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When Mathematics Became Useful to 
Science 

Word count: 4832 

Mathematics is the “language of nature,” a privileged mode of expression in science. We think it 
latches onto something essential about the physical universe, and we seek theories that reduce 
phenomena to mathematical laws. Yet, this attitude could not arise from the philosophies dominant 
before the early modern period. In orthodox Aristotelianism, mathematical categories are too 
impoverished to capture the causal structure of the world. In the revived Platonism of its opponents, 
the natural world is too corrupt to exemplify mathematical perfection. Modern mathematical science 
required a novel tertium quid, due to Pietro Catena. 

Introduction 
Modern science holds that mathematics is a privileged mode of reasoning and expression. Thus, even 

if not always successfully, science aims for the reduction of phenomena to mathematical laws. But 

what exactly are we saying when we assert, with Galileo, that the book of nature “is written in the 

language of mathematics”?1 We are saying, perhaps inter alia, that mathematics is certain, applicable, 

and productive. First, mathematical demonstrations are certain insofar as the premises necessarily 

entail the conclusions. Second, mathematical constructions and derivations are applicable to natural 

phenomena—they express what happens. Finally, mathematics is productive. The mathematical 

relationship expressed by a “law of nature” is the reason why—the propter quid—the world behaves 

as it does.2 

To give a simple example, consider Newton’s second law of motion: “A change in motion is 

proportional to the motive force impressed.”3 That is, a change of a body’s motion—an acceleration—

will be in proportion to the force applied.  So, if a body of mass 2 units is subjected to a force of 

magnitude 6, it will accelerate at 3 of the appropriate units. This is certain, since it is deduced from 

the law. This is applicable insofar as it is true of actual bodies and their actual motions (ignoring 

 
1 (Galilei, et al. 1960, 184) 
2 This does not entail that the explanation is causal. Also, this is compatible with instrumentalism. For an 
instrumentalist, the mathematical laws just are the best explanations available, and they apply to nature 
insofar as they generate accurate predictions. 
3 (Newton 1999, 416) 
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impediments like friction). And it is productive, since the proportion is the reason why the body 

behaves as it does. 

This raises a question: How did authors come to think that mathematics is certain, applicable, 

and productive in the study of nature? The mathematization of science has been attributed to the 

early modern combination of two disciplines—the natural philosophy taught in the universities and 

the practical mathematics of astronomers, mechanicians, and other professionals. Modern 

commentators agree that this was due, in some mixture, to the resurgence of Platonism arising from 

the humanist recovery of ancient texts (e.g., Plato, Plotinus, Proclus) and the development of 

Aristotelian “mixed sciences,” also invigorated by a recovered corpus (e.g., Archimedes, Pseudo-

Aristotle).4 However, neither Platonism nor Aristotelianism provided an adequate framework for 

this disciplinary combination, a difficulty revealed by a contemporary controversy, the quaestio de 

certitudine mathematicarum, carried out in a series of treatises from the mid-sixteenth to early 

seventeenth centuries. While all parties agreed that mathematics is certain, Platonists held that 

mathematics is too abstract to apply to the natural world, while Aristotelians argued that 

mathematics is too accidental to explain it.  

This paper argues the combination of natural philosophy and mathematics was not motivated 

by Platonism or Aristotelianism, but by a novel approach that emerged during the quaestio. This was 

due to Pietro Catena, who developed a view of mathematics that was at once certain, applicable, and 

productive in natural philosophy. Thus, it was this novel Catena-ism that allowed the reconciliation 

of practical mathematics with natural philosophy and motivated the mathematization of science. 

The Status Quo Ante 
Prior to the early modern period, mathematicians and natural philosophers constituted distinct 

intellectual spheres. Natural philosophers aimed their enquiry at the explanation of natural 

phenomena, guided by Aristotelian method, especially as described in the Posterior Analytics. Here, 

the ideal explanation of some effect—a demonstratio potissima—is a syllogism that simultaneously 

shows the existence of the cause of the effect (the quia) and that the cause was the reason why the 

effect occurred (the propter quid).5 In other words, the effect described by the syllogism’s conclusion 

flows from the nature or essence described by the premises, such that the syllogism’s logical 

necessity recapitulates physical necessity. The demonstration potissima thus explains natural effects. 

 
4 For a historiographical overview, see (Gorham, et al. 2016, 8-14). 
5 (Piccolomini 1565, 102v) See (Longeway 2009). 
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But the expectation that proper explanations be productive introduces a significant 

constraint. In the Aristotelian framework, the propter quid of a natural effect derives from an intrinsic 

nature—“what belongs to something in itself.” 6  For instance, the nature of a heavy body—its 

heaviness—is the relevant cause of its fall. Consequently, proper explanations must refer to the 

natures of the objects under consideration. Conversely, one cannot apply demonstrations outside of 

their own proper domain, since the natures described would not be intrinsic in the other domain. 

This is the Aristotelian prohibition against metabasis.7 Mathematical demonstrations are certain and 

productive when one is examining mathematical objects. But mathematical objects are not objects in 

the natural world. A bronze globe is not a mathematical sphere, so, strictly speaking, the properties 

of the sphere do not imply anything about the globe. In other words, mathematics is not applicable to 

the natural world.  

Even Aristotle recognized this was too strict. There are disciplines where the nature of the 

objects permits the use of mathematics to account for phenomena. These are the mixed sciences of 

practical mathematics; the ancient archetypes being harmonics, optics, astronomy, and mechanics.8 

To allow these to count as legitimate enquiries, Aristotle introduced subordination to work around 

the prohibition against metabasis.9 In a subordinate science, some aspect of pure mathematics is 

combined with a hypothesis drawn from natural philosophy to create a mixed mathematical 

discipline. For instance, astronomy is the geometry of circles and spheres to which is added the 

physical premise that planets move circularly. The mathematics then allows calculation of planetary 

positions.  

By design, subordination makes mathematics applicable. But subordination also makes this 

applicability accidental, and thus not productive. Mathematical astronomy does not describe the 

physical natures of the planets—it concerns only the accidental properties of their motion. The 

mathematics predicts locations, but it says nothing about why they move—nothing about the propter 

quid. That is the concern of natural philosophers. 

Such, in broad outline, was the mid–sixteenth-century state of play. Productivity was the 

concern of natural philosophers, who rejected the applicability of mathematics to their enquiries. 

 
6 Posterior Analytics I.6 (Aristotle 1984, 1:122) 
7 Posterior Analytics I.7 (Aristotle 1984, 1:122) See (Capecchi 2018, 3). 
8 Other fields were later added; e.g., geography, architecture, ballistics, fortification, hydraulics, calendrics, 
gnomonics, perspective, accounting, and provisioning. 
9 Posterior Analytics I.13 (Aristotle 1984, 1:127-29) See (McKirahan 1978). 
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Mathematicians, meanwhile, held fast to the instrumental applicability permitted by subordination, 

but did not aim at productivity. 

De Certitudine Mathematicarum 
At the same time, though, the two disciplinary spheres came into increasingly close contact, primarily 

because of the rising importance of civil and military engineering, which resulted in the 

establishment of university chairs in mathematics. 10  This, in turn, caused some philosophy 

professors to defend their own preeminence by attacking the intellectual standing of mathematics. 

One example is De certitudine mathematicarum disciplinarum by the Paduan philosopher Alessandro 

Piccolomini, published in 1547. Extending a point made by Proclus, Piccolomini offers a radical 

critique of mathematics. Whereas it had been long agreed that mathematics is not productive in 

natural science because it is not applicable (because of subordination), Piccolomini asserts that 

mathematics is not applicable because it is not productive—even in its own domain. More precisely, 

Piccolomini argues that mathematical demonstrations are not potissimae—they do not show the 

reason why their conclusions are true.  

Piccolomini considers, for instance, the 16th proposition of the first book of Euclid’s Elements, 

which shows that an external angle constructed by extending the side of a triangle is greater than 

either internal opposite angle. Piccolomini points out that mathematical objects are not physical 

agents, and there is nothing in the triangle itself that produces the external angle or determines this 

particular property of it; “And therefore there is no one who can say how in the nature [ratione] and 

form of a triangle there is [contained] that the external angle is greater than either interior opposite 

[angle] ....”11 Similarly, Piccolomini notes that a single mathematical proposition might be proven in 

multiple ways.12 For example, Euclid’s proposition I.32, which shows that the angles of a triangle sum 

to two right angles, can be proven either by extending a side (as Euclid does) or by drawing a parallel 

to one side through the opposite vertex (as Proclus does).13 But this shows that mathematical proofs 

do not offer the “proper, unique, and immediate cause” of their conclusions. And this, Piccolomini 

concludes, “will suffice to show that demonstrationes potissimae giving immediate causes cannot be 

found in mathematics.”14 But since potissimae are required by Aristotelian method, mathematics is 

incapable of establishing knowledge. Euclid’s proofs are not productive—the triangle’s properties 

 
10 (Biagioli 1989; Garber 2010) 
11 (Piccolomini 1565, 102v; De Pace 1993, 33) 
12 (Piccolomini 1565, 103r) 
13 (Piccolomini 1565, 103v) 
14 (Piccolomini 1565, 105v) 



5 
 

are not causal consequences of the triangle’s nature. They are only mathematical consequences, and 

that is something different. The logical necessity of mathematics cannot replicate physical necessity. 

Piccolomini does not go so far as to say that mathematics is not certain. He just holds that the 

mathematics offers a different kind of certainty than natural philosophy. Yet if the certainty of 

mathematics is not that of natural science, what is the epistemic basis of mathematical knowledge? 

Piccolomini asks the question himself: 

We therefore concede to the mathematical disciplines the highest order of certainty, 

but we deny that the cause of this ordering is correctly identified by the Latin 

[scholars]. What, then is the true cause of this certainty?15 

This expanded the terms of the ensuing debate, from the applicability of mathematics to its 

productivity and now to its certainty. Piccolomini here problematized something no one had thought 

to worry about—the certitude of mathematical proof. The subsequent quaestio de certitudine would 

hinge upon this issue. It debated the basis of mathematical certainty in order to explain how 

mathematical proof was or was not productive and applicable in the investigation of nature. In other 

words, by seeking the source of certainty in mathematics, the debate’s participants also sought the 

grounds of its use in natural science. 

Aristotle or Plato? 
To defend the certainty of mathematics in the existing philosophical landscape, there were basically 

two ways one could go: Aristotelianism or Platonism. Participants in the quaestio pursued both. For 

the sake of brevity, I will take Piccolomini to represent the Aristotelian faction, Francesco Barozzi the 

Platonists.16 Yet both options reinforce mathematical certainty at the expense of applicability and 

productivity, though in different ways. 

The Aristotelian option is to argue that mathematics is a science of “quantity”—which is an 

attribute of intelligible matter. In the Aristotelian theory of perception, the sensible forms of concrete 

objects—species—enter into the passive intellect via the senses and inform the common sense—the 

phantasia—thereby creating sensory objects.17 So the objects in sensory experience are composites 

of forms and the intelligible matter of the phantasia. Consequently, by abstracting away all the formal 

aspects peculiar to individual sensations, one can uncover the attributes of the intelligible matter 

 
15 (Piccolomini 1565, 106r) 
16 See (Mancosu 1996; De Pace 1993; Giacobbe 1981; Higashi 2018; Feldhay 1998). 
17 See, e.g., (Pasnau 1997). 
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itself, one of which is its quantity. Mathematics is the study of the properties this quantum 

phantasiatum.  

On this view, mathematics is certain because quantity is the “most immediate and manifest 

of all properties.”18 That is, quantity and its properties are obvious.  

Mathematical objects, by abstraction, offer their deepest and innermost selves to our 

senses, and disclose themselves. Insofar as these [mathematical objects] are all 

quantities, they manifestly surrender not only their properties, but also their subject 

and even their very forms to our senses. Quantity is truly the most sensible of 

sensibles [omnium sensatorum sensatissimum].19 

When we construct a mathematical proof, we are manipulating intelligible matter, and we know it is 

conclusive because we can sense the result.20  

This view also yields applicability to nature. Concrete objects in nature are constituted by 

substantial forms in composition with prime matter. Sensory objects are constituted by the sensible 

aspects of the very same forms and intelligible matter. Intelligible matter in the sensorium and prime 

matter in concreta thus have the same potency—the capacity to be actualized by the forms. But 

mathematics is the science of this potentiality. So it is applicable to the prime matter, as well. The 

quantity in the intellect is like the quantity in the physical world. And since prime matter is 

constitutive of all concrete objects, mathematics is universally applicable. 

But that very argument runs against the productivity of mathematics. An attribute of 

potentiality, like quantity, can never contribute the reason why something is actual.21 So mathematics 

is not consideration of substance, but the lack of it: 

it is indeed the case that quantity is truly the most imperfect of all accidents 

[imperfectissima omnium accidentum]; since it alone among all the accidents, not 

having a formal account, … follows [only] from matter itself.22 

 
18 (De Pace 1993, 43) 
19 (Piccolomini 1565, 106v) 
20 Note that this is an early version of the wax argument in Descartes’s second Meditation, where he asserts 
that mathematical extension is the distinctive feature of all sensations and imaginations. 
21 (De Pace 1993, 51) 
22 (Piccolomini 1565, 104r) 
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In other words, mathematics is near useless in natural science—it is about an accident of passive 

matter, not about the active causes that bring the world into being.  

This conclusion gets Piccolomini what he ultimately wants—the denigration of mathematics 

with respect to natural philosophy. As Piccolomini’s ally Pereira bluntly concludes, 

It is my opinion that the mathematical disciplines are not proper sciences. ... [For] the 

mathematician neither considers the essence of quantity, nor treats of its affections 

as they flow from such essence, nor declares them by the proper causes on account of 

which they are in quantity, nor makes his demonstrations from proper and ‘per se’ 

but from common and accidental predicates.23 

The obviousness of mathematics makes it first in the order of knowing (ordo cognoscendi), but it is 

last in the order of being (ordo essendi). It is “most imperfect”; just “common and accidental.”24 Useful 

only as practical rules of thumb, mathematics belongs outside the university, facilitating the manual 

arts. 

Piccolomini’s attack occasioned defenses of the dignity of mathematics. Francesco Barozzi, 

who translated Proclus and lectured on mathematics at Padua, published one such response in the 

Opusculum in quo una Oratio et duae Questiones, altera de certitudine et altera de medietate 

mathematicarum continentur (1560). Here, Barozzi takes the other obvious tack—he Platonizes. On 

this view, mathematics is about forms, not matter. Specifically, Barozzi holds that the act of 

abstraction in the intellect does not simply discover the quantitative properties of intelligible matter; 

rather it recognizes or, better, recollects the existence of real mathematical objects. So, for instance, 

if one abstracts away the material aspects in a perception of a bronze globe, one is not left with 

potential quantity, but with a sphere, a mathematical object subsisting in the intelligible matter.25 For 

Barozzi, mathematics is the science of these abstracted realities. 

This science is certain because, unlike natural substances, mathematical objects are invariant 

and immutable. They are more perfect than the concrete objects of sense, and this perfection is 

inherited by mathematical demonstrations. That is, the certainty of the demonstrations derives from 

the immutability of their subjects. Similarly, mathematical science is also productive. The 

demonstrations capture the causal natures of the mathematical entities. So Euclid’s proofs are 

 
23 (Pereira 1576, 24; De Pace 1993, 91; Mancosu 1996, 13) 
24 (De Pace 1993, 97) 
25 (Barozzi 1560, 37v) 
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demonstrationes potissimae. For instance, the fact that its angles sum to two right angles flows from 

the real, abstract essence of a triangle. On this view, mathematics precedes natural philosophy both 

in the order of knowing and in the order of being. It is not a mere servant to the manual arts, and it 

deserves an exalted place in the university, contra Piccolomini. 

Yet, if mathematics is about perfect mathematical entities, then it does not apply to less 

perfect natural entities. Investigating the mathematical properties of a sphere tells us little—mere 

accidents at most—about the bronze globe. Its behavior cannot be reduced to mathematical 

proportions. Here is Barozzi’s ally Biancani on the point: 

However, we should know that even if these mathematical entities do not exist in that 

perfection, this is merely accidental, for it is well known that both nature and art 

intend to imitate primarily those mathematical figures, although because of the 

grossness [ruditatem] and imperfection of sensible matter, which is incapable of 

receiving perfect figures, they do not achieve their end.… For this reason we should 

hold that these geometrical entities which are perfect in all respects are per se and 

true beings; whereas natural as well as artificial figures, which exist in the nature of 

things, as they are not intended [per se] by any efficient cause, are beings per accidens, 

and are imperfect and false.26 

So the Platonists, in the end, agree with Piccolomini: mathematics is of little use for natural 

science. For Piccolomini, mathematical categories are too impoverished to capture the physical 

structure of the world. For Barozzi, the world is too imperfect to live up to the perfection of 

mathematical truth.27 Either way, we do not get the modern synthesis. Mathematics is certain, of 

course, but either not productive in or not applicable to the natural world. And mathematics and 

natural philosophy must remain separate. 

The Tertium Quid 
Those that maintained that mathematics is useful in the study of nature had to chart a new course. 

The Paduan professor of mathematics Pietro Catena recognized that both Platonism and 

Aristotelianism suffered from the same fundamental fault. Both held that the certainty of 

mathematics derived from its objects—either mere intelligible matter or genuine intelligible entities. 

But insofar as the mathematical objects are distinct from natural things, the certainty of the one could 

 
26 (Mancosu 1996, 180) 
27 (De Pace 1993, 183) 
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never be applied to the other. The epistemic power of mathematical demonstration is confined, in 

different ways, to the domain of mathematical objects, whatever they are (quantities or forms). 

Catena reversed the order of dependence. He held that certainty does not depend on the 

existence of any entity. Rather the intellect, immediately recognizes certainty by the nature of reason 

itself, without sensing or recollecting. That is, there are necessary truths that reveal themselves as 

certain as soon as they are thought.28 Among these are propositions about magnitude—namely, the 

Euclidean axioms and common notions. Catena writes of the “common principles,” such as “if equals 

are taken from equals, the remainders are equal,” that “their truth is known almost by nature—and I 

say ‘almost’ because as soon as the terms of their certainty are known, they are known with 

certainty.”29 Such principles are “incontrovertible and indubitable to the lights of nature.”30 

Catena then applies a version of the ontological argument: since these truths are necessary, 

it follows that their objects necessarily exist. In other words, there are entities that instantiate the 

axioms and common notions. These are the mathematical universals. For instance, there is a 

universal triangle that is described by the proof that the angles of a triangle sum to two right angles. 

The necessity of the proof implies the existence of the angles:31 

in the 32nd proposition of the first book of the Elements, where from a given triangle 

it is concluded that it has three angles equal to two right angles. Not only would it 

show what it is necessary to preconceive [praeaccipere], but also their [the angles] 

being. For from what is given, not only would it signify what is preconceived, which 

is also what is sought, but both what it signifies and what exists ....32 

That is, the proof does not just entail belief (“preconception”) of the property of the triangle, but the 

very existence of the triangle with that property. The logical necessity produces the physical 

necessity. 

The mathematical universals, moreover, are realized by particulars insofar as the particulars 

add constraining conditions to the universal. For instance, a scalene is a triangle with the added 

condition that its sides are unequal. Consequently, the universal properties are inherited by the 

particulars. Everything that is true of triangles in general remains true of the scalene. But this is also 

 
28 (De Pace 1993, 190) 
29 (Catena 1556, 71) 
30 (Catena 1563, 5r) 
31 (De Pace 1993, 192) 
32 (Catena 1556, 66) 
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true, says Catena, of concrete particulars in the natural world. These are also mathematical universals 

under particular physical conditions. The bronze globe is a sphere under the conditioned of being 

bronze.33 So the properties of the globe are identical to the properties of the abstract mathematical 

sphere, and the logic of mathematics extends from demonstrations in the mind to the mathematical 

entities and thence down through the more and more particular instantiations of them. The 

mathematics is applicable to nature insofar as it studies the mathematical properties that concrete 

objects actually possess—there is no metabasis. It is a “univoca ratio” pervading all the sciences.34 The 

study of the rainbow is just a particularization of the study of refraction, which is just a 

particularization of pure geometry.35  

By the same token, Catena’s view yields the productivity of mathematics. As noted above, the 

existence of mathematical objects flows from the certainty of mathematical demonstration. So the 

certainty of mathematical demonstration exerts a kind of causal power. The premises produce their 

conclusions, both in the demonstrations themselves and in the mathematical entities. The logic of 

mathematics, that is, involves rational causes—“causae illativae”—that are prior to and more 

fundamental than the four natural causes, and that generate the propter quid of a demonstration. 

Geometric induction ... always proceeds from [premises that] are true, primary, the 

illative causes of the conclusions [causis illativis conclusionis], and more known—not 

always from [premises that] are immediate, nor from causes that generate being, but 

from those that generate the propter quid of the inference.36  

So, for instance, when the perspectivist shows that an object observed from further away looks 

smaller than when observed from closer, she shows this to be true because the angle on the same 

base diminishes as the vertex moves further away, as demonstrated in Elements I.21. 37  The 

demonstration is the reason why the phenomena are as they are.38 

Continuity and Novelty 
Catena’s arguments echo what came before. Most importantly, he still seeks to satisfy the natural 

philosophical demand that sciences provide the propter quid. Yet Catena offers something genuinely 

novel, insofar as he rejects both the Aristotelian and the Platonic positions. Notice that, on Catena’s 

 
33 (De Pace 1993, 209-11; Catena 1556, 55) 
34 (De Pace 1993, 230) 
35 (Catena 1556, 83; De Pace 1993, 236) 
36 (Catena 1556, 28; De Pace 1993, 218) 
37 (Catena 1556, 84; De Pace 1993, 233-36) 
38 See also (Catena 1563, 7v). 
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view, physical necessity in nature recapitulates the logical necessity of mathematical demonstrations, 

not the other way around, as in Aristotelian method. Piccolomini had held that mathematics does not 

provide demonstrationes potissimae, and this inability to satisfy the canons of Aristotelian method 

entailed the denigration of mathematics. For Catena, the causae illativae precede the Aristotelian 

causes. And the failure to fit them into the Posterior Analytics is an indictment of Aristotle, not of 

mathematics. So mathematics, not Aristotelian method, is the proper means for studying the natural 

world. Mathematical demonstrations are “not only most certain in their own genera, but will 

accustom all other parts of philosophy to their light and offered certainty.”39 For instance, in the 

subordination of the mixed sciences, it is mathematics, not physics, that “render[s] manifest and with 

exactness all the properties of the objects.”40 

There is also an important reversal in the method of abstraction, according to Catena. On the 

Peripatetic view, when we observe a physical object, we must abstract away its essential nature to 

uncover accidental mathematical properties. According to Catena, however, physical properties are 

only accidental impediments to the mathematical understanding of the thing. 

And if the line, which is drawn in ink or produced by pen or pencil, is not straight, one 

should not say from this that Geometry errs because Geometry does not direct 

thought to what is placed before the eyes, but rather that it directs thought to what 

the soul inwardly grasps.... Indeed, Geometry concludes nothing from this colored 

line, as drawn by the pen; but the demonstration follows from the inward concept of 

the line. ... Therefore, the geometrical disciplines are most certain, and not because 

they are sensed, as some falsely say—because they are inwardly grasped.41 

The real truth is not what is observed, and one has to ignore the vagaries introduced by the physical 

stuff. This is significant, because it is a precursor to the error theory by which Galileo and his 

successors set aside “impediments,” such as friction and air resistance, in order to assert 

mathematical laws of nature, which are “inwardly grasped,” not precisely instantiated by what is 

before the eyes. 

Catena’s position might be seen as a kind of Platonism—Catena is advocating the real 

existence of mathematical entities. But Catena is inverting Plato, as well. The certainty of 

 
39 (Catena 1563, 2v) 
40 (Catena 1563, 7r-7v) 
41 (Catena 1556, 72; De Pace 1993, 197) 
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mathematics does not derive from the mathematical entities. Rather, the existence of the entities 

flows from the certainty of mathematics. In other words, certainty is derived from the epistemic 

power of reason itself, not from the ontic perfection of entities. This is as much as rejection of Barozzi 

as of Piccolomini. 

The quaestio de certitudine prepared the ground for the integration of mathematics and 

natural philosophy, where mathematics could function as the language of expression and instrument 

of knowing of natural phenomena. In Catena we first get the modern, scientific attitude toward 

mathematics. He holds that mathematics is at once certain, applicable, and productive. Most 

importantly, since the certainty is sui generis, mathematics is not about any particular domain. It is 

more than just the study of abstract quantity; it is the tool for studying all of nature. The later, better 

known integrations of mathematics and natural philosophy, such as Galileo’s and Newton’s, were 

fruits of a tree planted by Catena. 
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