have mentioned several times already.

Definition 5.1. We call two representations π1 : A → B(H1) and π2 : A → B(H2) of a C∗-algebra unitarily
equivalent if there is a unitary map U : H1 → H2 intertwining them, i.e. statisfying U−1π2(a)U = π1(a)
for all a ∈ A.

Through the GNS representation (Definition A.26) we can extend this to unitary equivalence of states.

Definition 5.2. We call two statesω1,ω2 on A unitarily equivalent if their GNS representations πω1
and

πω2
are unitarily equivalent.
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Now, from any representation π : A → B(H) of a C∗-algebra, we can obtain a von Neumann algebra
(Definition A.18), since in B(H) we can take the closure in the weak operator topology (Definition A.9).
By the double commutant theorem (Theorem A.20) this von Neumann algebra is π(A) ′′. We can then
use this von Neumann algebra affiliated with a representation to define another notion of equivalence
of representations.

Definition 5.3. Two representations π1, π2 of A are called quasi-equivalent if there is a ∗-morphism
α : π1(A) ′′ → π2(A) ′′ such that α(π1(a)) = π2(a) for all a ∈ A. Similarly we can say two states are
quasi-equivalent if their GNS representations are.

It is not hard to see that unitarily equivalent representations are also quasi-equivalent: a unitary
map U : H1 → H2 intertwining π1 and π2 gives a unitarily implemented ∗-morphism defined through
A 7→ UAU∗. However, quasi-equivalent representations need not be unitarily equivalent [103, p. 87].
Indeed, only irreducible quasi-equivalent representations are unitarily equivalent [105], and therefore
quasi-equivalence can also be characterised as “unitary equivalence up to multiplicity” [106, p. 5357],
as in the following equivalent definition [101, p. 126] [58, p. 319].

Definition 5.4. Two representations π1, π2 : A → B(H) are quasi-equivalent if every subrepresentation of
π1 has a subrepresentation that is unitarily equivalent to some subrepresentation of π2, and vice versa.

5.2.2. Folia

Given a representation π : A → B(H) of a C∗-algebra A, we can ask ourselves what states on the algebra
can be expressed as density operators in that representation. This leads to the following definition
[101, 103], which turns out to be intimately related to the notion of quasi-equivalence.

Definition 5.5. Let ω : A → C be a state. Then the folium Fω of ω is the set of all states on A which are
expressible as density matrices in the GNS representation ofω, i.e. the statesωρ such that

ωρ(a) = tr ρπω(a),

with ρ a density operator.

We think of the folium of a state as the set of all the states that “live in the same world” and which
can be superposed. Folia are a division of the state space of an algebra into sets of states that can be
expressed as density operators on the same Hilbert space. The states that are expressible as density
operators in a representation π are also called π-normal states. This refers to the definition of a state
ω : B(H) → C as normal if for each orthogonal family {ei} of projections we have

ω

(∑
i

ei

)
=

∑
i

ω(ei). (5.1)

The convergence of
∑
i ei is in the SOT (Definition A.9) [103, p.80]. A well-known result (Theorem 4.12

in [58]) states that a state ω : B(H) → C is normal if and only if it takes the form ω(a) = tr ρa, with ρ a
density operator. Intuitively it seems logical that if two states are unitarily equivalent, then we should
be able to express one as a density operator in the GNS representations of the other. Indeed:

Proposition 5.6. If two statesω1,ω2 are unitarily equivalent then their folia coincide, i.e. Fω1
= Fω2

.

Proof. Let πωi
: A → B(Hωi

) denote the GNS representations of ωi with unit cyclic vectors Ωi, where
i = 1, 2. Suppose ωρ ∈ Fω1

, i.e. ωρ(a) = tr ρπω1
(a). Let U : Hω1

→ Hω2
denote the unitary operator

implementing the unitary equivalence ofω1 andω2. Then

ωρ(a) = tr ρπω1
(a) = tr ρU∗πω2

(a)U = tr UρU∗πω2
(a).

Here we used the cyclicity of the trace. But since U is unitary UρU∗ is a density operator on Hω2
, so

ωρ ∈ Fω2
. This shows that Fω1

⊂ Fω2
and by the same argument we also get Fω2

⊂ Fω1
.
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It might also be, however, that two states on an algebra cannot “talk to each other” at all.

Definition 5.7. Two statesω1,ω2 on a C∗-algebra A are disjoint if their folia are, i.e. if Fω1
∩ Fω2

= 0.

As Ruetsche explains, disjointness can be thought of as an algebraic “radicalisation” of the notion of
orthogonality for Hilbert spaces. If two states in a Hilbert space are orthogonal, then they are impossible
relative to one another in the sense that the transition probability from one to the other is zero. Yet, there
might be a third state which overlaps with both of the orthogonal states. This is not the case for folia.
If two states are disjoint, then any third state will either be disjoint to both states, or lie in the folium of
one of them, in which case it cannot be superposed with the other. There is no middle way. It is for this
reason that we think of folia as “separate worlds” in which states cannot talk to each other.

Now, we have seen that if two states are unitarily equivalent, then their folia coincide. But the con-
verse does not hold: if two states have coinciding folia they need not be unitarily equivalent. Thus, it is
not immediately clear how the classification of states by their folia relates to the equivalence of their rep-
resentations. At the beginning of this subsection, however, we already hinted at a connection between
quasi-equivalence and folia, and indeed [103, p. 98] [58, p. 319]:

Theorem 5.8. Two states are quasi-equivalent if and only if their folia coincide.

Since by Proposition 5.6 above unitarily equivalent representations have coinciding folia, and think-
ing of quasi-equivalence as unitary equivalence up to multiplicity as in Definition 5.4, it is not too hard
to see that under the weaker condition of quasi-equivalence folia still coincide. As for the converse,
recall that if representations have coinciding folia, any state that is normal relative to one representation
is normal relative to the other. But normality is the condition of countable additivity with respect to the
SOT, so we expect that representations with coinciding folia generate the same von Neumann algebras
(which are closed in the SOT). We will leave it at this intuition since, again, this chapter serves to expose
the general structures of the algebraic approach to quantum theory, whereas our precise results about
the Higgs mechanism in chapter 6 are based on the Wightman axioms.

We have now come at a classification of states by their quasi-equivalence or equivalently their folia,
but this is not a neat division of the space of states, in the sense that states need not be either quasi-
equivalent or disjoint [107]. In other words: states might have overlapping folia that do not completely
coincide [103]. For irreducible representations (pure states by Theorem A.31) this dichotomy clearly
does hold. But it can be generalised:

Definition 5.9. A representation is called primary if it is quasi-equivalent to each of its nonzero subrep-
resentations. Similarly a state is called primary if its GNS representation is primary.

Clearly a pure state is primary since its GNS representation has no proper subrepresentations. Pri-
mary representations are also called factor representations, which comes from the following definition:

Definition 5.10. A von Neumann algebra W is said to be a factor if its center W ′ ∩ W contains only
multiples of the identity. A factor representation π : A → C of a C∗-algebra A is a representation whose
von Neumann algebra π(A) ′′ is a factor.

A primary state ω : A → C can alternatively be defined as a factor state, i.e. by the triviality of
πω(A) ′ ∩ πω(A) ′′ = CI [58, p. 319]. We will not prove the equivalence of the definitions.

For primary states we do have the neat division we have been after (cf. Corollary 8.22 in [58]).

Theorem 5.11. Primary states are either quasi-equivalent or disjoint.

Proof. Letω1,ω2 : A → C be primary states which are not quasi-equivalent. Clearly quasi-equivalence is
an equivalence relation: this follows most easily from its characterisation by means of a ∗-isomorphism
of the von Neumann algebras generated by the representations in question. But this means that if
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two primary representations π1, π2 are quasi-equivalent, then if any subrepresenation of π1 is quasi-
equivalent to a subrepresentation of π2, every subrepresentation of π1 is quasi-equivalent to every subrep-
resentation of π2. After all, every subrepresentation of π1 is quasi-equivalent to π1 itself, and the same
holds for π2 and its subrepresentations. Thus, if some subrepresentation π ′

1 of π1 is quasi-equivalent
to some subrepresentation π ′

2 of π2, then for any other subrepresentations π ′′
1 of π1 and π ′′

2 of π2 we
have that π ′′

1 is quasi-equivalent to π1, which is quasi-equivalent to π ′
1, which is quasi-equivalent to

π ′
2, which is quasi-equivalent to π2, which is quasi-equivalent to π ′′

2 . So by transitivity π ′′
1 is quasi-

equivalent to π ′′
2 . This implies that if πω1

and πω2
are not quasi-equivalent, they do not have any

quasi-equivalent subrepresentations either. But by Theorem 5.8 this amounts to the states ω1,ω2 being
disjoint, i.e. Fω1

∩ Fω2
= 0.

5.2.3. Superselection sectors

Thus, whereas if we would consider quasi-equivalence classes of the entire set of states S(A) of the C∗-
algebra A, it would not be guaranteed that states belonging to different classes are disjoint, we do have
this guarantee if we take quasi-equivalence classes of the set of primary states. This leads to:

Definition 5.12. A primary folium (a folium of a primary state) is called a superselection sector.

Superselection sectors give rise to so-called superselection rules, which prohibit transitions between
different superselection sectors [108]. Such superselection rules are often thought of as forbidding co-
herent superpositions of states from different sectors - a common example being a superposition of a
fermion and a boson. On a decomposable Hilbert space H = H1 ⊕H2 this is formalised as follows [107].

Definition 5.13. We say H = H1 ⊕H2 exhibits a superselection rule if for any observable A ∈ B(H) and
states ψ1 ∈ H1, ψ2 ∈ H2 we have ⟨ψ1, Aψ2⟩ = 0.

However, this is only one possible definition of a superselection rule. It is what Earman calls a weak
superselection rule, of which he considers five equivalent conditions [108]. One of these defines a super-
selection rule as the impossibility to observe relative phases between states, as is the case for superposi-
tions of states carrying different charges, since gauge transformations then change each charged state by
a different phase. Formalised in terms of a von Neumann algebra W of observables acting on a Hilbert
space H, Earman’s five characterisations of weak superselection rules are all equivalent to:

Definition 5.14. A von Neumann algebra W ⊂ B(H) is said to exhibit a weak superselection rule if the
commutant W ′ ⊂ B(H) is non-trivial, i.e. not just CI.

Indeed, since a von Neumann algebra is the closed linear span of its projections (Theorem 4.1.11
in [109]), a non-trivial center W ′ contains a projection P that is not just a multiple of the identity. Then
PH is a proper W-invariant subspace, and for any A ∈ W, ψ1 ∈ PH,ψ2 ∈ (PH)⊥ we have

⟨ψ1, Aψ2⟩ = ⟨Pψ1, Aψ2⟩ = ⟨ψ1, PAψ2⟩ = ⟨ψ1, APψ2⟩ = 0.

The situation in which W ′ is non-trivial might obtain while Z(W) = W ∩W ′ = CI, i.e. while W is a
factor. Earman’s strong sense of a superselection rule requires this not to be the case:

Definition 5.15. A von Neumann algebra W ⊂ B(H) exhibits a strong superselection rule if the center
Z = W ∩W ′ is non-trivial. In particular this means the commutant W ′ is non-trivial.

This means that there are non-trivial central elements in the algebra W itself. The very strong definition
of superselection rules goes further still.

Definition 5.16. A von Neumann algebra W ⊂ B(H) exhibits a very strong superselection rule if the
commutant W ′ is non-trivial and W ′ ⊂ W . This automatically implies the commutativity of superselec-
tion rules, i.e. W ′ ⊂ W = W ′′ = (W ′) ′ (so W ′ is Abelian).
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Let us now consider how our discussion of superselection sectors in terms of folia (Definition 5.12)
relates to Earman’s characterisation of superselection rules. We have the following [108, p. 393].

Theorem 5.17. Let A be a C∗-algebra with representations π1 : A → B(H1), π2 : A → B(H2). We always
have (π1 ⊕ π2)(A) ′′ ⊂ π1(A) ′′ ⊕ π2(A) ′′, but for disjoint representations the inclusion is an identity. In
other words, the following are equivalent:

(i) (π1 ⊕ π2)(A) ′′ = π1(A) ′′ ⊕ π2(A) ′′;

(ii) π1 and π2 are disjoint, i.e. Fπ1 ∩ Fπ2 = 0.

These conditions hold if and only if for the projectors Ej from H = H1 ⊕ H2 to Hj for j = 1, 2 we have
Ej ∈ (π1 ⊕ π2)(A) ′′, and thus Ej ∈ Z((π1 ⊕ π2)(A) ′′).

With this theorem we can see how a C∗-algebra A “generates its own superselection rules”. We
first identify a class of physically admissible states and then consider the primary states among these
(here Earman considers only pure states [2, p. 398]). We partition these primary states into their quasi-
equivalence classes, which are mutually disjoint. Assuming a countable number of classes and choosing
representativesωi from every quasi-equivalence class we posit the von Neumann algebra of observables
(⊕iπωi

)(A) ′′ = ⊕iπωi
(A) ′′ acting on ⊕iHωi

. This gives at least weak superselection rules, but it might
give (very) strong ones too, as when one considers only GNS representations of pure states [108].

5.3. The global gauge group

The relevance of the notions from the preceding section lies in the fact that, as discovered by Doplicher,
Haag and Roberts (DHR), there is a deep connection between superselection and global gauge sym-
metries. In fact, in Theorem 6.13, we will understand the Higgs mechanism as a failure of the electric
charge to be a superselected quantum number. DHR showed that the presence of gauge symmetry leads
to superselection sectors labelled by the quantised gauge charges and, conversely, if one is given only
these superselection rules one can reconstruct the compact gauge group giving rise to them [110–112].
This is a category-theoretic generalisation of Tannaka-Krein duality [113]. For us, however, the details of
the reconstruction are not so relevant: we just need to understand how the presence of gauge symmetry
leads to a superselection structure.

The starting point is a net O → U(O) satisfying the axioms of section 5.1, such that the observables in
a region O are the self-adjoint elements of U(O). The net U(O) is also called the observable algebra. Gauge
fields are, however, not observable and do not belong to U(O). Thus, we need to consider a larger net
F(O) called the field algebra, such that gauge transformations act on this larger net. More precisely, we
have the following definition [112].

Definition 5.18. Let π0 denote the vacuum representation of the net U of local observables. A field system
with gauge symmetry for U(O) is a triple (π,G,F) consisting of a representation π of U on a Hilbert
space H containing π0 as a subrepresentation on H0 ⊂ H, a compact group G represented by a strongly
continuous family of unitaries g ∈ G 7→ U(g) ∈ B(H) leaving H0 pointwise fixed, and a net O → F(O)
of von Neumann algebras acting on H such that

(i) the g ∈ G induce automorphisms αg of F(O) with π(U(O)) = F(O)∩U(G) ′, i.e. such that
U is the algebra of gauge-invariant elements of F ;

(ii) The field algebra F =
⋃

O F(O) acts irreducibly on H;

(iii) H0 is cyclic for F(O);

(iv) For any spacelike separated O1,O2 we have [F(O1,U(O2))] = 0.
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The family of unitaries U(g) representing the gauge group is assumed to commute with the Poincaré
group. Moreover, the gauge automorphisms αg act locally, i.e. αg(F(O)) = F(O) for all O. This reflects
the fact that gauge symmetries are internal symmetries. The analysis that was carried out by DHR
assumes a certain criterion for which representations of U are allowed [101]. It basically states that
representations must look like the vacuum at large distance.

Selection criterion A representation π of U is said to fulfill the DHR selection criterion if, for
a sufficiently large causal diamond O, it satisfies

π|U(O ′)
∼= π0|U(O ′),

where π0 denotes the vacuum representation. In words: only those representations are con-
sidered which become unitarily equivalent to the vacuum representation at sufficiently large
spatial distance.

The wonderful thing is that field systems with gauge symmetries yield representations satisfying the
selection criterion. In fact, these representations decompose into superselection sectors labelled by the
gauge group. This is formalised in the following result (Theorem 3.6 in [112]).

Theorem 5.19. Let (π,G,F) be a field system with gauge symmetry for U . Then

(a) π(U) ′ ∩ F = CI;

(b) an automorphism γ of F is a gauge automorphism, i.e. γ = αg for some g ∈ G, if and
only if γ acts trivially on π(U);
(c) π(U) ′ = G ′′ and π =

⊕
ξ d(ξ)πξ, where the πξ are inequivalent irreducible representations

of U fulfilling the selection criterion and having parastatistics of finite order d(ξ).

Here G ′′ denotes the double commutant of the algebra consisting of U(g) with g ∈ G, and the ξ are
characters of G, i.e. unitary equivalence classes of irreducible representations of G [114, p. 85]. It is
not so important for us what precisely is meant by “parastatistics of finite order” and the statistical
dimension d(ξ). What matters is the fact that the representation π of U decomposes into superselection
sectors πξ, which are mapped into each other by the action of gauge group. However, the field systems
considered so far do not necessarily give all superselection sectors, so we define the following [112].

Definition 5.20. A field system with gauge symmetry (π,G,F) is complete if each equivalence class of
representations of U satisfying the selection criterion and having finite statistics is realised as a subrep-
resentation of π. In other words: π describes all the relevant superselection sectors.

What is clear, then, is that if the field system with gauge symmetry is complete, the decomposition
in part (c) of Theorem 5.19 ranges over all equivalence classes of representations fulfilling the selection
criterion (and having finite statistics). This actually obtains for the reconstructed field systems in the
DHR analysis. For this reconstruction one needs another assumption: duality. It states that

π0(U(O ′)) ′ = π0(U(O))

for all causal diamonds O. This is much stronger than the isotony axiom from section 5.1. One also
needs what Doplicher and Roberts call “property B”, which can be derived from some standard as-
sumptions in QFT [112]. It states that if E ∈ U(O) is a non-zero projection, then for any O1 containing
the closure of O there is an isometryW ∈ U(O1) such thatWW∗ = E andW∗W = I. Theorem 3.5 in [112]
then gives the desired reconstruction.

Theorem 5.21. Let U(O) be a net of local observables satysifying property B and duality in the faithful,
irreducible vacuum representation π0 acting on the separable Hilbert space H0. Then there exists a
complete, normal field system with gauge symmetry for U and this system is unique up to equivalence.

66



We will not go into the meaning of normality (Definition 3.2 in [112]). The notion of equivalence used
here is the following.

Definition 5.22. Two field systems with gauge symmetry (π1, G1,F1) and (π2, G2,F2) are equivalent if
there is a unitary operator U : H1 → H2 such that for all O and a ∈ U we have

Uπ1(a) = π2(a)U,

UG1 = G2U,

UF1 = F2U.

In the particular case where G is Abelian, the superselection sectors are labelled by the Pontryagin
dual of G, and the set of sectors has the structure of a discrete Abelian group [110]. For G = U(1),
this discrete Abelian group is Z and it signifies the quantised electric charge [106]. This means that it is
impossible to take coherent superpositions of states carrying different charges, an idea that is intuitively
logical, for if we were to take such a superposition

|ψ⟩ = α|q1⟩+ β|q2⟩

with q1 ̸= q2, then the relative phase between α and β would be changed by a gauge transformation,
since such a transformation would act differently on |q1⟩ and |q2⟩. States with different charges lie in
disjoint folia, and the charge carrying fields map from one sector to another [101].

5.4. Spontaneous symmetry breaking

Now that we have considered the role of global gauge symmetries in AQFT, we come back to SSB. We
already briefly introduced the algebraic definition of SSB in the preamle to this chapter and we now
recall it.

Definition 5.23. Let A be a C∗-algebra and α : A → A a ∗-automorphism. Then a stateω : A → C is said
to spontaneously break the symmetry α if it cannot be unitarily implemented in the GNS representation
πω, i.e. if there is no unitary operator U ∈ B(H) such that

πω(α(a)) = Uπω(a)U
∗, a ∈ A.

Alternatively, we may characterise SSB by unitary inequivalence.

Definition 5.24. Let A be a C∗-algebra and α : A → A a ∗-automorphism. Then a state ω : A → C is
said to spontaneously break the symmetry α if the GNS presentations πω and πα∗ω are not unitarily
equivalent, i.e. if there is no unitary operator U : Hω → Hα∗ω such that

πα∗ω(a) = Uπω(a)U
∗, a ∈ A.

Here the state α∗ω is defined by α∗ω(a) = ω(α−1(a)).

The equivalence of these definitions follows from the following result [58, p. 345].

Theorem 5.25. An automorphism α : A → A of a unital C∗-algebra A can be implemented in the GNS
representation πω of a stateω ∈ S(A) if and only if πα∗ω and πω are unitarily equivalent.

Proof. Let Hω and Hα∗ω denote the Hilbert spaces of the GNS representations πω and πα∗ω, and let
Ωω,Ωα∗ω denote the respective unit cyclic vectors. We define an operatorW : Hω → Hα∗ω by

Wπω(a)Ωω = πα∗ω(α(a))Ωα∗ω
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for any a ∈ A. This operator can be extended to all of Hω because πω(A)Ωω is dense in Hω. To
ensure that it is well-defined we need to consider what happens if πω(a)Ωω = πω(b)Ωω for some
a, b ∈ A. By definition of the GNS construction this means that [a] = [b] ∈ A/Nω, i.e. ω(c∗c) = 0 for
c = a−b. To guarantee thatW is well-defined we must have [α(a)] = [α(b)] ∈ A/Nα∗ω. That is: we need
α∗ω(α(c)∗α(c)) = 0. But we have α∗ω(α(c)∗α(c)) = α∗ω(α(c∗c)) = ω(α−1(α(c∗c))) = ω(c∗c) = 0, so
W is indeed well-defined. It satisfies

WΩω =Wπω(1)Ωω = πα∗ω(α(1))Ωα∗ω = πα∗ω(1)Ωα∗ω = Ωα∗ω,

and its adjointW∗ : Hα∗ω → Hω is given by

W∗πα∗ω(a)Ωα∗ω = πω(α
−1(a))Ωω,

as can be seen from:

⟨Wπω(a)Ωω, πα∗ω(b)Ωα∗ω⟩ = ⟨πα∗ω(α(a))Ωα∗ω, πα∗ω(b)Ωα∗ω⟩ = ⟨πα∗ω(b
∗)πα∗ω(α(a))Ωα∗ω,Ωα∗ω⟩

= ⟨πα∗ω(b
∗α(a))Ωα∗ω,Ωα∗ω⟩ = ω(α−1(b∗α(a))) = ω(α−1(b∗)a) = ⟨πω(α−1(b∗)a)Ωω,Ωω⟩

= ⟨πω(α−1(b))∗πω(a)Ωω,Ωω⟩ = ⟨πω(a)Ωω, πω(α−1(b))Ωω⟩ = ⟨πω(a)Ωω,W∗πα∗ω(b)Ωα∗ω⟩.

Here we have used that by definition of the GNS representation ω(a) = ⟨πω(a)Ωω,Ωω⟩. But it now
clearly follows thatW is unitary:

WW∗πα∗ω(a)Ωα∗ω =Wπω(α
−1(a))Ωω = πα∗ω(α(α

−1(a)))Ωα∗ω = πα∗ω(a)Ωα∗ω,

and similarly W∗W = 1. In addition, we have Wπω(a)W∗ = πα∗ω(α(a)) for all a ∈ A, as can be seen
from

Wπω(a)W
∗πα∗ω(b)Ωα∗ω =Wπω(a)πω(α

−1(b))Ωω =Wπω(aα
−1(b))Ωω

= πα∗ω(α(aα
−1(b)))Ωα∗ω = πα∗ω(α(a)b)Ωα∗ω = πα∗ω(α(a))πα∗ω(b)Ωα∗ω.

All of these hold regardless of whether any of the two conditions in the theorem are satisfied.
Suppose now, that πω and πα∗ω are unitarily equivalent. By definition this means that there exists

a unitary operator V : Hω → Hα∗ω such that for all a ∈ A : Vπω(a)V
∗ = πα∗ω(a). Then U = V∗W is

unitary and for all a ∈ A we have

Uπω(a)U
∗ = V∗Wπω(a)W

∗V = V∗πα∗ω(α(a))V = πω(α(a)),

so α can be implemented in πω through U = V∗W.
Conversely, suppose α can be implemented in πω and let V ∈ B(Hω) denote the corresponding uni-

tary operator. Define the unitary U = VW∗. Then for any a ∈ A we have

Uπα∗ω(a)U
∗ = VW∗πα∗ω(a)WV

∗ = Vπω(α
−1(a))V∗πω(α(α

−1(a))) = πω(a),

so U intertwines πα∗ω and πω, i.e. they are unitarily equivalent.

The two definitions of SSB that we have just proven to be equivalent are simple and general, but not so
easy to check [44, p. 120]. We should like to have an order parameter, i.e. an element of the algebra whose
ground state expectation value is not invariant under the symmetry in question when that symmetry
is broken. This is how we will treat the Higgs mechanism in chapter 6, and to that end we have the
following result (cf. proposition II.8.2 in [44]).

Proposition 5.26. Let A be a C∗-algebra with vacuum state ω0 ∈ S(A) in whose GNS representation
(πω0

, Hω0
,Ωω0

) spacetime translations αx are implementable through a strongly continuous family of
unitary operatorsU(x), such thatΩ0 is the unique translationally invariant state inHω0

. Then an internal
symmetry (one that commutes with spacetime translations) α ∈ Aut(A) is unbroken in ω0 if and only
if all ground state correlation functions are invariant under α, i.e. for all a ∈ A

ω0(α(a)) = ω0(a).
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Proof. Suppose α is unbroken, i.e. that it can be implemented in πω0
by a unitary Uα ∈ B(Hω0

). Then
α∗ω0 corresponds to the vector UαΩω0

in Hω0
:

α∗ω0(a) = ω0(α
−1(a)) = ⟨U∗

απω0
(a)UαΩω0

,Ωω0
⟩ = ⟨πω0

(a)UαΩω0
, UαΩω0

⟩.

But α∗ω0 is also translationally invariant since α is an internal symmetry:

α∗ω0(αxa) = ⟨πω0
(αxa)UαΩω0

, UαΩω0
⟩ = ⟨Uα(x)πω0

(a)U∗
α(x)UαΩω0

, UαΩω0
⟩

= ⟨πω0
(a)U∗

α(x)UαΩω0
, U∗

α(x)UαΩω0
⟩ = ⟨πω0

(a)UαU
∗
α(x)Ωω0

, UαU
∗
α(x)Ωω0

⟩
= ⟨πω0

(a)UαΩω0
, UαΩω0

⟩ = ⟨U∗
απω0

(a)UαΩω0
,Ωω0

⟩ = ω0(α−1(a)) = α∗ω0(a).

By uniqueness, we must have UαΩω0
= Ωω0

, implying that indeed α∗ω0(a) = ω0(α
−1(a)) = ω0(a) for

all a ∈ A.
Conversely, suppose that for all a ∈ A we have ω0(α(a)) = ω0(a). Then we can implement α in πω0

by defining Uα ∈ B(Hω0
) as

Uαπω0
(a)Ωω0

= πω0
(α(a))Ωω0

.

This is well-defined, for if πω0
(a)Ωω0

= πω0
(b)Ωω0

, then, equivalently, by definition of the GNS repre-
sentation c = a−b satisfiesω0(c∗c) = 0. But since we have supposedω0◦α = ω0 we getω0(α(c∗c)) = 0,
which implies πω0

(α(a))Ωω0
= πω0

(α(b))Ωω0
, i.e. Uαπω0

(a)Ωω0
= Uαπω0

(b)Ωω0
. We need to check

that Uα is actually unitary and indeed implements α. We have, for any a, b ∈ A:

⟨Uαπω0
(a)Ωω0

, Uαπω0
(b)Ωω0

⟩ = ⟨πω0
(α(a))Ωω0

, πω0
(α(b))Ωω0

⟩ = ⟨πω0
(α(b∗a))Ωω0

,Ωω0
⟩

= ω0(α(b
∗a)) = ω0(b

∗a) = ⟨πω0
(b∗a)Ωω0

,Ωω0
⟩ = ⟨πω0

(a)Ωω0
, πω0

(b)Ωω0
⟩,

so Uα is unitary. Evidently U∗
α = U−1

α is given by U∗
απω0

(a)Ωω0
= πω0

(α−1(a))Ωω0
, which results in:

Uαπω0
(a)U∗

απω0
(b)Ωω0

= Uαπω0
(a)πω0

(α−1(b))Ωω0
= Uαπω0

(aα−1(b))Ωω0

= πω0
(α(aα−1(b)))Ωω0

= πω0
(α(a))πω0

(b)Ωω0
.

So Uα implements α, which is unbroken. This part did not depend on the uniqueness of ω0 as a trans-
lationally invariant state and was in the same spirit as the proof of Theorem 5.25.

We call an element a ∈ A whose ground state expectation value is not invariant under a symmetry
α a symmetry breaking order parameter, since by Proposition 5.26 the existence of such an element shows
that the symmetry is broken. The existence of an order parameter is a concrete test of SSB, and we shall
use it in chapter 6 to detect mass generation in the Higgs mechanism. The idea of an order parameter
can also be made infinitesimal via the following notion (Definition 9.18 in [58]).

Definition 5.27. A derivation on a C∗-algebra A is a linear map δ : A → A satisfying the Leibniz rule
δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A. An unbounded derivation is a linear map δ : Dom(δ) → A whose
domain is a dense subspace of A and which satisfies the Leibniz rule. An (unbounded) derivation δ is
called symmetric if δ(a∗) = δ(a)∗.

The following result (Proposition 9.19 in [58]) then makes precise the idea that differentiating in a
C∗-algebra gives a derivation.

Proposition 5.28. A continuous homomorphism α : R → Aut(A) on a C∗-algebra A defines an un-
bounded symmetric derivation δ by the norm limit

δ(a) =
dαλ(a)

dλ

∣∣∣∣
λ=0

:= limλ→0αλ(a) − a
λ

,

where αλ = α(λ) and Dom(δ) consists of all elements of A for which this limit exists.
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Now, if we have a Lie group G acting on A, the elements of its Lie algebra g generate 1-parameter
subgroups of automorphisms αλ of A, with λ = 0 corresponding to the identity [101, p. 138]. By
Proposition 5.28 this gives a derivation δ. The infinitesimal version of the symmetry implementability
condition is then

ω0(δa) = 0 for all a ∈ Dom(δ).

This condition can be used in the algebraic version of Goldstone’s theorem [30, 115, 116]. A particularly
simple variant of it is presented by Haag (Theorem III.3.27 in [101]).

Theorem 5.29. Suppose the vacuum state ω0 of a net U(O) satisfying the axioms of section 5.1 is sepa-
rated by an energy gapm ̸= 0 from other states in its folium and there is a uniform bound

|ω0(δa)| ≤ |Φ(R)| · (∥πω0
(a)Ωω0

∥+ ∥πω0
(a∗)Ωω0

∥) for all a ∈ D(OR),

where D(OR) is the dense domain of δ for the causal diamond OR of radius R centered at the origin, such
that for some n > 0

limR→∞R−nΦ(r)Rn → 0.

Then one hasω0(δa) = 0, i.e. the symmetry giving the derivation δ is unbroken. Contrapositively, if the
symmetry is broken we cannot have an energy gapm ̸= 0.

We will not prove this purely algebraic Goldstone theorem. In chapter 6 an important aspect of the
non-perturbative results on the Higgs is understanding how precisely the Goldstone theorem is avoided
when the global gauge symmetry of the field algebra F from section 5.3 is broken. This then also begs
the question of what happens to the superselection rules induced by that global gauge symmetry when
it is spontaneously broken. We will see that for G = U(1), the electric charge is superselected only when
the U(1) symmetry remains unbroken.

We now have an overview of the basic structures arising in the algebraic approach to quantum field
theory, so we are ready to apply these ideas to the Higgs mechanism.
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6. Non-Perturbative Results

The usual perturbative approach to the Higgs mechanism, in which a gauge is fixed in which the Higgs
field has a non-zero vacuum expectation value (VEV), such that perturbation theory can be performed
by considering small fluctuations around this VEV, suffers from conceptual and technical problems.
Chief among these problems is the gauge-dependence of the Higgs field VEV. More specifically, there
are gauges in which the Higgs field VEV vanishes, such as the Landau gauge [39, p. 149]. Fröhlich,
Morchio and Strocchi also deduce the vanishing of the Higgs field VEV in the temporal gauge from the
exponential decay of the gauge-invariant two-point function of the Higgs field [38]. In such gauges,
the gauge bosons remain massless to all orders in perturbation theory [39, p. 135]. This implies that
the masses of the gauge bosons, which the Higgs mechanism was supposed to “generate”, are gauge-
dependent and therefore unphysical. How, then, is it possible that perturbation theory based on gauge-
fixing has made such incredibly accurate predictions which have been tested in particle accelerators?
This is what the FMS method from section 3.3 explains by relating the gauge-invariant formulation of
the Higgs mechanism to the gauge-dependent perturbative treatment. However, another possibility for
avoiding these problems is to work non-perturbatively from the very start, which is what this chapter
is devoted to.

The vanishing of the Higgs field VEV relates to the question of whether a symmetry breaking local
order parameter exists. It is clear that the Higgs field VEV cannot function as a suitable order param-
eter, but in fact this holds for any gauge-dependent quantity. This can be understood heuristically by
considering the path integral argument 3.1, which is related to Elitzur’s theorem, which in turn implies
that “breaking of local symmetry such as the Higgs phenomenon, for example, is always explicit, not
spontaneous. The local symmetry must be broken first explicitly by a gauge-fixing term leaving only
global symmetry” [51, p. 3981]. The remaining global symmetry may then be spontaneously broken. This
is precisely what the Coulomb gauge condition is so useful for: it forces us to dress our fields in order to
make them invariant under local gauge transformations, but not under global gauge transformations.

Crucially, however, this does not mean that the results that we will derive in the Coulomb gauge in
this chapter are gauge-dependent. The very opposite is in fact the case: we use the Coulomb gauge
precisely because it removes the unphysical local gauge group, but leaves the global gauge group as
its remnant gauge symmetry. The Coulomb gauge condition makes our fields gauge-invariant in the
Redundant sense of gauge from section 4.3.2. The Coulomb gauge is thus physical, and we implement
it through the dressing field exp(−ie∆−1∂iAi), making use of the radiative projection from equation 4.3,
which was used at length in chapter 4. However, this field is only a dressing field for the local gauge
group and not for the global gauge group, and thereby circumvents the problems of the DFM from
chapter 3.

We begin this chapter by introducing the Wightman axioms in section 6.1. Subsequently, we con-
sider the implications of the Gauss law in gauge theories in section 6.2. We then consider two ways of
imposing the Gauss law in QED: the local gauge quantisation in section 6.3 and the Coulomb gauge
quantisation in section 6.4. Using our results from the Coulomb gauge we prove the central theorem of
this thesis in section 6.5, and finally we consider the non-Abelian generalisation in section 6.6.

6.1. Wightman axioms

The Wightman axioms are a less abstract set of axioms than the Haag-Kastler axioms from chapter 5.
They define quantum fields as operator-valued distributions. The algebras generated by these operator-

71



valued distributions are then supposed to yield the abstract nets of algebras from the Haag-Kastler
axioms. In our presentation of the Wightman axioms, which were invented in the 1950s but published
in 1964 [99], we follow [46, 117]. First, we need to introduce some preliminary concepts.

Definition 6.1. We denote by C∞
c (Rn) or D(Rn) the locally convex topological vector space of smooth

complex-valued functions on Rn with compact support. The topology is the one induced by the family
of seminorms

pK(f) = supx∈K
∣∣∣Dkf(x)∣∣∣ ,

where K ⊂ Rn is compact and

Dk =
∂|k|

(∂x1)k1 · · · (∂xn)kn

is the differential operator for the multi-index k = (k1, ..., kn), with |k| = k1 + ... + kn. An element of
C∞
c (Rn) is called a test function.

Definition 6.2. A distribution δ on Rn is a continuous linear functional δ : C∞
c (Rn) → C. The space of

these distributions is the dual space C∞
c (Rn) ′ = D(Rn) ′ [117, p. 35].

According to the Wightman axioms, a quantum field is not just any distribution but an operator-valued
and tempered distribution. This latter term requires us to consider a less restrictive space of test functions.

Definition 6.3. The Schwarz space S(Rn) is the space of smooth functions on Rn whose derivatives de-
crease faster than any power of the Euclidean distance. More precisely, we define, for any smooth
function f and non-negative integers r, s ∈ N:

∥f∥r,s =
∑
|k|≤r

∑
|l|≤s

supx∈Rn |x
kDlf(x)|.

Here k, l ∈ Nn are multi-indices and xk = xk1 · · · xkn . It is not difficult to see that ∥·∥r,s has the properties
of a norm [117, p. 33]. We thus define S(Rn) as the space of all f ∈ C∞(Rn) such that ∥f∥r,s < ∞ for all
r, s ∈ N, equipped with the norm topology.

Definition 6.4. A tempered distribution T is a continuous linear functional T : S(Rn) → C. The space of
tempered distributions is the dual S(Rn) ′. Since D(Rn) ⊂ S(Rn) we have S(Rn) ′ ⊂ D(Rn) ′, i.e. every
tempered distribution is a distribution [117, p. 35].

Now, a tempered distribution T can always be written in the special form

T(f) =
∑

0⩽|k|⩽s

∫
Rn

Fk (x1, . . . xn)D
kf (x1, . . . xn)dx1 . . . dxn, f ∈ S(Rn),

where k is still a multi-index and the Fk are continuous functions satisfying |Fk(x)| ≤ Ck(1+ |x|j), with j
dependent on k [117, pp. 34-35]. Thus, we can symbolically write

T(x) =
∑

0⩽|k|⩽s

(−1)|k|DkFk(x).

The derivative of a (tempered) distribution is then defined in analogy to partial integration [117, p. 37].

∂T

∂xj
(f) = −T

(
∂f

∂xj

)
, f ∈ S(Rn).

We refer the reader to chapter 2 of [117] for many more mathematical details. With these notions at hand
we present the Wightman axioms [46, p. 69-70] [117, p. 97-100].
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• Relativistic quantum theory: the states of the theory are described by unit rays in a separable
Hilbert space H. Spacetime translations are described by a strongly continuous family of unitary
operators U(a) ∈ B(H) for a ∈ R4. The spectrum of their generators Pµ is contained in the closed
forward lightcone and there is a vacuum state vector Ψ0 ∈ H which has the property of being the
unique translationally invariant state in H.

• Field operators: the theory is formulated in terms of fields φ1(x), .., φN(x) which are operator-
valued tempered distributions on R4. This means that for every test function f ∈ S(R4) we have
operators φ1(f), ..., φN(f) which, together with their adjoints φj(f), are defined on a common
dense domain D ⊂ H containing Ψ0. For any Φ,Ψ ∈ D we require ⟨Φ,φj(f)Ψ⟩, regarded as a
functional of f ∈ S(R4), to be a tempered distribution. We assume Ψ0 to be cyclic for the fields, i.e.
that by applying polynomials of the smeared fields to Ψ we obtain a dense set D0 ⊂ H. Thus we
can take D = D0.

• Relativistic covariance: the Lorentz transformations Λ ∈ SO+(1, 3) are described by a strongly
continuous family of unitary operators U(Λ(A)), where A ∈ SL(2,C) is in the universal covering
group of SO+(1, 3) (recall that SL(2,C) is isomorphic to Spin+(1, 3) from Definition B.14). Under
Poincaré transformations U(a,Λ(A)) = U(a)U(Λ(A)) the fields transform as

U(a,Λ(A))φj(x)U(a,Λ(A))
−1 =

∑
k

Sjk(A
−1)φk(Λx+ a),

where S(A) is a finite-dimensional representation of SL(2,C).

• Locality: at spacelike separated points the fields either commute or anticommute. That is: for
x, y ∈ R4 with (x− y)2 > 0we have

[φj(x), φk(y)]∓ = 0,

where [·, ·]∓ denotes the commutator or anticommutator respectively. This condition should be
understood as stating that, on test functions f and g whose supports are spacelike separated, we
have [φj(f), φk(g)]∓ = 0.

Although the question of the equivalence of the Haag-Kastler and Wightman axioms is in general
very complicated [101], the idea is that the algebraic approach provides a more abstract, economical
framework which encompasses field theories in the Wightman sense. The algebra A(O) of observables
in a region O ⊂ R4 is generated by all polynomials of smeared fields φ(f) with supp(f) ⊂ O. States in
the Wightman sense, i.e. unit vectors Ψ ∈ H, then yield algebraic states by settingωΨ(a) = ⟨Ψ, aΨ⟩.

6.2. Local Gauss laws

Having presented the Wightman axioms, we now know what quantum fields are (supposed to be).
However, it turns out that the Gauss law prevents a straightforward quantisation of gauge theories in
terms of the Wightman axioms. To explain why, we first derive the Gauss law through Noether’s second
theorem classically in section 6.2.1, and then show that the Gauss law leads to a conflict with locality
when we attempt to extend these results to quantum fields in section 6.2.2. We refer the reader to [118]
for a detailed mathematical analysis of the role of the Gauss law in quantum gauge theories.

6.2.1. Noether’s second theorem

In chapter 4 we showed the Gauss law to be the constraint in the Hamiltonian formulation of Yang-Mills
theory. Formally, we understood the Gauss constraint as the momentum map for the action of the local
gauge group. We will now examine these ideas in a way that is closer to the practice of physicists. As
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always, we let G denote a compact matrix Lie group with Lie algebra g. Let ta denote the generators
of g, for a = 1, ..., n. Then a gauge transformation with parameter ϵa ∈ C∞(R4) acts infinitesimally on
classical gauge fields Aaµ and matter fields φi as [46, p. 141]

δϵφi(x) = iϵa(x)t
a
ijφj(x),

δϵAaµ(x) = iϵc(x)T
c
abA

b
µ(x) + ∂µϵ

a(x).

Here T cab are the generators for the adjoint representation, i.e. T cab = ifacb = −ifabc with fabc the structure
constants (see section 2.2.1), which are zero for G Abelian.

Since Noether’s first theorem tells us that symmetries give rise to conservation laws, we would
naively expect the above gauge transformations to give rise to an infinite number of conservation laws.
Noether’s second theorem, however, tells us something different: the presence of a gauge symmetry
with n-dimensional structure group (or more generally the invariance under the action of a Lie group
parametrised by n functions) gives n relations between the Euler-Lagrange equations, i.e. n constraints.

Indeed, if a classical Lagrangian L(φ, ∂µφ,Aν, ∂µAν) is invariant under the infinitesimal gauge trans-
formations given above, then we have [46, p. 142]

i

(
δL
δφi

(taφ)i +
δL
δ∂µφi

(ta∂µφ)i +
δL
δAbν

(TaAν)
b +

δL
δ∂µAbν

(Ta∂µAν)
b

)
εa

+

(
i
δL
δ∂µφi

(taφ)i +
δL
δAaµ

+ i
δL

δ∂µAbν
(TaAν)

b

)
∂µε

a +
δL

δ∂µAaν
∂µ∂νε

a = 0.

(6.1)

Here (taφ)i = taijφj and (TaAµ)
b = TabcA

c
µ etc. The standard argument is then that, since the ϵ(x) are

arbitrary smooth functions the expressions in front of ϵa and ∂µϵa must vanish. For the expression in
front of ∂µ∂νϵa only the µ ↔ ν symmetrised part needs to vanish, for the antisymmetrised part will
give zero when multiplied with the symmetric ∂µ∂νϵa. Thus, we define the antisymmetric tensor

Fµνa = −
δL

δ∂µAaν
= −Fνµa .

For G = U(1), this antisymmetric tensor is the well-known electromagnetic field strength Fµν. As of yet,
we do not know how it relates to the distribution of charges (both of matter and of non-Abelian gauge
charges). However, we recognise, as part of the expression in front of ∂µϵa in equation 6.1 above, the
Noether current coming from Noether’s first theorem for the global symmetry under the action of G

Jaµ ≡ i δL
δ∂µφi

(taφ)i + i
δL

δ∂µAbν
(TaAν)

b ≡ jaµ(φ) + jaµ(A).

In the Abelian case the gauge current jaµ(A) vanishes, for then we have (TaAν)
b = TabcA

c
µ = 0 (since

Tabc = 0). Indeed, in Abelian gauge theories the gauge bosons are uncharged. We can now rewrite the
requirement that the expression in front of ∂µϵa in equation 6.1 vanish as:

δL
δAaµ

+ Jaµ = 0.

This gives

Jaµ = −
δL
δAaµ

= −
δL
δAaµ

+ ∂ν
δL

δ∂νAaµ
− ∂ν

δL
δ∂νAaµ

= −E[A]aµ + ∂νF
νµ
a ,

where E[A]aµ are the Euler-Lagrange terms for the gauge field. But E[A]aµ vanishes when the equations of
motion are satisfied, so in that case we obtain the relation Jaµ = ∂νF

νµ
a between the antisymmetric field
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tensor and the Noether current. The antisymmetry of Fµνa gives the continuity equation ∂µJaµ(x) = 0.
The statement Jaµ = ∂νFaνµ, with Faµν = −Faνµ, is called the Gauss law, and it defines the Gauss charge

Qa =

∫
dx3Ja0 (x, 0).

This charge generates gauge transformations through the Poisson bracket [46, p. 143], just like we saw
in section 4.3.3:

{Qa, φi}− δ
aφi, {Qa, Abµ} = δ

aAbµ.

The statement of the second Noether theorem, then, is that the charges defined by the action of the
global gauge group G through Noether’s first theorem are actually Gauss charges [46, p. 143], i.e. can be
expressed in terms of the antisymmetric field strength tensor. Strocchi takes the existence of Gauss laws
to be the central physical consequence of gauge symmetries: “we shall prove that the validity of Gauss
laws has very strong consequences for the quantisation of gauge theories and leads to crucial differences
with respect to standard quantum field theories” [46, p. 146]. We now turn to quantum fields.

6.2.2. Locality

Many of the consequences of the Gauss law for quantisation relate to the fact that it is in conflict with
locality. From now on we specialise to scalar quantum electrodynamics (QED) and we come back to
non-Abelian gauge theory only in section 6.6. In QED, the local Gauss law is j0(x) = ∇ · E(x). We wish
to extend the classical infinitesimal generation of gauge symmetries by the Gauss charge to the quantum
case, replacing Poisson brackets by commutators for quantum fields Aµ(x) and φ(x) assumed to satisfy
the Wightman axioms. These tempered distributions act on test functions f ∈ S(R4) via integration, like
the Dirac delta distribution. To extend the ideas from section 6.2.1 to such quantum fields, we need to
regularise the Noether charge:

QR =

∫
d3xdtfR(x)α(t)j0(x, t) ≡ j0 (fRα) ,

where fR(x) = f(x/R) ∈ D(R3) with f(x) = 1 for |x| < 1 and f(x) = 0 for | x| < 1+δwith δ > 0, and where
supp(α) ⊂ [−γ, γ] with

∫
α(t)dt = 1 [46, p. 147]. The limit QR for R → ∞ does not actually exist, but

this is no problem, since we only need the limits of the commutator ofQR with local fields. These limits
do exist and are actually independent of the choice of smearing function α [46, p. 147]. It it then not too
hard to show that, for a theory with a scalar fieldφ(x, t) and current jµ(x, t) which are local with respect
to each other, we have [46, p. 148]

i lim
R→∞ [QR, φ(g, t)] = i lim

R→∞ [j0 (fR, t) , φ(g, t)] = δ
eφ(g, t), g ∈ D(R3),

where δe denotes the derivation corresponding to the global U(1) gauge symmetry. This is indeed
the desired quantum version of the classical Noether relation between the charge (the integral over
the current density) and the gauge symmetry transformation. This result, however, is spoiled in the
presence of the Gauss law (Proposition 2.1 in [46]).

Proposition 6.5. If a field φ is local with respect to the electric field E, then the Gauss law gives
limR→∞[j0(fRα), φ] = 0, implying that QR cannot generate the global U(1) transformations.

Proof. By the local Gauss law we have

lim
R→∞[j0(fRα), φ(y)] = lim

R→∞
∫
d3xdtfR(x)α(t)[j0(x, t), φ]

= lim
R→∞

∫
d3xdtfR(x)α(t)[∇ · E(x), φ(y)] = − lim

R→∞
∫
d3xdt∂ifR(x)α(t)[Ei(x), φ(y)],
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where in the last step we used partial integration. But since fR(x) is constant outside R ≤ |x| ≤ R(1 + δ)
we see that

supp(∂ifRα) ⊂ {R ≤ |x| ≤ R(1+ δ), |t| ≤ γ}.

This support becomes spacelike with respect to any y ∈ R4 for large enough R, and the commutator
[Ei(x), φ(y)] vanishes when x is spacelike with respect to y since φ is local with respect to E. Thus, the
above integral becomes zero in the limit, showing that limR→∞[j0(fRα), φ(y)] = 0. This means that the
regularised charge cannot generate the gauge symmetry.

Conversely, this proposition tells us that if a field φ is charged in the sense that δeφ ̸= 0, then it
cannot be local with respect to the electric field. Thus, if we denote by F the local field algebra, then
charged states cannot be in the closure of FΨ0 but must instead be generated from the vacuum by non-
local charged fields [46, p. 149]. In algebraic language, if O is a bounded region of spacetime, then for
sufficiently large R we have QR ∈ A(O ′). For any algebraic state ω which is localised in O we then get
ω(QR) = ⟨Ψ0, QRΨ0⟩ = 0, showing thatω is uncharged.

6.3. Local gauge quantisation

The conflict between locality and the Gauss law forces us to choose between two approaches to the
quantisation of gauge theories. Firstly, we could insist on the Gauss law as an operator equation and
accept that the field algebra becomes non-local [46, p. 146]. This is what we will do in the next section
by employing the Coulomb gauge. The second option is to weaken the Gauss law to a condition on the
physical states, keeping the field algebra local. In that case, however, the inner product defined by the
vacuum correlation functions of the local field algebra cannot be positive definite (cf. Proposition 7.3.3
in [46] for QED).

This is the approach that we present in this section. We do so because, even though we will prove
our main result on the Abelian Higgs mechanism in the Coulomb gauge, we do need to understand
the local gauge quantisation of QED: since the Coulomb fields are defined in terms of the local fields,
we will in fact need some results about the local fields to prove statements about the Coulomb fields in
sections 6.4 and 6.5.

Before we begin, a brief comment is in order. From now on, we work in specific gauges. This may
come as a surprise, as it seems that this makes our results gauge-dependent, such that we run into the
problems concerning the perturbative expansion in specific gauges described in the preamble to this
chapter. We avoid these perturbative issues, however, by working non-perturbatively. Besides, as we
already mentioned, the Coulomb gauge actually enables us to work gauge-invariantly in the sense that
Coulomb fields are invariant under local gauge transformations.

Following Strocchi, we consider the Feynman-Gupta-Bleuler (FGB) quantisation of QED. The FGB
gauge, more commonly known as the Feynman gauge, arises through the addition of the gauge fixing
term − 1

2(∂
µAµ)

2 to the Lagrangian. This leads to a violation of the Gauss law, since the Euler-Lagrange
equation now implies:

jµ = −
δL
δAµ

= −∂ν
δL

δ∂νAµ
= ∂νFνµ − ∂ν

δ

δ∂νAµ

(
−
1

2
(∂αAα)

2

)
= ∂νFνµ + ∂ν∂µA

µ.

What we do instead is impose a weak Gauss law by defining physical states Ψ,Φ to be those that satisfy

⟨Ψ, (jµ − ∂νFνµ)Φ⟩ = 0,

and considering all other states to by unphysical. In other words, we let go of the Gauss law as an
operator equation on the fields but require it on the physical states. This leads to the following general
definition [46, p. 154].
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Definition 6.6. A local gauge quantisation of QED consists of:

(i) a local field algebra F generated by operator-valued tempered distributions φ(x), Aµ(x)
satisfying the Wightman axioms and transforming covariantly under the Poincaré group;

(ii) a group of local gauge transformations of F defining its gauge-invariant subalgebra FI;
(iii) a Poincaré-invariant vacuum functional ω0 : F → C, also written ω0(a) = ⟨a⟩0, satisfy-
ing the spectral condition and, for all a ∈ FI, the positivity conditionω0(a∗a) ≥ 0;
(iv) the weak Gauss law ⟨Ψ, (jµ − ∂νFνµ)Φ⟩ = ⟨Ψ,LµΦ⟩ = 0 defining physical states Ψ,Φ.

Here the quantum fields jµ = ie(φ(D0φ)
∗ − φ∗D0φ) and Fµν are obtained from the generating fields

by multiplication, conjugation and differentiation of distributions (operations which are well-defined
since the operator-valued fields share a common dense domain D ⊂ H as per the Wightman axioms).
For the FGB gauge we have Lµ = ∂µ∂νA

ν. As for the second condition: the requirement of F ∈ F being
invariant under gauge transformations is actually equivalent to [∂µAµ, F] = 0 [46, p. 153].

Let us now consider the canonical quantisation of QED in the FGB gauge. We depart from the canon-
ical equal time commutators [Ȧµ(x), Aν(y)]x0=y0 = −iηµνδ(x−y) and [φ̇(x), φ(y)]x0=y0 = iδ(x−y), with
all other equal time commutators vanishing. The equation jµ = ∂νFνµ + ∂µ∂

νAν gives

∂0∂
µAµ = j0 − ∂

µFµ0 = j0 − ∂
iFi0 = j0 − ∂

i(∂iA0 − ∂0Ai) = j0 − ∆A0 + ∂0∂
iAi,

and this can used to derive the other equal time commutators [46, p. 152]:

[∂µAµ(x), A0(y)]x0=y0 = [−Ȧ0(x) + ∂
iAi(x), A0(y)]x0=y0 = [−Ȧ0(x), A0(y)]x0=y0 = −iδ(x − y),

[∂µAµ(x), Ai(y)]x0=y0 = [−Ȧ0(x), Ai(y)]x0=y0 = iη0iδ(x − y) = 0,

[∂0∂
µAµ(x), A0(y)]x0=y0 = [j0(x) − ∆A0(x) + ∂0∂

iAi(x), A0(y)]x0=y0 = 0,

[∂0∂
µAµ(x), Ai(y)]x0=y0 = [∂iȦi(x), Ai(y)]x0=y0 = −i∂iδ(x − y),

[∂µAµ(x), φ(y)]x0=y0 = 0,

[∂0∂
µAµ(x), φ(y)]x0=y0 = [j0(x), φ(y)]x0=y0 = eδ(x − y)φ(y).

Canonical quantisation then leads to the unequal time commutation relations [46, p. 152]

[∂νAν(x), Aµ(y)] = −i∂µD(x− y),

[∂νAν(x), φ(y)] = eD(x− y)φ(y),

where D(x) = ∆(x;m2 = 0) is the propagator. Now, since the FGB quantisation yields a local field
algebra and therefore does not contain charged fields by the arguments from section 6.2.2, we expect the
charge, i.e. the generator of the global U(1) transformations, to commute with all observables - that is:
we expect the charge to be superselected (cf. Theorem 7.5.1 [46]).

Theorem 6.7. In the FGB quantisation of QED, all observables commute with the charge Q defined on
the local states by

QFΨ0 = lim
R→∞[j0(fRα), F]Ψ0, F ∈ F .

Proof. Let F ∈ FI be an observable. By the locality of F we have

[Q, F] = lim
R→∞[QR, F] = lim

R→∞[QR − ∂
iFi0(fRα), F].

By the “Gauss law” j0 = ∂iFi0 + ∂0∂νAν we moreover get QR − ∂iFi0(fRα) = ∂0∂νAν(fRα), so that

[Q, F] = lim
R→∞[∂0∂

νAν(fRα), F] = − lim
R→∞[∂νAν(fR∂tα), F].

But, as we remarked above, F being gauge-invariant means [∂νAν, F] = 0, so we find [Q, F] = 0.

This proof of the superselection of the charge can be extended to the non-Abelian case, as we will
discuss in section 6.6. We will also prove a version in the Coulomb gauge (Theorem 6.10).
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6.4. The Coulomb gauge

Having studied the most important tenets of the local gauge quantisation of QED, we now take the
other of the two approaches to handling the Gauss law. We accept the existence of non-local charged
fields, such that charged states can be obtained by applying these non-local fields to the vacuum. If Aµ
and φ are the gauge and matter fields in the local FGB quantisation of QED, then the transformation to
the non-local Coulomb gauge is the by now well-known radiative projection from section 4.1.2:

φC = e−ie∆
−1∂iAiφ,

ACµ = Aµ − ∂µ∆
−1∂iAi.

The second equation gives

AC0 = A0 − ∂0∆
−1∂iAi = A0 − ∆

−1∂i∂0Ai = A0 − ∆
−1∂i(∂iA0 − Fi0) = ∆

−1∂iFi0 = ∆
−1jC0 .

Again using ∂0∂νAν = j0 − ∆A0 + ∂0∂iAi, this gives the Coulomb current density

jC0 = ∆A0 − ∂0∂
iAi = j0 − ∂0∂

νAν.

The field φC is charged since it transforms under the global charge group U(1), but it is gauge-invariant
in the Redundant sense of gauge transformations from section 4.3.2. We will now shed light on two
issues. The first is the relation between the electric charge, i.e. the generator of the globalU(1) symmetry,
and the Noether current. It is standard to assume that the electric charge is the integral over the current
density, but in fact the Gauss law spoils this relation. This insight is at the heart of our main result on
the Abelian Higgs mechanism in section 6.5. Secondly, we discuss the fact that the electric charge is
superselected. In Theorem 6.13 we will see that the electric charge can only be superselected when the
global U(1) gauge symmetry is unbroken.

Let FC denote the field algebra generated by the Coulomb fields φC and ACi . We assume its vacuum
correlations to be well-defined (see footnote 49 in [46, p. 171] for references on this). The generator of
the global U(1) symmetry is the electric charge Qe, defined by

[Qe, φC] = eφC, QeΨ0 = 0.

The following result (Proposition 4.1 in [42], Proposition 5.3 in [46]) shows that the correspondence
between the generator of the global U(1) symmetry and the current density fails.

Proposition 6.8. In the Coulomb gauge of QED, with field algebra FC and vacuum vector Ψ0, we have
that for all Ψ,Φ ∈ FCΨ0 the limit

lim
R→∞(Ψ, [jC0 (fRα), φC]Φ)

exists. However, the limit is generally dependent on α, meaning that the time-independent global U(1)
symmetry cannot be generated by such integrals of the charge density.

Proof. The commutators [∂νAν(x), Aµ(y)] = −i∂µD(x − y) and [∂µAµ(x), φ(y)] = eD(x − y)φ(y) in the
FGB quantisation give, by the above epxression of φC in terms of φ:

[∂νAν(x), φC(y)] = [∂νAν(x), e
−ie∆−1∂iAi(y)]φ(y) + e−ie∆

−1∂iAi(y)[∂νAν(x), φ(y)]

= −ie∆−1∂i[∂νAν(x), Ai(y)]e
−ie∆−1∂iAi(y)φ(y) + e−ie∆

−1∂iAi(y)eD(x− y)φ(y)

= −e∆−1∂i∂iD(x− y)φC(y) + eD(x− y)φC(y) = 0.

This is just the statement that φC is gauge-invariant (except of course under global gauge transfor-
mations). Thus, we have ∂νAνFCΨ0 = FC∂νAνΨ0, implying that (Ψ, (jC0 − j0)Φ) = 0 for any states
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Ψ,Φ ∈ FC. We then also get [j0(fR, x0), φC(y)] = [jC0 (fR, x0), φC(y)], but this last commutator is just
equal to [∂iFi0(fR, x0), φC(y)] = −[Fi0(∂

ifR, x0), φC(y)]. By locality of the FGB fields limR→∞[Fi0, φ] = 0,
so since

[Fi0(∂
ifR, x0), φC(y)] = [Fi0(∂

ifR, x0), e
−ie∆−1∂iAi(y)]φ(y) + e−ie∆

−1∂iAi(y)[Fi0(∂
ifR, x0), φ(y)],

it is the long distance behaviour of the commutator [Fi0(x), e−ie∆
−1∂iAi(y)] that we need to study to show

that the limits from the statement of the proposition exist but are α-dependent. In order to estimate the
behaviour of this commutator, we note that the commutator [Fµν(x + a), Aj(z, y0)] vanishes for points
(x + a − z) > (x0 − y0)

2 by the locality of the FGB fields. Thus, for fixed x0, y0 it has compact support in
the variable x + a − z, so that its convolution

Cµν(x+ a, y) = −
ie

4π

∫
d3z∂jz|y − z|−1[Fµν(x+ a), Aj(z, y0)]

with ∂jz|y − z|−1 (which decreases as |z|−2) decreases as |a|−2 for |a| → ∞. By the same reasoning, the
commutator of Cµν(x + a, y) with ∆−1∂iAi(y) in turn decreases as |a|−4. This means that, in expanding
the exponential exp(−ie∆−1∂iAi(y)), we find that Cµν(x + a, y) commutes with all other terms, up to
terms decreasing as |a|−4, so that we obtain [47, p. 59]

[Fi0(x+ a), e−ie∆
−1∂jAj(y)]φ(y) → e−ie∆

−1∂jAj(y)[Fi0(x+ a),−ie∆−1∂jAj(y)]φ(y) +O(|a|−4)

=[Fi0(x+ a),
ie

4π

∫
d3|y − z|−1∂jzAj(z, y0)]φC(y) +O(|a|−4) = Ci0(x+ a, y)φC(y) +O(|a|−4)

for |a| → ∞. Now, it follows from the commutator [∂νAν(x), Aµ(y)] = −i∂µD(x−y) from section 6.3 that
Cµν(x+a, y) commutes with ∂νAν , i.e. that it is a gauge-invariant field. Thus, the cluster property applies
to it. This property can be derived from the uniqueness of the translationally invariant state [46, p. 73]
and states that for any A,B ∈ FI : ⟨AΨ0, U(a)BΨ0⟩ → ⟨B⟩0Ψ0 for |a| → ∞. Here U(a) is the space
translation operator. Thus, we find that for |x| → ∞:

[Fi0(x), φC(y)] → −
ie

4π

∫
d3z∂jz|y − z|−1⟨[Fi0(x), Aj(z, y0)]⟩0φC(y) +O(|x|−4),

understood to hold in matrix elements between two Coulomb statesΦ,Ψ ∈ FCΨ0. Let us now introduce
the Källén-Lehmann spectral representation

⟨Fµν(x)Fλσ(y)⟩0 = idµνλσ
∫
dρ(m2)∆+(x− y;m2)

of the two-point function of the electromagnetic field, where ρ(m2) is the spectral measure and where
dµνλσ = ηνσ∂µ∂λ+ηµλ∂ν∂σ−ηνλ∂µ∂σ−ηµσ∂ν∂λ [47, p. 58]. Then we can define the commutator function
F(x) = F+(x) − F+(−x), where F+(x) = i

∫
dρ(m2)∆+(x;m2). This allows us to write [46, p. 172]

⟨[Fi0(x), Aj(z)]⟩0 = (ηij∂0 − η0j∂i)F(x− z) = δij∂0F(x− z).

Thus, we obtain the following expression (again understood as a matrix element between Coulomb
states) for R→ ∞:

[j0(fR, x0), φC(y)] → ie

4π

∫
d3z∂jz|y − z|−1

∫
d3x∂ixfR(x)δij∂0F(x− z)φC(y)

=
ie

4π

∫
d3z∂jz|y − z|−1

∫
d3x∂xj fR(x)∂0F(x− z)φC(y)

=ie
−1

4π

∫
d3z∂jz∂

z
j |y − z|−1

∫
d3xfR(x)∂0F(x− z)φC(y)

=ie∆−1∆

∫
d3xfR(x)∂0F(x− y)φC(y) = ie∂0

∫
d3xfR(x)F(x− y)φc(y).
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By locality, F(x) vanishes for large enough |x|, so that the R → ∞ limit exists. Thus, we have shown
that the limits from the statement of the proposition exist. In fact, by the well-known expression for the
propagator [42, p. 3179]

F(x− y) =

∫
dρ(m2)∆(x− y;m2) =

∫
dρ(m2)

∫
d4k

2E(k)
δ(k2 +m2)e−ik(x−y),

with E(k) =
√

k2 +m2, we obtain

lim
R→∞[j0(fR, x0), φC(y)] = lim

R→∞ ie∂0
∫
d3xfR(x)

∫
dρ(m2)

∫
d4k

2E(k)
δ(k2 +m2)e−ik(x−y)φc(y)

= ie∂0

∫
d3x

∫
dρ(m2)

∫
d4k

2E(k)
δ(k2 +m2)e−ikxeikyφc(y)

= −ie∂0

∫
dρ(m2)

∫
d4k

2E(k)
δ(k2 +m2)δ(k)eik0x0eikyφc(y)

= −ie∂0

∫
dρ(m2)

∫
dk0
2m

δ(k20 −m
2)eik0(x0−y0)φc(y)

= e∂0

∫
dρ(m2)

1

2mi

(
eim(x0−y0) − e−im(x0−y0)

)
φc(y)

= e∂0

∫
dρ(m2)

1

m
sin(m(x0 − y0))φc(y)

= e

∫
dρ(m2) cos(m(x0 − y0))φC(y).

This is clearly dependent on time, unless dρ(m2) = δ(m2), i.e. unless Fµν is a free field. In the interacting
case, however, it gives the α-dependence of the charge-density commutator [46, p. 173].

Now, the failure of the integral of the charge density to generate the time-independent global U(1)
transformations can be remedied by time-averaging the integral of j0 with an improved smearing. That
is, we defineQδR = j0(fRαδR) where αδR = α(x0/δR)/δR, with α ∈ D(R), 0 < δ < 1 and supp(α) ⊂ [−ϵ, ϵ]
with ϵ ≪ 1 [42, p. 3180]. However, this only works in the case of unbroken U(1) symmetry and can in
fact be related to the existence of massless photons, as shown by the following very important result (cf.
Proposition 5.4 in [46], Proposition 5.1 in [42]).

Proposition 6.9. In the Coulomb gauge the globalU(1) symmetry (δeφC = ieφC, δ
eACi = 0) is generated

by the integral of the charge density, i.e. for all F ∈ FC

δF = i lim
δ→0 lim

R→∞[QδR, F], (6.2)

if and only if the spectral measure dρ(m2) of the electromagnetic field contains a δ(m2) contribution, i.e.
if there are massless photons. Moreover, one generally has

lim
R→∞ j0(fRαδR)Ψ0 = 0, (6.3)

so that if there are massless photons the U(1) symmetry is unbroken. In this case, one can express the
electric chargeQe as an integral of the charge density j0 not only in the commutators with charged fields,
but also in the matrix elements of Coulomb charged states Ψ,Φ ∈ FC:

⟨Ψ,QeΦ⟩ = lim
δ→0 lim

R→∞⟨Ψ, j0(fRαδR)Φ⟩. (6.4)
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Proof. To prove equation 6.2, it suffices to consider F = φC, ACi , since these fields generate FC by defini-
tion. Starting with F = φC, the expressions in the final part of the proof of Proposition 6.8 give

lim
R→∞[j0(fRαδR), φC(y)] = lim

R→∞ ie∂0
∫
d4xfR(x)αδR(x0)

∫
dρ(m2)

∫
d4k

2E(k)
δ(k2 +m2)e−ikxeikyφc(y)

= lim
R→∞ ie

∫
d4xfR(x)αδR(x0)

∫
dρ(m2)

∫
d4k

ik0δ(k
2 +m2)

2E(k)
e−ikxeikyφc(y)

= lim
R→∞ e

∫
dρ(m2)

∫
d4kf̃R(k)α̃δR(k0)

k0δ(k
2 +m2)

2E(k)
eikyφc(y)

= lim
R→∞ e

∫
dρ(m2)

∫
d3kf̃R(k)Re

(
α̃δR(E(k))e−iE(k)y0

)
eik·yφc(y),

where f̃R and α̃δR denote the Fourier transforms of fR and αδR. By the scaling properties of the Fourier
transform this expression becomes

lim
R→∞ e

∫
dρ(m2)

∫
d3kRf̃(Rk)Re

(
α̃(δRE(k))e−iE(k)y0

)
eik·yφc(y)

= lim
R→∞ e

∫
dρ(m2)

∫
d3kf̃(k)Re

(
α̃(δRωR(k))e−iωR(k)y0

)
eik·y/Rφc(y),

where ωR(k) =
√

k2R−2 +m2. For m ̸= 0 we have δRωR(k) → δRm → ∞ as R → ∞. Since α is of fast
decrease this implies α̃(δRωR(k)) → 0, so by the dominated convergence theorem the above expression
for the commutator vanishes in the R → ∞ limit if the measure of the point m2 = 0 is zero, i.e. if there
is no δ(m2) contribution [46, p. 175]. For m = 0 we have ωR(k) → |k|R−1, so that α̃(δRωR(k)) → α̃(δ|k|)
and e−iωR(k)y0 → 1. If we then also take the δ → 0 limit we get α̃(δ|k|) → α̃(0) = 1, and since also∫
d3kf̃(k) = f(0) = 1we find that if there is a δ(m2) contribution to the spectral measure we indeed get

lim
δ→0 lim

R→∞[QδR, φC(y)] = eφC(y).

As for F = ACi = Ai − ∂i∆
−1∂jAj, we know from the locality of the FGB fields that the limit of

[∂jFj0(fR, x0), Ai] vanishes, so that the only contribution to the commutator comes from the ∂i∆−1∂jAj
part of ACi . But in the proof of Proposition 6.2 we have seen that [Fi0(x), ∆−1∂jAj] is proportional to the
commutator Ci0, which decreases as |x|−2. But the commutator [Fi0(x), ∂k∆−1∂jAj] contains yet another
spatial derivative, so it decreases as |x|−3. Thus, it gives a vanishing contribution when smeared with fR
in the R→ ∞ limit [46, p. 175].

Now, to prove equation 6.3, we use the Gauss law (which holds as an operator equation in the
Coulomb gauge) to write

⟨j0(x)j0(y)⟩0 = ⟨∂iFi0(x)∂jFj0(y)⟩0 = ∂ix∂jy⟨Fi0(x)Fj0(y)⟩0 = ∂ix∂jydi0j0F+(x− y)
= ∂i∂j(η00∂i∂j + ηij∂0∂0 − η0j∂i∂0 − ηi0∂0∂j)F

+(x− y)

= ∂i∂j(−∂i∂j + δij∂0∂
0)F+(x− y) = ∂i∂i(−∂

j∂j + ∂
0∂0)F

+(x− y)

= −∆□F+(x− y) = −∆□
∫
dρ(m2)

∫
d4k

θ(k0)δ(k
2 +m2)

2E(k)
e−ik(x−y)

= −

∫
dρ(m2)

∫
d4k

θ(k0)δ(k
2 +m2)

2E(k)
k2|k|2e−ik(x−y)

=

∫
dρ(m2)m2

∫
d3k

|k|2

2E(k)
eiE(k)(x0−y0)e−ik·(x−y).
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Thus, we obtain

∥QδRΨ0∥2 =
∫
d4x

∫
d4yfR(x)fR(y)αδR(x0)αδR(y0)|⟨j0(x)j0(y)⟩0|

=

∫
d4x

∫
d4y

∫
dρ(m2)m2

∫
d3kfR(x)fR(y)αδR(x0)αδR(y0)

|k|2

2E(k)
eiE(k)(x0−y0)e−ik·(x−y)

=

∫
dρ(m2)m2

∫
d3kf̃R(k)f̃R(−k)α̃δR(−E(k))α̃δR(E(k))(y0)

|k|2

2E(k)

=

∫
dρ(m2)m2R

∫
d3k

2ωR(k)
∣∣f̃(k)α̃(δRωR(k))k∣∣2 .

Since α is of fast decrease, we have |α̃(δRωR(k))|2 ≤ CN(1 + (δR)2m2)−N for any N ∈ N [46, p. 175].
Additionally, for R → ∞ we have

∫
d3k|f̃(k)k|2/2ωR(k) ≤ C/m, and since the tempered dρ(m2) is

polynomially bounded there exist a finite measure dρ ′(m2) and a largeM ∈ N such that [47, p. 61]

∥QδRΨ0∥2 ≤ CNC
∫
dρ ′(m2)

Rm

(1+ (δR)2m2)N ′ .

Clearly this integral goes to zero as R → ∞, so we conclude that limR→∞QδRΨ0 = 0. Equation 6.4 then
immediately follows from 6.2 and 6.3, since QeΨ0 = 0.

We have thus arrived at a very important result: the Noether relation between the electric charge and
the current density holds only if there are massless photons, in which case the global U(1) symmetry
is unbroken. The only thing that remains to be done for a full characterisation of the Abelian Higgs
mechanism, then, is to show the converse, i.e. that if the global U(1) group is broken, then there are
massive bosons. Before we prove this in section 6.5, where we finally obtain what is probably the
central statement of this entire thesis, namely Theorem 6.13, let us briefly focus on the importance of
superselection, as in section 5.3, in the story we are telling. Strocchi succintly summarises the role of the
global gauge group in relation to superselection:

Thus, the important (if not the exclusive) role of the gauge group is that of providing,
through the invariants of its representations, the superselected quantum numbers or charges,
which classify the irreducible representations of the observable algebra A. The unobservable
charged fields play the role of intertwiners (or charge raising/lowering operators) between
the vacuum representation (vacuum sector) and the charged sectors. This justifies the in-
troduction of the enlarged algebra F generated by the observables and the charged fields
(field algebra), since F is the carrier of the irreducible representations of the gauge group
and provides the corresponding invariants. [46, p. 169].

In the unbroken case, the electric charge is indeed such a superselected quantum number, as shown by
the following result.

Proposition 6.10. Any observable A ∈ FI commutes with the electric chargeQe on the Coulomb states:

⟨Ψ, [Qe, A]Φ⟩ = lim
δ→0 lim

R→∞⟨Ψ, [j0(fRαδR), A]Φ⟩ = 0.

Proof. By the Gauss law we get

lim
δ→0 lim

R→∞⟨Ψ, [j0(fRαδR), A]Φ⟩ = lim
δ→0 lim

R→∞⟨Ψ, [∂iFi0(fRαδR), A]Φ⟩ = − lim
δ→0 lim

R→∞⟨Ψ, [Fi0(∂ifRαδR), A]Φ⟩.

But ∂iFR(x) is nonzero only for x > R, whereas αδR(x0) is nonzero only for |x0| < ϵδR, where we have
supp(α) ⊂ [−ϵ, ϵ], δ < 1 and ϵ << 1. Thus, given any compact reigon O in spacetime, for R large
enough the points x at which ∂ifR(x)αδR(x0) does not vanish become spacelike to O. By the locality
of the observable A with respect to the observable field Fµν, we then find that the RHS of the above
equation vanishes.
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6.5. Abelian Higgs mechanism in Coulomb gauge

We are now finally in a position to rigorously study the Higgs mechanism in QFT by putting together
everything we have worked out in the last few chapters. Before we state our main result in the Coulomb
gauge, however, we briefly consider the Goldstone theorem in local gauges, because we need its char-
acterisation of Goldstone modes. To this end we have Theorem 17.1 from [44].

Theorem 6.11. Let F be a local field algebra generated by Wightman fields with αλ a 1-parameter
group of ∗-automorphisms of F which commutes with spacetime translations and is assumed to de-
fine a derivation δα on F . Assume furthermore that αλ is generated by the charge of a local covariant
conserved current jµ, i.e. that for all F ∈ F we have

δαF = i lim
R→∞[QR, F],

where QR = j0(fR, α). If the symmetry αλ is spontaneously broken in the sense that there exists some
F ∈ F such that ⟨δαF⟩0 ̸= 0, then the Fourier transform of ⟨j0(x)F contains a δ(k2) singularity, which is
the massless Goldstone mode.

We will not present the proof, for we do not need it for our main Theorem 6.13. Before we present
that result, however, we remark that the above Goldstone theorem can be avoided in local gauge quan-
tisations of QED, as shown by Proposition 7.6.1 in [46].

Proposition 6.12. In local gauge quantisations of QED with local field algebra F , the spontaneous break-
ing of the global U(1) group by an order parameter ⟨δeF⟩0 ̸= 0 implies that the Fourier transform of the
two-point function ⟨j0(x)F⟩0 contains a δ(k2). However, this singularity does not come from the energy-
momentum spectrum of the physical vectors Ψ that satisfy the weak Gauss law ⟨Ψ, (jµ − ∂νFνµ)Ψ⟩ = 0.
In other words: the Goldstone modes are unphysical.

In section 6.6 we will consider a generalisation of this result to the non-Abelian case. Now that we
know that the Goldstone modes in the Wightman approach must be understood as δ(k2) contributions
to the Fourier transform of ⟨j0(x)F⟩0, where F ∈ F is a symmetry breaking order parameter in the sense
of Proposition 5.26, we have everything we need to state the central result of this chapter and probably
of this thesis (cf. Theorem 7.6.2 in [46], Theorem 2.8.3 in [47]).

Theorem 6.13. Let FC denote the Coulomb field algebra with vacuum Ψ0, generated by the gauge field
ACi and the complex scalar Higgs field φC. Let αλ denote the 1-parameter family of ∗-automorphisms of
FC corresponding to the continuous global U(1) symmetry with generator Qe (the electric charge), and
let j0 be the associated conserved Noether current. Then the following results hold.

A. If the spectral measure dρ(m2) of the electromagnetic field Fµν contains a δ(m2) contribution, i.e.
if there are massless vector bosons, then

(i) the global U(1) gauge transformations are generated by the improved smeared current
density, i.e. for any F ∈ FC

δeF =
dαλ(F)

dλ

∣∣∣∣
λ=0

= i lim
δ→0 lim

R→∞[j0(fRαδR), F];

(ii) we have limR→∞ j0(fRαδR)Ψ0 = 0, so that ⟨δeF⟩0 = 0 for any F ∈ FC, meaning that the
global U(1) symmetry is unbroken (by Proposition 5.26);

(iii) the electric charge Qe can be expressed in terms of j0 not only in the commutators with
fields F ∈ FC, but also in the matrix elements of the Coulomb charged statesΦ,Ψ ∈ FCΨ0:

⟨Φ,QeΨ⟩ = lim
δ→0 lim

R→∞⟨Φ, j0(fRαδR)Ψ⟩,

implying that Qe is a superselected charge.
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B. If the global U(1) symmetry is broken by some FSSB ∈ FC such that ⟨δeFSSB⟩0 ̸= 0, then

(i) the spectral measure dρ(m2) of Fµν cannot contain a δ(m2) contribution, i.e. there are no
massless vector bosons;

(ii) the global U(1) gauge transformations are not generated by the current density, in fact

lim
δ→0 lim

R→∞[j0(fRαδR), F] = 0 (6.5)

for any F ∈ FC, and j0(fRαδR) annihilates the vacuum, so that for any Ψ ∈ FCΨ0 :

lim
δ→0 lim

R→∞ j0(fRαδR)Ψ = 0, (6.6)

i.e. we have current charge screening;

(iii) the two-point function ⟨jµ(x)FSSB⟩0 does not vanish, and its Fourier spectrum coincides
with the energy-momentum spectrum of Fµν, so that the absence of massless vector bosons
coincides with the absence of massless Goldstone modes.

Proof. The A part of the proof is just a neat overview of the contents of Propositions 6.9 and 6.10. As
for the first part of B, that is just the contrapositive of A(ii). Furthermore, in the proof of Proposition 6.9
we saw that limR→∞[j0(fRαδR), φC(y)] vanishes if there is no δ(m2) contribution to the spectral measure,
and that limR→∞[j0(fRαδR), A

C
i (y)] vanishes anyway. Since FC is generated by these fields equation 6.5

follows. Now, we actually proved equation 6.3, i.e. limR→∞ j0(fRαδR)Ψ0 = 0, in general, using only the
Gauss law. Thus equation 6.6 also follows.

Lastly, B(iii) follows from the proof of the Goldstone Theorem 6.11, for which we refer the reader to
Chapter 17 of [44]. Indeed, in that proof, the fact that ⟨δeFSSB⟩0 ̸= 0 is used to exlude the possibility
that ⟨jµ(x)FSSB⟩0 vanishes [46, p. 184]. In the present case, the relation from the proof of Proposition
6.8 stating that [j0(fR, x0), φC(y)] → ie∂0

∫
d3xfR(x)F(x − y)φC(y) when R → ∞ shows that, if we have

⟨δeφC⟩0 = ie⟨φC⟩0 ̸= 0, then the two-point function ⟨jµ(x)φC⟩0 cannot vanish since it is proportional
to the vector boson two-point function. Since φC generates all elements of FC that can break the U(1)
symmetry (after all Aµ is invariant), the same applies to all F ∈ FC. Thus, the Goldstone spectrum
is proportional to the spectrum of Fµν, meaning in particular that there can be no massless Goldstone
modes if there are no massless vector bosons.

6.6. Non-Abelian generalisation

Although Theorem 6.13 is a beautiful result proving that the Abelian Higgs mechanism can be under-
stood as an instance of SSB (in the algebraic sense) of the global U(1) gauge symmetry, there is one
evident flaw: it does not tell us anything about the non-Abelian case and in particular the electroweak
theory. Back in section 1.3, however, we explicitly identified RQ1.3 as the question of how results on the
Abelian Higgs mechanism generalise to the non-Abelian setting. Now, it must be admitted right away
that, to the author’s knowledge, there is nothing like a non-Abelian version of Theorem 6.13. If such a
version would be attempted, one would expect to need a non-Abelian generalisation of the Coulomb
gauge in order to construct a field algebra of non-Abelian charged fields that are invariant under the
gauge transformations generated by the Gauss constraint, i.e. under the action of G∞

0 . It is hard to
say, however, how realistic this would be, since non-Abelian gauge theories are generally quite poorly
understood non-perturbatively.

Still, not all hope is lost, for we could also attempt to generalise the other approach outlined in this
chapter, i.e. that of local gauge quantisation, to the non-Abelian case. This would mean that we would
generalise Theorem 6.12, which shows that the Goldstone bosons associated to the breaking of the global
U(1) symmetry in QED are unphysical. Of course, this result is much weaker than Theorem 6.13, for

84



it does not say anything about the existence of massive vector bosons - it only tells us that there are no
Goldstone modes. On the other hand, we have seen in Theorem 6.13 that the absence of massless vector
bosons coincides with the absence of massless Goldstone modes, so there might be a way forward there.

Now, the envisioned generalisation of Theorem 6.12 has actually been performed by De Palma and
Strocchi [43]. They work in the BRST quantisation of Yang-Mills theory, defined by the gauge fixing

LGF = −∂µBaAaµ +
1

2
ξBaBa − i∂

µc̄a(Dµc)a,

where ξ is a parameter, Aaµ is the gauge potential with a running over the Lie algebra generators, Ba is
the Nakanishi-Lautrup field and ca, c̄a are the Faddeev-Popov ghosts [43, p. 5]. In the BRST quantisa-
tion, the inner product between states in FΨ0, where F is the field algebra, is not semidefinite, similar
to the FGB gauge [43]. Physical vectors Ψ ∈ FΨ0 are then identified by the BRST subsidiary condition
QBΨ = 0, where QB is the nilpotent BRST charge. This gives us a condition of physicality similar to
imposing the weak Gauss law in the local gauge quantisation of QED.

The result by De Palma and Strocchi is then as follows. We will not prove it, for this would require
us to go into BRST quantisation, which is beyond the scope of this thesis. For more details, we refer the
reader first and foremost to [43], but also to Proposition 7.5.2 in [46] and Theorem 2.7.1 in [47].

Theorem 6.14. In the BRST gauge of Yang-Mills theory with structure groupG, if the global gauge group
G is broken by the vacuum expectation value of an element F of the field algebra F , i.e. ⟨δF⟩0 ̸= 0, then
the Fourier transform of the two-point function ⟨Jaµ(x)F⟩0, where Jaµ are the conserved Noether currents
defined by

Jaµ = ∂νFνµ + ∂µB
a + fabcA

b
µB

c − ifabcc̄
b(Dµc)

c,

contains a δ(k2), i.e. there are massless Goldstone modes. However, these modes do not belong to the
physical spectrum.

With this result we end this chapter and thereby the main body of this thesis. In chapter 7 we will
summarise all the main ideas we have developed and attempt to extract a coherent picture of the Higgs
mechanism.
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7. Conclusion

In chapters 2, 3, 4, 5 and 6 we studied global gauge symmetries and the Higgs mechanism from various
angles, with the aim of answering the research questions we distilled from the philosophical literature
in sections 1.2 and 1.3.

Chapter 2 provided a gauge-theoretical overview of the full Higgs mechanism in the Standard Model
from the perspective of fibre bundles. It defined global gauge transformations (Definition 2.6) and ex-
plained how vacuum configurations of the Yang-Mills-Higgs Lagrangian on a trivial bundle over a con-
nected and simply connected spacetime correspond to a choice of vacuum vector in a global vacuum
gauge (Proposition 2.28). This is how the Higgs mechanism is usually presented: one uses a vacuum
vector (0, v/

√
2) for the Higgs field, but such a choice can only be described once a vacuum gauge has

been chosen. We derived the consequences of such a choice of vacuum vector in a vacuum gauge: the
generation of masses for broken gauge bosons and leptons through the Yukawa coupling. We stressed
that the Higgs mechanism solves not one but three issues this way: masses for gauge bosons, different
masses for fermions in the same gauge multiplet and masses for twisted chiral fermions.

However, the mathematical machinery of chapter 2 did not allow us to address the main conceptual
problem of the Higgs mechanism: the alleged fact that gauge symmetries are mere descriptive conven-
tions, such that gauge symmetry breaking cannot represent anything real. We therefore considered a
proposed solution to this problem in chapter 3: getting rid of gauge symmetry altogether by means of
the dressing field method (DFM). In the DFM one turns the original fields into gauge-invariant com-
posite objects by means of a dressing field. It is similar to the notion of bundle reduction in differential
geometry. Berghofer et al. then write that the DFM shows that there is no SSB in the electroweak the-
ory [41], since the SU(2) gauge symmetry can be completely removed by a dressing field, such that
there is no symmetry left to break at all. We discussed several problems with this approach, related to
the assumption that the Higgs field is nowhere vanishing, which is needed to define a dressing field
through the polar decomposition.

In chapter 4 we then explained why the very approach of completely removing gauge symmetry by
using gauge-invariant composite fields is misinformed. The crucial point is that not all gauge trans-
formations are unphysical. This can be made mathematically precise in the language of constrained
Hamiltonian analysis, where ‘unphysical’ is formalised as generated by the first-class constraints. In Yang-
Mills theory the relevant constraint is the Gauss law, which generates only local, small gauge transfor-
mations. Thus, if we wish to reparametrise our space of fields in terms of gauge-invariant objects along
the lines of the DFM, we should consider fields which are invariant only under the gauge transforma-
tions generated by the Gauss constraint. In electromagnetism with a scalar field this can be achieved via
the Coulomb gauge, since the remnant symmetry group of the Coulomb gauge is precisely the group
of global gauge transformations. In section 4.2 we showed that, when the Abelian Higgs model is re-
formulated in terms of the Coulomb fields, the gauge boson and Higgs field gain mass only when the
global U(1) remnant symmetry is broken.

These results are, however, only classical. They can be used as a basis for perturbation theory, but
this leads to problems with the apparent gauge-dependence of perturbative calculated quantities such
as gauge boson masses, as explained in the preamble to chapter 6. We therefore devoted chapters 5
and 6 to developing a non-perturbative understanding of the Higgs mechanism in QFT. In chapter 5
we did not study the Higgs mechanism proper, but instead we presented some of the general struc-
ture of axiomatic QFT and specifically the appearance of the global gauge group. We briefly discussed
DHR superselection theory, which explains how the presence of a global gauge symmetry leads to a
superselection structure in the unitary equivalence classes of irreducible representations of the net of al-
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gebras. These equivalence classes are labelled by the quantised gauge charges, such that charged fields
intertwine between the vacuum representation and charged representations. Thus, the global gauge
symmetry, which gives rise to the conserved gauge charges through Noether’s first theorem, is embed-
ded into the very structure of gauge quantum field theories. Indeed, DHR have proved that the compact
global gauge group can be recovered from the observable superselection structure of a QFT. We ended
chapter 5 by studying SSB in algebraic quantum theory, proving that SSB in the algebraic sense can be
detected by means of a symmetry breaking order parameter (Proposition 5.26) and by formulating the
Goldstone theorem algebraically (Theorem 5.29).

With the structures from chapter 5 in mind, we then set out in chapter 6 to characterise the Higgs
mechanism as an instance of SSB of global gauge symmetry in QFT by means of a symmetry breaking
order parameter. To do this, we used work by Morchio and Strocchi based on the Wightman axioms,
which give a more concrete implementation of the nets of local algebras from AQFT. We explained how
one faces a dilemma when quantising gauge theories: one can choose to require the Gauss law as an
operator equation on the Wightman fields, but then the field algebra contains non-local charged fields.
The other option is to require a weak Gauss law only on the physical states, leading to a local field
algebra. With the latter approach, one can prove that the Goldstone modes associated with breaking
the global gauge group are unphysical, both in the Abelian and the non-Abelian case. The former
approach can be implemented for electromagnetism by means of the Coulomb gauge, using the same
field transformation as in chapter 4. One can then prove several powerful results (Propositions 6.8 and
6.9, Theorem 6.13) which show that the Noether relation between the electric charge as the generator of
the global U(1) symmetry and the smeared current density holds only if there is no symmetry breaking
order parameter, in which case the electric charge is superselected in the sense of chapter 5. If there is
such an order parameter, then this relation fails and there must be massive gauge bosons.

7.1. Answering the research questions

Having summarised the main ideas and results from this thesis, let us now revisit our original research
questions, explain how we have addressed them and discuss what issues remain enigmatic. We begin
with the subquestions RQ1.1-RQ1.3, such that we can combine the answers to these subquestions into a
response to our main RQ1.

RQ1.1: How can the apparent contradiction be resolved between the implication of the DFM that there is no SSB
in the Higgs mechanism, and results presenting the Higgs mechanism as SSB of global gauge symmetry?

In section 1.2 we pointed out that there is a tension between the DFM, which is used by Berghofer
et al. to argue that there is no SSB in the electroweak theory [41], and the results by Struyve and by
Morchio, Strocchi and De Palma [42, 43], which characterise the Higgs mechanism as a breaking of
global gauge symmetry. We dedicated chapter 4 to dissolving this tension. Indeed, we found that the
basic idea of the DFM is not wrong. In fact, we implemented the DFM at length in chapters 4 and
6 by using the dressing field exp(−ie∆−1∂iAi) for the Abelian Higgs model in the Coulomb gauge.
However, this is a dressing field only for the local gauge group of transformations generated by the
Gauss constraint and not for the global gauge group. Thus, we understand now that Berghofer et al.
were looking in the wrong place for their application of the DFM. They attempted to use it to reduce the
structure group SU(2) in the electroweak theory, but this was based on the problematic assumption that
the Higgs field is everywhere non-vanishing. This assumption in effect alters the structure of field space,
permitting fewer configurations than in the full theory. What we have done instead, following Gomes,
is to apply the DFM on infinite-dimensional field space like in section 4.3.4 (especially Proposition 4.7).
This automatically leads to the Coulomb gauge as the physical gauge in which the fields are invariant
under the local gauge group but not under the global gauge group. Using the Coulomb dressed fields
allows us to remove precisely the Redundant part of the gauge group, as is the aim of the DFM.
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RQ1.2: Why should the global gauge group not be considered merely as a subgroup of the local gauge group, but
rather as having a different physical significance?

We studied the global gauge group from two main perspectives: in classical field theory in chapter
4 and in AQFT in chapter 5. In chapter 4 we explained how the notion of gauge redundancy can be
formalised via constrained Hamiltonian analysis. The symplectic form on (infinite-dimensional) phase
space is non-degenerate by definition, but when it is pulled back to the constraint surface this need no
longer be the case. The symplectic form on the constraint surface may have null directions, which are
identified as gauge orbits in Teh’s Redundant sense. These gauge orbits are in fact generated by the first
class constraints. For Yang-Mills theory on a Cauchy surface, the only first class constraint is the Gauss
law. However, the Gauss law only generates gauge transformations which asymptotically approach
the identity. Thus, it does not generate global gauge transformations, which act non-trivially even at
infinity. This fact is at the heart of the argument that global gauge symmetries should not be considered
as a mere subgroup of the total gauge group, which also includes local gauge symmetries (meaning
those that become the identity at infinity). It can also be understood more formally through the notion
of symplectic reduction, which requires a free group action. The global gauge group does not act freely
on the space of Yang-Mills fields, for it leaves the connection 1-forms with values in the center of the
Lie algebra of the structure group invariant. For an Abelian structure group this is just the entire space
of connection 1-forms. Thus, one cannot perform a symplectic reduction of the whole gauge group, but
only of the group of local gauge transformations, which do act freely. If one instead considers the bigger
field space of Yang-Mills connection 1-forms together with a scalar matter field, then the global gauge
group still does not act freely, for the scalar field may vanish. This possibility was of course precisely
precluded in the DFM analysis of Berghofer et al.

However, the global gauge group does not necessarily exhaust all physical gauge transformations.
Indeed, we worked out very precisely in section 4.3.3 what gauge transformations are physical and
unphysical. This depends on the boundary conditions imposed on the fields. We required all fields
to fall off asymptotically at a rate of order O(r−2). The group of gauge transformations preserving
these boundary conditions was then shown to consist of those smooth maps g : M → G which satisfy
g → const + O(r−1) as r → ∞. We denoted this group by GI and wrote G∞

0 for the group of small
transformations {eξ(x) : ξ → 0 + O(r−1)} generated by the Gauss constraint and going to the identity
asymptotically. The quotient GI/G∞

0 is then the group of physical gauge transformations. This quotient
includes the global transformations, but is not limited to them in the non-Abelian case, for then there
are topological contributions through so-called winding numbers. Such a topologically non-trivial sym-
metry breaking pattern in the universe is known as a cosmic string [119]. It is important to note that,
in order to even be able to speak of the identity at infinity, i.e. to be able to define GI, we must have
a section/trivialisation/frame at infinity. Of course, in defining the gauge group G as the set of maps
M → G, we already assume we have a global section, such that the section at infinity is automatically
taken care of. If this were not the case, however, and we were working on an untrivialised bundle, then
we would need to choose a trivialisation at infinity. This is in fact similar to the situation in gravity,
where the diffeomorphisms that are Redundant fall off sufficiently rapidly towards infinity, while dif-
feomorphisms that correspond to boundary symmetries, and therefore potentially are non-Redundant,
induce non-trivial diffeomorphisms at infinity. In that case, a choice of coordinates is used to define the
metric at infinity as well as the diffeomorphisms preserving it [120, 121].

In AQFT the role of the global gauge group relates to superselection sectors, i.e. unitary equivalence
classes of primary or irreducible representations of the net of operator algebras, as formalised by DHR.
However, DHR theory makes no reference to the local gauge group and therefore cannot help us very
much in answering RQ1.1. It only provides yet more support for the idea that global gauge symmetries
should be considered to have direct empirical significance, not only because they can figure in Galileo’s
ship scenarios in classical field theory, but also because they are intimately connected to the supers-
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election structure of quantum field theories and provide the quantised gauge charges that label such
superselection sectors. Superselection rules are observable in nature from the fact that no coherent su-
perpositions of states carrying different superselected quantum numbers are possible. This seems to be
a more direct form of empirical significance than the existence of conserved charges through Noether’s
theorem, which philosophers usually view as indirect empirical significance.

RQ1.3: To what extent can results on the Abelian Higgs mechanism be used to interpret the complete non-Abelian
Higgs mechanism in the Standard Model?

We have presented a wide variety of results on the Higgs mechanism in this thesis - some very gen-
erally for any compact matrix Lie group G (much of section 2.3, as well as section 5.3), many only for
G = U(1) (the very important section 4.2 and almost all of chapter 6), and some for the electroweak
structure group G = SU(2) × U(1) specifically (mostly some examples from chapter 2 and the DFM in
section 3.2.2). It is important, therefore, to ask whether the picture we are outlining of global gauge sym-
metry breaking works generally or only for the Abelian Higgs model. For this purpose we described
the full Higgs mechanism in the Standard Model at length in chapter 2, by way of comparison class for
any formulation other than the orthodox one.

The first important point to make in this regard is that our core argument on the direct empirical
significance of gauge symmetries, developed in chapter 4, holds in the Abelian as well as the non-
Abelian case. In section 4.3.3, we studied the Gauss constraint as the momentum map for the action
of the local gauge group generally. The result that the quotient GI/G∞

0 is the group of physical gauge
symmetries derived there holds in both the Abelian and non-Abelian cases. The difference, however, lies
in the question of what this quotient concretely consists of. ForG = U(1), it is isomorphic to the group of
global gauge transformations, as proved in Proposition 4.4. ForG = SU(2) it is isomorphic to SU(2)×Z,
i.e. the global gauge transformations times all the possible winding numbers of maps S3 → S3. Thus,
in the non-Abelian case, one must consider the possibility that the vacuum configuration of the Higgs
field breaks the physical gauge symmetry GI/G∞

0 in a topologically non-trivial way. Still, this does not
change anything about the basic ideas developed in chapter 4.

The difficulty with the non-Abelian case, then, comes from the fact that it is not straightforward to
implement a non-Abelian generalisation of the radiative projection and the Coulomb gauge, in order
to obtain fields which are invariant under the unphysical gauge group G∞

0 but not under the physical
gauge group GI/G∞

0 . Indeed, as remarked in section 4.3.4, in the non-Abelian case the action of the
gauge group on the space of Yang-Mills fields is field-dependent, in the sense that, besides the uniform
term g−1dg, a transformation g ∈ GI also changes a connection 1-form A by a term g−1[A, g], which
evidently depends on A. However, the Coulomb gauge can in fact be generalised [122], so an important
and interesting direction for future research would be to use this to give the non-Abelian version of
Struyve’s gauge-invariant account of the Higgs mechanism as in section 4.2, building on the work that
Lusanna and Valtancoli have already done [53–55].

In quantum field theory, the generality of our results depends on the axiomatic approach pursued. In
AQFT, the theorems from section 5.3 are completely general and obtain for any compact global gauge
group. Thus, also non-Abelian gauge charges label superselection sectors. Much of our work based
on the Wightman axioms in chapter 6, however, does not readily generalise to the non-Abelian case.
Indeed, we are not aware of any non-Abelian generalisation of our main result, Theorem 6.13. It may be
very difficult to obtain something similar in the non-Abelian case, since the rigourous non-perturbative
quantisation of gauge theory, and especially non-Abelian gauge theory, is poorly understood. On the
other hand, the approach of local gauge quantisation by allowing for a Hilbert space inner product
which is not positive-definite did generalise to the non-Abelian setting, as explained in section 6.6. The
theorem by De Palma and Strocchi presented there is a non-Abelian version in the BRST gauge of Propo-
sition 6.12, showing that the Goldstone modes associated to the breaking of global gauge symmetries
are unphysical. Although this result is nothing like a generalisation of Theorem 6.13, it does strongly
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suggest that global gauge symmetry breaking in the electroweak theory is completely analogous to the
Abelian Higgs model.

With these answers to our three subquestions in mind, we return to the main research question of this
thesis.

RQ1: What role does global gauge symmetry breaking play in the Higgs mechanism?

Global gauge symmetry breaking is the physical means by which the Higgs mechanism can be under-
stood to generate the masses of gauge bosons and leptons. Global gauge symmetry breaking does not
suffer from the conceptual problems of local gauge symmetry breaking since global gauge symmetries
are physical, as they are not generated by the Gauss constraint. Global gauge symmetry breaking also
avoids Elitzur’s theorem. Explicit derivations of mass generation by means of global gauge symme-
try breaking have only been given for the Abelian case, both in classical and quantum field theory. In
QED, the existence of a photon mass in case of SSB of the globalU(1) symmetry follows from the failure
of the relation between the electric charge and the smeared Noether current density. When the global
U(1) symmetry is unbroken, the electric charge is superselected and can be expressed in terms of the
smeared current density. In the case of broken global U(1) symmetry, however, the current charge is
screened (see also [123]), making it impossible for this charge to generate global gauge transformations.
We can think of this intuitively as follows: in the case of current charge screening, the current charge
distribution (which is defined in terms of the electromagnetic field) falls of quickly, meaning that it can-
not be detected asymptotically, so that it cannot satisfy the Gauss law (which allows one to calculate the
charge distribution from the electric field arbitrarily far away). This asymptotic falling-off implies that
the electromagnetic force is short-ranged, i.e. that the photon is massive.

7.2. Superconductivity and dynamical symmetry breaking

Yet, even if global gauge symmetry breaking is physical, a major question that remains is:

How can global gauge symmetry breaking in the Higgs mechanism be understood as a dynamical process?

Indeed, throughout this thesis we have not said much about the Higgs mechanism as a temporal
process that allegedly happened shortly after the Big Bang, when the temperature of the universe had
droppped sufficiently. This also leads us back to the analogy with superconductivity with which we
started chapter 1. Superconductivity is observed experimentally as a dynamical process whenever a
superconductor is cooled below its critical temperature. Let us first examine this analogy and then
discuss proposals for dynamical symmetry breaking and their potential for the Higgs mechanism.

Fraser has argued that the analogy between superconductivity and the Higgs mechanism, of which
we sketched the historical development in section 1.1, is purely formal, i.e. uses the same equations, but
does not point to a common underlying causal or physical mechanism [9]. According to Fraser, the BCS
model gives the microscopic, causal explanation for the phase transition modelled phenomenologically
by the GL theory: below the critical temperature electrons condense into Cooper pairs. Since, as of
yet, there is no such causal explanation of the Higgs mechanism, the analogy between the GL theory
of superconductivity and the Higgs mechanism can only be formal. Indeed, Fraser points out that in
the usual presentations of the Higgs mechanism, the parameters of the model do not depend on time,
either explicitly or implicitly via temperature-dependence. She summarises the situation as follows:
“SSB in superconductors is a temporal process. Both the BCS and GL models offer descriptions of
temporal processes that include phase transitions during which symmetry is spontaneously broken. The
BCS model moreover offers a description of a causal process during which symmetry is spontaneously
broken. A causal process is a temporal process satisfying some additional requirements. Clearly, since
SSB in the Higgs model is not a temporal process, it is not a causal process either” [9, p. 83]. Thus, by
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Fraser’s account, superconductivity cannot be used to find a physical interpretation of the notion that
particles “gain mass” in the Higgs mechanism.

What is peculiar about Fraser’s study, however, is that she considers thermal QFT to be a theory “be-
yond the Standard Model” and compares superconductivity only to the Abelian Higgs model as we
have studied it in this thesis, i.e. without any consideration for temperature-dependence. If one does
this, it should not come as a surprise that the causal structure of the GL theory does not map onto the
Higgs mechanism, since one studies the Higgs mechanism at zero temperature from the beginning. It
would be a better analogy to compare the GL theory to the Higgs mechanism in QFT at finite tempera-
ture.

But what do the results from this thesis imply for the analogy between superconductivity and the
Higgs mechanism? Do they show that the analogy is more than formal? Do they provide the causal
mechanism that Fraser is missing? I submit that our results do indeed suggest that the analogy is phys-
ical and not merely formal. After all, superconductivity is itself an instance of global gauge symmetry
breaking and not of local gauge symmetry breaking [124]. If a superconductor were to break local gauge
symmetry it would also contradict Elitzur’s theorem. The global gauge symmetry that is broken in a
superconductor is the global U(1) phase symmetry of the GL wave function for a superconducting is-
land, i.e. the phase of the perfectly ordered BCS state [124, p. 77]. However, van Wezel stresses that this
global phase is unmeasureable and gauge-dependent and can only be measured relatively. This leads
to the famous Josephson effect that we mentioned in section 1.1.1, in which a current flows between
two superconductors with a relative global GL phase difference. But how should we understand van
Wezel’s statement in the light of our results from chapter 4, which show that global gauge symmetries
are physical? Here it is important to recall Galileo’s ship from section 4.3.1. Even if a symmetry transfor-
mation is physical, we cannot observe its effect from within the system it is applied to. If global gauge
transformations are applied to a subsystem like a superconductor, then we can only observe the differ-
ence from outside that superconductor. If we apply a global gauge transformation to the entire universe,
then observing its effect is impossible, but that does not preclude the symmetry being physical in the
sense of Galileo’s ship (where the boost is also only observable when applied to a subsystem, namely
the ship).

These considerations strengthen the analogy between superconductivity and the Abelian Higgs mech-
anism, since both should be understood as SSB of global U(1) symmetry, which is physical in the sense
of Galileo’s ship, thereby making the analogy physical - though not yet causal. Indeed, even if we un-
derstand the Higgs mechanism as breaking of global gauge symmetry like in the superconductor, we
still have not explained how it should be viewed as a dynamical process unfolding in time. It is impor-
tant to mention, however, that this problem exists generally for all instances of SSB in quantum systems.
We may call this the general problem of spontaneous symmetry breaking. It amounts to the question: is SSB
really spontaneous? Does it occur by itself, or must symmetry breaking always be explicit? How can a
quantum system with symmetry ever evolve from a symmetric state to an asymmetric state?

These questions remain unanswered for all instances of SSB in quantum systems; crystals, the super-
conductor, the Higgs mechanism etc. Thus, what we have really achieved in this thesis is to reduce the
discussion of the Higgs mechanism to the discussion of SSB in general, by showing that global gauge
symmetries are physical just like e.g. rotations in a ferromagnet. It seems likely therefore that an under-
standing of the Higgs mechanism as a causal process would go hand in hand with a understanding of
dynamical symmetry breaking in general. We stress that this problem of dynamical symmetry breaking
has not been solved for superconductors either, even though we know a superconducting phase transi-
tion to unfold in time because we observe it in the laboratory. The profound question of how precisely a
quantum system exhibiting a symmetry could possible move from a symmetric to an asymmetric state
remains open.

Indeed, the unitary, symmetric dynamics of a quantum system simply do not allow for such a process.
Thus, there seem to be two main ways in which we could conceive of symmetry breaking in quantum
systems: by arguing that it must always be explicit, i.e. occur by means of an external perturbation, or
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by allowing for non-symmetric evolution of the system itself. The latter option immediately reminds
us of the notion of measurement, in which a wave function supposedly collapses non-unitarily.1 In such
a collapse, a system could very well move from a symmetric to an asymmetric state. One might even
conjecture, then, that SSB and the measurement problem really are two sides of the same coin. This
conjecture is pursed by van Wezel and others [125–128]. In fact, van Wezel submits that dynamical
symmetry breaking cannot occur by means of unitary Schrödinger evolution alone, even in the presence
of infinitesimal symmetry breaking perturbations [127]. Thus, the very presence of phase transitions in
the world around us would imply that unitary quantum dynamics must itself break spontaneously:

Infinitesimal preferences for any particular ordered state cannot induce a spontaneous dy-
namical breakdown of symmetry, because even in the thermodynamic limit the unitarity
of time evolution requires all states with distinct order parameter orientations to appear as
components with at most infinitesimal differences in weight in the final state wave function.
The experimental observation that individual phase transitions are realised in our everyday
world, are traversed as a function of time, and do result in a single symmetry-broken state
each time they are encountered, directly suggests the existence of non-unitary time evolu-
tion. [127, p. 11]

Landsman, van de Ven and others have also pursued the similarity between measurement and SSB,
but by focusing on symmetry breaking perturbations and not by assuming unitarity violation [129–131].
They call this idea the flea on Schrödinger’s cat [129]. Landsman stresses the importance of recognising
that SSB can only occur in an infinite quantum system, whereas the quantum systems we see around us
are finite (e.g. finite crystals). Thus, SSB must be understood as an instance of asymptotic emergence [132].
SSB may formally only exist in the limit, but one must show that the effects of this asymptotically
emergent behaviour can already be observed before the limit. For the Higgs mechanism this would be
the limit of going from finite to infinite volume [129, p. 20].

Now, the point of mentioning these general approaches to dynamical symmetry breaking is to show
that, by understanding the Higgs mechanism as global gauge symmetry breaking, it loses the puzzling
edge of gauge symmetry breaking. Since global gauge symmetry is physical and the Higgs mechanism
can be formulated that way, the problem of interpreting the mechanism as a dynamical process amounts
to the same problem as for the vastly more general class of all symmetry breaking quantum systems. By
a very long detour, we thus return to Wüthrich’s statement from section 1.2.3:

None of Lyre’s worries, therefore, gives us reason to doubt that the Higgs mechanism can
have the same ontological status as any other mechanism of spontaneous symmetry break-
ing, which we observe, for example, in ferromagnets or superconductors. [29, p. 10]

The only conceptual difference between, say, a crystal and the Higgs mechanism, is the fact that we
usually think of the Higgs mechanism as applying to the entire universe. Thus, it is not as clear where
a symmetry breaking perturbation could come from, since there seems to be no real environment. One
might speculate that such a perturbation could come from a ubiquitous stochastic field, other quantum
fields, or even gravity. It is a highly involved issue, but at least we know now that there is no con-
ceptual difference in principle between the Higgs mechanism and other symmetry breaking quantum
phenomena.

7.3. Suggestions for further research

From what has been said in this chapter it is clear that there are two broad directions for future research
on conceptual and philosophical aspects of the Higgs mechanism: its formulation as global gauge sym-
metry breaking in the non-Abelian case, and the Higgs mechanism as a dynamical process.

1Measurement, however, is usually taken to be induced by something external to the quantum system that is being measured.
Thus, there is an external stimulus to the measurement process, meaning that the effected collapse it not truly spontaneous.
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In the first direction, the two obvious things to be done are to generalise the gauge-invariant account
of the Abelian Higgs mechanism from section 4.2 as well as Theorem 6.13 to the electroweak theory.
The work by Lusanna and Valtancoli [53–55] could be used for the former, and the non-Abelian gener-
alisation of the Coulomb gauge [122] may be useful for the latter. It might be simplest to first focus on
global gauge symmetries only and then take into account the topological contributions arising from the
fact that the physical gauge group GI/G∞

0 for G = SU(2) has a countably infinite number of connected
components.

In the second direction, it seems the first logical step to pursue would be to formulate the Higgs
mechanism at finite temperature at all, by considering global gauge symmetry breaking KMS states at a
temperature of around the Higgs field VEV, rather than ground states, and compare to results from the
lattice [133]. One could then consider adding an infinitesimal global gauge symmetry breaking pertur-
bation to try to rederive something like the Higgs field “rolling down the side of the scalar potential”,
but understood globally and not locally.
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Popular Summary

What is mass? At first sight, this looks like a fairly trivial question. The mass of an object signifies
how heavy it is, right? Yet, it turns out that mass is an incredibly complicated concept it the physical
theories that describe the microscopic world. In fact, one cannot even straightforwardly define masses
of fundamental particles. One need a special tool to do so, called the Higgs mechanism.

This mechanism was proposed by six physicists in 1964, among whom Peter Higgs himself. It pre-
dicted the existence of a new particle: the Higgs boson. This particle was finally detected in 2012 at CERN,
after almost half a century of intensive searching and building bigger and bigger particle accelerators.
It was the Large Hadron Collider (LHC) that was able to do the job.

With the Higgs mechanism and the accompanying particle in place, the so-called Standard Model of
particle physics was finally complete. The Standard Model describes the smallest particles that physi-
cists know of: electrons, photons, quarks, etc. It contains two kinds of particles: leptons and bosons,
and describes the interactions between these particles by means of three fundamental forces: the electro-
magnetic, weak and strong interactions. Each of these forces is carried by a (number of) boson(s). Such
force-carrying bosons are known as gauge bosons. We will shortly explain why. The electromagnetic
interaction is carried by the photon, i.e. the light particle. The weak interaction is carried by the three
so-called W+,W− and Z bosons. Finally, the strong force is carried by gluons. We note that gravity is
not described by the Standard Model. Indeed, finding a quantum theory of gravity is the greatest open
problem in theoretical physics.

The weak interaction is responsible for radioactive decay. It is very weak, hence the name. However,
it is not only weak, but also short-ranged, meaning that it acts only on very short distances. In this respect
it differs from electromagnetism: we have all experienced the electromagnetic force in daily life when
playing with magnets or touching electrostatically charged objects. The weak force cannot be easily
observed in this way, because it is noticeable only on the atomic scale. The explanation for this difference
is that the weak gauge bosons (i.e. the W± and Z) are massive, whereas the photon is massless. Before
1964 it was already known that the weak gauge bosons must be massive. The problem, however, was
the fact that the theory decribing gauge bosons, called Yang-Mills theory, could only describe massless
bosons like the photon. Thus, physicists needed to find a way to describe massive gauge bosons. This
is what the Higgs mechanism allowed them to do.

To understand how the Higgs mechanism accomplishes the desired description of massive gauge
bosons, we need to know why it was impossible to do this directly in Yang-Mills theory in the first place.
Here we come back to that word gauge mentioned before. The force-carrying bosons are called gauge
bosons because the fields describing them are gauge fields. A gauge field, in turn, is called that because
it exhibits a very special kind of symmetry: a gauge symmetry. A gauge symmetry is a type of symmetry
that is a bit like having a set of rules for changing one’s perspective on something without actually
changing the thing itself. Imagine one has a map of a city. One can look at the map from different angles,
zoom in or out, or even use different colors to highlight various features. No matter how one looks at the
map, the streets and buildings remain the same. The rules for changing one’s perspective on the map
while keeping the map itself unchanged are similar to what we mean by gauge symmetry in physics.
In physics, gauge symmetry is about the idea that certain fundamental forces, like electromagnetism
or the forces inside atomic nuclei, do not change even if one changes one’s point of view on them in
a specific mathematical way. These changes in perspective are called ”gauge transformations.” They
are like the different ways one can look at a map without altering the actual layout of the city. The
electromagnetic, weak and strong forces are described by gauge fields, and the corresponding gauge
symmetries ensure that the physical properties of these fields stay consistent, no matter how we apply
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gauge transformations.
We can now understand the fundamental idea of the Higgs mechanism: gauge symmetry breaking. In

the Higgs mechanism, the original gauge symmetry of the Standard Model is broken, meaning that it is
reduced, such that the fields in the Standard Model no longer exhibit the gauge symmetry they used
to have. The field that performs this gauge symmetry breaking is the Higgs field. Because the Higgs
field is coupled to the force fields, the symmetry breaking by the Higgs field gives rise to mass terms
for the gauge bosons whose gauge symmetry is broken. Now, a gauge symmetry is mathematically
described by an object known as a Lie group. Such a Lie group has a certain dimension, and the Lie group
describing the electroweak sector of the Standard Model, i.e. the electromagnetic and weak interactions,
is four-dimensional. In the Higgs mechanism, this four-dimensional symmetry group is reduced to a
one-dimensional symmetry group. The three broken dimensions then give rise to the three massive
weak bosons, whereas the one unbroken dimension that is left corresponds to the massless photon.

However, philosophers of physics have taken issue with this standard account of the Higgs mech-
anism. They have pointed out that gauge symmetries are mere “mathematical redundancies” or even
“descriptive fluff”. It is our choice how to look at the map of the city. A gauge transformation is like a
transformation of coordinates: it changes how we describe something, but not what something really is.
Thus, the Higgs mechanism cannot be a real, physical process that generates mass for fundamental par-
ticles. Something physical like mass cannot be gained by breaking or removing a mere mathematical,
descriptive convention. At least, this is what philosophers have come to believe.

The answer to this philosophical challenge of the Higgs mechanism that we work out in this thesis
is that most, but not all gauge symmetries represent mathematical redundancies. There is a subset of
gauge symmetries called global gauge symmetries that are physical, and the Higgs mechanism can be
understood as a breaking of this global gauge symmetry only. Global gauge symmetries are contrasted
with local gauge symmetries, which are indeed mere “descriptive fluff.”

To understand why global gauge symmetries differ from local gauge symmetries, it is important to
note that, in physics, we assume fields like the electromagnetic field to “fall off” as we move very far
away. This is because these fields carry energy, and if we do not assume the fields to vanish as we move
further and further away, then their total energy becomes infinite, which leads to great problems. Thus,
we assume fields to become weaker and weaker asymptotically, until finally they become zero “at infin-
ity.” Now, roughly speaking, local gauge symmetries respect this condition on the fields, because they
only act on a small region of space. Global gauge symmetries, however, act everywhere, including at in-
finity. For this reason, they are different from local gauge symmetries and have an empirical significance
that local gauge symmetries lack.

The point of this thesis, then, is to reformulate the Higgs mechanism as global gauge symmetry break-
ing instead of local gauge symmetry breaking, and to explain how precisely global gauge symmetries
differ from local gauge symmetries. The intended reformulation is not so easy, because we have to first
remove the local gauge symmetry, while keeping the global gauge symmetry. Luckily, this can indeed
be done, at least in simple cases. The question of how to do it in more complicated cases, however,
remains open. Maybe a future scientist reading this can solve it?
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A. Functional Analysis and Operator Algebras

In this appendix we provide a brief introduction to the functional-analytic and operator-algebraic con-
cepts used in the algebraic approach to quantum theory. We start with the basics of the theory of op-
erators on Hilbert spaces and then we generalise these notions to abstract algebras of operators. We
end with the GNS construction, which is central to the algebraic definition of spontaneous symmetry
breaking. We mostly follow [58, 102, 109, 134] and do not provide detailed proofs, though we will refer
the reader to the literature.

A.1. Operators on Hilbert spaces

The basic functional-analytic objects in quantum theory are Hilbert spaces. Quantum states are usually
modelled as unit vectors in a Hilbert space and observables are the self-adjoint operators on that Hilbert
space. In our treatment, Hilbert spaces are always defined over the field of the complex numbers C. We
recall that a metric spaceM is called complete if every Cauchy sequence inM converges to a point inM,
and that an inner product ⟨·, ·⟩ on a vector space gives a norm ∥x∥ =

√
|⟨x, x⟩|. Using this we define:

Definition A.1. A Hilbert space is a complex vector space H together with an inner product ⟨·, ·⟩ such
that, relative to the metric d(x, y) = ∥x− y∥ induced by the norm, H is a complete metric space.

Hilbert spaces are special cases of the following:

Definition A.2. A Banach space is a normed vector space which is complete which respect to the topol-
ogy induced by this norm.

A great advantage of Hilbert spaces is the possibility of defining orthogonality [134, p. 7].

Definition A.3. If H is a Hilbert space and f, g ∈ H, then f and g are said to be orthogonal if ⟨f, g⟩ = 0.
This is also written f ⊥ g. Two subsets A,B ⊂ H are said to be orthogonal if for all f ∈ A, g ∈ B : f ⊥ g.

For any A ⊂ H we denote the orthogonal complement A⊥ = {f ∈ H|for all g ∈ A : f ⊥ g}, and A⊥ is
always a closed linear subspace of H [134, p. 10]. Clearly H⊥ = 0 and 0⊥ = H. We now wish to define
orthogonal projections, for which we use the following theorem [134, p. 10].

Theorem A.4. If M is a closed linear subspace of the Hilbert space H and h ∈ H, let Ph be the unique
point inM such that h− Ph ⊥M. Then

(a) P is a linear transformation on H,
(b) ∥Ph∥ ≤ ∥h∥ for all h ∈ H,
(c) P2 = P ◦ P = P,
(d) kerP −M⊥ and ranP =M.

This allows us to define:

Definition A.5. IfM is a closed linear subspace of the Hilbert space H and PM is the linear map defined
by theorem A.4, then PM is called the orthogonal projection of H ontoM.

We note the following corollary [134, p. 10].

Corollary A.6. If A ⊂ H where H is a Hilbert space, then (A⊥)⊥ is the closed linear span of A. Thus, if
A is a closed linear subspace, then (A⊥)⊥ = A.
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Next we will consider linear functionals on Hilbert spaces, i.e. linear maps from a Hilbert space to
the complex numbers. It turns out that these are continuous if and only if they are bounded, as the
following theorem shows [134, p. 11].

Theorem A.7. Let H be a Hilbert space and L : H → C a linear functional. Then the following are
equivalent:

(a) L is continuous,
(b) L is continuous at 0,
(c) L is continuous at some point,
(d) There is a constant c > 0 such that for all h ∈ H : |L(h)| ≤ c ∥h∥.

A similar result holds for operators, i.e. linear maps from one Hilbert space to another [134, p. 26].

Theorem A.8. Let H1 and H2 be Hilbert spaces and A : H1 → H2 a linear transformation. Then the
following are equivalent:

(a) A is continuous,
(b) A is continuous at 0,
(c) A is continuous at some point,
(d) There is a constant c > 0 such that ∥Ah∥ ≤ c ∥h∥ for all h ∈ H1.

If one of these conditions holds, we call an operator A : H1 → H2 bounded and define its norm to be

∥A∥ = sup{∥Ah∥ : h ∈ H1, ∥h∥ ≤ 1}.

The set of all bounded operators A : H → H on a Hilbert space H is denoted by B(H). It can be made
into a topological space, but there are different ways to do so. The easiest way is to equip B(H) with the
norm topology induced by the norm ∥·∥. Two other very important topologies are:

Definition A.9 (WOT and SOT). If H is a Hilbert space, the weak operator topology (WOT) on B(H) is
the topology defined by the seminorms {ph,k : h, k ∈ H} where ph,k(A) = |⟨Ah, k⟩|. The strong operator
topology (SOT) is the topology defined by the family of seminorms {ph : h ∈ H} where ph(A) = ∥Ah∥.

Convergence in these topologies then amounts to the following.

Proposition A.10. Let H be a Hilbert space and let {Ai} be a net in B(H).
(a) Ai → A (WOT) if and only if ⟨Aih, k⟩ → ⟨Ah, k⟩ for all h, k ∈ H.
(b) Ai → A (SOT) if and only if ∥Aih−Ah∥ → 0 for all h ∈ H.

A.2. Operator algebras

Now that we have introduced Hilbert spaces and bounded operators on them, we consider more gen-
eral algebras of operators. The quintessential such operator algebra is B(H), where H is a Hilbert space.
In fact, we will see that B(H) is a so-called C∗-algebra and that every C∗-algebra can be faithfully repre-
sented as a subalgebra of B(H) for some Hilbert spaceH. We will always take algebras to be defined over
the field of complex numbers. We start with the notions of involution in an algebra and of morphisms
of such involutive algebras.

Definition A.11. An involutive algebra or ∗-algebra A is an algebra (over C) together with a map ∗ : A →
A that satisfies, for all a, b ∈ A and λ ∈ C:

1. (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗,
2. (λa)∗ = λ̄a∗,
3. (a∗)∗ = a.
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Definition A.12. A ∗-morphism φ : A → B between ∗-algebras A and B is an algebra morphism com-
patible with involution, i.e. for all a, b ∈ A, λ ∈ C:

1. φ(ab) = φ(a)φ(b),
2. φ(λa+ b) = λφ(a) +φ(b),
3. φ(a∗) = φ(a)∗.

We now wish to equip algebras with a norm that works well with the algebra multiplication.

Definition A.13. A normed algebra A is an algebra that is also a normed vector space such that

∥ab∥ ≤ ∥a∥ ∥b∥ , a, b ∈ A.

If A is unital, then it is a unital normed algebra if in addition ∥1A∥ = 1.

We can require normed algebras to be complete with respect to their norm topology, giving:

Definition A.14. A (unital) Banach algebra A is a (unital) normed algebra that is also a Banach space
(Definition A.2) with respect to the same norm.

Definition A.15. An involutive Banach algebra is a Banach algebra A with involution ∗ : A → A such that
for all a ∈ A : ∥a∗∥ = ∥a∥.

Finally we are in a position to define the algebras that are used to describe quantum systems.

Definition A.16. A C∗-algebra A is an involutive Banach algebra satisfying the C∗-property

∥a∗a∥ = ∥a∗∥ ∥a∥ = ∥a∥2 , a ∈ A.

Example A.17. The archetypal example of a C∗-algebra is B(H), the algebra of bounded operators on a
Hilbert space H with the operator norm, with involution given by the adjoint and the identity operator
as its unit. In fact, we will shortly see that any C∗-algebra can be represented as a subalgebra of B(H)
for some Hilbert space H.

Now, rather than the norm topology, we could also consider the more permissive SOT or WOT on a
C∗-algebra. This leads to:

Definition A.18. A von Neumann algebra is a ∗-subalgebra of B(H) that is closed in the SOT.

Remark A.19. Since the SOT is weaker than the norm topology, a von Neumann algebra is also closed
in the norm topology and hence a C∗-algebra.

Von Neumann algebras can actually also be characterised algebraically using the notion of a commu-
tant S ′ of a set S ⊂ B(H), i.e. all operators S ′ = {A ∈ B(H) : AB = BA for all B ∈ S} that commute with
all of S. This gives a beautiful link between topology and algebra.

Theorem A.20 (Double commutant). Let A be a ∗-algebra on a Hilbert space H with 1H ∈ A. Then A is
a von Neumann algebra on H if and only if A = A ′′.

The following theorem from [109] shows that it actually does not matter whether we consider the
strong or weak closure for von Neumann algebras.

Theorem A.21. Suppose A is a ∗-algebra on a Hilbert space H containging 1H. Then
(a) The weak closure of A is A ′′,
(b) A is a von Neumann algebra if and only if it is weakly closed.

Having defined the algebras that model observables, let us introduce the notion of a state.
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Definition A.22. A state ω : A → C on a unital ∗-algebra A is a positive linear functional of unit norm,
i.e. such thatω(1A) = 1 andω(a∗a) ≥ 0 for all a ∈ A.

Remark A.23. If A is a unital ∗-algebra then the set of states on A is naturally a convex set. That is, if
ω1,ω2 : A → C are states, then for any λ ∈ [0, 1] the linear combination λω1 + (1 − λ)ω2 is also a state.
We denote the state space by S(A), equipped with the weak* topology inherited from S(A) ⊂ A∗.

Definition A.24. A state ω : A → C on a ∗-algebra A is called pure if ω = λω1 + (1 − λ)ω2, where ω1
and ω2 are states and with λ ∈ (0, 1), implies ω1 = ω2. In other words, pure states The pure states of A
comprise the pure state space P(A), which is the extreme boundary of S(A) [58, p. 334]. A state that is
not pure is called mixed.

A.3. GNS construction

We will now outline the GNS construction, which links representations of C∗-algebras with states. For
technical details we refer the reader to [109, 134]. We begin by defining representations of C∗-algebras
and then present the GNS construction itself.

Definition A.25. A representation of a C∗-algebra A is a faithful ∗-homomorphism π : A → B(H), where
H is some Hilbert space.

Definition A.26 (Gelfand-Naimark-Segal construction). To each positive linear functional τ : A → C on
a C∗-algebra A we can associate a representation by first setting

Nτ = {a ∈ A | τ(a∗a) = 0},

which is a closed left ideal of A. The map (A/Nτ)2 → C given by

([a], [b]) 7→ τ(b∗a)

is then a well-defined inner product on A/Nτ. Let Hτ denote the Hilbert space completion of A/Nτ.
Then for any a ∈ A we define an operator π(a) ∈ B(A/Nτ) by

π(a)([b]) = [ab].

It can be checked that ∥π(a)∥ ≤ ∥a∥, such that π(a) has a unique extension to a bounded operator
πτ(a) on Hτ. The map πτ : A → B(Hτ) given by a 7→ πτ(a) is a ∗-morphism. We thus obtain the
GNS representation (Hτ, πτ) associated to the positive linear functional τ. If A is non-zero, we define its
universal representation to be the direct sum of all the GNS representations (Hτ, πτ), where τ ranges over
the state space S(A) defined in Remark A.23.

The GNS construction and the ensuing universal representation allow us to prove the essential result
that we can faithfully represent every C∗-algebra as some operator algebra on a Hilbert space. To do so,
we need the following theorem [109, p.90].

Theorem A.27. If a is a normal element of a non-zero C∗-algebra A, then there is a state ω ∈ S(A) such
that ∥a∥ = |ω(a)|.

Using this we can prove the desired result, following [109, p. 94].

Theorem A.28 (Gelfand-Naimark). If A is aC∗-algebra, then it has a faithful representation. Specifically,
its universal representation is faithful.
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Proof. Let (H,π) be the universal representation of A and suppose that a ∈ A such that π(a) = 0. By
the theorem above there is a state ω ∈ S(A) such that ω(a∗a) = ∥a∗a∥ (since a∗a is normal). Denoting
b = (a∗a)

1
4 we then have

∥a∥2 = ∥a∗a∥ = ω(a∗a) = ω(b4) = ∥πω(b)([b])∥2 = 0,

by definition of the GNS construction and since πω(b4) = πω(a
∗a) = 0, which implies πω(b) = 0 since

πω is a ∗-morphism. But ∥a∥2 = 0 implies a = 0, so π is injective.

Now, if we apply the GNS construction to a state, we know even more about the representation. We
call a representation π : A → B(H) cyclic if there is a vector Ω ∈ H such that π(A)Ω = H, where the bar
denotes the closure. In words this means that each element in H is a limit of a sequence π(an)Ω with
the an ∈ A. In this case we callΩ a cyclic vector for π. It turns out that the GNS construction of a state is
cyclic [109, p. 141].

Theorem A.29. Let A be a C∗-algebra andω ∈ S(A). Then there is a unique vectorΩω ∈ Hτ such that

ω(a) = ⟨[a],Ωω⟩, a ∈ A.

Moreover,Ωω is a unit cyclic vector for (Hω, πω) and for all a ∈ A

πω(a)Ωω = [a],

which thus givesω(a) = ⟨πω(a)Ωω,Ωω⟩. We callΩω the canonical cyclic vector for (Hω, πω).

The GNS representation is the unique representation characterised this way. That is, if for a state
ω : A → C we have two representations π1, π2 on Hilbert spaces H1, H2 with unit cyclic vectors Ω1,Ω2
such thatω(a) = ⟨π1(a)Ω1,Ω1⟩ = ⟨π2(a)Ω2,Ω2⟩ for all a ∈ A, then there is a unitary operator U : H1 →
H2 intertwining the representations and sending π1(a)Ω1 7→ π2(a)Ω2. Like in group theory, we have a
notion of (ir)reducibility for representations of C∗-algebras.

Definition A.30. A representation π : A → B(H) of a C∗-algebra A is called irreducible when H has no
nontrivial closed subspaces stable under π(A). That is, if K ⊂ H is a closed subspace and π(A)K ⊂ K,
then K = 0 or K = H.

There is an elegant characterisation of irreducibility of GNS representations of states [109, p. 144].

Theorem A.31. Letω ∈ S(A) be a state on a C∗-algebra A. Then (Hω, πω) is irreducible if and only ifω
is pure.
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B. Spinors

To fully understand the Higgs mechanism in the Standard Model it does not suffice to consider only
gauge fields and scalar fields, which are all bosonic. We must also be able to describe fermions, and
mathematically we use spinors for this. Defining spinors requires some work though: they do not trans-
form simply under the Lorentz group, but instead under a double covering of the Lorentz group called
the spin group. We therefore first have to define the spin group and its spinor representation, then we
need the notion of a spin structure, and only then can we consider spinor bundles. In addition, we need
to understand how to couple spinor fields to gauge fields via the twisted spinor bundle and we must take
into consideration chirality. In this appendix we introduce all these notions, building on the definitions
and results from chapter 2. Understanding spinors is necessary for appreciating the second and third
points about the Higgs mechanism listed in the preamble to that chapter.

B.1. Clifford algebras

Defining the spin group is most readily done by consdering Clifford algebras, which are unital associative
algebras generated by a vector space over a field K = R,C carrying a symmetric bilinear formQ : V×V →
K. A Clifford algebra is the “freest” such algebra generated by V subject to the condition v2 = −Q(v) · 1
for all v ∈ V . This idea of being the “freest” is formalised through a universal property.

Definition B.1. Let V be a K-vector space with symmetric bilinear form Q. A Clifford algebra over (V,Q)
is a pair (Cl(V,Q), ψ) where Cl(V,Q) is an associative K-algebra with unit 1 and ψ : V → Cl(V,Q) is a
linear map satisfying

{ψ(v), ψ(w)} = ψ(v)ψ(w) +ψ(w)ψ(v) = −2Q(v,w) · 1, v,w ∈ V,

such that the following universal property is satisfied: ifA is some other associative K-algebra with unit
1 and ϕ : V → A a K-linear map such that for all v,w ∈ V : {ϕ(v), ϕ(w)} = −2Q(v,w) ·1, then there exists
a unique algebra homomorphism f : Cl(V,Q) → Amaking the following diagram commute

V Cl(V,Q)

A

ϕ

ψ

f

A Clifford algebra always exists. Indeed, it can be constructed by taking the tensor algebra T(V) =⊕
n≥0 V

⊗n and quotienting by the two-sided ideal I(Q) generated by the set {v⊗ v+Q(v, v) · 1 | v ∈ V}.
The product on Cl(V,Q) = T(V)/I(Q) is then defined as [a]·[b] = [a⊗b] for any a, b ∈ T(V). In addition,
Clifford algebras are unique - so we can speak of the Clifford algebra - in the following sense.

Proposition B.2. Suppose (Cl(V,Q), ψ), (Cl ′(V,Q), ψ ′) are both Clifford algebras over (V,Q). Then there
exists an algebra isomorphism f : Cl(V,Q) → Cl ′(V,Q) such that f ◦ψ = ψ ′.

Proof. By the universal property of both Clifford algebras there exist two homomorphisms of algebras
f : Cl(V,Q) → Cl ′(V,Q) and g : Cl ′(V,Q) → Cl(V,Q) making the following diagrams commute:
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V Cl(V,Q) V Cl ′(V,Q)

Cl(V,Q) Cl ′(V,Q)
ψ

ψ

g◦f idCl(V,Q)

ϕ

ϕ

idCl ′(V,Q)f◦g

But by the universal property of Clifford algebras this implies g ◦ f = idCl(V,Q) and f ◦ g = idCl ′(V,Q), so f
is indeed an algebra isomorphism.

We need the following to define the spin group.

Definition B.3. Let V be a vector space with symmetric bilinear formQ and let T 0(V) and T 1(V) denote
the subspaces of T(V) containing the elements of even and odd degree respectively. We set

Cl0(V,Q) = T 0(V)/(T 0(V) ∩ I(Q)),

Cl1(V,Q) = T 1(V)/(T 1(V) ∩ I(Q)).

We call Cl0(V,Q) and Cl1(V,Q) the even and odd parts of the Clifford algebra. In particular, Cl0(V,Q) is
spanned by products of an even number of vectors. It is not hard to see that

Cl(V,Q) = Cl0(V,Q)⊕ Cl1(V,Q).

This gives Cl(V,Q) a Z2-grading.

Example B.4. The two most importantant examples of Clifford algebras are those of the standard real
and complex vector spaces (Rs,t, η) and (Cd, q). Here Rs,t is the vector space Rs+t with standard basis
e1, ..., es+t and η defined by

η(ei, ei) = 1, 1 ≤ i ≤ s,
η(ei, ei) = −1, s+ 1 ≤ i ≤ s+ t,
η(ei, ej) = 0, i ̸= j.

Clearly R1,t and Rs,1 are Minkowski spacetime. We denote the Clifford algebra over (Rs,t, η) by Cl(s, t).
The standard non-degenerate symmetric bilinear form q on Cd on the standard basis e1, ..., ed is

q(ei, ei) = 1 1 ≤ i ≤ d,
q(ei, ej) = 0 i ̸= j.

We denote the corresponding Clifford algebra by Cl(d). These two Clifford algebras are related by (cf.
Lemma 6.3.2 in [59])

Cl(s+ t) ∼= Cl(s, t)⊗R C, (B.1)

and the complex representations of Cl(s, t) are equivalent to complex representations of Cl(s+t). More-
over, for n ≥ 1 the complex Clifford algebra satisfies Cl(n − 1) ∼= Cl0(n), as we can send ψ(ei) 7→
ψ(ei)ψ(en) for any 1 ≤ i ≤ n− 1 (cf. Lemma 6.3.3 in [59]).

Now, a great deal can be said about the structure of both the real and complex Clifford algebras. For
the complex case there is the following particularly simple result (cf. Theorem 6.2.23 in [59]).

Theorem B.5. The complex Clifford algebra and its even part are isomorphic to certain complex algebras
as follows. For n even we have

Cl(n) ∼= End(CN),

Cl(n)0 ∼= End(CN/2)⊕ End(CN/2),
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where N = 2n/2. For n odd we have

Cl(n) ∼= End(CN)⊕ End(CN),

Cl(n)0 ∼= End(CN),

where N = n(n−1)/2.

We want to highlight that the splitting of Cl(n)0 into two copies of End(CN/2) for n even is at the root
of the notion of chirality in physics. This splitting ultimately yields the difference between left-handed and
right-handed spinors, and the Higgs mechanism is needed to define masses for such chiral spinors, which
cannot be done otherwise. Theorem B.5 allows us to define a particularly important representation of
Clifford algebras.

Definition B.6. The spinor representation ρ : Cl(n)
∼=−→ End(∆n) of the complex Clifford algebra on the

space of Dirac spinors ∆n = CN is defined through Theorem B.5. For n even it is just the standard
representation and for n odd it is obtain by projection onto the first copy of End(CN). There is also an
induced complex spinor representation on Cl(s, t) by equation B.1.

If we restrict to the even part of the complex Clifford algebra - as we will do when defining the spin
group - we get the following results on (ir)reducibility.

Corollary B.7. If n is odd we identify Cl0(n) with the first summand in Cl(n) ∼= End(∆n) ⊕ End(∆n).

The induced representation Cl
∼=−→ End(∆n) is then irreducible, with ∆n ∼= CN whereN = 2(n−1)/2. If n is

even the induced representation splits into left-handed and right-handed Weyl-spinors:

Cl0(n)
∼=−→ End(∆+

n)⊕ End(∆−
n),

where ∆+
n
∼= ∆−

n
∼= CN/2 with N = 2n/2.

Definition B.8. Having defined the spinor representation, we call the bilinear map Rs,t×∆n → ∆n given
by (v, χ) 7→ v · χ = ρ(ψ(v))χ the mathematical Clifford multiplication of a vector and a spinor. The physical
Clifford multiplication is the same but with a factor −i.

Clifford algebras arose out of Dirac’s study of spinors using gamma matrices. How, then, does our
abstract approach relate to the usual physical representation?

Definition B.9. Let ρ : Cl(s, t) → End(CN) be an algebra representation. Then we call γa = ρ ◦ ψ(ea)
the mathematical gamma matrices and Γa = −iγa the physical gamma matrices. Clifford multiplication of a
basis vector ea ∈ Rs,t with a spinor χ ∈ CN is then just equal to ea · χ = Γa. The anticommutators are
{γa, γb} = −2ηabIN and {Γa, Γb} = 2ηabIN. We set γab = 1

2 [γa, γb] and Γab = 1
2 [Γa, Γb].

B.2. The spin group

The spin group is a subgroup of the Clifford algebra (Rs,t, η). Before we define this, however, we con-
sider the Lorentz group, of which the spin group is a double covering. The Lorentz group, in turn, is a
subgroup of the pseudo-orthogonal group.

Definition B.10. Let η denote the standard symmetric bilinear form on Rs+t with signature (s, t). Then
the pseudo-orthogonal group of signature (s, t) is defined as

O(s, t) = {A ∈ GL(s+ t,R) | η(Av,Aw) = η(v,w) for all v,w ∈ Rs+t}.

It is a well-known fact that O(s, t) is a closed subgroup of GL(s+ t,R) and therefore a Lie group by the
closed subgroup theorem.
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To define the Lorentz group we need the following notion (cf. Definition 6.1.11 in [59]).

Definition B.11. Let V+ = span{e1, ..., es} ⊂ Rs,t and let π : V → V+ denote the projection. Clearly V+ is
maximally η-positive definite. Note that if any other subspace W ⊂ V is maximally η-positive definite
then π|W → V+ must be an isomorphism and W can be given a unique orientation such that π|W is
orientation preserving if V+ has been given an orientation. We fix an orientation on V+. Then we define
the time-orientability of A ∈ O(s, t) to be +1 or -1 depending on whether A|V+ → A(V+) preserves or
does not preserve orientation, where A(V+) is maximally η-positive definite (since A preserves η) and
thus has the unique orientation defined by requiring π|V(A+) to be orientation-preserving.

Definition B.12. We call

O+(s, t) = {A ∈ O(s, t) | A has time-orientability +1},
SO(s, t) = {A ∈ O(s, t) | detA = 1},

SO+(s, t) = SO(s, t) ∩ O+(s, t),

the orthochronous, the proper or special and the proper orthochronous pseudo-orthogonal groups. In the case
of s = 1 or t = 1 they are called the orthochronous, proper and proper orthochronous Lorentz groups.

Remark B.13. SO+(s, t) is the connected component of the identity in O(s, t) (Proposition 6.1.17 in [59]).

We will now briefly put aside the various pseudo-orthogonal groups and define the (s)pin groups.
Then we will show that the latter are double-coverings of the former. This formalises the idea that
“an electron needs to be rotated twice before coming back to its original state.” To define the (s)pin
groups, we remark that an element x ∈ Cl(s, t) is invertible if there exists some y ∈ Cl(s, t) such that
xy = yx = 1, and similarly for Cl(n). The open subset Cl∗(s, t) ⊂ Cl(s, t) of all invertible elements forms
a Lie group [59, p. 349], and the (s)pin groups are subgroups of this Lie group.

Definition B.14. We denote

Ss,t+ = {v ∈ Rs,t | η(v, v) = 1},

Ss,t− = {v ∈ Rs,t | η(v, v) = −1},

Ss,t± = Ss,t+ ∪ Ss,t− .

Using this we define the following groups:

Pin(s, t) = {v1v2 · · · vr | vi ∈ Ss,t± },

Spin(s, t) = Pin(s, t) ∩ Cl0(s, t) = {v1v2 · · · v2r | vi ∈ Ss,t± },

Spin+(s, t) = {v1v2 · · · v2pw1w2 · · ·w2q | vi ∈ Ss,t+ , wi ∈ Ss,t− },

endowed with the topology from Cl(s, t). These groups are called the pin group, spin group and or-
thochronous spin group respectively.

Our aim now is to prove that the groups in Definition B.14 are double coverings of the pseudo-
orthogonal groups. For this we write degu = 0 if u ∈ Cl0(s, t) and degu = 1 if u ∈ Cl1(s, t) for any
u ∈ Pin(s, t). Canonically identifying Rs,t as a vector subspace of Cl(s, t) we then have the following.

Proposition B.15. Consider the map R : Pin(s, t)× Rs,t → Rs,t defined by

(u, x) 7→ (−1)deguuxu−1.

This map is well-defined, for any v ∈ Ss,t± the map Rv = R(v, ·) : Rs,t → Rs,t is a reflection in the hyper-
plane v⊥ ⊂ Rs,t, and we get a continuous homomorphism λ : Pin(s, t) → O(s, t) that sends u 7→ Ru.
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Proof. To check that R is well-defined, let v ∈ Rs,t such that η(v, v) = ±1. Then v−1 = ∓1 and deg v = −1.
For any x ∈ Rs,t this gives Rv(x) = −vxv−1 = ±vxv. This shows that Rv(x) = −x if x||v and Rv(x) = x

if x ⊥ v. Indeed, if x = αv then Rv(x) = ±αv3 = ±α(∓v) = −αv = −x, and if x ⊥ v then Rv(x) =
±vxv = ±xv2 = ±x(±1) = x. We thus see that Rv(x) ∈ Rs,t and that Rv(x) is a reflection in v⊥. Since for
u = v1 · · · vr ∈ Pin(s, t) we can write

Ru = Rv1···vr = Rv1 ◦ Rv2 ◦ · · · ◦ Rvr , (B.2)

we conclude that Ru(x) ∈ Rs,t. Moreover, as reflections are elements of O(s, t), it follows from equation
B.2 that λ is a (continuous) homomorphism.

To prove our main result we need the following lemma, which is Theorem 6.5.12 in [59], where the
proof can also be found.

Lemma B.16. Let R ∈ O(s, t) be a composition of reflections in hyperplanes v⊥i with vi ∈ Ss,t± . Then
R ∈ SO(s, t) iff the number of vectors vi is even, and R ∈ SO+(s, t) iff the numbers of vectors vi ∈ Ss,t+
and vi ∈ Ss,t− are both even.

Theorem B.17. The homomorphism λ : Pin(s, t) → O(s, t) defined in Proposition B.2 is open and surjec-
tive with ker λ = {±1}. Moreover, the preimages of SO(s, t) and SO+(s, t) are Spin(s, t) and Spin+(s, t),
which are thus open subgroups of Pin(s, t). Lastly λ restricts to surjective homomorphisms

λ : Spin(s, t) → SO(s, t),

λ : Spin+(s, t) → SO+(s, t).

with kernels {±1}.

Proof. The fact that λ is open and surjective follows from the Cartan-Dieudonné theorem and its proof
(see Theorems 6.5.11 and 6.5.13 in [59]). Our main interest lies in showing that ker λ = {±1}. Suppose
λ(u) = Ru = I ∈ O(s, t). Then degu = 0 since Ru has to be composed of an even number of reflections
(cf. Proposition B.15). We have Ru(ei) = ueiu−1 = Iei = ei for any 1 ≤ i ≤ s+ t. This gives

eiuei = eiueiu
−1u = e2iu = −η(ei, ei)u.

Writing u in the standard basis as u = αei1ei2 · · · ei2k with α ∈ R, k ≥ 1 and taking i = i2k we then get

ei2kuei2k = αei2kei1ei2 · · · ei2kei2k = −αη(ei2k , ei2k)ei2kei1ei2 · · · ei2(k−1)

= αη(ei2k , ei2k)ei1ei2 · · · ei2k = −η(ei2k , ei2k)u = −αη(ei2k , ei2k)ei1ei2 · · · ei2k .

This implies that α = 0, so u ∈ R · 1. But u ∈ Pin(s, t) so u = ±1, which means ker λ = {±1}. The other
statements follow from Lemma B.16 and the definitions of the spin groups in Definition B.14.

Corollary B.18. Since λ is a continuous, open and surjective homomorphism with ker λ = {±1} we can
define a unique Lie group structure on Pin(s, t), Spin(s, t) and Spin+(s, t) such that λ becomes a smooth
double covering of Lie groups.

We end this section by restricting the irreducible spinor representation of the even Clifford algebra
from Proposition B.7 to the orthochronous spin group. We denote it by κ : Spin+(s, t) → GL(∆n) and we
prove its compatibility with Clifford multiplication.

Proposition B.19. The spinor representation of the orthochronous spin group is compatible with Clif-
ford multiplication in the sense that for any u ∈ Spin+(s, t), v ∈ Rs,t, χ ∈ ∆n we have

κ(u)(v · χ) = (λ(u)v) · (κ(u)χ).

Proof. Let ρ : Cl(s, t) → End(∆n) denote the spinor representation of the Clifford algebra. Then we have

κ(u)(v · χ) = ρ(u)ρ(v)(χ) = ρ(uvu−1u)(χ) = ρ(λ(u)v)ρ(u)(χ) = (λ(u)v) · (κ(u)χ).
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B.3. Spin structures and spinor bundles

Now that we have defined the orthochronous spin group as well as the homomorphism λ that makes
it a double covering of the orthochronous Lorentz group, we can finally turn to so-called spin structures
and spinor bundles. It is on the latter that spinor fields are defined. A preliminary definition is in order.

Definition B.20. A pseudo-Riemannian manifold (M,g) of signature (s, t) is called orientable if its frame
bundle can be reduced to a principal SO(s, t)-bundle under the embedding SO(s, t) ⊂ O(s, t), time-
orientable if its frame bundle can be reduced to a principal O+(s, t)-bundle under O+(s, t) ⊂ O(s, t) and
orientable and time-orientable if its frame bundle can be reduced to a principal SO+(s, t)-bundle under
SO+(s, t) ⊂ O(s, t).

Definition B.21. Let (M,g) be an oriented and time-oriented pseudo-Riemannian manifold and denote
the reduced frame bundle by πSO+ : SO+(M) → M. A spin structure on M is a Spin+(s, t)-principal
bundle πSpin : Spin+(M) → M with double covering Λ : Spin+(M) → SO+(M) such that the following
diagram commutes

Spin+(M)× Spin+(s, t) Spin+(M)

SO+(M)× SO+(s, t) SO+(M) M

Λ×λ Λ
πSpin

πSO+

Here the unlabeled horizontal arrows denote the right group actions of Spin+(s, t) and SO+(s, t).

We can thus think of spin structures as double coverings of the reduced frame bundle, fibre-wise look-
ing like λ, such that the actions of Spin+(s, t) and SO+(s, t) are compatible with respect to the covering.
In other words, a spin structure is a λ-equivariant bundle morphism Λ : Spin+(s, t) → SO+(s, t), that
is, a λ-reduction of SO+(s, t) [59, p. 378]. A well-known result shows that a spin structure on SO+(M)
exists if and only if the second Stiefel-Whitney class w2(M) vanishes, and that if there is a spin struc-
ture, there is a bijection of isomorphism classes of spin structures to the homology groupH1(M;Z2) [59].
Proving this is not so relevant for the Higgs mechanism, though it is good to know that Rs,t admits a
spin structure for any s, t ≥ 0. We now turn to sections of the reduced frame bundle.

Definition B.22. A local section e = (e1, .., en) : U → SO+(M) is called an n-bein or vielbein, and a tetrad
specifically for n = 4.

Proposition B.23. Suppose we have a spin structure Λ : Spin+(M) → SO+(M). Then for every vielbein
e : U → SO+(M) on a contractible open subset U ⊂ M there exist precisely two local sections ϵ± : U →
Spin+(M) such that Λ ◦ ϵ± = e.

Proof. The image U ′ = e(U) of the vielbein e is also a contractible open subset diffeomorphic to U
and therefore Λ|Λ−1(U ′) is a trivial two-sheeted covering [59, p. 380]. This two-sheeted covering admits
precisely two sections s± : U ′ → Λ−1(U ′). Defining ϵ± = s± ◦ e then gives the result.

Having defined spin structures we continue with spinor bundles, which are just vector bundles asso-
ciated to spin structures through the spinor representation.

Definition B.24. Let Spin+(M) → M be a spin structure on M and let κ : Spin+(s, t) → GL(∆) denote
the spinor representation (we have dropped the index n on ∆n). Then the spinor bundle is the associated
complex vector bundle S = Spin+(M)×κ ∆. Sections of S are called spinor fields.

Proposition B.25. There exists a well-defined Clifford multiplication on bundles TM × S → S, written
as (X,Ψ) 7→ X · Ψ, which restricts to a map TxM × Sx → Sx at every point x ∈ M and which induces a
multiplication of vector fields with spinor fields.
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Proof. Denoting by ρSO+ the standard representation of SO+(s, t) on Rs,t we have TM ∼= SO+(M) ×ρSO+

Rs,t. This is a basic result from the correspondence between principal bundles and vector bundles by
taking associated bundles and frame bundles. Since S = Spin+(M)×ρ∆we can write the multiplication
TM× S→ S as

(SO+(M)×ρSO+ Rs,t)× (Spin+(M)×ρ ∆) → Spin+(M)×ρ ∆,
([Λ(ϵ), v], [ϵ, χ]) 7→ [ϵ, v · χ].

Here v · χ denotes the standard Clifford multiplication from Definition B.8 and we have used the spin
structure Λ : Spin+(M) → SO+(M) on an element ϵ ∈ Spin+(M). We need to check that this multiplica-
tion is well-defined, for which we use Proposition B.19 on the compatibility of the spinor representation
κ with Clifford multiplication. Let A = λ(u) ∈ SO+(s, t), u ∈ Spin+(s, t), where λ : Spin+(s, t) →
SO+(s, t) denotes the double covering. We have

([Λ(ϵ)A, ρSO+(A−1)v], [ϵu, κ(u−1)χ]) = ([Λ(ϵ)λ(u), ρSO+(A−1)v], [ϵu, κ(u−1)χ])

=([Λ(ϵu), ρSO+(A−1)v], [ϵu, κ(u−1)χ]) 7→ [ϵu, ρSO+(A−1)v · κ(u−1)χ]
=[ϵu, ρSO+(λ(u−1))v · κ(u−1)χ] = [ϵu, κ(u−1)(v · χ)] = [ϵ, v · χ],

since by Definition B.21 of a spin structure we know Λ(ϵ)A = Λ(ϵ)λ(u) = Λ(ϵu).

The following result is conceptually important, as it is at the root of the problem of defining mass
terms for twisted chiral spinors that the Higgs mechanism solves. It can be compared to Corollary B.7
and it follows basically from Proposition B.25 (see Proposition 6.9.13.2 in [59]).

Proposition B.26. If dimM is even, then S = S+ ⊕ S− splits as a direct sum of complex Weyl spinor
bundles defined by S± = Spin+(M)×κ ∆±. Clifford multiplication with a vector then maps S± to S∓.

Before moving on to spin covariant derivatives we note that if we have a local vielbein e : U →
SO+(M) on a contractible open subset U ⊂ M with ϵ± : U → Spin+(M) the associated sections from
Proposition B.23, then if Ψ : U → S is a local section we can write Ψ = [ϵ±, ψ±] with ψ± = −ψ∓ (this
follows from the double cover structure with kernel {±1}). Choosing one we can write Ψ = [ϵ,ψ], but
we do have to check that expressions involving these objects are independent of this choice. Physical
Clifford multiplication is given by ea · Ψ = [ϵ, Γaψ], which is indeed independent of the choice of ϵ±,
since Γaψ is linear in ψ [59, p. 382].

B.4. The twisted chiral spin covariant derivative

We need a way to differentiate spinors on an oriented and time-oriented pseudo-Riemannian manifold
(M,g) equipped with spin structure Λ : Spin+(M) → SO+(M) and Levi-Civita connection ∇LC. Recall
that the tangent bundle can be viewed as an associated bundle TM = SO+(M) ×ρSO+ Rs,t. We denote
by ASO+ ∈ Ω1(SO+(M), so+(s, t)) the connection 1-form on the frame bundle SO+(M) induced by the
Levi-Civita connection. In other words, we have ∇LC = ∇ASO+ , i.e. the LC connection is the induced
covariant derivative of ASO+ . Choosing a local vielbein e = (e1, ...en) : U → SO+(M) and writing out a
vector field Y = Yaea we then have, by the local expression 2.3 for the covariant derivative:

∇XY = (dYb(X) +AeSO+(X)baY
a)eb,

where AeSO+ = e∗ASO+ ∈ Ω1(U, so+(s, t)) is the local connection 1-form. Defining local 1-forms ωab ∈
Ω1(U,R) by ∇ea = ωabη

bc ⊗ ec (η of signature (s, t)) we get AeSO+(X)ba = ωac(X)η
cb [59, p. 384]. Using

the connection 1-form on the frame bundle we define a connection on the principal bundle Spin+(M).
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Proposition B.27. We can define a connection on the principal bundle Spin+(M) →M by

ASpin+ = (λ∗)
−1 ◦ (Λ∗ASO+) ∈ Ω1(Spin+(M), spin+(s, t)),

where λ∗ : spin+(s, t) → so+(s, t) is the isomorphism of Lie algebras obtained from the double covering
λ : Spin+(s, t) → SO+(s, t). This connection is called the spin connection.

Proof. In order to verify that the 1-form ASpin+ satisfies the properties of a connection 1-form we use
the compatibility of the actions of Spin+(s, t) and SO+(s, t) in Definition B.21 of a spin structure. In
particular, for any ϵ ∈ Spin+(M), g ∈ Spin+(s, t) we have Λ(ϵ · g) = Λ(ϵ) · λ(g), so Λ ◦ rg = rλ(g) ◦ Λ.
Using this, we find that for any Y ∈ X

(
Spin+(M)

)
:

r∗gASpin+(Y) = (λ∗)
−1 (Λ∗ASO+((rg)∗Y)) = (λ∗)

−1 (ASO+(Λ∗(rg)∗Y)) = (λ∗)
−1
(
ASO+((rλ(g))∗Λ∗Y)

)
= (λ∗)

−1
(
r∗λ(g)ASO+(Λ∗Y)

)
= (λ∗)

−1
(

Adλ(g)−1 ◦ASO+(Λ∗Y)
)

= (λ∗)
−1
(

Adλ(g)−1 ◦ λ∗ ◦ (λ∗)−1 ◦ASO+(Λ∗Y)
)
= Adg−1 ◦ASpin+(Y).

To check the action on fundamental vector fields, let X ∈ spin+(s, t) and ϵ ∈ Spin+(M). Then we have(
ASpin+

)
ϵ
(X̃ϵ) = (λ∗)

−1 ◦ (Λ∗ASO+)ϵ

(
d

dt

∣∣∣
t=0

(ϵ · exp(tX))
)

= (λ∗)
−1 ◦ (ASO+)Λ(ϵ)

(
d

dt

∣∣∣
t=0
Λ(ϵ · exp(tX))

)
= (λ∗)

−1 ◦ (ASO+)Λ(ϵ)

(
d

dt

∣∣∣
t=0
Λ(ϵ) · λ(exp(tX))

)
= (λ∗)

−1 ◦ (ASO+)Λ(ϵ)

((
λ̃∗X

)
Λ(ϵ)

)
= (λ∗)

−1 (λ∗X) = X.

Here we have used the connection 1-form properties of ASO+ .

Definition B.28. We define the spin covariant derivative ∇ : Γ(S) → Ω1(M,S) to be the covariant deriva-
tive on the spinor bundle S = Spin+(M)×κ ∆ induced from the spin connection ASpin+ .

In a local trivialisation ϵ : U→ Spin+(M) on a contractible open subset U ⊂M as in Proposition B.23
we get a local connection 1-form

AϵSpin+ = ϵ∗ASpin+ ∈ Ω1(U, spin+(s, t)).

Writing a section Ψ ∈ Γ(S) as Ψ = [ϵ,ψ] with ψ : U→ ∆we can write ∇XΨ = [ϵ,∇Xψ], where

∇Xψ = dψ(X) + κ∗

(
AϵSpin+(X)

)
ψ.

Proposition 6.10.9 in [59] then gives us an explicit formula:

∇Xψ = dψ(X) +
1

4
ωab(X)γ

abψ = dψ(X) −
1

4
ωab(X)Γ

abψ,

where γab, Γab are the commutators of gamma matrices from Definition B.9 with raised indices. We are
now in a position to consider the Dirac operator, which is essential for the Standard Model.

Definition B.29. The Dirac operator D : Γ(S) → Γ(S) (also written /D) is defined by

DΨ = ηabea · ∇ebΨ, Ψ ∈ Γ(S),

where · denotes Clifford multiplication. In other words, it is the composition of the maps

Γ(S)
∇−→ Γ (T∗M⊗ S) η−→ Γ(TM⊗ S) ·−→ Γ(S),

where η : T∗M→ TM is the isomorphism induced by the pseudo-Riemannian metric.
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Writing Ψ = [ϵ,ψ] and DΨ = [ϵ,Dψ] we have

Dψ = γa∇eaψ = iΓa∇eaψ = iΓa
(
dψ(ea) −

1

4
ωabcΓ

bcψ

)
,

where ωabc = ωbc(ea). For dimM = n even the spin covariant derivative preserves the splitting S =
S+ ⊕ S−, whereas Clifford multiplication interchanges this splitting, so the Dirac operator D : Γ(S±) →
Γ(S∓) also exchanges right and left spinors for even dimension. So far we have not coupled spinors to
gauge fields. In the Standard Model however, and particularly in the Higgs mechanism, this is neces-
sary. Thus, we consider a principal G-bundle P → M with complex representation ρ : G → GL(V) and
associated vector bundle E = P ×ρ V , and a spinor bundle S→M associated to a spin structure onM.

Definition B.30. The vector bundle S⊗E is called the twisted spinor bundle or gauge multiplet spinor bundle.

Let us consider how we can describe the twisted spinor bundle in a local gauge s : U → P. A section
τ ∈ Γ(E) might then be written locally as τ = [s, v] with v : U→ V . Choosing a basis v1, ..., vr of V we get
a local frame τi = [s, vi]. This basis also allows us to identify V ∼= Cr. With a local trivialisation ϵ : U →
Spin+(M) as in Proposition B.23, a section Ψ ∈ Γ(S⊗E) can then be written locally as Ψ = [ϵ× s,ψ] with
ψ : U→ ∆⊗ Cr. More explicitly, we can write out a gauge multiplet

ψ =


ψ1
ψ2
...
ψr

 : U −→ ∆⊗ Cr, (B.3)

whereψi : U→ ∆. In section 2.3 we explain that the Higgs mechanism is needed to give different masses
to spinors in the same gauge multiplet. We can use this local description to define a covariant derivative
on the twisted spinor bundle, i.e. a covariant derivative of spinors that also “feels” the gauge field.

Definition B.31. Let A be a connection on the principal G-bundle P. We define the twisted spin covariant
derivative ∇A

X : Γ(S⊗ E) → Γ(S⊗ E) by writing ∇A
XΨ = [ϵ× s,∇A

Xψ] with ψ : U→ ∆⊗ V and where

∇A
Xψ = dψ(X) −

1

4
ωab(X)Γ

abψ+ (ρ∗As(X))ψ.

It is important to note that the matrices Γab act on the ∆-part of ψ in the sense that they act separately
on each spinor component ψi, whereas ρ∗As(X) acts on the V-part of ψ, thus mixing the components of
the gauge multiplet [59, p. 390]. This mixing blocks the possibility of directly defining different masses
for multiplet components without using the Higgs field.

Definition B.32. We also have a Dirac operator DA (also written /DA) of twisted spinors defined by

DA = ηabea · ∇A
eb
Ψ,

which is the composition of the maps

Γ(S⊗ E) ∇A

−→ Γ (T∗M⊗ S⊗ E) η−→ Γ(TM⊗ S⊗ E) ·−→ Γ(S⊗ E),

and which can locally be written as DAΨ = [ϵ× s,DAψ] where

DAψ = iΓa
(
dψ (ea) −

1

4
ωabcΓ

bcψ+ (ρ∗Aa)ψ

)
.
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Although we now have a covariant derivative in the presence of gauge fields, we do not yet know how
to deal with chirality. If dimM = n is even then S = S+⊕S− splits by Proposition B.26, and this certainly
happens on Minkowski spacetime R4. In the Standard Model this is important, for the structure group
is actually represented on left-handed and right-handed vector spaces of different dimension, making
the definition of mass terms for twisted chiral spinors problematic, as we show in section 2.3.

Definition B.33. Suppose dimM = n is even such that S = S+ ⊕ S− and let ρ± : G → GL(V±) be two
representations with associated bundles E± = P ×ρ± V±. Then we call

(S⊗ E)+ = (S+ ⊗ E+)⊕ (S− ⊗ E−)

the twisted chiral spinor bundle. We also write

(S⊗ E)− = (S− ⊗ E+)⊕ (S+ ⊗ E−).

Definition B.34. Suppose dimM = n is even and let A be a connection 1-form on P. We define the
twisted chiral spin covariant derivative ∇A on the twisted chiral spinor bundle (S⊗ E)+ locally by

∇A
Xψ = [ϵ× s,∇A

Xψ],

where, writing ψ = ψ+ +ψ−, we have

∇A
Xψ = dψ(X) −

1

4
ωab(X)Γ

abψ+ (ρ+∗As(X))ψ+ + (ρ−∗As(X))ψ−.

Definition B.35. We again define a Dirac operatorDA : Γ((S⊗E)+) → Γ((S⊗E)−) as the composition of
maps in the same way as in Definitions B.29 and B.32. It decomposes into

DA± : Γ(S± ⊗ E+) → Γ(S∓ ⊗ E−)

and locally it is given by

DAψ = iΓa
(
dψ (ea) −

1

4
ωabcΓ

bcψ+ (ρ+∗Aa)ψ+ + (ρ−∗Aa)ψ−

)
.
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[123] P. Forgács and A. Lukács, “Charge screening in the Abelian Higgs model,” The European Physical
Journal C, vol. 81, no. 3, p. 243, 2021.

[124] J. van Wezel and J. van den Brink, “Spontaneous symmetry breaking and decoherence in super-
conductors,” Physical Review B, vol. 77, no. 6, p. 064523, 2008.

[125] J. van Wezel, “Quantum dynamics in the thermodynamic limit,” Physical Review B, vol. 78, no. 5,
p. 054301, 2008.

[126] J. van Wezel, “Broken Time Translation Symmetry as a Model for Quantum State Reduction,”
Symmetry, vol. 2, no. 2, pp. 582–608, 2010.

[127] J. van Wezel, “Phase transitions as a manifestation of spontaneous unitarity violation,” Journal of
Physics A: Mathematical and Theoretical, vol. 55, no. 40, p. 401001, 2022.

117

http://arxiv.org/abs/hep-th/9810002


[128] A. Mukherjee, S. Gotur, J. Aalberts, R. van den Ende, L. Mertens, and J. van Wezel, “Quantum State
Reduction of General Initial States through Spontaneous Unitarity Violation,” Entropy, vol. 26,
no. 2, p. 131, 2024.

[129] N. K. Landsman and R. Reuvers, “A Flea on Schrödinger?s Cat,” Foundations of Physics, vol. 43,
no. 3, pp. 373–407, 2013.

[130] C. J. F. van de Ven, “The classical limit and spontaneous symmetry breaking in algebraic quantum
theory,” Expositiones Mathematicae, vol. 40, no. 3, pp. 543–571, 2022.

[131] C. J. F. van de Ven, G. C. Groenenboom, R. Reuvers, and K. Landsman, “Quantum spin systems
versus Schroedinger operators: A case study in spontaneous symmetry breaking,” SciPost Physics,
vol. 8, no. 2, p. 022, 2020.

[132] N. P. Landsman, “Spontaneous Symmetry Breaking in Quantum Systems: Emergence or Reduc-
tion?,” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern
Physics, vol. 44, no. 4, pp. 379–394, 2013.

[133] M. D’Onofrio and K. Rummukainen, “The Standard Model cross-over on the lattice,” Physical
Review D, vol. 93, no. 2, p. 025003, 2016.

[134] J. B. Conway, A Course in Functional Analysis, vol. 96 of Graduate Texts in Mathematics. Springer,
2007.

118


	Introduction
	History of the Higgs
	History of superconductivity
	The Golden Decade

	The philosophical discussion
	Earman's questions and answers
	Elitzur's theorem
	Does the Higgs mechanism exist?
	Gauge-invariant accounts
	Remnant global gauge symmetries
	Higgs without SSB
	Going non-perturbative

	Research questions and outline

	The Higgs Mechanism in the Standard Model
	Gauge transformations
	Gauges and the gauge group
	Connections, curvature and covariant derivatives

	The Standard Model
	Yang-Mills theory
	Scalar fields
	The Dirac term
	Yukawa couplings

	The full Higgs mechanism
	Massive problems
	Vacuum gauges, vectors and configurations
	Nambu-Goldstone and Higgs bosons
	Unitary gauge
	Mass generation


	The Dressing Field Method
	Dressing fields and dressed fields
	The Higgs mechanism
	Abelian Higgs model
	Electroweak theory with leptons

	The Fröhlich-Morchio-Strocchi approach
	Reflections on the DFM

	Constraints and Global Gauge Symmetries
	Constrained Hamiltonian analysis
	Gauge theories as constrained systems
	Electromagnetism

	Application to the Higgs mechanism
	Hamiltonian formulation
	Global gauge symmetry breaking

	Empirical significance
	Galileo's ship
	Galileo's gauge
	Symplectic underpinnings
	Holism and horizontal symplectic geometry

	Discussion

	Algebraic Quantum Field Theory
	Haag-Kastler axioms
	Representations, folia and all that
	Unitary equivalence and quasi-equivalence
	Folia
	Superselection sectors

	The global gauge group
	Spontaneous symmetry breaking

	Non-Perturbative Results
	Wightman axioms
	Local Gauss laws
	Noether's second theorem
	Locality

	Local gauge quantisation
	The Coulomb gauge
	Abelian Higgs mechanism in Coulomb gauge
	Non-Abelian generalisation

	Conclusion
	Answering the research questions
	Superconductivity and dynamical symmetry breaking
	Suggestions for further research
	Acknowledgements

	Popular Summary
	Functional Analysis and Operator Algebras
	Operators on Hilbert spaces
	Operator algebras
	GNS construction

	Spinors
	Clifford algebras
	The spin group
	Spin structures and spinor bundles
	The twisted chiral spin covariant derivative

	Bibliography

