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Abstract. It has been argued that inductive underdetermination entails that

machine learning algorithms must be value-laden. This paper offers a more
precise account of what it would mean for a “machine learning algorithm” to

be “value-laden,” and, building on this, argues that a general argument from

underdetermination does not warrant this conclusion.

1. Introduction

Machine learning is in many ways biased. Much contemporary work in computer
science and philosophy alike is devoted to charting the various types and entry
points of algorithmic bias in machine learning pipelines (d’Alessandro et al., 2017;
Danks and London, 2017; Hellström et al., 2020; Mehrabi et al., 2021; Fazelpour
and Danks, 2021). Several authors (Karaca, 2021; Biddle, 2022, 2023; Birhane
et al., 2022; Nyrup, 2022; Sullivan, 2022, 2023) have also made a connection to
the philosophy of science literature on the role of non-epistemic value judgments
in scientific inference (Douglas, 2016; Elliott and Steel, 2017; Elliott, 2022). Some
have adopted arguments from this literature to reason more fundamentally that
machine learning algorithms must be value-laden (Dotan, 2021; Johnson, 2024).

Johnson (2024, p. 28), in particular, poses the question “whether it is really pos-
sible for [machine learning] algorithms to be value-free even in principle.” Setting
aside the “[p]roblematic social patterns [. . . ] necessarily encoded in the data on
which algorithms operate,” and setting aside even the “all-too-human nature of the
engineers themselves,” she asks “whether values are constitutive of the very oper-
ation of algorithmic decision-making, such that on no idealized conception could
[machine learning algorithms] be value-free” (ibid.).

In addressing this question, Johnson adopts general arguments from the phi-
losophy of science against the so-called value-free ideal. These arguments rely on
the inductive nature of scientific inference, and the fundamental problem of the
underdetermination of inductive conclusions by the available data; characteristics
that are shared by machine learning algorithms. Johnson writes that “[t]hese ar-
guments result in the view that both scientific and algorithmic decision procedures
are deeply value-laden” (2024, p. 30).

Yet there is something unsatisfying about the lesson that machine learning algo-
rithms must be the product of value-laden choices beginning to end. For one thing,
it seems odd to be led to the conclusion that, simply in virtue of their being proce-
dures for inductive learning, standard learning algorithms like stochastic gradient
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descent or Bayesian updating must already be inherently value-laden. More gener-
ally, when one opens a textbook on machine learning, one finds various theoretical
and methodological—apparently epistemic—motivations for this or that algorithm.
What seems in order, in the spirit of work connecting the ethics and epistemology
of artificial intelligence (Russo et al., 2023; Grote, forthcoming), is a more careful
picture of how both epistemic and non-epistemic factors come together in the design
of machine learning algorithms. One step towards such a picture is to show why a
general argument from underdetermination does not already settle the matter that
learning algorithms must be value-laden. That is the work of this paper.

To be clear, I do not seek to defend a claim that machine learning algorithms are
not, in fact, value-laden. In the course of my analysis I indicate more specific paths
for exposing value-ladenness, particularly there in algorithm design where epistemic
considerations must meet practical demands. My point is that these paths require
more detailed engagement with the actual learning algorithms, and as such require
more work than a general argument from underdetermination.

The plan is as follows. In section 2, I rehearse Johnson’s version of the argu-
ment from underdetermination, which includes an argument against the possibility
of demarcating epistemic from non-epistemic values. In section 3, I set up my cri-
tique by clarifying and delineating the relevant notions of “value-ladenness” and
“machine learning algorithm.” Then, in the main section 4, I show why the un-
derdetermination argument does not suffice to establish, at least as understood
in the terms of section 3, the value-ladenness of learning algorithms. I introduce
and refine my main counterobservations over three levels of decreasing abstraction:
from the (philosophical) theory of Bayesian inference, to the theory of supervised
classification, to a classical algorithm for digit recognition. I conclude in section 5.

2. The underdetermination argument

My focus here is on Johnson’s (2024) argument, as an explicit and representative
articulation of the inference from underdetermination to value-ladenness in machine
learning.1 While the manner I make precise the claim of value-ladenness in section 3
may very well depart from Johnson’s own view,2 I take her reasoning as summarized
here to remain representative of how the argument from underdetermination goes,
and as such it serves as the backdrop to my critical analysis of section 4.

Johnson’s reasoning, then, from “adopting arguments against the value-free ideal
in science and extending them to the domain of machine learning” (2024, p. 29), is
that underdetermination implies the need for certain canons of inductive inference
(section 2.1) and that these canons introduce non-epistemic values (section 2.2).

2.1. Problems and canons of inductive inference. Johnson starts by tracing
the origin of the value-free ideal in the rejection of a standard of objectivity that is
clearly too strong. Namely, no interesting scientific inference can be based on “just
the facts” or the evidence only. The “raw data” (even granted such a thing exists)
must underdetermine, essentially by definition, more general hypotheses we seek to

1Another is Dotan’s (2021), which I discuss briefly in section 4.2.3 below. Similar ideas are

expressed in works like (Ratti, forthcoming). The purported philosophical lesson has already made

it to machine learning textbooks: “the use of inductive inference implies that machine learning
models are deeply value-laden” (Prince, 2023, p. 432).

2I will indicate possible departures either in the text or in footnotes.
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infer. This is the problem of underdetermination of theory by evidence, which, as
Johnson observes, is rooted in Hume’s problem of induction (2024, pp. 30f).

Johnson notes two characteristics of inductive inference, or any inference that
“goes beyond the information given in the premises.” First, and again essentially by
definition, “induction, unlike deduction, fails to guarantee truth.” Second, and this
was Hume’s concern, induction differs from deduction in its justification. Whereas
“the justification of deduction is a priori and necessary [. . . ] the justification of
induction is contingent—it depends on the world being a certain way” (2024, p. 32).
These observations imply that whenever we make inductive inferences in science or
beyond, we must do this by “making non-evidential assumptions” (ibid.). Johnson
concludes that “any domain of inquiry in which we attempt to draw conclusions
on the basis of limited data [. . . ] therefore comes with its own set of assumptions
on which it relies,” and she “call[s] this broad collection of assumptions in different
domains ‘canons of inductive inference’” (ibid., p. 33).3 The canons of inductive
inference are “necessary means of overcoming underdetermination” (ibid.).

This raises the question which canons “scientists need to adopt in order to ac-
complish the aims of science” (2024, pp. 33f), and this, according to Johnson,
is what the debate within the philosophy of science over the value-free ideal has
centred on: “which canons are acceptable and which are impermissible” (ibid., p.
34). “A canonical answer to this question,” Johnson continues, “was provided by
Thomas Kuhn” (ibid.). The list of “theoretical virtues” or “epistemic values” he
put forward (including accuracy, fruitfulness, consistency, breadth of scope, and
simplicity) “was taken to provide at least a benchmark answer to the question of
which canons scientists ought to adopt” (ibid., p. 34).4

At this point Johnson notes, with Douglas (2016, p. 611), that a more apt label
for the value-free ideal would be the “epistemic-values-only-in-scientific-inference
ideal.” Namely, first, “there will always be some role for ‘values’ (or canons (or
biases)). However, those values (or canons (or biases)), according to the ideal,
will be limited to the epistemic” (Johnson, 2024, p. 35). Second, “the relevant
focal point of debates surrounding the value-free ideal is scientific inference” (ibid.).
Everyone agrees that “values can guide some aspects of scientific practice” (like the
choice of research project), but these aspects “fall ‘outside’ of inductive inference
itself” (ibid.). Johnson therefore explicitly limits scope to “what seems the best
possible candidate for defending the value-free ideal, inference itself” (ibid.).

The relevance of the story so far to machine learning is, of course, that the di-
alectics are supposed to be analogous. First of all, “as inductive decision-making
procedures, machine learning algorithms are subject to these same problems of in-
duction and underdetermination” (Johnson, 2024, pp. 36f).5 Second, this means
that here too Kuhnian canons must come into play: “[i]f program engineers adhere

3Johnson follows Douglas (2016, p. 610) in this use of the term “canons of inference,” originally

due to Levi (1960). She uses the term interchangeably with “biases,” to be understood in a
“normatively neutral” manner (2024, fn. 12; following Johnson, 2020; Antony, 2016), and, later

on, with “epistemic values.”
4Kuhn introduced this list as “standard criteria” for theory choice (1977, p. 322), which “func-

tion not as rules, which determine choice, but as values, which influence it” (ibid., p. 331). Later
authors have given different lists (e.g., McMullin, 1984; Longino, 1990), and have also used differ-
ent terms to refer to these kind of criteria (e.g., “epistemic factors,” McMullin, 1984; “cognitive

values,” Laudan, 1984; “constitutive values,” Longino, 1990).
5Johnson (2024, fn. 23) makes reference here to the “No Free Lunch Theorem,” which I will

discuss in sections 4.2.2 and 4.2.3 below.
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to the value-free ideal, then they are apt to produce programs that draw conclu-
sions from some dataset in ways that maximize accuracy, fruitfulness, consistency,
breadth of scope, and simplicity” (ibid., p. 37). Hence, objections to the value-free
ideal in science will likewise “apply to the adoption of the value-free ideal in the
production, use, and evaluation of machine learning programs” (ibid, p. 38.).

2.2. Against epistemic values. The next step is that even the “epistemic-values-
only-in-scientific-inference ideal” cannot be maintained. Johnson here turns to
arguments in the philosophy of science that “strive to show that even in principle,
this ideal is unattainable” (2024, p. 36). There are two “standard arguments”
she reviews: the argument against the possible demarcation of epistemic and non-
epistemic values (section 2.2.1) and the argument from inductive risk (section 2.2.2).

2.2.1. The argument against demarcation. Longino (1996) argues against a neat
boundary between epistemic and non-epistemic (or “cognitive” and “non-cognitive”)
values.6 Johnson distinguishes two interpretations of Longino’s arguments.

The “most straightforward” interpretation, which Johnson (2024, p. 39) dubs
the justification argument against demarcation, highlights the socio-political values
that must drive the “meta-decision” what canons to select. Demarcation is un-
tenable “if your justification for choosing an epistemic virtue over a non-epistemic
virtue (or vice versa) depends on social and political values” (ibid.). Johnson offers
as an illustration how Longino (1996, p. 51) pits the Kuhnian virtue of external
consistency (that is, consistency with accepted theory in other domains) against the
theoretical virtue of novelty defended in feminist philosophy of science. The novelty
criterion has a socio-political basis, namely “the need for theoretical frameworks
other than those that have functioned in gender oppression by making gender in-
visible.” But on the same par, “external consistency, in a context in which theories
have had that function, perpetuates this invisibility. Those satisfied with the status
quo will endorse this criterion” (ibid.). Thus, Johnson writes, “in both cases socio-
political values guide us [. . . ] in accepting the canons that we do,” which “renders
a strict demarcation between the two lists on the grounds that one set is value-free
untenable” (2024, p. 39).

Johnson’s second, “more subtle” interpretation, is the constitutive argument,
which concerns “the natures of the values themselves” (2024, p. 39). Demarcation
is untenable “if the adoption of a seemingly epistemic virtue in a particular context
depends constitutively on the socio-political features of the context” (ibid., p. 40).
Johnson here gives the example of a sleeping drug that was approved despite the
failure of clinical trials to take into account the metabolic differences between men
and women, leading to women taking too high doses. The assumption that the
male metabolic system is paradigmatic is a commitment to the value of simplicity,
but one which “imbibe[s] the very socio-political values” on which existing male
privilege is built (ibid.).

Returning to the context of machine learning algorithms, the demarcation argu-
ment critizes appeal to the value-free ideal in choosing certain methods over others.
The adoption of certain canons or values in such choices itself calls for justification,
and “[i]t is in providing this further justification that program engineers will likely

6Longino’s argument was anticipated by Rooney (1992), who critizes the “relatively firm dis-
tinction [that] is still endorsed” between “constitutive” and “contextual” values by Longino (1990).
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have to appeal to facts that go beyond the purely epistemic,” including “consider-
ations about the overall aim of the program and the context in which it is intended
to be used, facts which themselves depend on social and political factors” (Johnson,
2024, p. 43). But by the justification interpretation of the demarcation argument,
“any further justification that involves social or ethical considerations will render
even those first-order decisions value-laden” (ibid.). Further, by the constitutive
interpretation, “even abiding by a seemingly pure epistemic list of considerations
when making design decisions might usher in socio-political values” (ibid.).

2.2.2. The argument from inductive risk. Douglas (2000) argues that the presence
of inductive risk, or the chance of being wrong in inductively accepting a scientific
hypothesis, necessitates a call on non-epistemic values.7 In Johnson’s words, the
canons of induction are “inevitably fallible,” so “in all cases where we adopt canons
of inference, i.e., in all cases of induction, we run the risk of getting things wrong”
(2024, p. 44). As the risk of being wrong has real-world consequences, “the threshold
of confidence can only be established by appeal to ethical values, thus rendering
the decision to adopt any particular hypothesis value-laden” (ibid., p. 45).

This applies “equally well, if not more so, in the case of machine learning pro-
grams” (Johnson, 2024, p. 45). For instance, in the case of an image recognition
program to distinguish human from non-human shapes, you would accept a lower
accuracy if the program is used to automatically turn on your office light, than if it
is used in a self-driving car to avoid collisions. “Algorithmic design choices about
how to manage error therefore inherently involve values” (ibid., p. 46).

2.3. A look ahead. None of the arguments that Johnson draws from are uncon-
troversial. For instance, Steel (2010) defends, against the demarcation argument, a
distinction between epistemic and non-epistemic values; and Ward (2021) reasons
that at least on one interpretation of “value-ladenness” the inductive risk argument
is not plausible. I will in my critique call upon some of this existing work. However,
my main strategy is to precisify what the underdetermination argument looks like,
and where it fails, in the specific case of machine learning algorithms.

By “the underdetermination argument” I mean Johnson’s overall argument,
namely that the inductive gap implies the need for further non-evidential factors
(the argument step of section 2.1) which must be non-epistemic values (the argu-
ment step of section 2.2).8 My strategy will be to point out how the inductive gap
at least could be bridged by epistemic factors, and why the demarcation argument
does not succeed in refuting this possibility.9

7The pedigree of this argument is (Churchman, 1948; Rudner, 1953). For modern versions, see

(Havstad, 2022, sec. 5; Brown and Stegenga, 2023; Brown, 2024).
8As noted by Elliott (2022, p. 19, fn. 10), there is no general agreement on how precisely

different arguments (or argument steps) against the value-free ideal relate. For instance, Elliott
himself presents the “gap argument,” or the reasoning that underdetermination leaves a gap to

be filled by values, as distinct from the “error argument,” the argument from inductive risk.
He places the demarcation argument under the header of the gap argument; in contrast, Douglas
(2016) puts the gap argument under the header of the “descriptive challenge,” which she sets apart

from the “boundary” (demarcation) and the “normative” (error) challenge. Others treat the error

argument as a special case of the gap argument (Biddle, 2013, fn. 3; ChoGlueck, 2018). I here
follow Johnson, trusting that her presentation (based on Douglas, 2016) is not too controversial.

9Johnson qualifies her claim of the in-principle value-ladenness of machine learning algorithms
by restricting the “range of conceivable algorithms” to ones that are in some sense for “real-world

use” (2024, pp. 28f, fn. 3), but by the conclusion she appears to have walked back her claim
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My focus (like Johnson’s) in the second step will thus be on the demarcation
argument, rather than the inductive risk argument. Indeed, I think that, in the case
of machine learning algorithms, the question of the inductive inference itself could
be separated from the question of acceptance, blocking the inductive risk argument
at this level.10 At least, this is so on my proposed way of making the question of
the value-ladenness of learning algorithms more precise, to which I turn now.

3. The value-ladenness of learning algorithms

In order to evaluate the underdetermination argument for the value-ladenness
of machine learning algorithms, we need to clarify the notions of “value-ladenness”
(section 3.1) and “machine learning algorithm” (section 3.2). An example of an
actual learning algorithm serves to make things more concrete (section 3.3).

3.1. Values, choices, and reasons. What does it mean for an algorithm to be
value-laden? In the original debate about values in science it has been a recurring
complaint that the notion of (non-epistemic) value is not clearly delineated, and
newer work still flags this as a major challenge (Biddle, 2013; Ward, 2021; Elliott
and Korf, 2024). Johnson also does not analyze the notion further. I will here
commit the same sin: I will not attempt a more precise account of the concept of
value. However, I will adopt a useful taxonomy recently proposed by Ward (2021),
who disambiguates different ways in which scientific choices can be value-laden.11

Ward takes it for granted that in the original debate, the role of values concerns
scientists’ choices (like the choice to accept a certain hypothesis). In the case of
machine learning algorithms, I think it is also natural to analyze value-ladenness
in terms of choices. Not the choices of the algorithm itself (whatever that might
mean), but the choices of human engineers in how to design or construct a certain
algorithm. I will take it that an assertion that an algorithm is value-laden is really
an assertion about the values involved in such choices.12

Ward distinguishes two broad categories of how values relate to choices. To be-
gin, values can stand in a causal relationship to choices. Values can act as causal
effectors in bringing about choices. Moreover, in the other direction, values can
be affected goods, causally impacted by certain choices. Ward argues that, at least

somewhat further, writing that “machine learning programs [. . . ] are value-laden to the extent

that they are connected to and dependent on matters that we care about as human beings”
(ibid., p. 56). I simply focus on what follows from the general underdetermination argument she
gives, and while my analysis in the main section 4 starts from an abstract theoretical perspective,

ultimately my interest is also in “real-world” algorithms.
10Such a separation is of course the classical response to the inductive risk argument, originally

due to Jeffrey (1956) in a Bayesian picture. Note that I am not using this strategy to try and resur-
rect a version of the value-free ideal for machine learning. Since I will be narrowly concerned with

the learning algorithm, I think that, in the taxonomy by Brown (2024) of possible responses (and
their failure) to the modern inductive risk argument, the current work is closest to what Brown
calls “partial rapprochements,” or “specifying value-laden and value-free moments of scientific in-

quiry” (ibid., p. 22). Brown’s view is that this strategy rather addresses the “value-management

question,” which I am happy with. Ultimately, the purpose of this work is to get a clearer picture
of how epistemic and non-epistemic factors interact in the design of learning algorithms.

11My concern, like Ward’s, is with the role values play, rather than what values really are (cf.
Elliott and Korf, 2024, p. 7).

12This is also consistent with what Johnson writes about the role of values in machine learning:
the demarcation and the inductive risk argument are applied to the “decision points left up to

[machine learning engineers]” (2024, p. 43) and their “[a]lgorithmic design choices” (ibid., p. 46).
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when it comes to choices that run inductive risk (which is to say, where “poten-
tial errors have practical consequences outside of science,” 2021, p. 58), claims in
either direction of the existence of value-ladenness in the causal sense are trivial
and so uninteresting. If we plausibly assume that any choice to pursue a certain re-
search project is value-laden, we already have that “every part of science is causally
downstream of values” (ibid., p. 60). Furthermore, the claim that choices that run
inductive risk affect goods in the world is “basically tautological” (ibid.).13

When it comes to the question of the necessary value-ladenness of machine learn-
ing algorithms, I likewise think that the causal interpretation is trivial and therefore
not so interesting. Save for algorithms imagined “in purely academic abstraction”
to operate “wholly divorced from human endeavors,” which Johnson (2024, p. 56;
pp. 28f, fn. 3) rightly sets apart, machine learning algorithms are part of pipelines
that start with real-world learning problems and end with real-world consequences.
Just taking the one direction, choices to embark on such problems with machine
learning are not purely epistemic, and these choices obviously precede and causally
affect the further choices of design and use of the actual machine learning algorithm.

I will therefore focus on Ward’s other category, which is in terms of reasons.
Namely, values can provide reasons for choice. Following a distinction made in the
philosophy of action, these reasons can be either motivating or justifying. Motivat-
ing reasons are simply “the reasons for which a person does something or decides
to do something” (Bond, 1974, p. 335). In contrast, justifying reasons are “reasons
supporting ‘ought’ judgments” or “reasons for or against” doing or deciding some-
thing (ibid., p. 334). The first type of reasons are tied to a person’s “desires, beliefs,
and emotions,” whereas the second are “tied to the world beyond” (Bond, 1983,
p. 30, also quoted by Ward, 2021, p. 55). Ward gives as an example a politician
who votes in favour of expanding healthcare benefits for elderly people. He owns
a nursing home company himself and the expansion is bound to make him money:
this is actually his motivating reason for voting in favour. Nevertheless, he may
cite as a reason that something needs to be done to redress healthcare inequalities
and deficiencies: this is a justifying reason.

In my discussion below, I will not pin down Johnson’s argument to either inter-
pretation. I will instead in each step consider both of Ward’s ways of understanding
values as connected to reasons for choices: as motivating and as justifying reasons.

3.2. Inference itself. In posing the question of value-ladenness, Johnson seeks to
isolate the actual algorithm from other stages of a machine learning pipeline, like
the stage of training data selection. Moreover, her question specifically concerns the
algorithm’s “inductive inference itself” (2024, p. 35). I will follow her in seeking to
narrow down the question in this way. However, I think her own account still leaves
ambiguous what stage in a machine learning pipeline the inductive inference—and
indeed the algorithm—is supposed to correspond to.

3.2.1. The machine learning algorithm? Biddle (2022) gives an account of epis-
temic risks and value judgments in the various stages of a typical machine learning
pipeline (and in particular for recidivism-prediction systems). Biddle argues that
“developers must navigate epistemic risk that reflects values at (at least) the fol-
lowing stages: (1) problem identification and framing, (2) data decisions and model

13Of course, as Ward is also careful to note, it is still worth studying how specific scientific
choices were affected by or lead to specific values. Also see Ratti and Russo (2024).
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competencies, (3) algorithm design: accuracy and explainability, (4) algorithm de-
sign: conceptions of fairness, (5) algorithm design: choices of outputs, and (6)
deployment decisions about transparency and opacity” (ibid., p. 322). As a way
towards precisifying our question, let us ask: in Biddle’s taxonomy, what stage or
stages does the question of the value-freeness of the algorithm actually pertain to?14

Stage (1) of problem identification/framing clearly precedes the stage of the
algorithm, and is a typical point of entry of value judgments that we here want to
put aside. The same holds for decisions about the data sets used for training and
for benchmarking, located at stage (2). It gets more interesting with the stages
(3) to (5), which are all three prefixed “algorithm design.” Just from this label,
it seems these stages must be relevant to our question, given our understanding of
values as pertaining to choices in algorithm design.

There is, however, an ambiguity in Biddle’s understanding of the relevant notion
of “algorithm.” He first writes that a “machine-learning [. . . ] algorithm, in contrast
to a traditional algorithm, is one that ‘learns for itself’ in a bottom-up manner on
the basis of data” (2022, p. 322). This is a straightforward description of the notion
of a learning algorithm: an algorithm that on the basis of training data produces a
certain output, like (in a classification problem) a classifier. The output of a learning
algorithm, when the training is done, is also called the machine learning model. By
the end of the same section, however, Biddle appears to use the term “algorithm”
to refer, not to the learning algorithm, but to the learned model. In discussing the
training of a deep learning model, and a standard learning algorithm that iteratively
updates the deep network’s parameters (which determine the model), he writes that
each adjustment in weights corresponds to a “change in the algorithm,” and that
when “the training stage has ended [. . . ] the algorithm is fixed” (ibid., p. 333).

3.2.2. The trained model. It is, for instance, clearly the latter view of the algorithm
as the learned model that is at stake in Biddle’s stage (4), the evaluation of fairness.
The conception of algorithmic fairness that Biddle links up to here is about formal
definitions of disparate impact in terms of statistical properties of learned classifiers
or predictive models.15 For example, the notorious COMPAS recidivism-prediction
system, which Biddle also focuses on (2022, sects. 4–5), was charged with failing to
satisfy the criterion of equalized odds, meaning, roughly, that false positive and false
negative rates were not the same for different sensitive groups.16 In fact, Johnson
herself also brings in COMPAS and algorithmic fairness as an “application” of her
general argument to a concrete case (2024, sect. 3.3). She also does not clearly

14As mentioned in the introduction, there exist several efforts in the computer science and the
philosophy literatures to chart the biases entering at various stages of a (typical) machine learning

pipeline, including more detailed and principled taxonomies than Biddle’s (e.g., d’Alessandro
et al., 2017 use the lens of the CRISP-DM standard for model building and deployment). I follow

Biddle’s stages here because they are at a helpful level of coarse-grainedness for clarifying the

question at hand, namely what aspects are part of the actual machine learning algorithm.
15For entries to this literature, see Barocas et al. (2023); Pessach and Shmueli (2022).
16Strictly speaking criteria of algorithmic fairness are not just properties of a model, but also

of (an independent estimate of) a ground truth. The COMPAS system was later shown to satisfy
a criterion of predictive equity, meaning, roughly, that the proportion of individuals with the same

risk score who recidivate is the same for different sensitive groups. Subsequent work showed that
in non-trivial cases these two criteria are mutually exclusive, so that there is not only a trade-off
between accuracy and fairness, but also between different fairness criteria (Biddle, 2022, sect. 3d).
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keep the two different views on what is the relevant algorithm separate, or indeed
defaults to a view of the relevant algorithm as the learned model.17,18

To cast our problem as the value-ladenness of learned models has the advantage
of an apparent direct parallel to the original debate about values in science. Where
the question there mainly concerned scientists’ choices for (acceptance of) certain
hypotheses or theories, the question would now be about developers’ choices for
(acceptance of) certain machine learning models. But where exactly are the choices
made in the latter case? Perhaps the most obvious place is the after-training stage,
when the model is evaluated. In the typical machine learning procedure, one trains
a model and then evaluates the error (and perhaps additional criteria like fairness)
on a test set. An important kind of choice is the decision that the test error is good
enough, and in that sense to accept the model. Since this decision will normally
take into account the model’s intended use, we here also already find ourselves at
Biddle’s final stage (6), the stage of deployment; and at a natural place for launching
the argument from inductive risk.19

However, this choice, whether or not to accept an already trained model, does
not really seem to be the place of “the inference itself” in machine learning. More
naturally, “the inference itself” pertains to how the model is arrived at in the first
place: the model construction.20 Now we can analyze the question of the value-
ladenness of a machine learning model by also taking the various development
choices in its construction into account. This includes the choice for the learning
algorithm. But this also includes, for instance, the choice for the training data:
the data is crucial in what the final model looks like. The problem with setting up
the question in this way is that we end up in a similar situation as with the causal
interpretation of values: it makes the question trivial. If the value-ladenness of a
learned model is indeed already a matter of the values involved in early stages like
data selection, then no argument from underdetermination is required: the question
is settled as soon as we (plausibly, cf. Biddle, 2022, sect. 3.b) accept such choices
are inevitably value-laden.

3.2.3. The learning algorithm. I think that at this point the natural thing to do is
to explicitly restrict attention to what is, after all, the core inductive inference step
in machine learning: the actual learning step, executed by the learning algorithm. I
think that when we ask about the value-ladenness of machine learning algorithms,
and particularly what follows from underdetermination of “the inference itself,”

17Initially, Johnson specifies “‘machine learning programs,’ ‘algorithmic decision-making,’ and

‘algorithms’” as a “broad class of automated programs that function by [. . . ] ‘learning’ from
patterns manifest in the data [. . . ] in order to build a predictive model” (2024, fn. 6), which

suggests the notion of learning algorithm. But her discussion of the COMPAS case, and also her
response to objections to the argument from inductive risk (emphasizing “how these programs are
used for decision making”, ibid., pp. 51f), suggests that the value-ladenness concerns the models.

18As a matter of fact, the infamous COMPAS system “is not a ML model—it was not created
by any standard ML algorithm. It was designed by experts based on carefully designed surveys and

expertise” (Rudin, 2019, p. 209; also see Rudin et al., 2020). So, as an illustration or application

of an argument for the value-ladenness of machine learning algorithms, irrespective of one’s view
of what “the algorithm” actually is, the COMPAS case is not the most fortunate choice.

19As follows: the choice of what is good enough is inevitably also an assessment of practical

consequences of model errors, which must involve non-epistemic values.
20Here I might be departing from Johnson’s own view. In fact, she immediately clarifies

“inductive inference itself” as “the point at which we decide to accept or reject some conclusion”
(Johnson, 2024, p. 35), which might be interpreted as pertaining to the model acceptance step.



10 STERKENBURG

the natural interpretation of this question adopts the original view of what is the
relevant machine learning algorithm: not the learned model, but the actual learning
algorithm.21 In this paper I will therefore consider the question whether it follows
from underdetermination that learning algorithms must be value-laden, that is,
whether it follows that non-epistemic values must enter as reasons for choices of
design of learning algorithms.

3.2.4. Inference itself, conclusion. To further clarify the scope of this question,
let me reconnect to Biddle’s (2022) taxonomy and a few particularly contentious
aspects of algorithm design. Biddle’s stages (3)–(5) of algorithm design, recall,
have to do with the model’s interpretability, with the model’s fairness, and with
the model’s outputs. One might again say that as aspects of models, these stages
primarily concern choices of evaluation and acceptance of trained models.22 Yet
that is too quick: these aspects can clearly already play a role in designing the
learning algorithm. This is quite obvious for the choice of outputs; and the same
holds for a related design choice which Biddle does not discuss, but others in this
context do, namely the choice of cost or loss function.23 But also in the case
of fairness, for instance, there exist various in-processing techniques to optimize
towards certain fairness criteria during the learning process, particularly again by
choice of loss function (Pessach and Shmueli, 2022, sect. 4.2; Mehrabi et al., 2021,
sect. 5); so that there is here a clear sense in which a choice of fairness metric is
part of the learning algorithm design.

However, there is also something odd about viewing fairness criteria as canons
of induction necessary to bridge underdetermination, as Johnson (2024, p. 47) sug-
gests. An alternative perspective is that rather than assumptions needed to bridge
the inductive gap, fairness criteria give a certain refined accuracy criterion or goal
in learning. More generally, from this perspective, the choice of outputs and of
loss function precedes the design of the learning algorithm: they are choices in
formulating what the inductive learning problem actually is. The issue of underde-
termination, and the need for further assumptions, only arises in the next step, of
how to actually solve the inductive inference problem: how to generalize from the
data to conclusions of a certain form under a certain accuracy criterion.

This is the nice and clean perspective that I will adopt in my critical analysis
in section 4 below. A neat separation between problem formulation and inductive
inference step will be important to get clear on what exactly follows from inductive
underdetermination. This is so even if such a neat separation becomes hard to
sustain when we look at the design of real machine learning algorithms—as I will
do at the end of my analysis. There I will return to the following concrete example

21This is not to deny that people can mean different things when talking about “the inference”
in the context of machine learning. In the statistics literature, the “inference” in the statistical

inference commonly refers rather to assessment of an estimator’s uncertainty, and so is again closer
to the evaluation and acceptance step. In machine learning, the phrase “inference time” actually

refers to using the final model.
22For instance, Sullivan (2022, 2023) discusses how non-epistemic values are relevant to the

extent the opacity of a trained model poses problems for understanding and explanation.
23Karaca (2021) gives a careful account of values entering in the construction and evaluation

of machine learning models for binary classification, and argues that “value judgments based on

social values are involved in the construction of ML classification models mainly through cost-
sensitive ML optimisation” (ibid., p. 18). Johnson (2024, p. 43) gives the choice of loss function

as an illustration of the constitutive argument against demarcation.



VALUES IN MACHINE LEARNING 11

of a specific machine learning algorithm, developed for a specific real-world problem,
which will serve to make the question and the analysis a little more tangible.

3.3. An example: handwritten digit recognition. For simplicity, I pick an
example from the early days of machine learning, namely the algorithm developed
by LeCun et al. (1989b,a) for the recognition of hand-written digits. The aim is for
a system that can read off the correct symbol from images of single handwritten
digits. The learning problem is to infer, from a training set of correctly labeled
such images, a general classification model for reading handwritten digits. The
authors’ approach is to use a neural network, and it is indeed one of the first uses
of a convolutional network for image recognition.24

I did not choose this example because it is already a clear example of a value-free
machine learning application. It is not. The decision that hand-written digit recog-
nition is a relevant problem (“of great practical value,” LeCun et al., 1989b, p. 397),
to be tackled with machine learning, is clearly not purely epistemic.25 This holds
even more so for any further decision to deploy such a system, like for automat-
ing zip code reading in postal processing (and replace the people previously doing
that); the choice of embarking on this project is already value-laden because of the
obvious promise (or risk) of such practical applications. This is therefore certainly
not an example that can be set aside as “wholly divorced from human endeavors”
(Johnson, 2024, p. 56). But also important aspects of the model construction are
arguably not free of value judgments. One such aspect is again the training data,
consisting of “segmented numerals digitized from handwritten zipcodes that ap-
peared on real U.S. Mail passing through the Buffalo, N.Y. post office” (LeCun
et al., 1989b, p. 397). There are arguably inevitable non-epistemic judgment calls
in choosing these data as sufficiently representative for the purpose at hand.26 As
such, again, a trained model based on these data is inevitably value-laden, too.

However, our question is whether the learning algorithm must be value-laden.
What is the learning algorithm here? To a first approximation, this is the automated
inductive inference procedure that goes from training data of a certain form (16x16
pixel grayscale images with labels 0 to 9) to a general model mapping any such image
to a label. More precisely, this is the procedure that, on the basis of the training
data, infers to a certain configuration of parameters of the network, expressing such
a general rule. There are actually two different components we can discern here.
On the one hand, there is the actual training or optimization algorithm, here a
standard gradient descent algorithm for neural networks. On the other, there is the
neural network architecture itself, which the training algorithm works on, and which
determines which models are expressible by the network (and so learnable) to begin

24This extends the group’s earlier work in using neural networks for image recognition (Denker
et al., 1989), which still relied on extensive pre-processing of images into feature vectors. Convo-

lutional networks made a forceful reappearance in the modern deep learning boom (LeCun et al.,
2010; Goodfellow et al., 2016, ch. 9).

25This is perhaps less clear for the problem of digit recognition as an interesting problem
for machine learning research. The authors’ motivation is basically that the problem is neither

too hard nor too simple, writing that the “handwritten digit-recognition application was chosen
because it is a relatively simple machine vision task,” yet one that “deals with objects in a real
two-dimensional space and the mapping from image space to category space has both considerable
regularity and considerable complexity” (LeCun et al., 1989b, p. 397).

26The authors note failure of generalization due to “writing styles not present in the training
set” (1989a, p. 547).
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with. Indeed, I structure my analysis below around the decomposition of learning
algorithms in a general learning rule and a more domain-specific component; and
at the end of this analysis I return to the example of digit recognition.

4. Against the underdetermination argument

Does it follow from inductive underdetermination (as discussed in section 2) that
learning algorithms must be value-laden, that is (as made more precise in section
3), that non-epistemic values must enter as reasons for choices in the design of
learning algorithms? In this section I argue, no.

I do so by formulating and refining a number of counterobservations over three
different learning settings. I start with the framework of Bayesian inference, as
employed in the philosophy of science (section 4.1). I then turn to the setting of
statistical classification, as studied in machine learning theory (section 4.2). Finally,
I come back to the concrete example of handwritten digit recognition (section 4.3).

An important tool throughout my analysis is a distinction, introduced by Sterken-
burg and Grünwald (2021), between domain-general learning rules and the domain-
specific inductive biases they must be equipped with, together forming the actual
learning algorithms.

4.1. Bayesian learning. I will here consider the basic subjective Bayesian learning
procedure, as set out in many works in the philosophy of science (e.g., Earman, 1992;
Sprenger and Hartmann, 2019). While it is still a significant step from this basic
picture to actual (Bayesian) machine learning,27 the basic picture has the advantage
of being both relatively simple and familiar, while sufficient to already introduce
the main observations against the argument from underdetermination.28

In the basic Bayesian learning procedure, one starts with a probability function
p over propositions in some formal language.29 This probability function is the
prior ; and the learning from a piece of evidence E consists in updating the prior p
into the posterior p′ by conditionalization or Bayes’s rule,

p′(·) := p(· | E),(1)

where p(H | E) can be calculated using Bayes’s theorem,30

p(H | E) =
p(E | H)p(H)

p(E)
.(2)

4.1.1. The Bayesian learning rule. The learning procedure that forms the core of
the Bayesian approach is therefore simply Bayes’s rule (1). Note that this rule asks
for two input components on the right-hand side: apart from a proposition E (the
data), it also needs a prior probability function p. What is the motivation for this
rule? One can distinguish two main components in philosophical justifications for
the Bayesian approach, both in terms of the epistemic value of rationality.

27For machine learning textbooks from a Bayesian perspective, see Bishop (2006); Murphy

(2012); Barber (2012).
28Johnson also refers in various places to the philosophy of science literature on inductive

inference, and in particular Bayesian learning.
29I simply assume here the propositional framework common in philosophy, rather than the

measure-theoretic framework standard in statistics and machine learning. Nothing hinges on this.
30Bayes’s theorem just follows from the probability axioms. What characterizes Bayesian

learning is that the posterior is set to the conditional probability, in accordance with Bayes’s rule.
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The first component concerns the justification for rendering rational degrees of
belief as probabilities (i.e., quantities that satisfy the standard axioms of probabil-
ity). Such justifications include Dutch book arguments (only probabilistic beliefs
shield one from sure-loss bets), axiomatic characterizations (only probabilities sat-
isfy natural constraints on a quantitative plausibility measure), and accuracy argu-
ments (only probabilistic beliefs minimize one’s total epistemic inaccuracy).31 The
second component concerns justifications for the actual learning rule, the Bayesian
updating procedure. Here we find “dynamic” versions of the previous arguments,
but also arguments that Bayesian updating is the most conservative way of moving
from a prior to a posterior distribution, and arguments based on convergence-to-
the-truth or merger-of-opinion results. These arguments purport to provide general
justifications for Bayesian updating as the rational way of learning from evidence.32

The justifications are therefore explicitly intended to be domain-general and epis-
temic. At the same time, none of them are uncontroversial: objections have been
raised against many if not all of these proposed justifications.

I will discuss in more detail below what this means for the question of value-
ladenness. But first I will complete the picture of Bayesian learning by considering
the component of the prior probability function. This is the component where the
actual underdetermination comes into focus.

4.1.2. Bayesian learning algorithms. As mentioned, the prior probability function
is an indispensable input component to the conditionalization rule (1). I use the
term “Bayesian algorithm” to refer to any implementation of the Bayesian rule with
already a particular prior provided. Thus a Bayesian algorithm is a procedure that
just takes input data and returns an output probability function; with a particular
prior, so to speak, part of the inner mechanism of the algorithm.

Such a Bayesian algorithm is an algorithm for inductive inference, and there-
fore subject to the underdetermination of its outputs (probability functions) by the
inputs (data). This might not have been so if there existed fully “neutral,” “objec-
tive,” or “universal” priors, and a Bayesian algorithm with such a prior could be
said, perhaps, to merely extract to the posterior what is in the given data. But it is
generally accepted that there is no such thing: any choice of prior must encode re-
strictive assumptions (see, e.g., Howson, 2000; Huttegger, 2017; Sterkenburg, 2018).
These assumptions encoded in the prior (in tandem with the Bayesian conditional-
ization rule) bridge the inductive gap between the data and the inductive conclusion
(the posterior function), and are therefore also called inductive assumptions (ibid.).

4.1.3. Canons of induction or local assumptions? As we have seen, Johnson as-
sumes that the inductive gap must be bridged by Kuhnian values or “canons of
induction.” In the case of Bayesian algorithms, this would mean that the priors
must stem from or even encode such general canons.

One certainly can utilize or encode such general criteria in the formulation of a
Bayesian prior. In a well-known paper, Salmon (1990) argued that at least some

31This component deals with the kind of quantities that the Bayesian algorithm manipulates,

and so rather with the formulation of learning problem (cf. section 3.2.4 above). But the question
of the value-ladenness of the choice for Bayesian learning rule is already hard to set apart from
the overall choice for Bayesian framework. Consequently, my discussion in section 4.1.5 below of
the Bayesian learning rule considers the value-ladenness of the general Bayesian approach.

32Note that at least some of these justifications in terms of rationality trade on the (more?)
fundamental epistemic value of accuracy. Also see footnote 39.
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of Kuhn’s theoretical virtues naturally inform plausibility judgments that can go
into Bayesian priors for problems of theory evaluation. But it not clear that one
must. Another possibility is to bridge the inductive gap by context-specific or local
assumptions about the learning problem at hand. Salmon indeed notes that “the
assignment of prior probability by the Bayesian can be regarded as the best estimate
of the chances of success of the hypothesis or theory on the basis of all relevant
experience in that particular scientific domain” (ibid., p. 186, emphasis mine).

Norton’s (2003; 2021) material theory of induction even holds that all inductive
inferences are solely “powered” by local facts. This may be taking it too far into
the other extreme33—but it seems at least possible to formulate, for some learning
problems, priors that are an expression of local, problem-specific beliefs. To adapt
an example from Norton (2021, sect. 1.9), suppose we want to draw an inductive
inference from the data that salt A has crystallographic form B. We might fur-
ther have a high credence in Haüy’s principle that each crystalline substance has
a single characteristic crystallographic form. This domain-specific principle we can
formulate in a Bayesian prior, so that by the Bayesian inductive inference (condi-
tionalization of the prior on the data), we draw the inductive conclusion that with
high posterior probability all samples of salt A have crystallographic form B.

This is, of course, a very stylized example, far removed from realistic machine
learning problems. But the basic observation, that there is the further possibility
of bridging the inductive gap, not with general canons, but with local assumptions,
stands; and the digit recognition example will provide a more realistic illustration in
section 4.3 below. The observation is important, because it already blocks the move
from underdetermination to the need for general canons or values, and therefore
the main premise for the subsequent argument against demarcation.34

4.1.4. Value-ladenness of local assumptions. Still, even if the need for general canons
or values does not automatically follow from underdetermination, could we not di-
rectly argue that local inductive assumptions must be value-laden? Harking back to
Ward’s taxonomy (section 3.1 above), we can distinguish two questions here: must
non-epistemic values enter asmotivating reasons for making such local assumptions,
and must non-epistemic values enter as justifying reasons for such assumptions?

When it comes to motivating reasons, it is not at all clear that they must (cf.
Ward, 2021, p. 60). Again, it seems at least possible to try and formulate a Bayesian

33In particular, on Norton’s account there is no role left for domain-general learning rules,

which also renders his critical discussion of Bayesian learning somewhat off (Sterkenburg, 2024).
34While Johnson invokes Kuhn’s general virtues as typical canons of induction, she also writes

that “each domain comes with its own set of assumptions [canons] on which it relies” (2024,

p. 33). Moreover, she notes (ibid., p. 33, fn. 13) Norton’s (2021, ch. 5) critique that the terms
epistemic “virtues” or “values” misleadingly suggest that these are free-to-choose ends (rather than

means for finding the truth, objectively better or worse), suggesting that she would be open to

understanding epistemic values or canons in Norton’s sense, as (surrogates for) local assumptions.
But then the problem remains that on this understanding of canons or epistemic “values” as local

assumptions, the demarcation argument does not seem applicable.
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prior as an honest assessment of what one believes to be the factual structure of
the relevant domain, an assessment with a purely epistemic motivation.35,36

The case of justifying reasons for local inductive assumptions is more difficult.
There is here an immediate further question of what counts as a proper justification
for such assumptions. In her discussion of the justifying-reasons interpretation
of arguments against the value-free ideal, Ward likewise insists on the “need to
provide an independently motivated account of scientific justification,” including
“what sorts of things are potential justifiers for any given choice” (2021, pp. 60f).

In the extreme case, we can ask for the kind of foundational justification that is
at stake in Hume’s skeptical argument. If we accept the skeptical argument, then we
must conclude that any inductive assumptions are ultimately lacking such justifying
epistemic reasons. But of course, nor would any non-epistemic values count as
such foundational justifiers (or they would provide a solution to the problem of
induction after all). More generally, it does not just follow that in the lack of
ulterior epistemic justifying reasons, non-epistemic values must enter the picture.
That the justificatory gap is bridged by values is not obviously the default option:
it is something that would require additional argument (cf. Intemann, 2005).37

4.1.5. Rationality and demarcation. Still, even if the need for general canons or
values does not automatically follow from underdetermination, do such values not
already come into play at an earlier stage? Namely, irrespective of the prior, it
is the Bayesian approach (and so in particular the Bayesian updating rule) itself
that is underwritten by certain general considerations: specifically, considerations
in support of the idea that the Bayesian procedure instantiates the epistemic value
of rationality. Could we not already launch the demarcation argument at this stage,
against the Bayesian updating rule?38

Let me start by asking directly: is it plausibly the case that the motivating
reasons for the design of the Bayesian learning rule must be (or must have been)
non-epistemic? Note here that the context of the “design” of the general Bayesian
learning procedure is really the context of foundational work in philosophy and
learning theory. This is the project of philosophers and theoreticians to formulate
principles of rational learning and develop arguments that the Bayesian approach

35Biddle (2013) discusses the influence of “contextual factors” (non-epistemic values) on the

prior, and concludes that “on the Bayesian account, it is impossible to screen out all contextual
factors from the epistemic appraisal of transiently underdetermined research” (p. 128). However,

this must be understood as the weak claim, consistent with my observations, that the Bayesian

apparatus cannot guarantee that “contextual factors can always be excluded” (p. 127).
36One can again counter that this only holds for stylized scenarios, far removed from realistic

machine learning. For example, in Bayesian machine learning, considerations of computational
tractability normally limit choice to certain flavours of default priors, i.e., default parametrized

hypothesis classes plus a default prior distribution over parameters. Steel (2015) flags precisely

this aspect in the context of Bayesian statistics. In section 4.3.4 below, I return to the role of
pragmatic factors in actual learning algorithm design.

37Johnson (2024, fn. 32) writes that “the nail in the coffin for the value-free ideal [. . . ] would
be to demonstrate that non-epistemic values alone can end the regress,” and makes the suggestion

that “justification has got to stop somewhere [. . . ] surely the decision to cut off justification at

any particular point will therefore be a pragmatic decision, and thus one that depends on non-
epistemic values.” This is a natural suggestion, but does presuppose an account of justification

under which such an active decision on the part of algorithm designers is indeed inevitable.
38Johnson (2024, p. 33) indeed lists “Bayes’ Rule (in the case of belief formation)” as an exam-

ple canon of induction, which could then presumably be subjected to the demarcation argument.
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(and in particular the Bayesian updating rule) satisfies those. It seems hard to
deny that this is an emphatically epistemic project, and that these research efforts
are explicitly motivated by epistemic reasons.

What about the demarcation argument? Recall that an important lever of the
argument is the presumption that there is always a particular “socio-political”
context, itself imbued with non-epistemic values, in which the development of a
learning algorithm takes place. In introducing Longino’s argument, Johnson writes
that “which virtue is adopted in any particular instance of scientific theorizing
is a contextual matter, and crucially will be settled in virtue of the socio-political
features of that context” (2024, p. 39). The presence of a value-laden context might
certainly be a reasonable presumption for specific learning algorithms developed
for specific real-world problems. But it does not clearly apply to the foundational
project described above, where the aim is not to solve a real-world learning problem
in a particular socio-political context, but to formulate a general learning approach
(and learning rule), supported by domain-general epistemic considerations.

Of course, the adoption of the Bayesian approach (and so the Bayesian rule)
in any particular real-world learning problem might very well be motivated by
non-epistemic considerations, inherited from the particular socio-political context.
But I do not see that it must. Even in a particular socio-political context, it is
not clear why an algorithm designer could not defer to (and be motivated by)
the existing context-independent and epistemic reasons for the general Bayesian
learning approach (and learning rule), thus evading the demarcation argument.

I have so far discussed the motivating reasons for the Bayesian rule: what about
justifying reasons? Recall that while there are various justificatory arguments for
the rationality of the Bayesian approach (and Bayes’s rule in particular), these
arguments are not uncontroversial.39 To take this as an opening to argue for the
presence of non-epistemic values would also not be uncontroversial, though; it would
amount to taking a side in a (the?) central debate in Bayesian foundations.

A final “nuclear” option is to already deny that rationality is a purely epistemic
value. Here the idea might be something along the lines of Johnson’s constitutive
interpretation of the demarcation argument, namely that the value of rationality
(and its justification) cannot be seen apart from wider (sociological, cultural, his-
torical) circumstances under which rationality came to be valued; for instance, how
rationality as “cold calculation” came to be valued in a patriarchical society (cf.
Buckner, 2023, p. 78ff). This could be a promising line for the value-ladenness of
the Bayesian approach, but still one that clearly needs more development.

In any case, the value of rationality might be central to Bayesianism, but does
not play such a central role in (non-Bayesian) machine learning approaches. This
includes the standard approach to statistical classification, to which I turn next.

4.2. Classification and empirical risk minimization. The prototypical ma-
chine learning paradigm is supervised classification. Recall the digit recognition
example: we have a set of possible instances that we seek to classify using a finite
number of labels. A learning algorithm receives for input a finite training sample

39 For instance, justifications in terms of betting are vulnerable to the complaint that they are

more pragmatic than epistemic. More recent “accuracy-first” justifications are a response to this
complaint (Pettigrew, 2016). Critics have argued that a choice of quantitative accuracy measure

is still an unavoidable pragmatic element in such accounts (Mayo-Wilson and Wheeler, 2019).
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of instances that are already labeled (this is what makes the problem supervised),
and outputs a classifier (a trained model) that labels all possible instances.

4.2.1. The ERM rule. The most basic learning rule for supervised classification, the
empirial risk minimization (ERM) rule, proceeds as follows. It works with a class
H of possible classifiers, also called the hypothesis class, and on receiving a training
sample, it selects a classifier fromH that minimizes the error on the training sample.
(Standardly the error here is the mean number of misclassifications on the training
sample, also called the 0/1 error.)

What is the motivation for this algorithm? A theoretical basis for ERM can be
found in statistical learning theory (SLT).40 Here we first assume that the instances
and labels are sampled i.i.d. from some unknown probability distribution D. We
do not assume anything about the structure of this distribution; we only assume
that data come from some unknown distribution D. Second, we adopt as our
learning goal finding a classifier that minimizes the true risk, which is the probability
of misclassifying an instance randomly drawn from this unknown D. Since the
distribution is unknown, so is the true risk; but it turns out we can still analyze it.

Namely, a fundamental result in SLT (indeed often called the fundamental the-
orem) says that we can derive a so-called probably-approximately-correct (PAC)
guarantee for ERM. Namely, if the complexity or capacity of H is small enough,41

then for any unknown distribution D, we have that for a large enough training set
S sampled from D, ERM will with high probability select a classifier that has a risk
approximately as low as the lowest-risk classifier in H.42

Thus, from this abstract learning-theoretic perspective, the ERM rule is a recipe
for attaining a certain formal accuracy. This is a means-ends justification: for this
specific end of minimizing true risk, ERM is the right means. Provided, moreover,
that the accuracy goal of minimizing true risk counts as an epistemic goal, this
learning-theoretic result counts as an epistemic justification for the ERM rule. I
will unpack this epistemic basis more below, but first I will complete the picture of
the ERM method with the component of the hypothesis class.

4.2.2. ERM algorithms. Similarly to the case of the Bayesian algorithm and the
prior distribution, the ERM rule requires, apart from the data, a further input
component: the hypothesis class. I will use the term “ERM algorithm” for any
implementation of the ERM rule with already a particular hypothesis class H
provided. The resulting procedure takes a training sample and outputs a classifier,
with the hypothesis class part of the algorithm’s inner mechanism.

Again, this is an algorithm for inductive inference, which is subject to the un-
derdetermination of its outputs (classifiers) by the inputs (training data). This

40See, in increasing order of formal detail, Grote et al. (2024, sect. 2); Harman and Kulkarni

(2007); Sterkenburg (2025, sect. 2); von Luxburg and Schölkopf (2011) for explanations of SLT
for a philosophy audience. A standard textbook is Shalev-Shwartz and Ben-David (2014).

41Capacity in machine learning refers to the size or complexity of a hypothesis class. There exist
various formal notions of capacity for different types of learning problems; the most well-known,

which also figures in the fundamental theorem, is the Vapnik-Chervonenkis (VC) dimension.
42The fundamental theorem concerns the specific case of binary classification with the 0/1 loss

function (implicit in the above notion of true risk). There exist other results for more general

classification and regression problems with different loss functions, and while these results tend
to be more involved, they still generally give guarantees for (versions of) ERM provided the
hypothesis class is in some sense of limited capacity (see Shalev-Shwartz and Ben-David, 2014).
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might not have been so if there existed some “universal” hypothesis class, and if a
“universal” ERM algorithm equipped with such a hypothesis class would still have
a PAC guarantee. Namely, a guarantee of finding the approximately-best classifier
in this universal class would actually be a guarantee of finding the approximately-
absolutely-best classifier. Such a universal algorithm could be said, perhaps, to
objectively extrapolate the patterns in the data to a choice of classifier.

But there can be no such universal ERM method, as shown by impossibility
results that are usually referred to as “no-free-lunch theorems.” In particular (see
Shalev-Shwartz and Ben-David, 2014), for any statistical learning algorithm A (in-
cluding ERM with any particular choice of H), there will be possible true distri-
butions D such that A is a bad method, meaning that with high probability its
absolute true risk is high. This means that any choice of hypothesis class for ERM
that preserves the PAC guarantee must encode restrictive assumptions, which fit
some possible situations but not others. These assumptions encoded in the hypoth-
esis class (in tandem with the ERM rule and the PAC guarantee) bridge the gap
between the data and the inductive conclusion, and are therefore also called the
inductive bias (Mitchell, 1980; Shalev-Shwartz and Ben-David, 2014; Sterkenburg
and Grünwald, 2021).43

More specifically, the strength of the PAC guarantee is a direct function of the
complexity or capacity of the hypothesis class (and so, more informally, of the
strength of the inductive bias). This translates in a certain means-ends justification
for a simple class of hypotheses (strong inductive bias): in order to have a good
(better) learning guarantee for ERM, one needs to make strong(er) assumptions.44

4.2.3. No-free-lunch and values. Dotan (2021) invokes the no-free-lunch theorems
to argue for the essential role of non-epistemic values in theory choice. She notes
that earlier types of argument (which would include those given by Johnson) are
vulnerable to the objection that they only apply to specific “historical, practical, or
political contexts” (ibid, p. 11083).45 In contrast, “drawing from a mathematical
theorem avoids some of the difficulties faced by other arguments because it is inde-
pendent of human contingencies and contextual particularities” (ibid., p. 11082).

Dotan proceeds in three steps. Her first observation, based on the no-free-lunch
theorems, is that “predictive accuracy is not a standard that can be used to dis-
criminate between hypotheses, if we are making no assumptions about the problem
we are trying to solve” (ibid., p. 11090). This is the observation of underdetermi-
nation of “theory choice” (selection of a classifier) by (classifiers’ accuracy on) the
data, and the resulting need for further inductive assumptions; as given a precise
expression by the no-free-lunch result sketched in section 4.2.2 above.

However, Dotan actually makes a much stronger observation. She writes that all
hypotheses have the same “expected accuracy”—in our terms, the same true risk.
This observation follows from her discussion of the original no-free-lunch theorem

43Note that the term “inductive bias” does not yet have a normative connotation, in line with

the use of “bias” by Johnson (footnote 3 above; also see Kelly, 2022).
44Sterkenburg (2025) argues in detail that if there is some sort of justification for a simplicity

preference (a justification for Occam’s razor) to be had from the fundamental theorem of SLT,
it is in the form of this reasoning. Importantly, simplicity does not act here as an independent

Kuhnian theoretical virtue, but as a provable pre-condition for a certain guarantee of accuracy.
45Specifically, Dotan mentions arguments from the history of science, from inductive risk, and

from the impossibility of demarcation.
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for supervised learning, due to Wolpert (1996). But as discussed by Sterkenburg
and Grünwald (2021), this result crucially relies on the assumption of a uniform
distribution over possible learning situations. This is an assumption that is not just
lacking in motivation, but is an explicit assumption of full-blown randomness and
therefore “unlearnability”—no matter the past data, the best prediction will always
remain a random guess. As a premise to an argument that all hypotheses have the
same expected accuracy, this assumption is clearly question-begging.46 Fortunately,
Dotan’s stronger observation does not seem necessary for her argument. The es-
sential input for the subsequent two steps of her argument is the need for further
assumptions to “supplement predictive accuracy” (Dotan, 2021, p. 11090), and this
follows from the general observation of underdetermination, as made precise by
versions of the no-free-lunch result that do not rely on the uniformity assumption.

Dotan’s second step is to consider bringing in “other traditional epistemic virtues”
(Dotan, 2021, p. 11090). But the observation that accuracy is not enough also en-
tails that “[i]f we want to use epistemic virtues other than accuracy, we need to jus-
tify them without relying on accuracy” (ibid., p. 11091), and so “NFL challenges the
ability to provide pure epistemic justifications for using other traditional epistemic
virtues” (ibid., p. 11094). Her third and final step is that “non-epistemic values are
natural candidates to supplement accuracy or other considerations” (ibid.).

The core of Dotan’s argument is therefore really the same as Johnson’s move
from underdetermination to the need for further general canons or epistemic values
in inductive inference. The call on no-free-lunch results does not make an essential
difference: in the end, such results are merely a more precise formulation of the
lesson of underdetermination. The main difference is that Dotan does not call upon
the argument from demarcation to proceed to the need for non-epistemic values.
Her argument is rather that any candidate epistemic virtue would have to somehow
reduce to accuracy, which is not enough to bridge the underdetermination.

The same observation as before (section 4.1.3) therefore also blocks Dotan’s ar-
gument: it is not clear that underdetermination entails the need for further general
canons or epistemic values. Namely, similarly to Bayesian priors, it seems at least
possible to formulate hypothesis classes that encode context-dependent, local as-
sumptions, viz., about what classifiers we think are likely to be accurate for the
problem at hand. The corresponding inductive bias is still motivated by the epis-
temic concern of accuracy.

Again, this leaves the worry that even if the inductive bias can be epistemically
motivated, it cannot be epistemically justified: the Humean justificatory regress
cannot be halted by epistemic reasons. But here we can repeat the other observation
from before (section 4.1.4). Namely, the mere suggestion that “non-epistemic values
are natural candidates to supplement accuracy” hardly settles that non-epistemic
reasons must come in to halt the regress: this would require further argument.

4.2.4. Predictive accuracy and demarcation. Like in the Bayesian case, one might
directly raise a demarcation worry for the epistemic values that underly the ERM
rule. Since ERM is a provably good means towards a specific end, it seems that
this worry must focus on this end: predictive accuracy, as made precise in SLT.

Like in the Bayesian case, however, the demarcation arguments’ presumption
of a particular socio-political context, imbued with non-epistemic values, does not

46Rushing (2022) also argues that the uniformity assumption in Wolpert’s no-free-lunch theo-

rem is a problem for Dotan’s argument.
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compellingly hold true. The relevant context of the design and analysis of the
SLT framework (and the ERM rule) is really the explicitly epistemic project of
theoretical computer scientists to provide a foundation for successful classification.
In particular, the general learning objective that is center to this theoretical project,
predictive accuracy, is quite clearly epistemically motivated.

That said, there are further assumptions involved in the specific way predictive
accuracy is made precise in SLT. The formal accuracy goal of minimizing true risk
relies, in particular, on the assumption of an unknown distribution from which
instances are sampled in an i.i.d. manner, and this assumption is clearly not fully
domain-general. There clearly are real-world learning problems where the i.i.d.
assumption is not plausible: indeed, there surely are real-world problems where the
i.i.d. assumption would be a value-laden modeling choice.

But that in itself only shows that the range of application of the framework
of SLT (and the ERM rule), while general, is not unrestricted. It does not auto-
matically follow that this restricted range is characterized by certain non-epistemic
values, which therefore motivate the theoretical framework and method. We can
still hold that the i.i.d. assumption is a component in the service of a precise epis-
temic notion of accuracy that is appropriate across a wide range of domains, and for
this reason formulated and studied by theoreticians within a general framework for
the analysis of learning algorithms. This is perfectly consistent with the observa-
tion that the framework is not fully general (indeed, theoretical computer scientists
also study other general frameworks, with different assumptions), and hence that
for various particular real-world problems, it may be inappriopriate.

When it comes to justifying reasons, the epistemic value of accuracy seems even
less controversial than that of rationality. Rather than standing in need of further
justification, (predictive) accuracy is normally just accepted as an axiomatic epis-
temic goal—including, as we saw, by Dotan (2021). Still, again, there is the specific
way accuracy is made precise in SLT, and the i.i.d. assumption is subject to the
question of inductive justification.47 There is an obvious question of the justification
for the i.i.d. assumption in any particular learning problem; and it is perhaps an
interesting question what justification there is for incorporating this assumption in
a general framework for learning. But in both cases we can repeat the now familiar
observation that the lack of rock-bottom epistemic justification does not, without
further argument, prove that there must be non-epistemic reasons involved.

4.3. Example: handwritten digit recognition. The natural concern about the
discussion so far is that it took an overly theoretical perspective on machine learn-
ing, and was therefore a level of abstraction too far removed from actual machine
learning algorithms. Here I meet this concern by showing how my observations still
apply to an actual learning algorithm, namely the digit recognition example.

4.3.1. The training algorithm. Learning with a neural network means learning a
configuration of the network’s free parameters (connection weights). The configura-
tion of parameters determines which classification function the network represents.
So a learning or training algorithm sets, on the basis of the training data, the values
of the free parameters, thus selecting a classification function (trained model).

47The general i.i.d. assumption in machine learning is indeed often flagged as akin to Hume’s
principle of the uniformity of nature (e.g., Steel, 2009, p. 475; Li, 2023; Ratti, forthcoming).
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LeCun et al. use a “backpropagation network,” which refers to the fact that
the network’s parameters “are trained using backpropagation” (1989a, p. 542).
At the time newly introduced, back-propagation or simply backprop (Rumelhart
et al., 1986; see Goodfellow et al., 2016) is now a standard auxiliary function for
learning network parameters, normally (including in this instance, LeCun et al.,
1989a, p. 546) part of a version of the stochastic gradient descent (SGD) algorithm.
SGD is used for the optimization problem of tweaking network weights towards
minimization of training error (Goodfellow et al., 2016). That is to say, it is used
for the optimization problem of implementing the learning rule of ERM.

It is a leap from the nice theoretical specification of ERM to the practical im-
plementation of SGD. The SGD algorithm only approximates a solution to an
optimization problem (find a minimal-training-error function, i.e., configuration of
parameters) which cannot be solved analytically. Moreover, SGD requires a loss
function with well-behaved derivatives, which rules out the standard 0/1 loss func-
tion; the authors instead opt for mean squared error over the real-valued outputs
of the ten outputs units corresponding to the possible labels (LeCun et al., 1989a,
p. 546). Then there are various further implementation choices, like the activation
functions for the hidden units (in this case, the hyperbolic tangent, ibid.), and the
parameter initialization before SGD can be applied (in this case a certain uniformly
random initialization motivated by the shape of the activation functions, ibid.).

Nevertheless, despite these various messy engineering considerations, we can still
discern the theoretical story of sections 4.2.1 and 4.2.2 above. It is still the learning
rule of ERM that is being approximated by SGD. Moreover, the authors explicitly
evoke the reasoning that there is only a guarantee of good generalization if the
capacity of the hypothesis class (as given by all possible weight configurations) is
sufficiently constrained (LeCun et al., 1989a, p. 541; also see LeCun, 1989):

“The basic design principle is to minimize the number of free pa-
rameters in the network as much as possible without overly reducing
its computational power. This principle increases the probability
of correct generalization because it results in a specialized network
architecture that has a [. . . ] reduced Vapnik-Chervonenkis dimen-
sionality.”

4.3.2. Theory v. practice. One might wonder, of course, whether the authors were
here in actual fact motivated by the theory they evoke, or rather by their hard-won
practical experience. Indeed, it is probably safe to say that most of their design
choices were driven by empirical experience (ranging from informal hunches to more
systematic experimentation), or at best by a mix of practice and theory.48 Unsur-
prisingly, the choices that go into practical algorithm design are not exclusively
motivated by theoretical considerations.

Does this role for practical experience already mean that non-epistemic values
must be involved? Not directly. The empirical fact that certain design choices or
principles led to good prediction can clearly be an epistemic motivation for imple-
menting these. When it comes to justifying reasons, one might take the position that
expectations that previously successful practices continue to work are not justified,

48For example, SGD’s superior convergence compared to a “‘true’ gradient procedure” was
found by “empirical study (supported by theoretical arguments)” (LeCun et al., 1989a, p. 546).
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unless underwritten by theoretical guarantees. This may be a plausible account of
justification, but still one that stands in need of development and defense.

However, the main take-away from the previous section is perhaps not so much
the role of practical experience, but the need for various practical or pragmatic
choices in translating theoretical considerations into an implementable algorithm.
This is an important place for certain non-epistemic judgments. I return to this
below, after discussing the inductive bias.

4.3.3. The network architecture. We saw that general epistemic considerations mo-
tivated the authors to minimize the capacity of the model class. But how did they
go about this? For important part: by applying local domain knowledge.

The paper opens (LeCun et al., 1989a, p. 541),

“The ability of learning networks to generalize can be greatly en-
hanced by providing constraints from the task domain. This paper
demonstrates how such constraints can be integrated into a back-
propagation network through the architecture of the network.”

In learning with a neural network, the model class is given by the network ar-
chitecture. The architecture (i.e., the neurons, or activation functions, and their
mutual connections) determines what classifiers can be represented by the network,
and so learned at all. The authors aim at “designing a network architecture that
contains a certain amount of prior knowledge about the task” (1989a, p. 541), par-
ticularly “prior knowledge about shape recognition” (1989b, p. 399). This motivates
them to introduce a convolutional neural network as an architecture specifically
suited for learning from images.

Goodfellow et al. (2016, sect. 9.4) write that “[w]e can imagine a convolutional
net as being similar to a fully connected net, but with an infinitely strong prior
[that encodes our beliefs about what models are reasonable] over its weights.” The
relevant prior rules out functions that do not satisfy certain properties, specifically
having to do with “local interactions” and “invarian[ce] to small translations” (ibid.,
p. 336). Correspondingly, LeCun et al. (1989a, sect. 3; 1989b, sect. 4) describe how
local knowledge about the task domain49 informs design choices characteristic of
convolutional nets,50 which we can imagine as representing or implementing the
kind of prior Goodfellow et al. describe. That is, local knowledge about the task
domain informs the network’s inductive bias.

4.3.4. The role of pragmatic choices. But of course, it is not just local domain
knowledge that led to the design of the final network architecture, and therefore the
inductive bias. Even if the general choice for a convolutional net was epistemically
motivated, various further implementation choices had to be made, prompted and
driven by practical considerations such as computational convenience and tractabil-
ity. As we saw before, the same holds for the implementation choices for SGD, which
includes such things as the activation functions and the parameter initialization.

49Including “well-known advantages to performing shape recognition by detecting and com-

bining local features,” that “if a feature detector is useful on one part of the image, it is likely
to be useful on other parts of the image as well,” and “a certain level of invariance to distortions

and translations,” (LeCun et al., 1989b, p. 399).
50Specifically, “sparse interactions, parameter sharing, and equivariant representations,”

(Goodfellow et al., 2016, pp. 324f).
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Such choices are, at the very least, “epistemically unforced” (Parker, 2014, p.
26): for example, while partly epistemically motivated, the weight initialization the
authors pick is not clearly the unique epistemically superior choice. The same holds
for the choice of the mean squared error as substitute for the untractable mean 0/1
loss.51 The loss function is particularly interesting here, because it already shows
how in practice the lines between problem formulation (including the choice of loss
function) and design of learning algorithm for “the inference itself” are blurred.

I will leave here open whether it is useful to set apart such practical or pragmatic
considerations from (other) non-epistemic values.52 What we see is that at least a
certain kind of non-epistemic judgments virtually inevitably come into play when
translating epistemic considerations into actual learning algorithms. But rather
than the result of a general argument from underdetermination,53 this observation
is a starting point for a more careful analysis of how values enter algorithm design.

5. Conclusion

I have argued that a general argument from the underdetermination of the induc-
tive “inference itself” does not suffice to establish that machine learning algorithms
must be value-laden. Of course, this in turn does not mean that real-world learn-
ing algorithms are, in fact, value-free. But it does suggest that the more fruitful
approach is a more fine-grained study of the design of such learning algorithms.

In support of such projects, I think the work in this paper constitutes a small step
towards charting the possible interactions between epistemic and non-epistemic as-
pects of machine learning. A small step, because of the narrow focus on the learning
algorithm: even if the actual learning forms the defining core of machine learning,
it is still a small part of a practical machine learning pipeline. A small step, further-
more, because the approach I took in this paper was to start from a lofty theoretical
perspective on learning methods. I think this was the right approach to confront
the general argument from underdetermination, but it is a valid question to what
extent this perspective is still discernable in real-world learning algorithms. Neat
contrasts I drew in this paper, like that between the inductive problem formulation
and the inductive learning method, and that between a general learning rule and a
context-specific inductive bias, are much more blurry in many actual algorithms.

A central notion here is inductive bias. Indeed, along with the question of the
inductive bias’s (non-)epistemic motivations or justifications, there is the question

51As mentioned before (section 3.2.4), the choice of loss function is a natural place to look for

value-ladenness. Karaca (2021) focuses on “cost-sensitive” loss functions (“using different costs

for different types of training errors,” ibid., p. 12); in contrast, “cost-insensitive” functions, which
would presumably include the 0/1 loss in our example, merely serve the aim to “maximize the
predictive accuracy” (ibid., p. 13). However, while perhaps not clearly associated with “social

values,” a choice for the 0/1 loss function is still not epistemically forced, and in that sense a
pragmatic choice. In general, one can argue that while the goal of accuracy is epistemically pure,

any one of the endless possible ways of quantifying inaccuracy is not (cf. footnote 39). For more

on the choice of loss function, and the complicated interaction between epistemic and practical
considerations in real-world statistical analysis, see the discussion by Hennig and Kutlukaya (2007).

52For instance, Henschen (2021) takes “conventional or pragmatic reasons” to be distinct
from value judgments. Brown (2024, p. 13) criticizes his distinction, writing that “pragmatic
considerations are [. . . ] no less problematic than other nonepistemic values.”

53For instance, the need to approximate ERM by SGD is not an issue of inductive
underdetermination.
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what the inductive bias actually is. There is the question of what inductive as-
sumptions particular learning algorithms actually operate under, which motivates
work in computer science on uncovering the inductive biases in popular learning
algorithms (Rendsburg, 2024). But there is also the fundamental question of what
distinguishes—if a principled distinction can be made at all—inductive bias from
other types of biases in machine learning. This question points towards a philo-
sophical project of conceptual clarification of the notion of inductive bias itself.
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