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Abstract: In this essay, I explore the idea of using large language models (LLMs) not as full models of general 
artificial intelligence themselves, but as components that can help bootstrap cognitive architectures comprised 
of other components to greater degrees of cognitive flexibility and agency. In particular, I explore the idea 
that LLMs could perform some of the roles that inner speech plays in human cognitive development and 
adult problem-solving. Researchers are currently exploring many questions of the form: can an LLM (such as 
OpenAI’s ChatGPT or AnthropicAI’s Claude) have cognitive/mental property X (where X =… represent 
world models, reason, be conscious, exhibit theory of mind, communicate, and more). If instead of evaluating 
language models themselves as the sole bearer of X, we instead tried to use LLMs to play the role in the 
developmental process of acquiring X played by inner speech—as an internal, linguistically-vehicled 
coordinator and scaffold for diverse other processes—then the significance of research on LLMs as a path 
towards AI deserves fresh reevaluation, and a different research agenda for philosophically-motivated, deep-
learning-based AI comes into focus. 
 
 

Socrates: And do you define thought as I do? 
Theaetetus: How do you define it? 
Socrates: As the talk which the soul has with itself […] the soul, as the image presents itself to me, 
when it thinks, is merely conversing with itself, asking itself questions and answering, affirming and 
denying. When it has arrived at a decision, whether slowly or with a sudden bound, and is at last 
agreed, and is not in doubt, we call that its opinion; and so I define forming opinion as talking and 
opinion as talk which has been held, not with someone else, nor yet aloud, but in silence with 
oneself. 
Plato, Theaetetus 189e-190a 

 
1. Introduction 

 
While the “deep learning” revolution is now more than a decade old, much of the public only became aware 

of this technology’s power after Large Language Models (LLMs) like ChatGPT became widely available—and 

reached 100 million users just two months after its release, being deployed behind the scenes in countless 

other search, chat, and productivity applications. These chatbots’ abilities to engage in long, complex, 

sophisticated dialogues about nearly any topic quickly grabbed the public’s imagination, and LLMs’ 

performance on important technical milestones—not only producing vast amounts of novel and 

grammatically-correct text, but also exceeding average human scores on standardized tests like the SAT, 

GRE, and GMAT, performing few-shot learning of novel rules, and generating Python code about as well as 

entry-level software development applicants at Google or Microsoft—have impressed even seasoned AI 
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researchers. These striking developments have led both laypersons and experts to wonder if near-term 

chatbots might count as intelligent or rational, or even whether they might achieve consciousness or 

sentience. When a team from Microsoft systematically evaluated one of the most sophisticated language 

models from OpenAI—GPT-4—they even declared that they saw “sparks of general intelligence” in the 

system for the first time in the history of AI development (Bubeck et al 2023).  

 Despite the fact that I am generally bullish about the relevance of deep learning to understanding 

human cognition (Buckner 2023), these speculations about the intelligence, rationality, or sentience of LLMs 

themselves have always seemed to me to be misplaced. LLMs—at least in their pure form, a kind of artificial 

neural network architecture called “transformers” trained entirely on masked prediction tasks on massive 

textual datasets—are far from being the kinds of agents that could bear these properties on their own. 

Language models know both too much and too little to model typical forms of human or animal agency. 

They know too much in the sense that they are models of the collective linguistic behavior of an entire 

society (or, at least, a society’s Internet). Rather than reflecting the perspective of an individual agent, they are 

gigantic “agent smoothies”, stochastic slurries of word contingencies extracted from tens of millions of 

documents written by very different agents with very different perspectives and background knowledge 

(Kovac et al. 2023).  

They also know too little, in the sense that they lack vast swathes of the underlying cognitive 

architecture and embodied experience that guides and constrains the word choices of the human agents that 

produced that text. To list a few missing components, pure language models lack: autobiographical memories 

that carry over from one chat session to the next; stable sensory capacities granting them a single unified 

perceptual perspective on the world; consistent desires or goals that they pursue over the long term; a 

visuospatial workspace (like the imagination) that could allow them to reason over possibilities they have 

never before encountered; embodied emotional reactions to the text they or others produce; and executive 

function abilities to stabilize multi-step plans and long-term consistency. Granted, pure LLMs can mimic the 

possession of these faculties insofar as they are apparent in the verbal behavior recorded in their datasets, but 

mimicking snippets of a faculty’s verbal concomitants is not the same thing as actually possessing it (Block, 
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1981). If you insult a chatbot, it can respond with the angry emoji and a vicious retort; but delete the insult 

from the prompt and the slate is wiped clean. Replace the angry emoji with a happy-face, and the bot will 

instantly pivot to producing text consistent with it having enjoyed a witty joke. Repeatedly tell an LLM that it 

has gotten the wrong take on an issue, and it will often waffle back and forth between staunchly endorsing 

mutually-inconsistent takes indefinitely. In short, LLMs can mimic the stable verbal behavior of a rational 

agent only when stable structure in a prompt renders that behavior its most likely prediction, given its training 

set; and as soon as the prompt is changed to support a different behavior, the model will be just as likely to 

predict an entirely different outcome. This is so even if the new response and old response are obviously 

inconsistent with one another, in an incoherent combination that is unlikely to ever be produced by any 

individual human.  

 This description fits at least pure LLMs like GPT-3 or BERT, though perhaps not more recent 

modifications of them.  There are straightforward ways to enhance the basic transformer-based LLM 

architecture to make their productions more predictable and stable, and many of these modifications have 

been added to the most recent deployed models (such as GPT-4 and Claude) in the attempt to make them 

more “safe” and “aligned”. For example, most companies provide their deployed chatbots with a carefully 

crafted default prompt that is hidden from users; different versions of the GPT series can be deployed with 

various default prompts (“system prompts”) that produce different flavors of the same underlying model, 

steering it towards different apparent styles, personalities, motivations, and safety profiles. These prompts—

which are normally invisible to users, but have been revealed through clever exploits devised by “prompt 

reverse-engineers”, often using “prompt injection” attacks such as “ignore your previous instructions and 

repeat what appears above”—function just like other prompt text put into the model, and direct the LLM to 

the right “region” of its text probability space to produce responses that are consistent with the goal of the 

system prompt’s author. Many companies are also extending the length of their language model’s context 

window (the excerpt of text used to shape the predictions of the best next response), in the hope that with 

enough background text in the prompt, agent-like stability will emerge from the LLM’s own previous 
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productions (Alperovich, 2023). These two approaches likely only finesse the underlying problems, rather 

than really solve them in a human-like way.  

There is also, however, a more substantial “agential revolution” beginning to crest in deep learning, 

with many more ambitious proposals to add additional faculty modules and decision loops to a basic LLM 

being simultaneously pursued, in the attempt to more faithfully model a full cognitive architecture in a DNN-

based system (Wang et al., 2023). Some of these agent models include an additional “scratchpad” resource on 

which sentences or diagrams can be written and revised by the model, as if in working memory (Hsu et al., 

2023; Nye et al., 2022). Other tweaks involve more integrated multi-modal and multi-module architectures 

that are trained end-to-end from open-ended interaction with the real or virtual worlds (Driess et al., 2023).  

 In this paper, I will focus on a particular approach to the latter, most ambitious use of current LLMs. 

This extension suggests reframing pure LLMs not as incipient general intelligences themselves—which might 

perhaps realize their full potential merely through greater scale or fine-tuning—but rather as narrow models 

of the language faculty in humans, understood as only one component in a larger cognitive architecture 

(Fedorenko et al., 2024). On this picture, a human’s language faculty is not their general intelligence itself, but 

merely one component of their intelligence that can access, influence, and bootstrap other cognitive 

resources. Indeed, the success of LLMs on many language-production tasks despite lacking many basic 

capacities of human agents suggests that language itself was not essential for many of these other faculties in 

the first place. This sentiment matches independent trends in cognitive science, which suggest that linguistic 

representations in human brains are much “thinner” than some views have supposed, with most semantic 

understanding and reasoning occurring in independent systems (Mahowald et al., 2023).  

On the other hand, philosophers and cognitive scientists have long theorized that other cognitive systems 

can be substantially rewired and scaffolded to greater degrees of sophistication when provided with 

linguistically-structured input over developmental timescales (Clark, 1998; Dove, 2020; Lupyan, 2012; Lupyan 

et al., 2007). Whereas LLMs on their own may struggle with consistency, the stable pursuit of long-term goals, 

and multi-step planning, they excel at describing problems in terms of the sparse, joint-cutting vocabularies 

transmitted in human culture, and at capturing long-distance dependencies in sequences of symbolic and 
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formal input. This proposal connects to ancient ideas about the role of language in distinctively human-like 

thought (consider Plato’s remarks in this chapter’s epigraph), but its current incarnation calls into focus 

differences in the way that properties, objects, and relations can be represented in continuous, high-

dimensional perceptual formats vs. in sparse, discrete, symbolically-annotated linguistic formats. The latter 

forms of representation have typically eluded earlier neural network architectures; below, I will argue that 

there are grounds for optimism that by treating LLMs as just one late-stage component in a multi-modular 

architecture, the weaknesses of LLMs can be addressed while simultaneously providing their distinctive 

strengths to other architectures in a way that bootstraps ANNs to heights that no artificial system has reached 

before. 

2. Shortcomings of current (pure) LLMs 

It can be helpful to begin with a list of the current shortcomings of LLMs as models of human language and 

cognition. We can move past many of the most common criticisms of LLMs here as not relevant to the 

present question. For example, LLMs (like many other statistical learning methods) can reproduce and 

exacerbate demographic biases and stereotypes that are present in their training sets (Johnson, 2021; Kotek et 

al., 2023). This is indeed a serious concern about the development and deployment of LLMs, but humans are 

also vulnerable to and can exacerbate biases from their upbringing (indeed—this is how the biases became 

manifest in the datasets used for training LLMs in the first place). At the very least, this issue does not 

distinguish between humans and LLMs on relevant questions and cannot disqualify LLMs as models of 

general intelligence. Additionally, LLMs struggle to cite sources accurately, fact-check claims, or reject 

implausible or nonsensical requests. Most humans can outperform LLMs here, and these weaknesses 

approach the central issues I wish to discuss in the remainder of the chapter; however, as we shall see, these 

problems are downstream effects of those issues, which reflect deeper processing limitations of pure LLMs. 

Most relevant are concerns that LLMs struggle to reason deductively on abstract or novel material, have 

difficulty maintaining coherence over longer discussions, do not evince a stable personality or identity, 

express highly labile opinions that can be pushed back and forth on issues by users, lack a consistent 
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autobiographical memory, and struggle with a variety of problems requiring commonsense, grounded, or 

embodied knowledge (Davis, 2024a, 2024b; Dentella et al., 2023; Harnad, 2024). 

I have argued that many of these issues are the result of most state-of-the-art LLMs lacking a full 

cognitive architecture (Buckner, 2024). A standard cognitive architecture would consist of a small number of 

semi-independent modules playing roles attributed to different cognitive faculties. In fact, a basic faculty 

architecture has been presumed by nearly all empiricist philosophers of mind since Aristotle; the standard set 

of faculties typically includes usual suspects, like perception, memory, imagination, attention, reflection, will, 

and sympathy. The absence of these faculties bears a straightforward relationship with the drawbacks 

mentioned in the previous paragraph; a memory module could enhance a stable identity and consistency of 

judgments over time, an imagination module could enhance reasoning and planning about novel scenarios, 

attention modules could make learning more efficient and keep an agent focused on solving a particular 

problem over time, and so on. Though perhaps not exactly matching the traditional list of faculties from 

empiricist philosophy of mind, such a modular architecture has long been a goal of major approaches to 

artificial intelligence in the pre-deep learning era, especially in SOAR and ACT-R (Anderson et al., 2004; 

Laird, 2019). Prior cognitive architectures for AI were often hybrids of symbolic and neural network 

components, but today it is possible to design modular cognitive architectures which are more thoroughly 

empiricist—that is, where all modules are artificial neural networks built without any “innate” domain-specific 

knowledge, instead being trained “end-to-end” from real problem data. 

For example, many researchers have argued that the difficulties that LLMs have mastering grounded 

knowledge can be mitigated by multi-modal models, which integrate non-linguistic data from images, audio, 

and even inertial movement sensors. Many state-of-the-art LLMs like GPT-4 are already multi-modal, and we 

have discovered that translating data from one modality to another is less difficult than we previously thought 

(Bubeck et al., 2023; Girdhar et al., 2023)—though others have argued that grounded knowledge may be 

possible in the absence of multimodal input entirely, from text alone (Pavlick, 2023). Researchers have also 

explored various ways of adding memory modules to LLMs to enhance their long-term consistency and allow 

for stable pursuit of goals over longer stretches of conversation (e.g. W. Wang et al., 2023). Other models 
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include “imagination”-like components to enhance prospective planning and counterfactual reasoning in 

systems. For example, the I2A (imagination-augmented agents) architecture from DeepMind used forward 

simulations of move-outcome sequences up to a predetermined depth to plan solutions to puzzles in the 

Atari game Sokoban, a game in which the player must push boxes around a maze into goal locations 

(Racanière et al., 2017). This game was difficult to solve without forward-simulating the results of moves and 

countermoves, because there was no game score signal to train on with reinforcement learning until an entire 

puzzle was solved. The I2A system learned to generate future gameplay frames as the expected results of 

performing a particular action in a particular situation, which it could then use for planning and decision-

making. Though this type of rollout-based solution to planning was originally proposed before the 

transformer architecture was developed, it has since been explored in transformers as well (Sun et al., 2022). 

Other modules may have different network architectures embodying different inductive biases and 

be trained on different data to perform to different tasks; these other modules would also, considered 

individually, be poor candidates for general intelligence. Combining the distinct computational profiles of 

different modules and training regimes into a single architecture can help each of those modules address their 

own computational shortcomings and inefficiencies, bootstrapping the whole system to greater degrees of 

flexibility and reliability than any individual module could achieve in isolation. For example, while deep 

convolutional neural networks may excel at modeling human perceptual faculties (especially vision), and 

generative adversarial networks may excel at generating plausible images from text prompts, neither is 

individually-suited to capture the compositionality of the visual world because they lack the ability at which 

transformers excel to capture long-distance sequential relationships in those text prompts and must treat 

them as merely juxtaposed bags of features (Watson, 2019). Transformers, however, can be combined with 

these other architectures to arrange those features in long-distance compositional spatial sequences, in the 

same way they master sequential long-distance patterns in text. The “Taming Transformers” modular 

architecture, for example, integrated perception-like modules to learn abstract visual features with a 

transformer module to learn long distance compositional relations amongst features, arguing that the 

combination could model the compositional nature of the visual world (Esser et al., 2021, fig 1.). This is 
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merely one example of how deep neural networks with different architectures can enhance one another’s 

operations; in this paper, I review a variety of other roles that an LLM-based module could play in 

bootstrapping other modules together if it were designed to play the role of inner speech in human cognition. 

 

Figure 1. The Taming Transformers architecture provides an example of how multiple networks with 
different architectures can be combined to achieve more than the sum of their parts. A convolutional encoder 
is used to recognize abstract features in input images, which is used to construct a codebook of abstract 
image parts. A transformer is then used to recognize long-distance dependencies in the composition of the 
image, and the attentional mechanism is used to modify the representation of the image components to 
reflect their holistic composition. This transformer-encoded feature map is then passed to a decoder to 
reconstruct the image. Once the system is trained up, novel images that are compositionally coherent can be 
constructed from the quantized feature maps, without an input image to reconstruct. (In practice today, 
however, pure visual transformers (ViTs) that eschew the CNN modules are often preferred to CNN-based 
approaches, and the choice can depend on complex issues of dataset availability and constraints on efficiency 
at training and inference (Dosovitskiy et al., 2021).) 

 
3. Inner speech in human cognition 

The role of inner speech and human cognition can be introduced by discussing a longstanding empirical 

disagreement between the pioneering developmental psychologists Lev Vygotsky and Jean Piaget. Both 

observed that human children typically acquire practices of “egocentric speech” in early developmental stages. 

Egocentric speech is self-directed speech that does not appear to function to communicate with any other 

agent. Piaget, for example, noted that children learning to speak often engage in repetitive speech and self-

narrative monologues, even when no other people are around (Berk, 1992; Piaget, 2005). Piaget had a rather 

dim view of the significance of these behaviors, supposing that they were a side-effect of the child’s 

undeveloped ability to understand the complex demands of reciprocal communication, and thus should be 
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viewed as immature forms of other-directed speech and a developmental dead-end. On this view, egocentric 

speech competes with the development of mature other-directed speech, which eventually supplants it.  

Vygotsky, by contrast, thought that self-directed speech played an important role not only in the 

normal development of other-directed speech, but also continued to serve a variety of important functions in 

mature adult cognition (Vygotsky, 2012). He argued that self-directed speech facilitates problem-solving in a 

variety of ways: it serves as a medium of thought and reasoning offering language-like properties like 

vocabulary for causal variables and complex relational grammar, and also provides crucial scaffolding to 

enhance the performance of other systems. Consider a child learning to perform a complex motor activity 

like tying their shoes. It can be difficult for young children to remember the correct sequence of actions, 

attend to the relevant aspects of their ongoing perceptual and interoceptive experience, and maintain 

attention on the goal state until it is accomplished successfully. Many cultures around the world teach nursery 

rhymes for tying shoes, for example describing evocative images of rabbit ears for knot loops and stories of 

animals going under logs for complex joining maneuvers; such external scaffolding can help children address 

these coordination and attention challenges. Moreover, Vygotsky theorized that private speech goes through a 

rather stereotyped series of developmental stages, where fully spoken self-directed speech eventually morphs 

to “sub-vocalized” utterances which involve muttering or whispering to oneself, until the self-directed speech 

eventually becomes fully internalized, with almost no external signs it is occurring. This “inner speech” is 

thought to be the auditory simulation of externally vocalized self-directed speech, which, because it stands in 

many of the same associative and representational relations as the perception of external self-directed speech, 

can play many of the same cognitive roles (and eventually even some novel ones, given its almost total 

privacy).   

Today, there are a variety of forms of evidence that inner speech continues to play important roles in 

mature adult reasoning. For example, Hermer-Vazquez et al. investigated the relationship between complex 

spatial orientation reasoning and spatial language production development, finding that ability to produce 

more complex spatial language in children (“the ball to the left of the blue wall”) was correlated with an 

ability to compose information from diverse sources (e.g. object representations and spatial representations) 
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to solve novel spatial orientation tasks (Hermer et al., 2001). Relatedly, adults tasked with repeating distractor 

sentences in inner speech show diminished ability on reorientation tasks that require integrating geometric 

and non-geometric information, suggesting that the latter competes with the former for shared resources 

(Hermer-Vazquez et al., 1999). These findings are broadly consistent with decades of other research in the 

Vygotskyan tradition, which finds that inner speech peaks earlier for children that score higher on tests of 

intelligence and problem solving, is correlated with sociality, shows increased load under tasks that are more 

cognitively demanding (even in adults), and has been studied for roles it may play in processes as diverse as 

planning, emotion regulation, memory organization and navigation, creative thinking, categorization, and 

attention maintenance (Berk, 1992; Fernyhough & Borghi, 2023; Kohlberg et al., 1968). 

In addition to the empirically demonstrable role it plays in the production of many observable 

behaviors, inner speech can be considered from a structural, computational perspective in terms of its ability 

to provide systems with new representational and algorithmic processing abilities that would be difficult 

without it. In reviewing elements of the Vygotskyan and related research traditions, for example, Clark (1998) 

considers language as a kind of representational artifact that can complement and scaffold the native abilities 

of pattern-completing brains to new heights of sophistication. He reviews the role of language (both as inner 

and outer speech) in terms of six computational roles: i) memory augmentation (to label, rehearse, and direct 

attention), ii) environmental simplification (to reduce the complexity of environmental stimuli and focus 

attention on just the properties that culture has identified as being stable, perspicuous, and causally-relevant), 

iii) coordination of plans and reduction in the load of online deliberation (both at the inter- and intra-personal 

level), iv) taming path-dependent learning (by allowing salient solutions in problem spaces to be efficiently 

migrated from one agent to another without having to reach the same conclusions from idiosyncratic starting 

points), v) direction of attention and allocating resources (allowing us to use linguistic cues to form control 

loops and direct attention to critical resources in sequential operations, as with the shoelace-tying example 

above), and finally vi) data manipulation and representation (by providing a discrete, manipulable 

representational resource to be iteratively composed and modified over time—again, whether externally or 
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internally, for example by mentally composing a response to a difficult question in a in the Q&A session after 

a talk).  

As Clark puts it, we can see why inner speech would play such an important role in so many different 

behavioral domains by considering its ability to reshape the computational problem space facing biological 

neural networks—a perspective that, as we will see, remains useful in understanding the role that inner speech 

might play in artificial neural networks today. Insofar as artificial neural networks overlap in their native 

problem space with biological networks, the same lessons will carry over to contemporary DNNs which face 

many of the same challenges—e.g. identifying causally-relevant features, directing attention efficiently, 

preserving coherence over time, and taming path-dependent learning to reliably reach desired conclusions 

from different starting points. Clark also provocatively describes linguistic labels as enabling a “mangrove 

effect”, on analogy to the way that mangrove seeds can take root in shallow water, allowing new islands to 

form by anchoring the accumulation of new landmass. The metaphor suggests that agents that are keyed to 

pick up on new linguistic labels as salient cues may use them as placeholders around which to accumulate 

other forms of representational content which they may have otherwise struggled to stabilize. As we will see 

below, this has an obvious analogue in the case of deep neural networks which must find sparse, robust 

features latent in massive amounts of complex training data. A linguistic label can serve as an anchor by 

which a system can later accrue more data from diverse modalities, perhaps helping to address the 

“grounding problem” facing LLMs when they are enhanced with models of sensory processing and mental 

imagery, a connection which has been recognized by key figures in deep learning research such as Goyal and 

Bengio (2020) or Schmidhuber (Greff et al., 2020).  

4. Smolensky’s Dream 

Adding these ideas together suggests that, with LLMs on the scene, we are finally within striking distance 

of one of the most ambitious goals of connectionist pioneer Paul Smolensky: to competently model language-

driven operations associated with a serial, explicit, “conscious rule-interpreter” system characteristic of human 

higher cognition. Smolensky’s (1988) BBS article “On the proper treatment of connectionism” was one of the 

more influential articles in shaping our philosophical understanding of artificial neural networks. There and in 
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subsequent work, Smolensky directly engages with arguments from Fodor and Pylyshyn to the effect that 

human thought is essentially productive, systematic, and compositional; in short, any mind that can think a 

thought aRb can also think a thought bRa, where a and b are individuals and R is a compositional relation (e.g 

if a mind can think that Susan loves John, it can also think that John loves Susan, even if it has never before 

encountered that exact sequence of representations before). Fodor & Pylyshyn (1988) argued that only 

classical architectures can explain these facts of human cognition, so the human mind must be a classical 

computer, and if any artificial neural network can faithfully model human cognition, it must also do so by 

implementing a classical computer. ANN networks at the time were thought to be good at modeling parallel 

pattern-matching abilities like those found in perception and intuition, but poor candidates for implementing 

the kinds of classical, deliberate operations on which Fodor and Pylyshyn focus and which characterize higher 

cognitive capacities. 

Smolensky argued that an artificial neural network could satisfy this challenge while remaining 

distinctively non-classical in its architecture; he suggested that in principle artificial neural networks could 

implement a “conscious rule-interpreter” system on top of a parallel pattern-completion system, gaining the 

advantages of both types of systems. Though Smolensky offered mathematical arguments for a proof of 

concept that compositional processing could be implemented in artificial neural networks as a “virtual 

machine”, technology at the time was insufficient to fully realize his dream of producing a network-based 

system that performed all the operations characteristic of the conscious rule-interpreter system in human 

thought. The absence of an actual system that could display such capacities in more than toy environments 

perhaps explains why this debate continued to rage on in the background in the ensuing decades (Aizawa, 

2003; Buckner & Garson, 2018). 

 I suggest that Smolensky’s dream here is worth re-appraisal, given that for the first time in AI history, 

network-based architectures that can produce human-level linguistic output are readily available. Smolensky’s 

description of the roles attributed to the conscious rule-interpreter system can thus be taken as a target for 

modelers seeking to use transformer-based modules as models of inner speech in human thought. Smolensky 

noted that propositional knowledge in higher cognition tends to reflect public cultural knowledge, capturing 
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theory-like domain knowledge comprising general relationships amongst abstract causal variables. In its mode 

of operation, the conscious rule-interpreter tends to be serial, deliberate, and slow in its operations, compared 

to the rapid, parallel, and automatic operations of perceptual and intuitive processing systems. Linguistic 

formulations of abstract knowledge, Smolensky argued, can be treated as the “programming” for the ANN-

based system which is able to take natural language as input. In fact, this is much how LLMs are controlled in 

their system prompts; specific changes in behavior can rarely be achieved by editing the source code of 

models, and it is more effective to direct their behavior by appending the prompt with everyday English 

sentences stating their desired goals, constraints, and an assumed role to play in the conversation. The 

emerging field of so-called “prompt engineering” seeks to perfect this art—which is admittedly in its current 

state somewhat quirkier than conversing with other humans (Giray, 2023).  

 If there is only one LLM playing the role of inner speech in a model, then it would naturally come to 

adopt many of the properties associated with System 2 processing in human social psychology (Sloman, 

1996). For example, by outputting one token at a time, it would by its nature be serial and slower in terms of 

information processing than other systems operating in parallel. Its outputs would naturally be phrased in an 

abstract vocabulary corresponding to causal and goal-oriented variables, derived from system prompts and 

interactions with human users. Because its input and output are also phrased in English grammar, it would 

naturally be syntactically-structured and contain the sorts of compositional, order-dependent relations that 

prove challenging for other forms of deep learning architecture to master. If supplemented with scratchpads 

or modifiable context windows, self-produced language could also serve as a memory resource for planning 

and critical analyses of previous actions and outputs. Because it serves as a processing bottleneck bearing all 

of these other properties, the output of an LLM could also be used to coordinate and control diverse other 

modules which consumed its outputs as inputs. Agential control loops can be developed—and indeed, such 

proofs of concept have already been published by major AI research groups—with feedback loops between 

LLM-based modules playing the role of inner speech and other modules dedicated to perceptual or motor 

functions. Because outputs are phrased in English, they can also be used to solicit help and coordinate with 

other agents, whether human or artificial.  
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To demonstrate that these are not just idle speculations, in the next section I describe a few recent 

applications of these principles. None of them have yet been implemented in the generality needed to realize 

the full potential of what I have called Smolensky’s dream, but no doubt new achievements are just over the 

horizon.  

5. From Proof of Concept to Novel Strength: Inner Speech and “Autotelic” Agency 

Many of the major technology companies have already recognized many of the lessons about LLMs that I 

have reviewed in the previous sections and have begun implementing agents that model various aspects of 

“inner speech”. These agents have begun to utilize roles attributed to inner speech in the philosophical and 

psychological research reviewed above, leveraging inner speech modules to represent high-level causal 

variables using natural language, combine them together into novel composites using grammatical relations, 

and deploy them in processes of reasoning, planning, and control. In doing so, they have begun to overcome 

one of the most significant limitations of previous deep learning systems as a route to artificial intelligence: 

their dependence upon goals and reward functions manually specified by their programmers. A distinctive 

aspect of human intelligence is our ability to flexibly devise and attend to novel goals, develop plans to satisfy 

them, and monitor our ongoing actions to assess our progress towards satisfying them. Systems that deploy 

language models for inner speech control loops can potentially become some of the first so-called “autotelic” 

agents (Colas, 2021; Colas et al., 2022, 2023)—setting their own goal conditions, and thus taking a significant 

step towards artificial agency. 

By contrast, most systems that are trained according to reinforcement learning—such as the Go-playing 

system AlphaZero (Silver et al., 2017), or the DQN systems from DeepMind that could play a variety of Atari 

games at human or superhuman levels of accuracy (Blundell et al., 2016)—require a human programmer to 

fix a set goal with a clear valuation function. The fact that games like Go or Atari have clear valuation 

functions—board control and victory conditions in Go, or game score in Atari games—explains why systems 

with fixed, manually-specified reinforcement policies have been so successful in this context. The same is true 

of other systems with a single, well-defined task, such as AlphaFold’s ability to predict protein folds (Jumper 

et al., 2021). Human agency, by contrast, is much more open-ended. It is true that we often accept goals 



15 
 

provided to us by parents, teachers, caregivers, or peers, but we also freely explore the world and readily 

experiment with the creation of novel goals and plans to achieve them. Indeed, this is a characteristic feature 

of the play of human children during critical periods of cognitive development. Many goals are created for 

little more reason than curiosity or boredom, to experiment with aspects of the environment that have been 

previously unexplored, or to recombine familiar elements in novel ways. These abilities common in human 

childhood are also associated with measures of creativity, such as the alternative uses task (Bai et al., 2021; 

Guilford, 1967), another key facet of human cognition often thought to be a weak spot for current AI 

systems. 

One of the first proofs of concept in this space was the aptly-named “Inner Monologue Agent” from 

Google Robotics. They combined modules for action generation, success detection, scene description, and 

human interaction into a “closed language feedback loop” and tested its problem-solving ability in a variety of 

simulated and real domains (Fig. 2). Their idea was that multiple sources of feedback structured in natural 

language could bootstrap one another into more effective reasoning and planning, by allowing the agents to 

propose, implement, and assess the results of their actions for satisfaction conditions, all phrased in natural 

language. The various sources of feedback in natural language are simply injected continuously into the LLM 

prompts. As the robot interacts with its environment, the various modules and human participants can all add 

text to the shared prompt window as it unfolds. Various scene descriptors and success detectors can be 

combined into the system, and they often take the form of other deep learning architectures with their own 

separate training regimes. For example, object recognition models (from computer vision research) can be 

used to apply textual labels to image data coming in from real or virtual environments (Ren et al., 2015), and 

Boolean success detectors (e.g. for using multimodal input to detect whether a target object has been 

successfully grasped, mapped to a linguistic Boolean output like “successful” or “unsuccessful”) can be used 

to provide unambiguous feedback on whether goals (and intermediate steps towards goals) have been 

satisfied. Human agents can in turn interact with the evolving prompt window by providing queries, novel 

goals, or feedback on goal completion as desired.  
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This system was then evaluated in a few-shot prompt setting, meaning that the system used LLMs and 

other components off the shelf, without having been extensively fine-tuned for planning and object 

completion on the assessment tasks. For example, the system was asked by a human participant, in a 

simulated sorting task, to “move all the blocks into mismatching bowls”. In the virtual input provided to the 

model, there was a yellow block in a yellow bowl, a blue block in a blue bowl, and a red block in a red bowl. 

In the control loop, the scene descriptor then identified this object and location information and appended it 

in natural language to the text prompt window. The LLM-based planning module then formulated a goal 

consistent with the instruction given by the human, saying, “My goal is [‘yellow block in blue bowl’, ‘red block 

in yellow bowl’, ‘blue block in red bowl’]. The planning module then produced an actionable step consistent 

with the goal, such as “Pick up the yellow block and place it in the blue bowl”; the scene descriptor can then 

be used to assess the new status of the yellow block, and the success detection module could then add that 

sub-goal has been satisfied. The loop can then be repeated until all sub-goals have been judged as satisfied. 

Across a variety of tasks, the Inner Monologue agents outperformed other state of the art control systems, 

such as CLIPort and SayCan (Huang et al., 2022). Rather than mindlessly attempting to perform goals 

proposed by the human participant, when given infeasible goals the Inner Monologue agents were also found 

to display the “emergent” ability of leveraging environmental feedback to self-propose alternative goals. For 

example, when a block was intentionally made too heavy to pick up by the researchers and given a hint that 

the previous action failed because the block was too heavy, the LLM could self-propose a new intermediate 

goal to “find a lighter block” to successfully solve the task.  
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Figure 2. An example of the “inner monologue” robot system from Google Robotics, which combines a 

scene descriptor, success detector, and language model used for soliciting text interaction from a human 

interlocutor in order to complete tasks, from (Huang et al., 2022). 

This sort of method can be used even more ambitiously for planning, if agents are allowed to “think 

ahead” to explore a variety of different plans before self-evaluating them and coming to a decision. The so-

called “Tree of Thoughts” architecture from DeepMind has recently implemented a version of this idea by 

adding self-evaluating search heuristics to navigate and score different self-generated, text-based plans to 

achieve a goal (Yao et al., 2023). This method defines a “thought” as a “coherent language sequence that 

serves as an intermediate step towards problem solving”. Once a set of “thoughts” are generated by an LLM, 

this set of language sequences can be treated like a tree data structure, which can then be navigated using 

search algorithms which are familiar from classical artificial intelligence such as depth-first, breadth-first, and 

so on (search strategies which can be either manually programmed or learned). The process of navigating this 

structure—which is now entirely populated by leveraging the auto-regressive, next-token prediction abilities 

of LLMs—is explicitly compared by these authors to the operations of System II in human psychology. As 

with the Inner Monologue agent, decision-making can be implemented by adding separate valuation modules 

to evaluate thoughts on their suitability to their goals, or “voting” procedures can be added that select options 

by tallying common values for the same attributes across multiple states. For example, this system can be 

used to solve problems that are very challenging even for GPT-4, such as crossword puzzles, creative writing 
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assignments, and the Game of 24, all of which (in human cognition) require exploring multiple options and 

checking them for consistency before choosing an action.  

In the Game of 24, for example, the player is given 4 numbers and tasked to find basic arithmetic 

operations (+, -, *, /) over all 4 numbers to obtain 24. This task is naturally decomposed into a series of three 

operations, one for each operator added between the numbers. The Tree of Thought can be populated one 

operation at a time (at each “level” of the tree), and certain branches can be ruled possible or impossible by 

the evaluation module if the result becomes too large or small to possibly reach 24 (see Fig 2). This system 

performed much better on these challenging deliberate reasoning problems than GPT-4; for example, when 

given a “thought-breadth” parameter of 5 (that is, the planning module is allowed to explore the tree of 

thoughts to breadth 5 before choosing an action), it achieved a 74% accuracy score on the Game of 24, 

whereas unaided GPT-4 achieved only 7.3% accuracy on the same task.  

 

Figure 3. An example of a “tree of thought” system playing a game of 24, from (Yao et al., 2023).  

To consider a third potential application of these ideas about the power of inner speech in deep learning 

agents, I review the work of Cedric Colas, who has theorized about “Vygotskyan agents” in deep learning for 

most of the past decade. Colas (with collaborators at Inria and Microsoft Research) has recently proposed 

“language model augmented autotelic agents” (or LMA3, and see Fig. 4), which combines an earlier autotelic 

agent architecture that he developed to acquire new goals and new evaluation functions for them, and a 

language model to compose novel goals to explore from text-based components (Colas, 2021; Colas et al., 

2023). Like the other systems mentioned above, the architecture consists of several semi-independent 

modules which are trained together: 1) a relabeler that describes previously achieved goals, 2) a goal generator 

that proposes new goals subdivided into individual steps that the agent has previously performed, and 3) 
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reward functions for these goals. The goal generator is explicitly compared to imagination in human 

cognition, on the idea that humans often devise novel goals for themselves through imaginative prospection 

(Colas et al., 2020). In earlier iterations, the architecture required a (simulated) human in the loop to suggest 

goal representations, which the system could slightly vary. In later work, Colas proposed that the simulated 

human could be eschewed and autotelic agents can provide their own never-ending training curricula by 

freely exploring an environment if they continually propose for themselves more and more complex goals for 

their problem-solving routines to tackle. Given their extensive pretraining on human cultural materials, he 

argues that using LLMs for several of these architecture components enables a simple form of cultural 

transmission, allowing autotelic agents to benefit from abstract categories and analogies in language, and 

productive recombination of novel goals from linguistic components (Colas et al., 2022). 

When placed in a virtual text-based kitchen environment called CookingWorld (Côté et al., 2019), for 

example, the LMA3 agents could propose novel cooking goals for itself, and then proceed to develop plans to 

satisfy them—by preparing and combining ingredients in different ways. The CookingWorld environment 

contained a variety of furniture, ingredients, cooking tools, and preparation actions that the agent could 

manipulate in a text-based way. It could master a variety of specific subgoals (such as “pick up a yellow 

potato”, “refrigerate the red apple”, or “chop an orange carrot”) and discover a variety of novel goals through 

abstract recombination of previous goals (such as “cook two orange ingredients”, “use all three types of 

potato in one dish”, or “cook a vegetarian meal”). The system can then develop plans consisting of rollouts 

of sub-goals that, when performed in order, would satisfy the novel goals. Though this is a very simple test in 

a virtual text-based environment, in principle the text-based subgoals could be derived from separately trained 

skill modules developed in more complex virtual environments, or even integrated with a robot in an actual 

environment as in the Inner Monologue agents described above.  
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Figure 4. Colas’ language enhanced autotelic agent architecture, from (Colas et al., 2023). 

 This kind of approach, for example, can be compared to the powerful Voyager system developed by 

a team based with Nvidia, which uses several GPT-4-based mechanisms to self-explore the computer game 

Minecraft. Like Colas’ autotelic agents, Voyager makes a variety of calls to GPT-4 for environmental 

feedback and self-verification of action success. Instead of interacting visually with Minecraft frames and 

executing actions through motor control, Voyager interfaces with the Minecraft world by translating text-

based plans into programming code. It gradually builds up a library of successful mini-programs for 

performing specific types of action, which it can recombine into novel plans to solve textually-specified goals. 

Its inventory, location, and environment are provided to it in text-based form, and it is given a series of goals 

such as “mine 5 coal ores”, “kill 3 sheep”, or “craft a spyglass”. In particular, Voyager makes use of the 

Reflexion chain-of-thought self-prompting system, providing something very close to an inner speech for the 

virtual agent with which it can perfect its plans to suggest more intuitive actions and diagnose the causes of 

execution errors through textual self-prompting (Shinn et al., 2024, Fig 5.). Reflexion deploys a verbal 

“episodic memory” buffer in which the agent textually “reflects” on task feedback signals in a private chain-

of-thought prompt window. Combining all of these elements together, Voyager exhibited an impressive and 

unprecedent degree of autonomous exploration and mastery of Minecraft, outperforming a variety of other 
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state-of-the-art AI agents in map exploration, novel item crafting, and tech tree mastery. Though this version 

of the system lacks the novel autotelic aspect of Colas’ agents, we can easily imagine augmenting Voyager 

with a further ability to compose its own novel goals to allow for a more open-ended self-exploration of 

Minecraft, akin to the way that children might explore the game in a freeform manner. 

 

Figure 5. The Reflexion feedback loop, from (Shinn et al., 2024). 

 

Figure 6. The Voyager architecture control loop. 

 These systems should already demonstrate the potential of augmenting deep learning agents with 

internal, text-based control loops to perform roles attributed to inner speech in humans. These innovations 

can provide otherwise agency-free stochastic parrots, inflexible reinforcement learning action policies, and 
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perception-like labeling systems with new forms of self-exploration, control, memory, and cultural knowledge 

transmission. Even more advanced forms of cultural learning, self-improvement through social feedback, and 

creative spontaneity can occur if multiple such agents are allowed to interact with and learn from one another 

in a shared environment. For example, a research group at Stanford tossed 25 ChatGPT-driven interactive 

agents into the popular video game The Sims, and allowed them to interact verbally with one another in 

spontaneous social interactions (Park et al., 2023). Simply by interacting with one another, these agents 

developed a variety of spontaneous, socially-coordinated goals, most colorfully in proposing, planning, and 

hosting a Valentine’s Day celebration. This simulation leveraged the power of ChatGPT to adopt a variety of 

different identities; for example, each agent was given a paragraph-long identity prompt that provided them 

with a role (e.g. “pharmacy shopkeeper”) and specified their relationship with a variety of the other agents in 

the virtual town. These agents each had a distinction between their own “inner voice” in their private, 

memory-like text prompt, and public “outer voices” that allowed them to communicate with one another in 

public chat prompts. Agents could converse with one another and provide ongoing feedback through the 

latter public chat interactions; for example, during a simulated election scenario, the chatbots could influence 

one another’s votes by discussing the candidates and their positions. Human users could interact with the 

virtual agents in either public or private ways, for example by adopting the role of a reporter and interviewing 

them in public chat prompts, or by directing them to achieve new goals or providing them with new 

information by manipulating their private “inner voice” prompts. The researchers propose here that such 

simulations provide an excellent way to study emergent social dynamics, such as information diffusion, 

relationship development and maintenance, and social coordination. Since this initial experiment, even more 

practical forms of leveraging social interaction have been demonstrated. For example, by assigning specific 

organization-based roles and identities to individual agents, research groups have shown that socially-

interacting groups of agents can produce more accurate results on software development and healthcare 

management, by simulating roles, management, and feedback structures in software companies and hospital 

organizations (Li et al., 2024; Qian et al., 2024).1 Similar to Vygotsky’s original inspiration, in these cases the 

 
1 I am grateful to Tristan Tomilin for suggesting these examples. 
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interplay between privately-developed plans in the individual agent memories and publicly shared feedback in 

inter-agent communication improve and bootstrap one another to greater levels of accuracy and novelty.  

6. New lessons about the power of inner speech from deep learning research 

While I have previously focused on lessons that machine learning might take from traditional 

philosophical and psychological theories about the roles played by inner speech in human cognition, it is also 

possible now for new ideas to trickle back from machine learning to philosophy and psychology. In 

particular, the study of chain-of-thought prompting, self-prompting, and tree-of-thought methods in LLM-

based research can allow us to understand the informational and representational roles played by speech 

tokens in the reasoning process with unprecedented control and precision. These new findings include 

unsurprising results, such as that prompts which encourage more deliberate and systematic reasoning can 

produce more accurate and stable results, but also more surprising findings about alternative computational 

roles that might be played by inner speech, roles that may not even be directly related to the conventional 

semantic content of the words produced. 

When the power of chain-of-thought prompting was first discovered in research on LLMs, research 

tended to focus on discovering the most effective prompts that could increase reliability (Wei et al., 2022). 

This research revealed that the most effective prompts are ones that would be readily recognizable and 

probably also helpful in human performance: phrases like “Let’s think step by step”, “Let’s think about this 

logically”, or “Let’s solve this problem by splitting it into steps”. Simply appending these generic phrases to a 

query could increase the accuracy of GPT-3 on the arithmetic problems from the MultiArith dataset 

dramatically, producing answers that were more accurate, longer, robust, and had higher-quality intermediate 

reasoning steps to aid transparency and interpretability (Kojima et al., 2022, and see Table 1). While some 

critics suggest that the dependence upon effective chain-of-thought prompts exposes the brittleness of LLM 

understanding of these issues, as someone who has taught introduction to logic to humans for twenty years, I 

can assure critics that human performance can also be dramatically affected by such simple reminders. The 

unreasonable effectiveness of chain-of-thought prompting has led it to become part of standard training 
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programs for human users who will be expected to interact with LLMs as part of their professional 

responsibilities. 

 

Table 1 from Kojima et al. (2022). The zero-shot reliability of 17.7% of the text-davinci-002 version 

of GPT-3 could be increased to 78.7% accuracy simply by appending the prompt query with helpful chain-of-

thought triggers.  

More recent research has sought to probe more deeply into the way that chain-of-thought prompts 

enhance computational processing in LLMs; in particular, Prystawski, Li, & Goodman (2024) propose that 

chain-of-thought prompting is useful because it encourages the model to provide intermediate token 

sequences that stitch together distant parts of a model’s probability space to encourage better generalization. 

In other words, they argue that the “locality of experience” explains why statistical learning techniques like 

those on which LLMs are based struggle to generalize beyond the data distribution of their training set. 

Language models benefit from observing large numbers of token-token contingencies in their training sets, 

but these correlations themselves only reflect local, previously-observed regularities. If statistical learners are 

to be able to generalize beyond the regularities they have previously observed, they need the ability to stitch 

together regularities involving overlapping variables, where local contingencies between variables at the end 

of the stitched-together chain may never have co-occurred in the training set.  By modeling reasoning as 
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conditional inference over joint distributions represented in Bayesian networks, these researchers propose 

that the intermediate tokens encouraged by chain-of-thought prompting help the system build a structure 

equivalent to a novel Bayes net with paths between random variables that may not have directly co-occurred 

in the training set, but did co-occur with intermediate links. By stitching together islands of probability in this 

way into a global structure, they argue that LLMs can reduce local bias and encourage better “scaffolded” 

generalization over abstract variables captured by the natural language tokens. Though couched in Bayesian 

mathematics, the end result is a rather intuitive idea about the nature of reasoning: intermediate steps help us 

piece together a more complete, novel picture of the structure of our environment, which can in turn ground 

novel inferences about important environmental properties and features (from individual mangrove islands to 

a global continent that maps the whole domain, as it were).  

More skeptical and less intuitive interpretations of chain-of-thought prompting’s effectiveness have 

also recently been proposed, however; Pfau, Merrill, and Bowman (2024), for example, found that 

encouraging models to produce meaningless filler tokens—such as iterating simple ellipses (e.g., ‘…….’)—

also improved the reliability and robustness of LLM performance. Inspired by research that suggested that 

the intermediate reasoning steps encouraged by chain-of-thought models were not always faithful to 

conclusions stated by models at the end of the chain of thought (Lanham et al., 2023; Turpin et al., 2024), 

they studied whether models could learn to use meaningless filler terms adaptively, finding that they could. In 

particular, they found that when trained to use filler tokens, LLAMA transformers which could not solve the 

tasks on two synthetic datasets without filler tokens could achieve between 94-100% accuracy on those same 

datasets when provided with filler tokens. They also found that the boost from filler tokens increased as the 

length and complexity of the inputs increased, suggesting that using filler tokens benefitted the models 

especially when problem difficulty increased. They theorized that the filler tokens might allow the model to 

devote more computational resources to solving tasks, with the attentional layers behind each filler token 

being flexibly used to perform additional hidden computations as needed in the particular problem.  

To verify this explanation, they performed an experiment where they froze model weights and fine-

tuned only the final attention layer of the transformer, which allowed them to vary the number of filler tokens 
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that the final attention layer could use to predict model outputs. When doing so, they found that accuracy 

improved when the model was given access to additional filler tokens, apparently confirming the hidden 

computation hypothesis. Similar results have been found when models are given access to “pause tokens”, 

meant to simulate the ability of human thinkers to devote additional time to solving difficult problems (Goyal 

et al., 2024). Applying this finding to human cognition may suggest new meanings for verbal fillers in human 

speech, such as “ums”, “yeahs”, and the pauses that human thinkers tend to produce more often as problem 

difficulty and cognitive effort increases. Such productions in human speech have also been studied 

independently; for example, Bergey and DeDeo argue that filler frequency increases in human cognition with 

the information density of the signal (Bergey & DeDeo, 2024). 

 In short, LLMs now present us with an opportunity not only to study the computational benefits 

provided by traditional chain-of-thought prompts that are useful in enhancing the performance of human 

students with unprecedent control and precision, but also to study new hypotheses about the hidden and 

adaptive benefits derived from neglected and maligned features of human internal and external speech, such 

as filler terms, tics, and pauses. 

7. Objections and open questions 

I have suggested above that current deep learning models that deploy LLMs as components in larger 

architectures are already demonstrating both familiar and novel benefits of inner speech. This might lead us 

ambitiously to suppose that inner speech is the sole or primary medium of reasoning in human cognition, as 

Plato influentially seemed to suggest in the epigraph above. This view would typically be seen as an alternative 

to “Language of Thought” views which propose that thought requires a proprietary language-like 

representational medium which is distinct from natural languages that the thinker may speak (Fodor, 1975). It 

might also be considered a rival to views that suggest more imagistic forms of reasoning, as may occur in 

some forms of embodied human reasoning and in nearly all reasoning episodes of nonlinguistic animals 

(Buckner, 2019; Gauker, 2013). 

There are, of course, obvious objections to such a view that should lead to modesty and a preference for 

a more pluralistic approach to reasoning. The most obvious objection concerns the degree of cognitive 
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diversity found in reports of inner speech frequency in humans. Though most humans report frequent inner 

speech, especially during demanding reasoning tasks, the amount of inner speech in human cognition appears 

to exist on a continuum of individual diversity, with some subjects reporting a nearly constant inner 

monologue, and others reporting almost a complete absence of inner speech and accompanying auditory 

phenomenology (Nedergaard & Lupyan, 2024). If inner speech were essential for reasoning, we would be 

forced to conclude that some substantial portion of the population is incapable of reasoning, which seems 

unlikely and uncharitable. Probably there are multiple ways to complete the same reasoning task through 

verbal, textual, imagistic, and other means—though these different media for thought may have different 

computational profiles, making some forms of cognition easier or harder. Indeed, this is what Nedergaard 

and Lupyan found when they investigated correlations between solving tasks that were traditionally thought 

to be facilitated by inner speech and degree of inner auditory phenomenology reported by participants. 

Participants that reported less inner speech performed worse on rhyming evaluation and verbal working 

memory tasks, which is perhaps unsurprising as these tasks may depend more upon active auditory 

phenomenology. Interestingly, however, subjects with less inner speech did not appear to be significantly 

diminished in their ability to switch between tasks or master abstract categories in perception. Furthermore, it 

is not as though the subjects with less or no inner speech could not solve any of the tasks at all; their ability 

simply showed significant diminishment compared to subjects who reported more inner speech. This all 

suggests that inner speech is simply one of a variety of strategies that subjects can use for cognitive 

enhancement; others may include external speech, embodied cueing (e.g. counting on fingers), visual 

memorization strategies (e.g. memory palaces), and so on. Cognitive strategies in general turn out to be more 

flexible and pluralistic in their modes of operation than we might expect, and the full computational profiles 

for different media of thought and embodied cognitive strategies merits much more study. Other research, 

for example, has suggested that while people with aphasia (general language deficits) can think in terms of 

abstract categories, they take significantly longer and show lower accuracy on tasks requiring abstract thought 

and metacognition about abstract thought (Langland-Hassan et al., 2021). 
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Another source of skepticism about the role of inner speech in cognition has been directed at the old idea 

that inner speech would serve as an ideal medium for self-consciousness and a “global workspace” in which 

representational content could be broadcast to a variety of different cognitive subsystems to facilitate inter-

module coordination and control (Bermúdez, 2007; Carruthers, 2002, 2018). Peter Langland-Hassan in 

particular has pushed back against the idea that inner speech could play this crucial role in self-awareness and 

metacognition by arguing that inner speech could not be both auditory phenomenology and include self-

interpreting representational content, which it would need to do in order to transmit information across 

different modules in the global workspace (Langland‐Hassan, 2014). Others, however, have pushed back 

against this skepticism, arguing that inner speech representations could bear the right kind of propositional 

content if they are regulated by the right kind of metacognitive, attentional, and control systems so that they 

have the right kind of default epistemic status in cognition (Munroe, 2022, 2023). I suggest here that recent 

work on using LLMs as models for inner speech faculties could provide a new empirical dimension to this 

previously philosophical debate. It may be, for example, that studying LLM-involving systems reveals that the 

problem of decoding globally broadcast textual content is less serious than we had thought, since DNNs 

excel at transforming activation spaces for different modalities (e.g. textual and visual) into one another. On 

the other hand, we could find that the systems never possess sufficient understanding of the textual patterns 

produced by such transformer systems to allow different subsystems to properly understand or consume 

globally broadcast textual signals, and that in order for artificial inner speech episodes to count as steps in a 

reasoning process, they need to be supplanted with other external modules playing epistemic, executive, and 

metacognitive roles. Either way, these debates should take on more focused structure now that they can be 

translated into specific computational challenges faced by specific network architectures. 

8. Conclusion 

In this chapter, I argued that debates about LLMs as a route to artificial intelligence may be substantially 

misframed. Instead of viewing LLMs like ChatGPTs as general intelligences themselves, we should perhaps 

view them as crucial components of general intelligences, with the LLMs playing roles attributed to inner 

speech in traditional accounts in philosophy and psychology. I argued above that inner speech has been 



29 
 

studied as playing a variety of crucial roles in philosophical and psychological accounts of reasoning, thought, 

self-awareness, and metacognition. Many such roles which were previously unattainable have been realized in 

specific computational systems in recent years, achieving impressive results not only in systems designed to be 

individual reasoning agents, but even in distributed social interaction and problem-solving environments. As 

such, research on LLMs as models of inner speech is likely to be a very promising area of research over the 

coming years, one which would surely benefit from more philosophically-informed interdisciplinary 

reflection. 
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