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Abstract
Can we acquire apriori knowledge of mathematical facts from the outputs of computer

programs? People like Burge have argued (correctly in our opinion) that, for example,
Appel and Haken acquired apriori knowledge of the Four Color Theorem from their com-
puter program insofar as their program simply automated human forms of mathematical
reasoning. However, unlike such programs, we argue that the opacity of modern LLMs and
DNNs creates obstacles in obtaining apriori mathematical knowledge from them in similar
ways. We claim though that if a proof-checker automating human forms of proof-checking
is attached to such machines, then we can obtain apriori mathematical knowledge from
them after all, even though the original machines are entirely opaque to us and the proofs
they output may not, themselves, be human-surveyable.

1 Introduction

The main issue this paper revolves around is what role computers can play in expanding
our purely rational capacities and purely rational knowledge. When we learn a fact from a
computer, should we think of ourselves as merely having done an experiment of sorts and,
thus, at best, having acquired a piece of empirical knowledge? Or can learning something from
a computer sometimes expand our non-empirical knowledge – that is, can it sometimes expand
our purely rational or apriori knowledge?

The obvious case to focus on here is the case of mathematics. Suppose a computer tells
us that some mathematical claim is true. In the right circumstances, do we then know that
mathematical fact on purely rational – that is, apriori grounds? Obviously, the answer to that
question is going to depend on the details of what sort of computer we are talking about. So
we will phrase the question with which we are concerned as follows:

Main Question: Are there situations in which we can acquire apriori knowledge of
a mathematical fact X purely on the basis of a computer outputting the claim that
X is true? If so, what sorts of situations are these?
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This question concerns the acquisition of apriori knowledge purely on the basis of the
computer outputting the claim that something is true. To make clear what is being asked here,
imagine that a computer both outputs the claim that some mathematical fact X is true, as well
as a correct proof of X . If you think that in the right circumstances, merely witnessing the
computer output the claim that X is true gives us apriori knowledge of X , then you think that
in such circumstances, we can acquire apriori knowledge purely on the basis of the computer
outputting the claim that X is true. But if you think, for example, that it is only once we check
the proof of X ourselves that we acquire apriori knowledge of X , then you do not think that
in those circumstances, we come to know X purely on the basis of the computer outputting the
claim that X is true.

Early discussions of our Main Question were motivated by Appel and Haken’s famous
1977 computer proof of the Four Color Theorem [AH89], which is so long that it cannot be
human-checked. Because of this, some thought that the idea that all mathematical knowledge
is essentially apriori had to be rejected and room created for merely empirical or experimental
mathematical knowledge.

However, following the work of Burge [Bur98], we argue in Section 2 that so long as the
running of a computer program can be understood as a mechanized exercise of something like
ordinary human mathematical capacities, the output of a program can indeed give us apriori
mathematical knowledge. We thus follow Burge in claiming that Appel and Haken did indeed
acquire apriori knowledge of the truth of the Four Color Theorem from the output of their
computer program. This means that our Main Question can be answered affirmatively in the
case of the situation faced by Appel and Haken in 1977.

The problem, however, is that the argument of Section 2 does not apply to the output of ma-
chines like deep neural networks (henceforth DNNs) and generative language learning models
(henceforth LLMs), whose inner workings are, in a sense, opaque to us but are, nevertheless, of
increasing value to mathematicians. In Section 3, we argue that outside special cases, we cannot
directly acquire apriori mathematical knowledge from the reports of DNNs or LLMs. A result
of this kind seems to impose a strong limitation on our ability to acquire genuine mathematical
knowledge from AI.

Nevertheless, in Section 4, we argue that mathematicians can overcome this limitation by
applying a transparent proof-checker to an appropriately structured output of a DNN or LLM.
So long as this proof-checker may be understood as a mechanized exercise of human proof-
checking capacities, we claim that we can acquire genuine mathematical knowledge using
opaque DNNs or LLMs from the output of the proof-checker, even though this knowledge may
not be obtained directly from the DNN or LLM itself.

In this way, we arrive at the perhaps surprising result that it is possible to acquire genuine
apriori knowledge of a mathematical fact X purely on the basis of the output of a computer,
where a proof of X has been generated by a process that is entirely opaque to us, and is so
complex that the proof is not human-checkable in any way. This suggests that AI can indeed play
a significant and potentially transformative role in generating genuine mathematical knowledge
and that there is perhaps a larger set of cases than one might expect in which we can answer our
Main Question affirmatively and acquire apriori knowledge purely on the basis of the output
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of a computer.

2 Knowledge of the Four Color Theorem

Discussion of our Main Question began in earnest when, in 1977, Appel and Haken used
a computer to verify the Four Color Theorem (henceforth 4CT) [AH89]. Appel and Haken
argued that to prove the 4CT, it sufficed to verify the 4-colorability of a particular set of 1,834
finite graphs. While this verification can be done entirely mechanically, for larger graphs, it is
extremely time-consuming. Appel and Haken thus used a supercomputer to verify that each
of these 1,834 graphs were indeed 4-colorable, requiring over a month of continual computer
operation. As a result, the successful execution of their algorithm can be understood as giving
a proof of the 4CT. The sheer length of this proof means, however, that it cannot be surveyed
and checked step-by-step by a human mathematician. It remains true today that no human has
produced a proof of the 4CT that can be checked by a human mathematician without the aid
of a computer.

In 1979, philosophers began to reflect on what this meant for mathematics. Tymoczko
[Tym79] argued that as a result, mathematics had now become an empirical discipline in
which proofs could be obtained by performing experiments such as the running of computer
programs.1 In particular, Tymoczko thought that our knowledge of the 4CT rested on an
argument involving the premise

Rel: Carefully written computer programs reliably output true claims.

Tymoczko thought of Rel as a claim stating the reliability of a piece of scientific equipment. It is
thus not the sort of thing that can be established by pure reason. Thus, any knowledge obtained
with the use of Rel could, at most, be empirical. Tymoczko concluded that our knowledge of
the 4CT, while genuine knowledge, was not apriori – that is, not justified purely on rational
grounds – but rather merely empirical. Others, such as [DL80], concurred.

For reasons that we will explain, we do not find this view compelling. Instead, we are more
persuaded by a different way of looking at things due to Burge [Bur98]. Rejecting the views just
described, Burge argued that the output of Appel and Haken’s program gives us an apriori2

(and not merely empirical) warrant for believing the 4CT.3

1Detlefsen and Luker [DL80] further argued that mathematics had in some sense always been an empirical
discipline and that there was therefore nothing philosophically new in Appel and Haken’s accomplishment.

2In calling a justification or warrant apriori, Burge means that it does not depend upon empirical considerations
in any way for its force. Although the question of how to precisely characterize the apriori is vexed (see for example
[Wil13]), in what follows, we only need to rely on the fact that traditional and ordinary forms of mathematical
argument are apriori, and will not need to posit anything controversial about the nature of the apriori.

3Strictly speaking, the output of Appel and Haken’s program only assures us that the given 1,834 graphs are
4-colorable, and to get the Four Color Theorem from this, we need to supplement it with a further piece of human-
generated mathematics. For the sake of brevity, however, we shall be slightly sloppy and talk of the output of the
program as giving us an apriori warrant for believing the Four Color Theorem, even though technically, we (and
Burge) should only claim that it gives us an apriori warrant for believing that the given 1,834 graphs are 4-colorable.
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2.1 Memory as a Rational Resource

To explain why Burge thought this, it will be useful to draw a comparison with the use of
human memory in mathematics. In the process of surveying or creating a mathematical proof,
I typically must use my memory. When proving a theorem, there might come a point where
I wonder whether I have already proven some particular lemma. I pause, recall that I have,
and then continue reasoning. But in that pause, when I ask myself, ‘Have I already proven
this lemma?’ and decide upon consulting my memory that, in fact, I have, does it make sense
to suppose that I am doing an experiment with my brain? Is the resulting knowledge merely
empirical? Can I thus only rely on my memory if I have empirical knowledge of the general
reliability of my memory, for example?

Burge thinks that relying on our memory is not doing an experiment which thereby yields
at most empirical knowledge. His view is rather that we have defeasible, apriori grounds for
believing what we seemingly remember. So when I have a seeming memory of something (such
as proving a lemma), I am entitled on purely rational grounds to believe that I have proved
the lemma. It is not the case that I must first do some memory tests to establish the reliability
of my memory before I have grounds to believe what I seemingly remember. Rather, Burge’s
view is that I have purely rational grounds for believing the lemma, because I have a memory of
proving it. However, these grounds are, of course, defeasible because I might later realize that
I was misremembering. Purely rational grounds are not infallible on this sort of picture.

To be sure, searching my memory for an episode of proving a certain lemma is something like
an empirical investigation. It is only an empirical fact that I proved the lemma this morning on
my whiteboard, and it is only an empirical fact that I have a memory of such a thing happening.
Nevertheless, upon finding such a memory, I have purely rational (i.e., apriori) grounds for
believing the lemma. The key here is to note that I do not infer the lemma from the existence
of the memory, for otherwise, mathematical papers would need to be full of claims about the
memories of their authors, and their results would indeed only be empirically known. Instead,
I infer the lemma simply from the reasoning that has been remembered.

More generally, then, Burge claims that, even when only exercising our rational capacities,
there are various sorts of resources on which we can rely. He calls these rational resources.
When these rational resources offer us some sort of claim, we are defeasibly, apriori entitled
to believe it. So, for example, my memory is a rational resource that I can draw on in my
reasoning. So is the use of my visual system insofar as I am doing something like reading a
proof or my notes. A thermometer, however, is not a rational resource because when I trust
a thermometer, I am doing something that goes beyond mere reasoning. (A thermometer is
instead an empirical resource.) Burge’s general claim is that ’resources for rationality are, other
things equal, to be believed’ [Bur98, p.5]. This extends to the use of these resources even outside
the case of pure reasoning, though we shall not discuss the delicate details of this here.

2.2 Computers as Rational Resources

With this in mind, let us return to Appel and Haken’s computer program. This program is
designed to go through all the 1,834 basic maps and verify their 4-colorability in exactly the way

4



Appel and Haken might. It organizes the basic maps systematically into a list and does exactly
what they might do to check each case, though far more quickly and indefatigably. Appel and
Haken’s computer is, thus, simply a mechanized application of their ordinary human rational
capacities that performs their reasoning for them. Moreover, they understand exactly what
the computer does, in such a way that at each point of the computer’s operation, they can (in
principle) truly say something like ‘the computer is now considering basic map #734, and is at
such-and-such a state of checking for a 4-coloring, just as we might.’ We can capture this aspect
of the operation of Appel and Haken’s program by saying that it is mathematically transparent to
them.

Because Appel and Haken’s program is simply performing their reasoning for them in this
way, Burge thinks of Appel and Haken’s computer as a rational resource. From the fact that
resources for rationality are (other things equal) to be believed, Burge concludes that ‘we have
apriori prima facie entitlement to accept intelligible presentations-as-true, expressed by the print-outs
(of Appel and Haken’s program).’ [Bur98, p.13] By this, Burge means that Appel and Haken
have defeasible, apriori entitlement to accept as correct the output of their program, and thus
apriori grounds to believe the 4CT.

This warrant does not depend on an empirical fact like Rel about the reliability of computers.
Appel and Haken infer the 4CT from the reasoning that the computer has done for them. This
reasoning involves only purely mathematical considerations and not Rel. Nevertheless, the
warrant Appel and Haken have for believing the 4CT is defeasible. For example, Appel and
Haken could come to learn that the computer was malfunctioning, in which case they would
no longer be justified in believing the 4CT (without further reasons). This, however, does not
mean that being justified in believing the 4CT first requires that they have positive empirical
grounds for thinking that the computer was not malfunctioning. Instead, they are entitled
to believe the results of mathematically transparent processes so long as they lack reason for
thinking the relevant resource unreliable. So, it is enough that Appel and Haken had no reason
to think that their computer was malfunctioning.

It is also true that in making the computer and writing the program, Appel, Haken, and
others had to perform all sorts of tests to establish that the computer and program were acting
as they were supposed to. This, too, does not mean that the ultimate warrant for believing the
4CT is merely empirical. Empirical tests are necessary to establish that the computer is really a
device that is capable of performing our reasoning for us through mathematically transparent
processes. Nevertheless, once we are confident of this and use the computer in the way Appel
and Haken did, the ultimate ground for accepting the 4CT is then simply the existence of a
mathematically transparent process demonstrating it. This warrant is apriori insofar as it is
nothing other than a mobilization of human mathematical capacities, albeit in a way that relies
heavily on rational resources.

In sum, in precisely the same way that ordinary mathematicians infer theorems from the
existence of purely mathematical arguments not involving claims about human memory (even
though they had to rely on their memories in convincing themselves of the existence of such
arguments), so too Appel and Haken infer the 4CT from the existence of a purely mathematical
argument that does not make any claim about computers such as Rel (even though they had to
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rely on computers in convincing themselves of the existence of such an argument).
For a useful contrast, Burge considers the case of a mathematical genius whose explanations

are so opaque to us that we have no real understanding of their mathematical reasoning. Insofar
as their reasoning is not mathematically transparent to us, Burge thinks that we do not have
the type of apriori warrant for believing them that Appel and Haken have for believing the
output of their computer. Of course, if the genius’s track record is sufficiently strong, we can
have an inductive warrant for believing them. We do not think, however, that this amounts to
mathematical knowledge. Because of the absence of mathematical transparency, we, therefore,
do not acquire mathematical knowledge from the reports of this sort of genius.

3 Transparency and AI Assisted Proof

So far, we have been talking about old-fashioned computing. More recently, mathematicians
have turned to deep learning models (DLMs) for assistance with particularly challenging math-
ematical problems in, for instance, low-dimensional topology [DVB+21], geometry [TWL+24],
and extremal combinatorics [RPBN+23]. One might expect that, like Appel and Haken, these
mathematicians, too, can gain apriori knowledge from the outputs of their computers in the
right circumstances. However, the notorious opacity of deep learning machines creates a sig-
nificant difference between the use of traditional computers in mathematics and the use of
DLMs in mathematics.

To see this, we need to consider the sense in which DLMs are opaque and, as such, are not
mathematically transparent to us. Creel’s account of algorithmic and structural transparency
in complex computational systems [Cre20] is particularly helpful in this regard.

For Creel, computational systems can be ‘algorithmically’ and ‘structurally’ transparent.4 A
computational system is said to be algorithmically transparent to the extent that the procedures
that govern its behavior are known and intelligible. In the case of the procedures performed
in the proof of the 4CT, the rules at the algorithmic level are just the rules that describe how
a mathematician might check the 4-colorability of Appel and Haken’s basic 1,834 graphs. The
system is structurally transparent to the extent that it is possible to see how this algorithm
is realized in actual code. Thus, a program is structurally transparent if and only if its code
is surveyable, and it is possible to understand how the code generates results in accordance
with the algorithm it instantiates. In cases where a computational system is algorithmically and
structurally transparent (as in Appel and Haken’s program), the reliability of the computational
system at run-time can be (defeasibly) trusted [FR09, Due22] (even though in practice one cannot
transparently inspect it [Hum09]).

While the computations used in Appel and Haken’s program resulted in an unsurveyable
proof, the computations themselves were, on Creel’s account, fully algorithmically and struc-
turally transparent. Thus the computations were mathematically transparent in the sense
discussed in the last section. However, we will argue that the use of both DNNs and LLMs in
mathematics are often neither structurally nor algorithmically transparent.

4Creel’s treatment of computational transparency can be seen as a refinement and extension of computational
concepts of understanding going back to Marr [Mar10].
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3.1 Opacity of Deep Learning

It is often said that DNNs lack epistemic transparency. It is important, however, to distin-
guish the training of a DNN from fully trained models. The procedure for training a DNN is
algorithmically and structurally transparent. In most simple cases, it is algorithmically trans-
parent that training works through the minimization of various loss functions through the
iterative updating of weights on the connections between parameters in the model by means of
the backpropagation of error gradients. There are extensive, well-maintained repositories that
contain various structurally transparent implementations for training a wide variety of network
architectures, and students taking a first class in machine learning are often required to write
their own implementations of, say, the backpropagation algorithm (which, itself, involves a
structurally transparent implementation of the chain rule for calculating the derivative of com-
posed functions). There is nothing mysterious or opaque about how users go about training
such models.

However, fully trained DNNs are said to be epistemically opaque [Hum04, Bog22], meaning
that all of the epistemically relevant factors governing the model’s behavior are fundamentally
unsurveyable. In general, it is not possible to determine or ‘fathom’ [Zer22] in any intelligible
or meaningful sense the algorithmic rules or principles governing the transformation of inputs
to outputs of the model. As such, DNNs are opaque at the algorithmic level and, thus, at
the structural level, as well. This lack of transparency is due, in large part, to the extremely
high dimensionality and nonlinearity of the model, as well as the autonomous, error-driven,
and semi-stochastic processes of weight assignment in guiding the settlement of the final
parameterization of the model.

Of course, it is possible that with a DNN that determines whether Appel and Haken’s
basic 1,834 graphs are 4-colorable, we might be able to say at any moment which graph
is being analyzed. There is also a numerically trivial sense in which the trained model is
transparent insofar as the values on the weights themselves are available to inspection (though
not surveyable) [Lip18, Due23]. However, unlike Appel and Haken’s program, we would not
generally be able to say how that graph is being evaluated, and, thus, such a DNN would neither
be algorithmically nor structurally transparent.

3.2 Mathematical Knowledge with DNNs

Suppose that, as in the case of the 4CT, a mathematician wanted to know whether every graph
in a set of graphs is 4-colorable. Approaching this problem with a DNN, the mathematician
trains a model on a large set of graphs known to be 4-colorable and a large set of graphs known
not to be 4-colorable. The model is then evaluated (in the usual way) on a collection of graphs
not included in the training set. It is shown to correctly classify these graphs as 4-colorable or
not 4-colorable and has, in fact, never misclassified the 4-colorability of any graph.

At this point, the mathematician unleashes their model on Appel and Haken’s 1,834 basic
graphs. After a minute or so, the model returns a result indicating that they are all 4-colorable.
However, given that the model is not algorithmically transparent, we cannot regard this machine
as having performed any sort of reasoning for us because we do not know what algorithm it
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is performing at all. Thus, the system is not mathematically transparent, and so we are not
justified in believing its output on purely rational grounds. Its output, therefore, fails to give
us an apriori warrant for believing the 4CT.

However, because the DNN reliably classifies graphs as 4-colorable or not, we do get strong,
inductively justified belief in the 4CT. Such a result bears some resemblance to a case [DVB+21]
considered by Duede [Due23], where mathematicians use a DNN to guide mathematical at-
tention to promising connections that led to the formulation and proof of a theorem linking
specific algebraic and geometric properties of low-dimensional knots. Cases of this kind ex-
emplify the potential for AI to assist mathematicians in their search for the most promising
conjectures but leave the actual proof of the conjectures to humans. In this case our knowledge
is not a direct result of the DNN, insofar as the ultimate responsibility for the proof lies with
the human mathematician.

Consider, however, a hypothetical case in which a DNN trained to classify graph 4-
colorability classifies all but one of Haken and Appel’s 1,834 graphs as 4-colorable, except
for one which it classifies as not 4-colorable. Here, the model has suggested a counterexample
to the 4CT. Let us suppose that whether it is a genuine counterexample is something we can
check by hand, that we check it, and we find that it is indeed a counterexample. In this case, too,
we now have genuine mathematical knowledge of a mathematical fact (namely, the falsehood
of the 4CT), even though, again, this knowledge cannot be said to follow directly from the output
of the DNN, as it required human verification.

3.3 Mathematical Knowledge with LLMs

LLMs are particularly useful for mathematics as they output reports that are potentially lin-
guistically and mathematically intelligible. However, like DNNs, LLMs are algorithmically
and structurally opaque, and so they are afflicted by the epistemic limitations discussed in the
previous section.

A recent case leveraging LLMs to achieve mathematical breakthroughs in extremal com-
binatorics involves a treatment of the Cap Set Problem in [RPBN+23]. A cap set is a subset
of (Z/3Z)n for which no three distinct elements sum to 0 (mod 3). For each n, the problem
is to determine the size of the largest cap set. It is known that this number must be less than
≤ 3n [Gro19], but its exact value is only known for n ≤ 6. Moreover, the complexity of the
solution space explodes for greater values of n, so brute-force computational approaches are
not feasible.

In [RPBN+23], researchers leverage an LLM to construct a cap set of size 512 for the case
n = 8, a result that is significantly greater than the previously known largest value of 496. The
approach begins by specifying an evaluation function that scores a candidate solution, where
a solution is actually itself a Python program for generating a potential capset. The LLM then
outputs a candidate Python program that is executed and scored by the evaluation function.
If the program executes sufficiently quickly and without obvious error, it is sent to a program
database. The system then samples the database and passes prior output programs to the
LLM as inputs to repeat the generative process. This iterative approach generatively ‘evolves’
candidate programs. Eventually, this process identified a cap set of size 512, which human
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mathematicians verified to be correct.
Unlike in the Four Color Theorem, the solution-generating procedure used here is not

mathematically transparent. However, a human mathematician can easily survey and check its
output. So, in this case, we get apriori knowledge that for n = 8 there is a cap set of size 512.
Nevertheless, as this involves a human mathematician verifying this fact, we cannot say that
genuine mathematical knowledge has been obtained directly from the output of the computer.

3.4 Main Claim

With such examples in mind, we offer the following as a response to our Main Question posed
in 1.

Main Claim 1: If we want to acquire apriori mathematical knowledge directly from
the output of a computer, then what the computer is doing must be mathematically
transparent to us (as in the case of the 4CT). If what a computer is doing is not
mathematically transparent to us (as in the case of typical DNNs or LLMs) then
we cannot directly acquire apriori mathematical knowledge from the output of
a computer, even though we may be able to gain a type of inductively justified
belief from it. However, even if we do not directly acquire apriori mathematical
knowledge from the output of a computer, if the computer outputs a human-
checkable proof, example, or counterexample, then upon checking it appropriately,
we do gain apriori mathematical knowledge (though not directly from the output
of the computer, insofar as human checking was required.)

4 Transparent Proof Checking

The considerations of the previous section might be taken to entail that, while extraordinarily
useful, DNNs and LMMs can ultimately only be of limited use in the acquisition of apriori
mathematical knowledge. In general, their reports offer us inductively justified beliefs at best,
and it is only when they output results that can be human-checked that we can acquire apriori
mathematical knowledge from them.

However, there is a fairly straightforward way to surpass these limits in certain cases. Let us
focus on the case in which a machine (perhaps an LLM) outputs not only some mathematical
claim X but also something it claims to be a proof of X , and that this proof is stored somewhere
on a hard drive. If what has been stored on the drive can be human-checked, then we can check
it, and if it is indeed a correct proof, we thereby gain apriori knowledge of X .

Suppose, however, that the proof of X stored on the hard drive is so long that it cannot be
human-checked. It might then appear that apriori knowledge of X is beyond our reach.

But this is not so. Let us suppose that the stored proof of X , while enormously complex, is
systematically organized as a sequence or tree of propositions of the sort one might encounter in
a mathematical logic class. We can imagine constraining the output of the machine generating
the proof in such a way as to demand that its outputs be formulated in this way (as in [RPBN+23]
where the model outputs all results in syntactically correct Python or, as is increasingly common
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[Avi24], in a formal language instantiated in something like Lean [DMKA+15]). We can even
allow various abbreviations, additional rules, and verbose articulations of the steps in the proof
so that this proof has roughly the form of a human-generated proof,5 even though it was not
generated by a human and is in fact so large that it cannot be surveyed by a human. These
assumptions can be made to hold by adding some overhead to the original program and forcing
the proof of X to be stored in this form.

Although we cannot check this proof ourselves, this does not stop us from writing a proof-
checking program that can. The proof-checking program we are imagining goes through the
proof, verifying that it starts with genuine axioms and that each step is a legitimate application
of some standard logical or mathematical rule. We can imagine a version of this proof-checker
that is, in fact, completely mathematically transparent, approaching the task of checking the
proof in exactly the way a human would. When such a program runs, at any point, we can (in
principle) correctly say something like ‘the computer is now checking inference 15435 and is
verifying that it is a correct application of modus ponens.’

Let us assume that we run this proof-checker, and it reports no errors. Just as Appel
and Haken acquire apriori knowledge of the 4CT from the output of their mathematically
transparent program, so too we acquire apriori knowledge that there is a correct proof of X
from the output of our mathematically transparent proof-checker. From the fact that there is a
correct proof of X , the truth of X follows, and thus we acquire apriori knowledge of X . This is
true even though no human has (or ever could have) any sort of rational grasp on the process
that led to the generation of the proof, and no human is capable of checking the proof stored
on the hard drive.

The important point, however, is that in this case, we have apriori knowledge ofX not based
on the output of the LLM, whose workings are not transparent to us, but based on the output
of the proof-checker, whose workings are transparent to us.

Of course, if the LLM ‘claims’ to have proven X but cannot produce and store the actual
proof of X , then we cannot use a proof-checker in the way just described. In this case, we see
no way to acquire anything other than inductive grounds for believing X .

This leads us to the second of the two central claims of this paper, which may be viewed as
a counterpoint to Main Claim 1.

Main Claim 2: We can (indirectly) gain apriori knowledge from the output of a
computer program that is not mathematically transparent but which stores a (not
necessarily human-checkable) proof of a mathematical claim. This is accomplished
by employing a mathematically transparent proof-checker to evaluate the stored
proof of the claim.

5 General Conclusions

Modern LLMs and DNNs are opaque to us in ways that create obstacles to obtaining mathe-
matical knowledge from them. However, we have argued that if a proof-checker, transparently

5Of course, the proofs of practicing mathematicians are not like this, often involving large leaps and a kind of
hand-wavy skipping over of ‘trivial’ steps [Kit98].
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automating human forms of mathematical evaluation, is attached to such machines, then we
can obtain apriori mathematical knowledge from them. Surprisingly, this applies even in cases
where the original machines are entirely opaque to us and the proofs they output are not
human-surveyable.

A different question for further consideration is to what extent we may gain scientific
[KB23] knowledge outside of mathematics by appending analogous transparent ‘checking’
mechanisms to the output of otherwise opaque algorithms. This would get us closer to over-
coming the perceived problems of confabulation and realizing the ambition of fully automated
scientific discovery.
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