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Abstract

Discussions of theoretical equivalence typically only concern a theory’s
dynamically possible models. Recently, however, March (2024) has shown
that a theory’s kinematically possible models are also relevant to ques-
tions of theoretical equivalence. We apply March’s notion of kinematic
equivalence to the difference between reduced and sophisticated theories
introduced by Dewar (2019). Although Dewar claims that these are equiv-
alent, Jacobs (2024) has argued that only sophisticated theories can ex-
plain what are otherwise ‘cosmic conspiracies’. We show that this is a
consequence of reduced and sophisticated theories’ kinematical inequiva-
lence. Furthermore, we use Caulton’s (2024) ‘downwards Hume’s dictum’
to show that kinematically inequivalent are also ontologically inequivalent.

1 Introduction

It is widely acknowledged that the symmetries of a theory may indicate su-
perfluous structure (Earman, 1989; Ismael and van Fraassen, 2003; Dasgupta,
2021). For example, the boost symmetries of Newtonian mechanics indicate
the redundancy of a standard of rest. There are broadly two ways to remove
such redundant structure: reduction and sophistication (Dewar, 2019). In brief,
the aim of the former is to formulate a theory that is invariant under the rele-
vant symmetries, whereas the aim of the latter is to formulate a theory whose
symmetries are isomorphisms.

On the one hand, sophisticated and reduced theories are often seen as the-
oretically equivalent. Dewar (2019) proves that reduced and sophisticated ver-
sions of various theories, including electromagnetism, are categorically equiva-
lent, and conjectures that this is generally the case. On the other hand, there
seems to be an explanatory difference between such theories. Dewar notices that
certain relations are automatically satisfied in sophisticated theories but have
to be postulated by hand for reduced theories. For example, the Gauss-Faraday
law is a mathematical theorem of a sophisticated theory formulated in terms of a
vector potential, but requires an additional posit in a reduced theory formulated
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in terms of the Faraday tensor. Jacobs (2024a) has further extended this ob-
servation by proving that reduced theories (under certain plausible conditions)
inevitably entail such ‘cosmic conspiracies’.

Dewar’s own explanation of these facts is that “the two theories are equiv-
alent in terms of their intensional ontology, in terms of the kinds of structures
that they postulate as present in any world aptly described by them; but they
differ in their explanatory structure.” The latter difference is further clarified in
terms of fundamentality. Although both kind of theories are committed to the
same structures, Dewar believes, they posit different structures as fundamental.
This enables them to offer different explanations.

We believe that this contains the seed for a deeper explanation of the ex-
planatory difference between sophisticated and reduced theories. In order to
provide such an explanation, however, we contend that one has to zoom out
from the way in which theories are usually presented, namely as a class of so-
lutions or ‘dynamically possible models’ (DPM), and also take into account the
theory’s ‘kinematically possible models’ (KPMs). We will then find that sophis-
ticated and reduced theories are not fully equivalent. This is made precise by
March’s recent proposal of ‘kinematical categorical equivalence’ (‘kinematical
equivalence’ for short) (March, 2024b). We will show that sophisticated and
reduced theories are not kinematically equivalent.

We then use this result to explain in more detail why reduced theories involve
cosmic conspiracies. The idea in brief is that sophisticated theories reduce
conspiratorial dynamical patterns in the instantiation of quantities to necessary
kinematical patterns. This means that no additional postulates are necessary to
explain such relations: they follow simply from the theory’s fundamental posits.

The paper will proceed as follows. In §2, we present a few examples of
reduced versus sophisticated theories and their explanatory differences. In §3,
we show that those theories are indeed kinematically inequivalent. §4 discusses
the implications of this result with respect to the metaphysical and explanatory
differences between reduced and sophisticated theories. We finally consider a
number of objections in §5.

2 Reduction vs. Sophistication

In this section we first rehearse the distinction between reduction and sophis-
tication and then present a number of examples of the explanatory difference
between reduced and sophisticated theories.

It is by now a well-known fact that when a theory, TO, possesses sym-
metries, its symmetry-related models (SRMs) are often empirically equivalent.
This means that the quantities that vary under those symmetries are unmea-
surable. All things considered, a theory without such unmeasurable quantities
is preferable. If one is an interpretationalist, then one simply declares that the
SRMs of TO represent the same state of affairs. If, on the other hand, one is
a motivationalist, one demands some story about how those SRMs represent
the same state of affairs (Møller-Nielsen, 2017). It is here that the distinction
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between reduction and sophistication comes into play: these are two different
ways to satisfy the motivationalist’s demand.

Both offer, in some sense, a new theory to replace TO. Every model of the
old theory corresponds to an empirically equivalent model of this new theory.
The reductionist’s theory, TR, is such that SRMs of TO correspond to numeri-
cally identical models of TR. In other words, for each equivalence class of SRMs
of TO there is a unique model of TR. This clearly rids the theory of its unde-
tectable structure. The sophisticator’s theory, TS meanwhile, is such that the
SRMs of TO correspond to isomorphic yet numerically distinct models of TS .
How this move rids TO of its undetectable structure requires some explanation.
The idea is that it is easy to interpret isomorphic models as representations
of the same state of affairs, since such models only differ by a permutation of
set-elements. If those set-elements are taken to represent individuals, such as
space-time points or quantity magnitudes, then an anti-haecceitist metaphysics
entails that such permutations are distinctions without a difference. They are
merely distinct representations of the same state of affairs. The SRMs of some
theories, such as GR, are already isomorphic: such theories are ‘born’ sophisti-
cated. The adoption of anti-haecceitism is then sufficient to rid the theory of
its undetectable structure.

We will now discuss three examples of reduction versus sophistication:

2.1 Handedness

Our first example is the ‘handedness’ theory from Dewar (2019). This is a
first-order theory H in the signature {L(x), R(x)} with two axioms:

1. ∀x(L(x) ∨R(x))

2. ∀x¬(L(x) ∧R(x))

The predicates L and R can be thought of as ‘left-handed’ and ‘right-handed’,
so that H says that everything is either left- or right-handed but not both. This
theory is symmetric under a permutation of the predicate symbols L and R, in
the sense that the map L(x) → R(x), R(x) → L(x) maps the axioms of H to
logically equivalent ones.

Dewar suggests both reduced and sophisticated handedness theories to re-
place H. For the reduced theory HR, we replace the predicates L and R with a
single ‘congruence’ relation C(x, y) that satisfies four axioms:

• ∀xC(x, x)

• ∀x∀y(C(x, y) → C(y, x))

• ∀x∀y∀z((C(x, y) ∧ C(y, z)) → C(x, z))

• ∀x∀y∀z((¬C(x, y) ∧ ¬C(y, z)) → C(x, z))
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Intuitively, these axioms say that the congruence relation is an equivalence re-
lation with at most two equivalence classes. It is straightforward to see that dy-
namically possible models of H related by the map L(x) → R(x), R(x) → L(x)
correspond to the same dynamically possible model of HR under the relation
∀x∀y(C(x, y) ↔ ((L(x) ∧ L(y)) ∨ (R(x) ∧R(y)))).

The sophisticated theory HS has dynamically possible models ⟨D,2, χ⟩,
where DH is a domain of objects, 2 is a two-element set, and χ : D → 2 is
a function. The isomorphisms of such models correspond to pairs (f, g) where
f : D → D′ and g : 2 → 2′ are bijections. It is straightforward to see that
models of H related by the map L(x) → R(x), R(x) → L(x) correspond to
isomorphic models of HS under a choice of bijection {L(x), R(x)} → 2.

To investigate the relationships between the dynamically possible models
of reduced and sophisticated theories, it is helpful to introduce the notion of
categorical equivalence:

Categorical equivalence: theories T1 and T2 are equivalent just in case there
is an equivalence of categories between their associated categories of mod-
els T1 and T2 (which preserves empirical content).1

The claim that categorical equivalence tracks equivalence of theories is moti-
vated by the fact that the collection of models of a theory often can be given
the structure of a category. One straightforward way to do this is to take the
objects of the category to be the models of the theory and the arrows of the
category to be maps between models which preserve physical content.

We can associate categories of models to HR and HS as follows:

HR: objects are models of HR; arrows are model isomorphisms.

HS : objects are models ⟨D,2, χ⟩ of HS ; arrows are model isomorphisms (f, g).

We can then show that HR and HS are categorically equivalent. Let FH be the
functor that takes each object ⟨D,2, χ⟩ in HS to an object M in HR such that
DM = D, and for any a, b ∈ DM, ⟨a, b⟩ ∈ C iff χ(a) = χ(b); and each arrow
(f, g) to f . Then

Proposition 1. FH is an equivalence of categories.

Proof. See Dewar (2019).

However, whilst HR and and HS are categorically equivalent, there nevertheless
appears to be an important explanatory difference between them. For in HR

one has to posit as a brute fact that the congruence relation C is an equivalence
relation which partitions objects into at most two equivalence classes—every
object is either left- or right-handed but not both—whereas if we define con-
gruence such that ⟨a, b⟩ ∈ C iff χ(a) = χ(b) in HS , this same fact comes out
as a theorem. Even if one is not worried by the need to stipulate that C is an

1Recall that an equivalence of categories C and D is a functor F : C → D which is full,
faithful, and essentially surjective.
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equivalence relation, the fact that C has at most two equivalence classes seems
like a cosmic conspiracy: the equivalence classes behave exactly as if they are
in fact determined by a pair of monadic predicates.

2.2 Absolutism vs. comparativism about mass

Our second example comes from the theory of Newtonian point-particle me-
chanics. This theory, which we will call M, has dynamically possible models
⟨M, ϕ,B, γ(i),R+,m(i)⟩, whereM = ⟨M, ta, h

ab,∇, ξa⟩, ϕ is a scalar field which
represents the gravitational potential, B is a (structured) set of particles, the
γ(i) : B × R → M are (smooth, future-directed) timelike curves which repre-
sent particle worldlines, and m(i) : B → R+ is an assignment of mass values to
particles.

Suppose that uniform mass scalings—transformations of the form m(i) →
ψ ◦ m(i), where ψ is a bijection on the domain R+ of R+ which preserves the
relation ≤ and the operation + of addition—are dynamical symmetries of M.
Since uniform mass scalings do not preserve the relation × on R+, they are
not automorphisms of the mass value space R+ = ⟨R+,≤,+,×⟩. This means
that models of M related by a uniform mass scaling are not isomorphic: M has
redundant structure in the form of the × operation.

We can again construct reduced and sophisticated versions of M.2 In the
reduced theory MR, we replace the assignment of monadic mass properties
m(i) for each particle with an assignment of mass ratios m(i, j) : B × B →
R+ for each pair of particles. The dynamically possible models of MR are
⟨M, ϕ,B, γ(i),R+,m(i, j)⟩, wherem(i, j) satisfies the conditionm(i, j)m(j, k) =
m(i, k). Since m(i, j) is invariant under uniform mass scalings, symmetry-
related models of M correspond to the same model of MR.

In the sophisticated theory MS , meanwhile, we modify the definition of mass
value space. Rather than a complete positive ordered semi-field R+, it is now
an additive extensive structure ⟨Dm,≤, ◦⟩, where Dm = R+. Since uniform
mass scalings are automorphisms of ⟨Dm,≤, ◦⟩, they are also isomorphisms of
the dynamically possible models ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ of MS .

Just as before, we can associate categories of models to MR and MS :

MR: objects are models ⟨M, ϕ,B, γ(i),R+,m(i, j)⟩ of MR; arrows are pairs
(χ, f) consisting of a diffeomorphism χ : M → M ′ and a bijection on the
domain of R+ which jointly preserve R+, M, ϕ, γ(i) and m(i, j).

MH : objects are models ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ of MS ; rrows are pairs
(χ, f) consisting of a diffeomorphism χ :M →M ′ and a bijection on Dm

which jointly preserve M, ≤, ◦, ϕ, γ(i) and m(i, j).

We can again show that these are categorically equivalent. Let FM be the
functor that takes each object ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ inMS to the object

2We will focus on only two options here; for a more complete discussion of reduced and
sophisticated formulations of Newtonian point-particle mechanics, see Jacobs (2023c) and
March (2024c).
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⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i, j)⟩ such that m(i, j) = m(i)/m(j) in MR and each
arrow (χ, f) to (χ, idR+). Then

Proposition 2. FM is an equivalence of categories.

Proof. FM is essentially surjective and full by construction, since idR+ is the
unique isomorphism which preserves R+ (this is because any two complete or-
dered positive semi-fields are uniquely isomorphic to each other). For faithful-
ness, letM = ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩,M′ = ⟨M′, ϕ′,B, γ(i)′, Dm,≤, ◦,m(i)′⟩
be any two objects inMS and suppose that there exist distinct arrows (χ, f), (χ, f ′) :
M → M′. Then m(i)′ = f ◦m(i) = f ′ ◦m(i), and hence f−1 ◦ f ′ = idDm

and
f = f ′. Therefore, FM is faithful.

As with Dewar’s handedness example, MR and MS are categorically equivalent.
However, also as with the handedness example, we can see that the reduced
theory MR posits brute facts which are explained in MS . In this case, the
apparent brute fact is the condition m(i, j)m(j, k) = m(i, k) on the assignment
of mass ratios. If mass ratios are defined from monadic mass properties as
in MS , then this is a mathematical identity, whereas in MR, this appears to
be a cosmic conspiracy: the mass ratios behave exactly as if they are in fact
constructed from monadic mass properties.

2.3 Electromagnetism

Our final example is the theory of electromagnetism in Minkowski spacetime,
formulated in terms of a gauge potential. This theory, which we will call EM,
has dynamically possible models ⟨M,ηab, Aa, J

a⟩, where ηab is a flat Lorentzian
metric onM , Aa is a one-form, and Ja represents the four-current which satisfies
2∇n∇[nAa] = Ja. As is well-known, U(1) gauge transformations Aa → Aa+φa,
where φa is exact, are dynamical symmetries of this theory. The value of Aa(x)
at any point x is undetectable.

One option here is to reduce the theory. Whilst a variety of reduced for-
mulations of electromagnetism have been considered in the literature (for ex-
ample, Healey (2007) takes the holonomies of Aa as primitive), here we will
focus on the simplest case: move to the Faraday tensor formulation of elec-
tromagnetism. This theory, which we will call EMR, has dynamically possible
models ⟨M,ηab, Fab, J

a⟩, where Fab is a two-form which satisfies daFbc = 0 and
∇nF

na = Ja.
Alternatively, we can sophisticate EM by taking the U(1) gauge transfor-

mations of EM as arrows in our category of models.3 Call this theory EMS .
Together, this gives us the following two categories:

EMR: Objects are models ⟨M,ηab, Fab, J
a⟩ of EMR; arrows are diffeomorphisms

which preserve the metric, Faraday tensor, and four-current.

3This is an example of what Dewar calls external sophistication. There is also the option of
internal sophistication here, which requires the fibre bundles picture (Jacobs, 2023b). Note,
however, that the theory of electromagnetism on a U(1) principal bundle is categorically
inequivalent to EMR (Weatherall, 2018).
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EMS : Objects are models ⟨M,ηab, Aa, J
a⟩ of EMS ; arrows are pairs (χ, φa),

where φa is exact and χ is a diffeomorphism which jointly preserves the
metric, (gauge-transformed) vector potential Aa + φa, and four-current.

These are once more categorically equivalent. Let FEM be the functor which
takes each object ⟨M,ηab, Aa, J

a⟩ in EMS to the object ⟨M,ηab,daAb, J
a⟩ in

EMR and each arrow (χ, φa) to χ. Then

Proposition 3. FEM is an equivalence of categories.

Proof. See Weatherall (2015).

Furthermore, just as with the previous examples, EMR posits brute facts which
are explained by EMS . Here, the apparent brute fact is the Gauss-Faraday law
daFbc = 0. This is a mathematical identity if Fab is defined as Fab = 2daAb in
EMS , but in EMR it seems a cosmic conspiracy: the Faraday tensor behaves
exactly as if it is in fact the exterior derivative of an electromagnetic one-form.

Summing up the morals of this section, in each case:

1. The reduced and sophisticated theory are categorically equivalent;

2. The sophisticated theory can explain brute facts of the reduced theory;

3. They present different metaphysical pictures in terms of which quantities
are fundamental (in particular, reduced theories typically have a compar-
ative ontology where sophisticated theories have an absolutist one).

Although this series of examples does not constitute a proof, they show that
reduced theories often imply cosmic conspiracies despite their categorical equiv-
alence to sophisticated theories. Indeed, Jacobs (2024a) shows that if the funda-
mental quantities of a reduced theory are relational, invariant functions of the
old theory’s fundamental quantities, such ‘cosmic conspiracies’ occur whenever
the symmetry in question has a free and transitive action. This is the case for
all of the examples considered above, as well as a number of other examples
discussed by Dewar and Jacobs.4

3 Kinematical Equivalence

Roughly, then, it looks like reduced and sophisticated theories are ‘the same but
different’. They are the same insofar as they are categorically equivalent, and
different in that they enable different explanations. But there is a tension: if
the two theories are equivalent—that is, if they ‘say the same’ about what the
world is like—then how can they explain one fact in different ways? Moreover,
while the notion of sameness is made formally precise in terms of categorical

4The case of Newton-Cartan theory versus Maxwell Gravitation, which Jacobs (2021) iden-
tified as an example of reduction versus sophistication, is somewhat tricky; see Jacobs (2023a)
and especially March (2024b,a) for more discussion.
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equivalence, the difference relies on more opaque notions such as fundamentality
and explanatory power.

The aim of this section is to make the difference between reduced and so-
phisticated theories equally precise. In particular, we conjecture that reduced
and sophisticated theories are not kinematically equivalent. This novel concept
of equivalence was introduced by March (2024b). Unlike previous discussions,
which solely consider the dynamically possible models (DPMs) of a theory, kine-
matic equivalence also takes into account the broader space of the theory’s kine-
matically possible models (KPMs).5 Broadly, the space of KPMs of a theory
consists of models that contain the right kind of objects. For example, if some
theory posits a relativistic spacetime and scalar field, then the KPMs of that
theory are models of a scalar field in a relativistic spacetime. The DPMs of
a theory form a subspace of its KPMs, namely those KPMs that satisfy some
dynamical equations of motion. In the example, the DPMs are those models
in which the scalar field behaves in the right way. Roughly, then, we can think
of the space of KPMs as delineating the kind of systems a theory is able to
model appropriately, before we can ask whether or not the theory is true or
false of those systems (i.e. whether or not the dynamical equations of motion
are satisfied). This idea is articulated clearly by Curiel:

[It] is satisfaction of the kinematical constraints that renders mean-
ing to those terms representing a system’s physical quantities in the
first place, even before one can ask whether or not the system satis-
fies the theory’s equations of motion. (Curiel, 2016)

Whilst we don’t agree with everything Curiel has to say about kinematical
possibility, we concur completely with this statement. (See March (2024b) for
a more thoroughgoing comparison of Curiel’s notion of kinematical possibility
and the one we will introduce below.)

Following March (2024b) and Caulton (2024), our guiding principle for the
construction of the space of KPMs of a theory will be a version of the principle of
free recombination.6 This principle says that if the models of a theory contain a
collection of quantities Xi then arbitrary combinatorial arrangements of values
for the Xi count as KPMs of the theory. The principle of free recombination is
a consequence of what is known as Hume’s dictum:

Hume’s dictum: There are no necessary connections between wholly distinct
entities.

However, care is needed in identifying what the relevant quantities are that are
subject to the principle of free recombination. March (2024b) identifies three
reasons for which the base units for free recombination may differ from the
näıve version of free recombination outlined above. The first reason is that we

5Wolf and Read (2023) consider theoretical equivalence in light of ‘boundary possible mod-
els’, a subset of KPMs in which certain boundary conditions are satisfied but which are not
necessarily DPMs.

6However, our points about explanation may not require any such modal principle; see
§5.2.
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may not wish to regard all the objects in the models of a theory as ontologi-
cally or conceptually independent. For example, in full Newtonian spacetime
⟨M, ta, h

ab,∇, ξa⟩, the connection ∇ is definable from the metrics and standard
of rest. The second two reasons are related to the fact that some of the objects
in the models of a theory may have some of their properties by kinematical,
rather than dynamical necessity. March (2024b) suggests two ways in which
this can happen. One is that some properties might be part of the definition
of an object in the theory’s models. For instance, perhaps part of what we
mean by Galilean spacetime is that it is flat. This would mean that the base
units for free recombination for theories set on Galilean spacetime are not an
arbitrary connection, but a flat connection. The other is that some of the prop-
erties of objects in the theory’s models may express domain restrictions, that
is, restrictions on the kind of physical systems the theory is able to treat, such
as the metric signature in general relativity. This would mean that the base
units for free recombination for relativity theory are not arbitrary metrics, but
Lorentzian metrics. Fortunately, these complications do not seem to play a role
in our examples.

With the kinematics-dynamics distinction on the table, we can now introduce
March’s (2024b) criterion of kinematical equivalence. This is a straightforward
generalisation of categorical equivalence. First, given a theory T , we can define
a theory T k whose models take the same form as T and whose axioms are just
the kinematical constraints of T . In other words, T k denotes T ’s space of KPMs.
Then we can associate a category of models Tk to T k in much the same way as
we could for T , subject to the conditions that:

• If T has an associated category of models T, then T is a full subcategory
of Tk.

• IfM ∈ ob(T) andM′ ∈ ob(Tk)\ob(T) then homTk(M,M′) = homTk(M′,M) =
∅.

The first condition simply states that the category of DPMs is a subcategory
of the category of KPMs. The second condition states that no arrow of Tk can
take a mere KPM to a DPM or vice versa. This makes sense if models related
by arrows are taken as physically equivalent. See March (2024b) for further
discussion.

We can now state the criterion of kinematical categorical equivalence (‘kine-
matical equivalence’ for short):

Kinematical categorical equivalence Let T1, T2 be theories, and let T k
1 , T

k
2

be their associated kinematical theories. Let Tk
1 , T

k
2 denote their asso-

ciated categories of models. Then T1, T2 are kinematically categorically
equivalent just in case there is an equivalence of categories F : Tk

1 → Tk
2

such that for all Mk
1 ∈ ob(Tk

1), F (M
k
1 ) ∈ ob(T2) iff M

k
1 ∈ ob(T1) (which

preserves empirical content).

With this criterion in hand, let us now reconsider our examples from §2. We will
show that on plausible choices for the kinematical constraints of those theories,
they are not kinematically equivalent.
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3.1 Handedness

Beginning with HR, the dynamical constraints of this theory are the sentences
∀xC(x, x), ∀x∀y(C(x, y) → C(y, x)), ∀x∀y∀z((C(x, y) ∧ C(y, z)) → C(x, z)),
∀x∀y∀z((¬C(x, y) ∧ ¬C(y, z)) → C(x, z)). Which of these, if any, are kinemat-
ical constraints?

Here, we suggest that there are two plausible choices. The first option is
to implement a näıve version of Hume’s dictum, and take the kinematical the-
ory of HR as the empty theory. This would amount to taking the fundamental
unit for free recombination to be some two-place relation, but not to place any
constraints on what kind of relation this is. However, there is an alternative op-
tion, which is to notice that the sentences ∀xC(x, x), ∀x∀y(C(x, y) → C(y, x)),
∀x∀y∀z((C(x, y) ∧ C(y, z)) → C(x, z)) state that C is an equivalence relation.
The second options then takes the fundamental units for free recombination
in HR to be an equivalence relation. The fourth axiom, ∀x∀y∀z((¬C(x, y) ∧
¬C(y, z)) → C(x, z)), is a dynamical constraint. We will focus on this option
in what follows.7

HS , on the other hand, has no dynamical constraints, and therefore no kine-
matical constraints—every KPM of HS is a DPM of HS .

Together, this gives us the following kinematical categories:

Hk
R: objects are ΣC = {C(x, y)} structures that satisfy ∀xC(x, x), ∀x∀y(C(x, y) →

C(y, x)), ∀x∀y∀z((C(x, y)∧C(y, z)) → C(x, z)); arrows are model isomor-
phisms.

Hk
S : objects are structures ⟨D,2, χ⟩ where χ : D → 2; arrows are model iso-

morphisms (f, g).

Let F k
H be the functor which takes each object ⟨D,2, χ⟩ in Hk

S to an object M

in Hk
R such that DM = D, and for any a, b ∈ DM, ⟨a, b⟩ ∈ C iff χ(a) = χ(b);

and each arrow (f, g) to f . Then

Proposition 4. F k
H is not an equivalence of categories; it is full and faithful,

but not essentially surjective.

Proof. F k
H is full and faithful by the proof of proposition 1. But it is not

essentially surjective. To see this, consider any object in Hk
R that does not

satisfy ∀x∀y∀z((¬C(x, y) ∧ ¬C(y, z)) → C(x, z)) (such exist). By construction,
this is not the image of any object in Hk

S under F k
H .

Therefore, the reduced and sophisticated theories of handedness are not kine-
matically equivalent. (Moreover, the fact that the spaces of KPMs and DPMs
of HS coincide in fact entails a stronger result: only when the dynamical con-
straints of HR are just those of HR are the theories kinematically equivalent,
because otherwise any equivalence functor between the two theories will map
mere KPMs of HR to DPMs of HS .)

7As we will see shortly, this does not make a difference to the kinematical inequivalence
results, since if HR and HS are kinematically inequivalent under this second choice of kine-
matical constraints, they will also be inequivalent under the first choice.
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3.2 Absolutism vs. comparativism about mass

When we turn to our second example, the obvious option for the fundamental
units for free recombination for MR are M, ϕ, γ(i), and the mass ratios m(i, j)
(here, as before, we set aside issues of the dynamics for the γ(i)). This would
make the condition m(i, j)m(j, k) = m(i, k) a dynamical law. For MS , we take
the fundamental units for free recombination to be M, ϕ, γ(i), and the mass
values m(i). This gives us the following kinematical categories:

Mk
R: objects are structures ⟨M, ϕ,B, γ(i),R+,m(i, j)⟩; arrows are pairs (χ, f)

consisting of a diffeomorphism χ :M →M ′ and a bijection on the domain
of R+ which jointly preserve R+, M, ϕ, γ(i) and m(i, j).

Mk
S : objects are structures ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩; arrows are pairs (χ, f)

consisting of a diffeomorphism χ :M →M ′ and a bijection on Dm which
jointly preserve M, ≤, ◦, ϕ, γ(i) and m(i).

Let F k
M be the functor which takes each object ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i)⟩ in

Mk
S to the object ⟨M, ϕ,B, γ(i), Dm,≤, ◦,m(i, j)⟩, m(i, j) = m(i)/m(j) in Mk

R

and each arrow (χ, f) to (χ, idR+). Then

Proposition 5. F k
M is not an equivalence of categories; it is full and faithful,

but not essentially surjective.

Proof. F k
M is full and faithful by the proof of proposition 2. But it is not

essentially surjective. To see this, consider any object ⟨M, ϕ,B, γ(i),R+,m(i, j)⟩
in Mk

R such that m(i, j)m(j, k) ̸= m(i, k) (such exist). By construction, this is
not the image of any object in Mk

S under F k
M .

Therefore, MR and MS are not kinematically equivalent.

3.3 Electromagnetism

Finally, consider our third example: electromagnetism. The dynamical con-
straints of EMR are daFbc = 0 and ∇nF

na = Ja. If the fundamental units of
EMR for free recombination are (arbitrary) two-forms and four-currents,8 then
neither daFbc = 0 nor ∇nF

na = Ja are kinematical constraints. Similarly, if
the fundamental units of EMS for free recombination are (arbitrary) one-forms
and four-currents, then 2∇n∇[nAa] = Ja is also not a kinematical constraint.

Again, we can use this to define kinematical categories for EMR and EMS :

EMk
R: objects are structures ⟨M,ηab, Fab, J

a⟩ where ηab is flat and Fab is a two-
form; arrows are diffeomorphisms which preserve the metric, Faraday ten-
sor, and four-current.

EMk
S : objects are structures ⟨M,ηab, Aa, J

a⟩ where ηab is flat and Aa is a one-
form; arrows are pairs (χ, φa), where φa is exact and χ is a diffeomorphism
which preserves the metric, (gauge-transformed) vector potential Aa+φa,
and four-current.

8What if we take the relevant units to be closed two-forms? We discuss this option in §5.2.
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Let F k
EM be the functor which takes each object ⟨M,ηab, Aa, J

a⟩ in EMk
S to

the object ⟨M,ηab,daAb, J
a⟩ in EMk

R and each arrow (χ, φa) to χ. Then

Proposition 6. F k
EM is not a kinematical categorical equivalence; it is full and

faithful, but not essentially surjective.

Proof. F k
EM is full and faithful by the proof of proposition 3. But it is not

essentially surjective. To see this, consider any object ⟨M,ηab, Fab, J
a⟩ in EMk

R

such that daFbc ̸= 0 (such exist). By construction, this is not the image of any
object in EMk

S under F k
EM .

In the same way in which Dewar (2019) conjectures on the basis of a range
of examples that reduced and sophisticated theories are generally categorically
equivalent, then, these results lead us to conjecture that, in general, reduced and
sophisticated theories are kinematically inequivalent. In particular, it seems
plausible to us that there always exists some natural choice of functor between
the sophisticated and the reduced theory that is not essentially surjective. It
would require further research, however, to show that this is invariably the case.

4 (In)equivalences

We will now use these results to comment on the (in)equivalence between
reduced and sophisticated theories with respect to ontology and explanatory
strength.

4.1 Ontology

We believe that the above shows a sense in which reduced and sophisticated
theories are not equivalent. In our opinion, KPMs are a crucial part of a theory.
For one, it is impossible even to specify the DPMs before one has specified the
theory’s kinematical structure, namely its KPMs. Moreover, considerations of
KPMs play an important role in symmetry-based inferences. Earman (1989) fa-
mously posited that a theory’s external dynamical symmetries should match its
spacetime symmetries. Hetzroni (2019), Jacobs (2024b) and others have recently
expanded this principle to include internal symmetries. The expanded princi-
ple says that a theory’s dynamical symmetries—external and internal—should
match its kinematical symmetries, where the latter are the automorphisms of
the theory’s kinematical structures. This includes a theory’s spacetime, but
also internal value spaces such as a principal fibre bundle. These principles are
highly useful in determining the minimal and maximal structure a theory is
committed to, but they require consideration of KPMs as well as DPMs. Given
that KPMs are just as much part of a theory as DPMs, then, we believe that
kinematically inequivalent theories are not theoretically equivalent.

What is the physical difference between such theories? We mention two:
kinematical possibilities and fundamental quantities. As for the former, kine-
matically inequivalent theories countenance different counterfactuals. For ex-
ample, consider a world with three objects, A, B and C, such that A and B
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are opposite-handed, and B and C are same-handed. By the dynamical con-
straints of the reduced theory of handedness, it follows that A and C are also
opposite-handed. Consider now the counterfactual scenario in which A and C
are same-handed. All else equal, this would violate the dynamical constraints
of HR. On the other hand, in HS , handedness relations supervene on hand-
edness properties. If A and C were same-handed, then either A or C would
have a different handedness. In either case, this would automatically affect the
handedness relations between A and B and B and C respectively such that they
satisfy the constraints. Put differently, in a reduced theory the counterfactual
would take us outside of the space of DPMs, whereas in the sophisticated the-
ory it stays within the space of DPMs. Kinematically inequivalent theories treat
counterfactuals differently.

The difference in fundamental quantities relies on a version of Hume’s dic-
tum. This principle enables one to infer a theory’s ontology from its space
of KPMs. The core idea is that the theory’s fundamental quantities span the
space of KPMs, that is, for any combination of values of those quantities there
is a model in the space of KPMs. Given a set of fundamental quantities, then,
one can construct the space of KPMs. This is the ‘Upwards Hume’s Dictum’
(Caulton, 2024). We take this as definitional of kinematical possibility: the
space of kinematical possibilities simply consists of all possible ways in which
to combine the theory’s fundamental quantities. Conversely, given a space of
KPMs, one can infer the fundamental quantities, namely any set of quantities
that is sufficient to span the space of KPMs.9 This is the ‘Downwards Hume’s
Dictum’. We fully subscribe to Caulton’s two-fold use of Hume’s dictum. We
should thus expect kinematically inequivalent theories to have inequivalent on-
tologies.

In the case of handedness, for example, handedness-relations are not fun-
damental quantities of the sophisticated theory, since they generate too many
kinematical possibilities. One way to combine handedness-relations is such that
A and B are same-handed, B and C are same-handed yet A and C are opposite-
handed. If the handedness-relation is fundamental, then this should correspond
to some KPM—as it does in the reduced theory. But there is no KPM of the
sophisticated theory—that is, no distribution of handedness properties to A, B
and C—that corresponds to this distribution of handedness-relations. The other
examples work the same way: comparative mass relations overgenerate KPMs,
so they are are not fundamental quantities of a sophisticated theory of mass;
Faraday tensors overgenerate KPMs, so they are not fundamental quantities of
electromagnetism.

It is true that one can define the sophisticated ontology from the dynami-
cally possible models of the reduced theory. For example, for any DPM of the
handedness theory, there is an assignment of handedness properties consistent
with it. This assignment is not unique: if some assignment is consistent with

9This leaves it open that there are multiple choices of ‘basis’ of fundamental quantities.
This strikes us as correct: for example, one can describe possibilities in terms of {‘green’,
‘blue’} or in terms of {‘grue’, ‘bleen’}. Mere inspection of the space of KPMs will not rule in
favour of either.
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the theory’s model, then another assignment in which each left-handed object is
right-handed and vice versa is also consistent. There is, then, a sense in which
the advocate of the reduced theory is committed to handedness properties. But
this is not a commitment to handedness properties as part of the theory’s fun-
damental ontology. It is quite clear that in this case, handedness properties
supervene jointly on the distribution of handedness relations and the dynamical
laws. The ontological equivalence in this case is merely extensional. We thus
part ways with Dewar’s claim that reduced and sophisticated theories have the
same ‘intensional ontology’.10

4.2 Explanation

Next: explanatory inequivalence. Here we concur with Dewar that reduced
and sophisticated theories have different explanatory structures, although we
think this is just a consequence of their different ontologies. The difference is
that sophisticated theories explain certain relations at the level of kinematics,
whereas reduced theories explain them at the level of dynamics.

Consider, again, the claim that handed objects are partitioned into at most
two equivalence classes. On the sophisticated theory, this is true in any KPM.
There is no way to assign objects handedness properties in a way that does
not partition them into at most two equivalence classes. The partitioning thus
follows from the theory’s kinematical posits, namely a pair of handedness prop-
erties. On the reduced theory, on the other hand, there are KPMs in which
objects are not partitioned into same-handed equivalence classes, or are parti-
tioned into more than two equivalence classes. However, the dynamics of the
reduced theory are such that in any DPM the objects are partitioned into at
most two equivalence classes. The reduced theory could either include a specific
axiom to that effect, or it could follow as a theorem from other axioms. In either
case, the explanation here is dynamical rather than kinematical.

The same pattern occurs in our other examples. For example, the transi-
tivity of mass ratios (m(i, j)m(j, k) = m(i, k)) is satisfied in any KPM of the
absolutist theory—it simply follows from that theory’s kinematical posits—but
not in all the KPMs of the comparativist theory. It is satisfied in any DPM of
the comparativist theory, so it may have a dynamical explanation. The same is
the case for Gauss-Faraday law too.

We believe that not only is there this explanatory difference between reduced
and sophisticated theories, but also that the latter’s explanations are clearly
better. We offer three reasons for this:

Firstly, kinematic possibility is broader than dynamic possibility in that
any dynamic possibility is also a kinematic possibility but not vice versa. So,
the explanation offered by sophisticated theories is modally more robust. For
example, on the reduced theory the fact that objects are partitioned into at most
two handedness equivalence classes could fail to hold if the laws were different.

10Indeed, Caulton (2024) shows how one can use KPMs to define an intensional semantics
for theory.
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On the sophisticated theory, on the other hand, this would hold even if the laws
were different—as long as the ontology remains the same. In Lange’s (2007)
terms, such explanations are nomically stable.

Secondly, sophisticated explanations are often local, whereas reductionist
explanations are non-local. For example, the postulate that objects are parti-
tioned into handed equivalence classes requires non-local correlations between
the handedness relations of different objects. If A and B are same-handed, and
B and C are also same-handed, then A and C are forced to be same-handed
too—no matter how far apart A, B and C are! In the sophisticated theory, on
the other hand, A, B and C simply possess an intrinsic handedness property,
and the properties possessed by A and B do not constrain the one possessed by
C at all. It is true that these objects stand in non-local handedness relations,
but these merely supervene on local, intrinsic properties.

Thirdly, the sophisticated explanation is more insightful. Suppose one is
truly surprised by the fact that objects are partitioned into at most two equiv-
alence classes of same-handed objects. We submit that, if one is subsequently
told that every object in fact possesses one of two monadic handedness prop-
erties, this is a satisfactory explanation. On the other hand, if one is told that
this is just a (consequence of some) law, then one has not explained much. The
request was exactly for the explanation of a noticeable regularity, but to say
that that regularity is a law does not offer much more. The explanation that ‘F
is true, because F is a law’ barely illuminates. In Taylor’s (2023) terms, there is
insufficient ‘explanatory distance’ between the explanandum and the explanans.

To sum up our verdict on the equivalence of reduced and sophisticated the-
ories: such theories are both ontologically and explanatorily inequivalent in
virtue of their kinematic inequivalence. Moreover, the explanatory inequiva-
lence favours sophistication over reduction.

5 Objections and Responses

We can see two ways in which the reductionist might respond: broaden the
class of kinematical possibilities of sophisticated theories, or restrict the class
of kinematical possibilities of reduced theories. In either case, reduced and
sophisticated theories become kinematically equivalent. In the former case,
both theories will face cosmic conspiracies; in the latter, neither does.11

5.1 Broaden KPMs of sophisticated theories

The reductionist could respond that the KPMs of the sophisticated theory are
arbitrarily restricted. To see this, consider another example of a cosmic con-
spiracy not yet discussed in this paper: the triangle inequality (Maudlin, 2007;

11This parallels Jacobs’ (2023a) distinction between two ways make a theory with redundant
structure satisfy Earman’s principles (that a theory’s dynamical symmetries match its kine-
matical symmetries): broaden the class of kinematical symmetries (i.e. weaken the kinematical
structure) or narrow the class of dynamical symmetries (i.e. constrain the dynamics).

15



Jacobs, 2024a). For any three points A, B and C, the distance rAB between A
and B added to the distance rBC between B and C must equal or exceed the
distance rAC between A and C: rAB+rBC ≥ rAC . For a theory set on Euclidean
space, this is a consequence of the theory’s kinematical structure. It is simply
impossible to locate three objects within Euclidean space such that the triangle
inequality is not satisfied. For a theory in which distances are fundamental,
on the other hand, the triangle inequality is not true in every KPM but must
follow from the dynamics. The case thus runs parallel to those we have already
discussed.

But the relationist could retort that the absolutist’s explanation relies on
space being Euclidean, and why should we hold that fact fixed across KPMs?
If we were to drop this assumption, then the triangle inequality is not satisfied
in every KPM of the absolutist theory either. The same holds for the examples
discussed above: for instance, the comparativist about mass could say that
mass value space need not have an additive structure. Caulton (2024) believes
that the space of KPMs is inclusive in this sense. After all, there are ways to
combine the absolutist’s fundamental ontology, which includes spacetime points
and distances between them, in such a way that space is not Euclidean.

We depart from Caulton here. Firstly, we think that on a broadly structural-
ist account of metaphysics this move would trivialise the space of kinematical
possibilities. For if no none of the theory’s properties and relations are subject
to kinematical constraints, then the kinematical possibilities will contain every
possible extension for those properties and relations. The only way in which
the space of KPMs can differ, then, is if their domains have a different cardi-
nality or if they posit a different number of fundamental n-place relations for
some n. This would mean, for example, that any theory that posits an infinite
four-dimensional spacetime over which a two-place distance relation is defined
has the same space of KPMs—no matter whether it is classical or relativistic.
We would like to preserve a contentful notion of KPMs that is compatible with
structuralism.

Secondly, we think the relationist’s response is unfair. Any theory has to
posit some kinematical structure. The absolutist posits an Euclidean space,
but the relationist likewise has to posit a ‘distance space’ in which pairs of ob-
jects take their value. This distance space certainly has a non-trivial structure,
namely that of the positive real numbers (perhaps quotiented by scale transfor-
mations (Martens, 2024)). This structure is necessary to explain (for example)
the fact that if rAB is smaller than rBC , and rBC is smaller than rCD, then rAB

is also smaller than rCD. The situation is thus rather as follows: any theory has
to posit a set of kinematic (value) spaces and a set of functions between those
spaces. Hume’s dictum dictates that the space of KPMs contains any combina-
tion of values for those functions: the theory’s quantities can have any value at
any point in spacetime. But it does not dictate that the value spaces can have
any structure whatsoever. This restriction of Hume’s dictum is neutral between
reduction and sophistication, but it upholds our result that reduced theories are
kinematically inequivalent to sophisticated ones.
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5.2 Restrict KPMs of reduced theories

Conversely, the reductionist could try to restrict their space of KPMs. In par-
ticular, they could try to re-introduce the above-discussed cosmic conspiracies
as kinematic constraints. This defines a new theory, T+

R , with a smaller space
of KPMs. It is easy to see that T+

R is kinematically equivalent to TS .
We think this is a cheat. The kinematical possibilities by their very definition

are unrestricted: they consist of all possible ways to combine the fundamental
quantities in question. It is not possible to arbitrarily impose constraints on
them. Put differently, if we take the space of KPMs of T+

R , then by Caulton’s
downwards Hume’s Dictum this theory’s fundamental quantities are not the
relational quantities, but the absolute ones. That is because the absolute quan-
tities span this restricted space of KPMs, while the relational ones do not. The
reductionist who constrains their KPMs to enforce kinematical equivalence with
the sophisticated theory betrays their reduction.

Of course, this response does assume the truth of Hume’s dictum. Someone
who rejects Hume’s dictum might find ways to impose further kinematic con-
straints. This option is discussed by Dasgupta (2020), who writes that “you
might propose that principles like triangle inequality restrict which ways of
reorganizing fundamental matters are genuinely possible. I’ll call these ‘meta-
physical principles’, though I leave open whether there are any and what they
might be.” Such ‘metaphysical principles’ flatly contradict Hume’s dictum.

We lack the space here to discuss Dasgupta’s proposal—to which he himself
does not clearly subscribe—in detail. Suffice it to say that it is rather unclear
what such metaphysical principles are and how they would come to have the
modal force they are proposed to have. Indeed, it strikes us that even if the
space of KPMs were modally restricted by such metaphysical principles, this
would not allow the reductionist to explain those principles in any way. This
point is reminiscent of Dasgupta’s (2011) broader claim that modal theses are
irrelevant to many debates about symmetries: even if only the actual world
were metaphysically possible, this would not by itself explain why the world is
as it is. Likewise, a mere modal restriction on the KPMs does not increase the
reduced theory’s explanatory strenght.

We think that explanations of cosmic conspiracies in terms of relative fun-
damentality, such as offered by the sophisticator, are much clearer. Herein we
follow Ismael and Schaffer (2020):

Grounding Inference [their term for certain inferences similar to
those based on the downwards Hume’s dictum] simply says that all
else being equal, in the kind of epistemic setting in which we have no
direct access to the grounding substructure of a collection of objects,
a theory that explains constraints on their modal covariation by ref-
erence to a common ground is better than one that regards it as a
brute modal connection between distinct existences. If one looks at
any theory that gives a non-trivial account of what the fundamen-
tal entities are (i.e., if it says that not everything is fundamental),
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some constraints on mutual variation of non-fundamental entities in
the world will turn out to be emergent from grounding substructure
Grounding Inference expresses a preference for theories that trace
modal connections to common grounds over ones that don’t.

We share this preference and believe that it is satisfied by explanations of cosmic
conspiracies in terms of kinematical posits.

This takes us to a broader final point. Whilst the bare formalism of a the-
ory may leave us with some flexibility as to how the kinematical constraints of
that theory are chosen, one cannot choose those kinematical constraints inde-
pendently of one’s interpretation of the theory. Thus, while it might be open
to the proponent of, say, the Faraday tensor formulation of electromagnetism
(FTEM) to insist that the Gauss-Faraday law is a kinematical constraint, this
does not mean that it is open to them to insist both that the Gauss-Faraday
law is a kinematical constraint and that the Faraday tensor is fundamental.

To make this point, it is helpful to consider in a little more detail what it
would mean to take the Gauss-Faraday law as a kinematical constraint (rather
than a dynamical law). Here, it is helpful to recall one of the ideas from §3:
kinematical constraints delineate the kind of physical systems which can be
appropriately modeled by the theory. If the Gauss-Faraday law is a dynamical
law, then if this law were to fail to hold of some physical system, FTEM would
be false. But it would still make sense to try to apply FTEM to that system.
By contrast, if the Gauss-Faraday law is a kinematical constraint, then if this
law were to fail to hold of some physical system, it would not even make sense
to think of FTEM as applicable to that system, much less as true or false of it.
For example, on the first view, it makes sense to say that if there were magnetic
monopoles, then FTEM would be false. On the second view, however, if there
were magnetic monopoles then FTEM would not be false per se, but simply
inapplicable (and hence questions of truth or falsity inappropriate). For in that
case, the theory’s basic kinematical structure would not fit the actual world.

It is the first option that is in accordance with physics practice. So, how
are we to make sense of the second option? A comparison with gauge potential
electromagnetism (GPEM) is helpful here. GPEM has a clear story about why
it would not make sense to talk of EM as true or false of physical systems
in which magnetic monopoles exist, because such systems are ones in which
electromagnetic forces cannot be represented by a one-form field at all. Thus one
cannot sensibly ask of such a physical system whether electromagnetic forces,
as represented by a one-form field, couple to matter currents in the right kind
of way. By contrast, it is much less obvious that one can tell a similar story
for FTEM. After all, as long as one has electromagnetic forces, one can define
the Faraday tensor, and once one has the Faraday tensor it makes sense to ask
whether it is closed or how it couples to matter currents.

Unless, that is, FTEM is really committed to the gauge potential as the
fundamental quantity in terms of which the Faraday tensor is defined. Then
it would of course not make sense to ask whether electromagnetic forces, as
represented by the Faraday tensor, couple to matter fields in the right kind
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of way in a physical system in which the Gauss-Faraday law does not hold,
because electromagnetic forces are represented by the Faraday tensor in virtue
of being represented by the gauge potential. Thus one sees: it makes sense
to take the Gauss-Faraday law as a kinematical constraint if and only if one
interprets FTEM as committed to a fundamental gauge potential.

Of course, one way to make this point is via the downwards Hume’s dictum,
but one need not be committed to an unrestricted version of Hume’s dictum to
make it. It is entirely legitimate to say that there are some entities which sat-
isfy an unrestricted version of Hume’s dictum and others—such as background
spacetime structure—which don’t. It is also possible to insist that perhaps it is
just part of what we mean by the Faraday tensor (or a ‘metaphysical principle’
about the Faraday tensor) that it is closed. One issue with this is the one we
pressed above—that the relevant sense of ‘metaphysical principle’ is obscure and
unexplanatory. Another issue is that such a principle, shorn of commitment to
the gauge potential, is ill-motivated—as indicated by physicists’ discussions of
cases in which the Gauss-Faraday law does not hold. But more importantly,
even if one does grant for the sake of argument that such ‘metaphysical prin-
ciples’ are clear and well-motivated, there is an obvious sense in which they
cannot help. The question whether some equation-like statement is a kinemat-
ical constraint or a dynamical law ultimately is a question about what kind of
physical situations it is sensible to model with the theory. The example of the
Gauss-Faraday law shows that the answer to this question is not independent
from one’s ontological commitments.
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