
A Note on the Semantics of Linear Regression

Raja Panjwani∗

December 23, 2024

Abstract

The use of linear regression is ubiquitous across the social and behavioral sciences,
and yet researchers rarely hold that the variables in their target systems are in fact lin-
early related. This raises the question of how to interpret linear regression coefficients
when there is ‘functional misspecification’ and the target system exhibits nonlinearity.
Here, recent methodological discussions among practitioners have mirrored philosoph-
ical debates over scientific realism. In this paper, I frame the prevailing views in
terms of their stance on the scientific realism debate. I then present a novel realist
interpretation of linear regression - the ‘secant interpretation’ - based on a property I
derive about the manner in which linear regression coefficients represent properties of
non-linear systems of interest.

1 Introduction

Suppose a researcher is interested in a target system consisting of two continuous random
variables X and Y.1 They take for granted that there exists some objective probability
distribution fX over the values of X, fY over the values of Y, and a joint distribution fX,Y
over their joint values. However, these distributions are unknown to the researcher, so
they are unable to calculate their quantity of interest, which is the conditional expectation
function, E[Y |X]. Following meticulous data gathering protocols, the researcher proceeds
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1I follow much of the relevant literature which confines attention to the case of univariate models; however,
I will discuss how the results of the paper can be generalized to the multivariate case. The regression which is
perhaps most frequently performed in practice is the calculation of a stock’s β, which is the slope coefficient
from a linear regression of a stock’s returns on the corresponding market returns. Several regressions such
as this one are primarily concerned with correlation rather than causation; I only briefly discuss causality in
Section 5.
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to collect from the population an i.i.d sample S=〈(x1,y1),...,(xN ,yN)〉, then performs a linear
regression which identifies (β̂0,β̂1) such that:

(β̂0, β̂1) = argmin
(b0,b1)∈R2

E[(yi − b0 − b1xi)2] (1)

Here, the expectation is taken over the empirical distribution of X. As long as the researcher
resamples (xi,yi) pairs from the population in each experiment,2 the estimators (β̂0, β̂1) are
unbiased estimates of the population linear regression parameters (β0,β1):3

(β0, β1) = argmin
(b0,b1)∈R2

E[(Y − b0 − b1X)2] (2)

This time, the expectation is taken over the true (unknown) probability distribution, fX .
Thus, the researcher who was originally interested in the functional relationship between X
and Y, imposed a linear model on a dataset of their values,4 and is now in possession of a
slope coefficient β̂1. They realize that this coefficient is an unbiased estimate of β1, but they
wonder what β1 represents about the true relationship between X and Y, because they have
no a priori reason to believe that the true relationship is even approximately linear.5

In this article, I outline the prevailing interpretive accounts, and I classify them by the
extent to which they offer a realist interpretation of β1. I then present a novel realist interpre-
tation which I call the ‘secant interpretation’, based on a property I derive about the manner
in which linear regression lines intersect with non-linear conditional expectation functions.
The two main upshots are first, a concise realist semantics for misspecified linear regression
coefficients, and second, an epistemically intriguing ‘possibility result’: the theorem implies
that although the true functional relationship between the variables of interest is unknown,
the methodology of linear regression (in particular, the fact that regression minimizes loss)
guarantees (under very weak conditions) that β1 represents a rate of change along the true
conditional expectation function.

2Of course, this is often impossible in practice; for example, the target system may be non-stationary.
3However, Buja et al (2015) show that the typical textbook treatment of linear regression with fixed-

covariates, i.e., resampling only yi for a fixed set of covariate values, will be biased when the true response
function is nonlinear.

4The choice of linear model can be guided by so-called ‘regression diagnostics’ such as misspecification
tests. However, Berk et al (2018) argue convincingly that these diagnostics underdetermine whether it is
the linearity assumption, or other assumptions - for example distributional assumptions - which point to
misspecification. In practice, linear regression is relied upon without extensive use of misspecification tests.

5For example, “the use of linear regression in political science ... rarely follows from theories of social
and political processes implying that a linear functional form between y and X holds globally” (Beck and
Jackman 1995, p.598).



2 Prevailing Interpretations

Scientific realists are “committed to the mind-independent existence of the world investigated
by the sciences...[and] a literal interpretation of scientific claims about the world.”6 Much of
the statistical methodology literature already denies the first of these commitments. Leamer
(Hendry et al 1990) and Keuzenkamp (2000) deny that an objective probability distribution
generating the data (called the ‘data generating process’, or DGP) exists in the first place:
“...The DGP does not exist. It is an invention of our mind.”7 However, even taking for
granted that there is a true DGP, there is still an interpretive challenge for the realist based
on the second commitment, as the semantics of the linear model appear to be literally false
when the true conditional expectation function is non-linear.

The issue is that, in the presence of nonlinearity, slopes lose their usual inter-
pretation: [β1] is no longer the average difference in Y associated with a unit
difference in X[.] The challenge is to provide an alternative interpretation that
remains valid and intuitive.

- Buja et al (2015), p.20.

Simply put, even if the realist is given the true value and units of β1, it is still unclear what
they have learned about the underlying target system consisting of X and Y, in light of the
fact that the true conditional expectation function is assumed to be non-linear.

The instrumentalist has a much easier interpretive task, as they are unencumbered by the
realist commitment to interpret their models as mind-independent representations of their
target system. There is a straightforward instrumentalist interpretation of linear regression
in terms of betting behavior: although it may be literally false that E[Y |X]=β0+β1X, if
one were forced to bet on E[Y |X] and constrained to use only linear models then the linear
model with coefficients (β0,β1) is the ‘best linear predictor’ (BLP), where ‘best’ is understood
in terms of minimizing expected squared loss. An important attempt to ground scientific
realism in terms of betting behavior is Dennett’s ‘real patterns’ argument (Dennett 1991).
Dennett considers a pattern to be ‘real’ if predictions on the basis of that pattern perform
better than pure randomness. However, Ross et al (2009) argue convincingly that Dennett’s
criterion is a necessary, but not sufficient condition for realism. Interpreting coefficients
in terms of their use in betting strategies offers a pragmatics of linear regression, but the
realist seeks a semantics of the model which interprets its expressions as designating intrinsic
properties of the target system, accounting for why the model is useful in certain contexts.

6Chakravartty (2017).
7Keuzenkamp 2000, p.56. See also Edward Leamer: “I ... don’t think there is a true data generating

process...” (Hendry et al 1990, p.188).

3



Several practitioners have settled on a perspectivalist interpretation of regression (e.g.,
Hoover 2011, 2019).8 In his initial formulation of perspectivalism, Giere (Giere 2006) points
to the Mercator projection map as an example of a perspectival model: one can learn about
the globe by studying an atlas of its projections, even though each projection gives rise to
different distortions. There is an analogous ‘projection’ view in the statistical methodology
literature:9

If one thinks of the parameter of interest as the true conditional mean of Y,
given the covariates of interest, then one is almost always wrong. However, if one
views the parameter of interest as a projection of the “truth” onto some smaller
set of models (eg, linear), this is often a reasonable parameter of interest. ...the
projection of the population average is something one can hope to estimate, and
... it bears a rigorously definable relation to the true underlying association.

- Hubbard et al 2010, p.471-472

There is, however, an important disanalogy between these cases. In the Mercator projec-
tion map case, we have access to the target system (the Earth), so it is possible to identify
properties which the map ‘gets right’ about its target, for example various topographical
properties. In the case of linear regression, by contrast, the target system is assumed to be
unknown, which makes it difficult to take a realist stance towards a parameter like β1 in
terms of what it even approximately designates, or corresponds to in the target system.

...it is usually impossible to know whether the regression model specified by the
analyst is the means by which the data were generated. A common fallback,
therefore, is to claim that the model specified is “close enough.” But there is no
way to know what “close enough” means. One requires the truth to quantify a
model’s disparities from the truth, and were the truth known, there would be no
need to analyze any data.

- Berk et al 2018, p.637

Some perspectivalists (e.g., Hoover 2011) have denied that there is a perspectiveless spec-
ification of the target system in the first place, and holding models to the standard of an

8So as to not take a stand on whether perspectival realism is a genuine form of realism (Teller (2019)
argues that it is, whereas Panagiotatou and Psillos (2023) argue that it is not) I use the neutral term
‘perspectivalism’.

9This perspective has recently been advocated in a series of papers by statisticians at the Wharton School
(Berk et al 2014, 2018, 2021, Buja et al 2015): “The researcher forgoes trying to estimate the true conditional
means and settles for trying to estimate the best linear approximation of that truth.” (Berk et al 2018, p.643).
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idealized ‘perfect model’ (Teller 2001) is too high of a bar for realism to meet. Deciding the
issue of whether there is a ‘perfect model’ is outside the scope of this paper: in the context
of our regression model the question boils down to whether there is a true, objective joint
probability distribution over the random variables X and Y, or whether the probability dis-
tribution is ‘subjective all the way down’. In this paper we will follow much of the literature
in taking for granted that there is a true DGP, and our interpretive challenge will be to
identify a realist semantics for what the linear regression parameter β1 refers to in the true
conditional expectation function.

Turning now to realist interpretations, once one rejects a naïve realism which assumes
that the DGP does in fact have linear conditional expectations, there has been only one
straightforwardly realist interpretation in the literature. This is the so-called ‘weighted
average derivative’ interpretation (Angrist and Krueger 1999) which is based on the following
theorem.10

Theorem 1. Let X be a continuous random variable with density fX which has full support
over a closed interval [a,b], and let E[Y |X] be continuously differentiable over the support
of X. Then the slope parameter of the BLP can be written as:

β1 = E
(
w(X) d

dx
E[Y |X]

)
(3)

w(X) = 1
fX(x)

E[X − µX |X ≥ x](1− FX(x))∫ v=b
v=a E[X − µX |X ≥ v](1− FX(v)) dv

(4)

Thus, the parameter β1 can be interpreted as a weighted average of tangent vectors
to the true conditional expectation function, where the derivatives with x-values closer to
their mean µX are given greater weight.11 There is a straightforward sense in which this
interpretation is realist: the misspecified linear regression parameter is a weighted average
of the truth.

Although the average derivative interpretation is realist, there are reasons to seek a more
intuitive account. The weight function is rather complex, and does not extend to higher
dimensions in an easily interpretable manner, as noted by Angrist and Krueger: “in multi-
variate regression models ... this interpretation is complicated by the fact that the OLS slope
vector is actually matrix-weighted average of the gradient of the CEF. Matrix-weighted aver-
ages are difficult to interpret[.]”12 Furthermore, realists strive to “take theoretical statements
at face value” (Chakravartty 2017), and regression coefficients are in practice interpreted as

10See Graham et al 2010, p.37-38 Lemma A1 for a proof.
11Gelman and Park (2008) present an analogous finite sample interpretation of β̂1 based on a weighted

average of slope vectors instead of derivatives.
12Angrist and Krueger 1999, p.1311.
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estimates of rates of change between random variables. By interpreting a coefficient as an
estimate of an average derivative across the entire support of the regressor space, it masks
the extent to which the coefficient estimates a particular rate of change, with a restricted do-
main of validity. In the next section, it is shown that under very weak additional constraints
on the above setup (which are very likely to be satisfied by physical systems of interest), it
is possible to derive a realist semantics which retains the intuition that a linear regression
coefficient estimates a rate of change between the variables in a target system, even in higher
dimensions.

3 Broken Clock Theorem

The secant interpretation is grounded in the theorem of this section, where it is shown
that, possibly aside from knife-edge situations, a linear regression line will intersect with its
(non-linear) conditional expectation function at least twice, justifying its interpretation as a
secant through the true conditional expectation function. I call this result the ‘broken clock
theorem’ as a tongue in cheek reference to the fact that a broken clock is also right twice a
day.

Theorem 2. Let X be a continuous random variable with density fX which has full support
over a closed interval [a,b], and let E[Y |X] be twice differentiable over the support of X.
Define the loss function L(X)=E[Y |X]-BLP(X). If there is no unique x*∈[a,b] such that
L(X=x*)=L′(X=x*)=L′′(X=x*)=0, then ∃x1,x2∈[a,b] (x1 6= x2): L(x1)=L(x2)=0.

Proof. We will make use of the following property of best linear predictors.

Lemma 1. E[L(X)]=0.

Proof. Recall that the first-order conditions of linear regression imply that:

β0 = E[Y ]− E[X]Cov(X, Y )
V ar(X) (5)

β1 = Cov(X, Y )
V ar(X) (6)

Taking the expected value of L(X) with respect to X and applying the law of iterated
expectations, we get:

EX [L(X)] = EXEY [Y |X]− E[Y ] + Cov(X, Y )
V ar(X) EX [EX [X]−X] (7)

6



= E[Y ]− E[Y ] + Cov(X, Y )
V ar(X) [EX [X]− EX [X]] = 0 (8)

We now proceed by contradiction, i.e., by showing that there cannot be exactly zero or
one intersection between E[Y |X] and BLP(X).

Case 1: Suppose there are zero intersections. Then it is either the case that for all x∈[a,b],
E[Y |X = x]>BLP(X=x) or it is the case that for all x∈[a,b], E[Y |X = x]<BLP(X=x). In
either case, the expected loss will be nonzero, contradicting the lemma.

Case 2a: Suppose there is exactly one intersection, i.e., a unique x*∈[a,b] for which
L(X=x*)=0. Then, L′(X=x*) is either zero or nonzero. If L′(X=x*)=0, then by assumption
L′′(X=x*)6=0, which means BLP(X) is tangent to E[Y |X] at X=x*. But then since fX is
non-degenerate in [a,b], E[L(X)]6=0, contradicting the lemma (note that x*6=a and x* 6=b for
the same reason).

Case 2b: Suppose there is exactly one intersection at X=x* with L′(X=x*)6=0. Without
loss of generality, suppose L′(X=x*)>0, so that BLP(X)>E[Y |X] for x<x* and BLP(X)<E[Y |X]
for x>x*. Then since L(X) is twice differentiable, it is continuously differentiable, so there
exists an ε>0 such that within the open ball Bε(x*), L(X) is strictly increasing (see Tao 2015,
p.152). Now divide [a,b] into [a,x*-ε] (region 1), Bε(x*) (region 2), and [x*+ε, b] (region
3). We will construct a rotated line, through the point (x*, BLP(X=x*)), which has lower
expected squared loss than BLP(X), contradicting the assumption that BLP(X) minimizes
expected squared-loss.

Since L(X) is strictly increasing in Bε(x*), there exists a counterclockwise rotation of
BLP(X) around X=x* by angle θ, calledRθ, such that, for x>x* in region 2, BLP(X)<Rθ<E[Y|X]
and for x<x* in region 2, E[Y|X]<Rθ<BLP(X). Subtracting BLP(X) from the right hand
side of both inequalities and using the fact that the quadratic function preserves the order of
positive real numbers, it follows that Rθ reduces squared loss for all x in region 2, and thus
reduces expected squared loss in region 2. Furthermore, any line in the sequence converging
to BLP(X), {ln} defined by l1 = Rθ and ln=R θ

n
for n∈N will reduce expected squared loss

in region 2. Thus, if we can show that an element of {ln} also reduces expected squared loss
in regions 1 and 3, we will be done.

Given that |L(X)| is continuous over compact intervals in regions 1 and 3, it achieves a
min value over these regions, and suppose that min value has magnitude δ>0. Since {ln}
converges pointwise to BLP(X) as n→∞, there exists some M∈N such that for all N>M, and
all x in regions 1 and 3, |lN(X = x)-BLP(X=x)|<δ. We then have E[Y|X]<lN(X)<BLP(X)
for x<x* (in both regions 1 and 2) and BLP(X)<lN(X)<E[Y|X] for x>x* (in both regions 2
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and 3). Thus, any such lN(X) has lower expected squared loss than BLP(X), contradicting
that BLP(X) is expected squared loss minimizing, which completes the proof.

The condition that there is no unique x*∈[a,b] such that L(X=x*)=L′(X=x*)=L′′(X=x*)=0
implies that there is no unique intersection with a saddle point of the loss function at that
value. Violations of this condition would be knife-edge situations which are unlikely to be
seen in practice. Note that the theorem provides a sufficient condition for two intersections;
even if there is a saddle-point where loss is zero, there may still be at least two intersections.
For our purposes, however, we consider the condition sufficiently knife-edge that we can in
practice take it for granted that the BLP is a secant through the true conditional expectation
function.

Corollary 1. ∃xl∈(a,b): d
dx
E[Y |X = xl]=β1.

This corollary, which is an elementary consequence of the mean value theorem, implies
that the slope of the BLP represents an instantaneous rate of change somewhere along the
true conditional expectation function.

4 Secant Interpretation

The broken clock property of linear regression allows for an intuitive semantics for the slope
parameter in the univariate case:

∃x∃x′ : β1 = E[Y |X = x′]− E[Y |X = x]
x′ − x

(9)

This interpretation extends to the multivariate case in a straightforward way. Since a linear
regression (hyper)plane will always be a secant plane through the true conditional expecta-
tion surface13 a parameter in a linear regression model can be interpreted as the contribution
of the corresponding regressor to the expected change in the outcome variable between two
points in the regressor space where these functions intersect. More precisely, if the multi-
variate linear regression model is given by E[Y |X] = β0 + β1X1 + β2X2 + ... + βNXN

but the true conditional response surface is assumed to be non-linear, then the broken clock
property entails that:

∃x∃x′ : E[Y |X = x′]− E[Y |X = x] = β1(x′1 − x1) + ...+ βN(x′N − xN) (10)
13A secant plane to a non-linear surface intersects with a non-trivial section of the surface, as opposed to

a tangent plane which may only ‘slice’ a non-linear surface at a point. A linear regression hyperplane cannot
be a tangent plane to a non-linear conditional expectation surface because then the expected loss will be
non-zero, violating the lemma of the previous section which holds in higher dimensions (see Theorem 4.1.5
in Aronow and Miller 2019, p.149).
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Thus, in the multivariate case, a given parameter β1 is also interpreted in terms of an
existence claim: there exist two points in the regressor space (x1,...,xN),(x′1,...,x′N) such that
the shift from x1 to x′1 contributes β1(x′1-x1) to the expected change in the outcome variable,
additively with the corresponding changes in the other regressors. Crucially, one cannot
meaningfully compare the magnitudes of the regression parameters without knowing the
magnitudes of the corresponding shifts in the regressor values. Since the true conditional
expectation function is unknown, so are these regressor values.

Notwithstanding this, the main upshot of the broken clock theorem is philosophical:
the researcher can have confidence that their slope coefficient is an unbiased estimate of a
parameter which ‘latches onto’ a true rate of change along the target system, even though
that target system is assumed to be unknown. It is often said that linear regression models
are ‘linear approximations’; however, not all linear approximations have the broken clock
property. To take an example from physics, pre-relativistic momentum p=mv is a linear
approximation to relativistic momentum p= mv√

1− v2
c2

, when v is small compared to c. However,

these functions only intersect once, at v=0, so the pre-relativistic momentum function cannot
be interpreted as a secant through the relativistic momentum function. Linear regression,
by virtue of the fact that it minimizes loss, is a special kind of linear approximation: one
which necessarily characterizes a rate of change along its target system.

5 Discussion

Following Suppes (1962), philosophers of science have distinguished between models of (sci-
entific) theories and models of data (Frigg & Hartmann 2021). The scientific realism lit-
erature has primarily been concerned with models of theories: debates persist about, for
example, which forms of ‘selective realism’ about model-elements are resistant to challenges
from ‘pessimistic metainduction’ from theory change in science (e.g., Harker 2013). In con-
trast, philosophical discussions of data models have thus far focused on methodological issues
arising from data manipulation (Harris 2003) and curve-fitting (Forster & Sober 1994), but
without a corresponding search for realism about elements of data models. Interestingly, it
is practitioners themselves who have advocated for clarity about model-semantics:

...it is easy to agree with G.E.P. Box’s famous dictum, [“all models are wrong,
but some are useful” (Box 1979)] but there are real consequences that cannot be
ignored or minimized by hand waving ... [as it] affects how we interpret estimates
and how we obtain valid statistical inferences and predictions.
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- Berk et al 2021, p.8314

As an example of the “real consequences” of these interpretive challenges, it is worth
comparing the semantics of the aforementioned average derivative interpretation with the
semantics of the secant interpretation. Consider a univariate linear regression model which
estimates the causal effect of X on outcome variable Y, and suppose the true relationship is
non-linear (i.e., there is functional misspecification, but suppose no omitted variable bias).
The researcher obtains a single linear regression slope, whose semantics on the average
derivative interpretation are as follows:

...the slope is an average. Consequently, it will likely overstate or understate
the slope at any particular observation. ...Because of these limitations, any step
from estimation to causal inference will be challenging. There are the usual
conceptual issues such as how to map ... regression coefficients to real-world
manipulations of causal variables. But in addition, under what circumstances
does it make sense to use linear approximations as the basis for any causal claims?
...the issues are complicated[.]

- Berk et al 2014, p.17

Here we can see a drawback of an insufficiently realist semantics: interpreting linear re-
gression coefficients in terms of average derivatives is mathematically correct, but it obscures
the ways in which the model represents causal features of the physical target system. On
the secant interpretation, however, the semantics are straightforward: the coefficient is an
unbiased estimate of the rate of change in the conditional expectation of Y caused by a hy-
pothetical intervention between two X-values. Of course, which X-values remains unknown
(the broken clock theorem only guarantees their existence), but the semantics are clear: the
slope corresponds to a real causal relationship in the target system.

This example illustrates that there are interpretive consequences of identifying a realist
semantics for data-models. When compared with models of theories, data models present dif-
ferent challenges and opportunities in the search for selective realism about model-elements.
Models of theories typically explain and predict empirical data using theoretical constructs
(e.g., utility functions, fitness functions, wave-functions), and the challenge for the realist is

14The Box dictum has always been in tension with the no-miracles argument for scientific realism (Putnam
1975), whereby the fact that a model is useful is an indication that it is ‘getting something right’ about its
target system. In contrast, this paper has proceeded in the reverse direction: the broken clock theorem
implies that ‘all linear models get something right’, and yet it is premature to go as far as Angrist and
Pischke (2009, p.xii) in stating that “linear regression provides useful information about the conditional
mean function regardless of the shape of this function.” Rather, we are at most warranted in the conclusion
that ‘all linear regression models get something right, but only some are useful’.
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to justify their belief in the theoretical constructs in light of the fact that theory change is
inevitable whereas the preservation of theoretical constructs in successor theories is not. On
the other hand, data models are generated algorithmically from the data itself (e.g., loss-
minimization in the case of linear regression), and their targets are properties of the true
joint distribution of the variables in the data (e.g., rates of change in the true conditional
expectation function). In data models, theoretical constructs (e.g., regression coefficients)
are couched in the vocabulary of the target system itself, which offers new prospects for the
realist seeking to determine how those theoretical constructs correspond to properties in the
target system.

In this paper, the functional relationship between the variables in the target system
was assumed to be unknown, and an existence theorem was used to demonstrate that the
method of linear regression guarantees that one of its theoretical constructs (the β-parameter)
represents a rate of change in the target system, regardless of its true functional form.
The result can be understood as a proof of concept that since data models are formally
generated, and because their theoretical constructs are given in the vocabulary of their target
system, realism about elements of data models can sometimes be formally demonstrated.
This perspective offers new opportunities for a realist justification of scientific practices.
For example, a common practice in regression modeling involves modifying functional forms
(e.g., by adding interaction terms, or non-linear terms) to see whether coefficients remain
significant. Assuming model misspecification, a realist justification for such practices would
seek to identify conditions on the relationship between a model and its target system under
which such inferences are sound.

6 Conclusion

The interpretation of linear regression coefficients under functional misspecification presents
a challenge for the scientific realist. The challenge is to provide a semantics whereby the
linear relationship modeled refers to a property of the underlying target system. This paper
identifies such a correspondence via the secant interpretation: the derived ‘broken clock
property’ allows the realist to interpret a linear regression coefficient as estimating a rate of
change along the true conditional expectation function. Coefficients therefore retain their
usual interpretation as slopes, though with a restricted domain of applicability.

Discussions of scientific realism about model-elements have typically centered around
models of scientific theories to the exclusion of data models. In the case of linear regression,
the model-element of interest is the population regression parameter, and the broken clock
theorem demonstrates that this parameter can be identified as an intrinsic property of the
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target system, even though the specific functional form of the target system is assumed to be
unknown. The secant interpretation is thus a form of selective realism, and offers a proof of
concept that data model realism can sometimes be formally demonstrated, with interpretive
implications for scientific practice.

Acknowledgements I am grateful to PM Aronow, William Greene, and Cyrus Samii for
valuable feedback on earlier drafts of this paper.
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