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Abstract 

“AI4Science” refers to the use of Artificial Intelligence (AI) in scientific research. As AI systems 

become more widely used in science, we need guidelines for when such uses are acceptable and 

when they are unacceptable. To that end, I propose that the distinction between the context of 

discovery and the context of justification, which comes from philosophy of science, may provide 

a preliminary but still useful guideline for acceptable uses of AI in science. Given that AI 

systems used in scientific research are black boxes, for the most part, we should use such 

systems in the context of discovery but not in the context of justification. The former refers to 

processes of idea generation, which may be unproblematically opaque whether they occur in 

human brains or artificial neural networks, whereas the latter refers to scientific methods by 

which scientific ideas are tested, confirmed, verified, and justified, which should be transparent. 
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1. Introduction 

“AI4Science” refers to the use of Artificial Intelligence (AI) in scientific research. For instance, 

the stated goal of the AI4Science Lab at Oxford University is to make “contributions to solve 

important problems in [particle physics, heliophysics, astrobiology, Earth science, and 

computational social science] through application and development of AI methods” [1]. 

Likewise, at the California Institute of Technology, the aim of AI4Science there is “to bring 

together AI researchers with experts from other disciplines to push modern AI tools into every 

area of science and engineering” [2]. 

Many scientists are optimistic about the impact of AI systems on science. They believe that the 

introduction and use of AI in “every area of science” accelerates scientific progress. For 

example, Yongjun Xu et al. (2023) argue that AI has, and will continue to, accelerate progress in 

scientific research [3]. Likewise, according to Wang et al. (2023), “Recent advances, including 

the successful unraveling of the 50-year-old protein-folding problem and AI-driven simulations 

of molecular systems with millions of particles, demonstrate the potential of AI to address 

challenging scientific problems” [4]. They add that “Cross-disciplinary collaborations are crucial 

to realize a comprehensive and practical approach towards advancing science through AI” [4]. 

As Austin Clyde (2022) points out, however, if AI4Science is to be an engine of scientific 

progress, a few hurdles must be overcome [5]. One of these hurdles is what he calls “an 

orientation toward cogent justification” [5]. This is a challenge because many AI systems are 

opaque, which is to say that their innerworkings are unexplainable by human scientists, which in 

turn could make their outputs (e.g., decisions, predictions, etc.) uninterpretable by human 

scientists. Take AlphaFold, for instance, which proponents of AI4Science often cite as a 

successful example of the use of AI for scientific research. AlphaFold was developed by 

DeepMind, a subsidiary of Google’s parent company, Alphabet, to predict a protein’s three-

dimensional structure from its amino acid sequence. In fact, Google DeepMind’s Demis 
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Hassabis and John Jumper won the 2024 Nobel Prize in Chemistry for their work on AlphaFold. 

As the press release for the 2024 Nobel Prize in Chemistry states: 

In 2020, Demis Hassabis and John Jumper presented an AI model called AlphaFold2. 

With its help, they have been able to predict the structure of virtually all the 200 million 

proteins that researchers have identified. Since their breakthrough, AlphaFold2 has been 

used by more than two million people from 190 countries. Among a myriad of scientific 

applications, researchers can now better understand antibiotic resistance and create 

images of enzymes that can decompose plastic. Life could not exist without proteins. 

That we can now predict protein structures and design our own proteins confers the 

greatest benefit to humankind [6]. 

According to Yongjun Xu et al. (2021), “As an illustration of great achievement, AlphaFold 

successfully and accurately predicted 25 scratch protein structures from a 43 protein panel 

without using previously built proteins models” [7]. However, human scientists cannot explain 

its predictions. In other words, they know what goes into the system (i.e., the input) and they 

know what comes out of the system (i.e., the output), but they do not know what happens in 

between. This is because AlphaFold is a deep learning artificial neural network (DNN). DNNs 

are black boxes. Their neural networks are comprised of multiple layers, including nodes and 

edges, of mathematical relations, some of which are hidden, which makes it difficult to explain 

how they arrive at their predictions and decisions. “Such systems are a ‘black box model’, 

making it difficult to guess how they make decisions or why they create a certain output” [8]. 

This is known as “the black-box problem” [9]. 

Not all instances of AI4Science involve black boxes. Still, because of the black-box problem 

with AI systems like Deep Neural Networks (DNNs), some researchers call for rethinking the 

ways in which some AI systems are designed, developed, and deployed in scientific research. 

They call for making black box AI systems explainable and their outputs interpretable by 

humans. Explainable AI or “XAI methods attempt to explain black box systems (e.g., DNN) by 

building a second ‘explanation’ model” [10]. In fact, Tan and Zhang (2023) designed an 

explainable version of AlphaFold called “ExplainableFold (xFold)” [11]. Another approach to 

XAI is build what are known as surrogate models. Surrogate models are algorithms trained to 

approximate the predictions of black box AI systems such that the former can be used to interpret 

the predictions of the latter [12]. 

According to Clyde, “Justification with opaque AI will be a great challenge for the AI4Science 

campaign” [5]. Until we have explainable AI systems, whose decision-making and inferential 

processes are transparent to us, such that they produce outputs that we can interpret and 

understand, it would be prudent to restrict the use of black box AI systems in science to the 

context of discovery and to refrain from using them in the context of justification. Although 

some philosophers of science have abandoned this context distinction due to its association with 

empiricist accounts of science that are considered by many philosophers to be outdated, I argue 

that the discovery/justification context distinction may be useful for providing a guideline for 

acceptable uses of AI in scientific research. By itself, the discovery/justification context 

distinction is not meant to constitute a comprehensive ethical framework for AI4Science. Rather, 

it is supposed to serve as a preliminary guideline for developing such a framework. 

Before we proceed, it is important to keep in mind that the term “model” is used in somewhat 

different ways as it pertains to AI and to scientific theorizing. On the one hand, an AI model is a 
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program that processes data to make decisions or predictions by means of statistical models. For 

example, AI systems can use regression models to find relationships between dependent and 

independent variables. When the statistical models or decision-making processes used by AI 

systems are vastly more complicated, with hidden layers of neural networks, such that they are 

opaque to human scientists, as in the case of DNNs, the AI systems are said to be black box 

models. 

On the other hand, a scientific model is a representation of some natural phenomenon. The 

representation can be physical, graphical, mathematical, etc. For example, in chemistry, there are 

different ways to represent or model molecules. Molecules can be represented graphically by 

skeletal formulas or bond-line notation. That is, skeletal diagrams are a graphical way to model 

molecules two-dimensionally. Molecules can also be represented physically by ball and stick 

models. That is, ball and stick models are a physical way to model molecules three-

dimensionally. 

Crucially, the underlying theories that guide the scientific modeling of molecules in chemistry 

are the same, which include valence bond theory and molecular orbital theory, no matter which 

of the aforementioned ways to model molecules is used in scientific practice. They are the 

underlying theories that explain why a certain molecule is modeled in a certain way whether the 

bond-line notation or ball and stick models are used. The same cannot be said about AI systems 

that are black boxes. As far as AI black boxes are concerned, we have no underlying theories that 

would make their internal processes explainable and their outputs interpretable to human 

scientists. In the case of AlphaFold, for example, we have no underlying theory for the 

predictions it generates, which is why AlphaFold is said to be a black box. For this reason, the 

debate as to whether or not AlphaFold solved the protein folding problem continues [13]. As Shi-

Jie Chen et al. (2023) explain (original emphasis): 

Clearly, deep-learning AI represents a major advance in protein fold prediction. But this 

is not folding prediction. Patterns extracted from proteins in the Protein Data Bank (PDB) 

provide a ready “parts list,” circumventing the folding process entirely. These patterns are 

“fully baked.” That is, a pattern extracted from a solved structure in the PDB is fully 

preorganized; any physical-chemical organizing interactions have already been realized 

during folding. The situation is analogous to interpreting a movie by fast-forwarding to 

the final scene without first watching the previous two hours; we know how it ends, but 

we don’t know why [14]. 

As long as we do not know why, since we have no understanding of its internal processes, which 

are largely hidden to us, AlphaFold will remain a black box to human scientists. This is not to 

say that AlphaFold is entirely useless. It provides useful predictions of protein structure from the 

PDB. Other AI systems can be similarly useful, despite being black boxes, insofar as they have 

the computational power to process massive amounts of data in order to find patterns that may be 

elusive to human scientists. What AlphaFold does not provide, however, is a principled answer 

to the following question: How does a particular protein structure emerge from a linear sequence 

of amino acid residues in aqueous solution? [14] To answer this question, we need more than a 

predictive algorithm. We need a scientific theory, i.e., an explanation that encompasses the 
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underlying causes, entities, mechanisms, and principles that govern the occurrence of the natural 

phenomena under investigation.1 

2. The discovery/justification context distinction 

The distinction between the context of discovery and the context of justification is typically 

traced back to Hans Reichenbach (1938) [15] and Karl Popper (1959/2002) [16] but can 

probably be traced back even further [17]. The context of discovery refers to processes of 

thinking as they occur in the minds of scientists when they come up with ideas or hypotheses, 

whereas the context of justification refers to methods by which scientific ideas or hypotheses are 

justified. As Thomas Nickles (1980) puts it (emphasis added): 

The distinction is first of all a logical distinction between the psychological processes 

which occur when a scientist thinks of new ideas and the logical argument which exhibits 

the degree to which those ideas are supported by the facts and other evidential 

considerations. Context of discovery concerns psychological connections between 

thoughts; context of justification concerns only logical connections (plus the 

ascertainment of facts). Context of discovery is descriptive; context of justification is 

normative as well [18]. 

For example, it is a historical fact that the “nineteenth-century German chemist August Kekulé 

claimed to have pictured the ring structure of benzene after dreaming of a snake eating its own 

tail” [19]. This historical fact provides no evidential support for Kekulé’s hypothesis [20]. It 

makes no evidentiary difference whether the idea came to Kekulé in a dream, in the shower, or in 

any other way. What matters is whether the idea can be justified by means of evidence gathered 

from experiments, observations, and the like. 

Empiricist philosophers of science used the distinction to argue that the context of discovery is 

psychological and subjective, whereas the context of justification is logical and objective, which 

is why they argued that philosophers of science should concern themselves with the latter rather 

than the former. For this reason, empiricist philosophers of science also thought that philosophy 

of science is in the business of providing rational reconstructions of science. As Minwoo Seo and 

Hasok Chang (2015) put it (emphasis added): 

Discovery is a subject of all kinds of empirical research, historical, sociological, and 

psychological. Epistemology is and should be confined to the “context of justification,” 

in which the propositions produced in science are reformulated and rearranged so that 

their structures and logical relations are made explicit. Epistemology thus considers a 

 
1 Another example that may help to bring this point home is the use of Newtonian physics to launch rockets. We 

know that in order to climb into low Earth orbit, a rocket needs to achieve a speed in excess of 28,000 km per hour. 

In order to leave Earth and travel out into deep space, a rocket needs to achieve escape velocity, i.e., a speed of over 

40,250 km per hour. These numbers did not come out of thin air. They are based on Newton’s laws of motions, 

which explain how things move in our universe. When it comes to launching rockets, we know that the greater the 

mass of rocket fuel burned (m), and the faster the gas produced can escape the engine (a), the greater the thrust of 

the rocket (f). This knowledge is based on Newton’s second law of motion, which can be stated in the form of a 

mathematical equation as follows: f = ma. Newtons’ laws of motion make up the underlying principles that govern 

the motion of objects, which human scientists and engineers understand well enough such that they can use them to 

launch rockets. As far as AlphaFold is concerned, we have no such underlying principles, theories, or anything that 

resembles a mathematical equation along the lines of Newton’s second law of motion. 
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rational reconstruction of scientific practice, rather than the actual practice of scientists 

[21]. 

We need not be committed to this further argument made by empiricist philosophers of science 

as to the proper aims of epistemology and philosophy of science. For present purposes, the 

important point is that there is a real distinction between the context in which scientific ideas are 

generated and the context in which those ideas are tested, verified, confirmed, and justified. Out 

of the several different ways of drawing the context distinction, this is the one that Hoyningen-

Huene (1987) labels as “process of discovery vs methods of, or reconstruction of, or analysis of, 

or considerations relevant to justification” [17]. If so, this context distinction between processes 

of discovery and methods of justification may be useful in providing a preliminary guideline for 

acceptable uses of AI black boxes in scientific research, or so I argue. 

3. The context distinction and AI4Science 

The principle of explicability is widely recognized as a foundational principle of ethical AI [22]. 

For example, UNESCO’s “Recommendation on the Ethics of Artificial Intelligence” (2022) lists 

transparency and explainability as principles for ethical AI [23]. These principles require that 

people are fully informed when decisions are made by AI systems and that the reasons for those 

decisions are accessible and understandable to people. In science, of course, it is imperative that 

findings and results are accessible and understandable to other researchers in the field. As the 

editors of Nature Geoscience (2014) put it (emphasis added): 

Science thrives on reproducibility. […] Two ingredients are essential for reproducibility 

in any field in science: full disclosure of the methods used to obtain and analyse data, 

and availability of the data that went into and came out of the analysis [24]. 

When it comes to black box AI, the data that go into and come out of these AI systems are 

available. But the methods used to analyze the data are not. As long as the AI systems typically 

used in science are black boxes, such as AlphaFold, we should use them in the context of 

discovery only, not in the context of justification. Here is why. 

First, recall that the context of justification is the context in which scientific ideas are tested, 

verified, confirmed, and justified. Since there can be no justification for the outputs of AI black 

boxes, given that their decision-making and inferential processes are opaque to human scientists, 

such systems cannot and should not be used to test, verify, confirm, and justify scientific ideas. 

To put it another way, the principle of explicability in terms of intelligibility demands an answer 

to the question “how does it work?” [22] As far as the outputs generated by AI black boxes are 

concerned, this question cannot be answered because the internal decision-making and inferential 

processes of such systems are opaque to human scientists. Without answers to this question, the 

outputs generated by AI black boxes cannot be tested verified, confirmed, or justified, which is 

why such AI systems should be excluded from the context of justification. The fact that an idea 

was generated by an opaque AI system, such as AlphaFold, does not constitute a scientific 

justification, even in part, of the veracity of that idea. 

Second, the origin of an idea rarely, if ever, guarantees the truth (or falsity) of that idea. 

Assuming that it does is often called the “genetic fallacy” in informal logic. In fact, some logic 

textbooks define the genetic fallacy in terms of the discovery/justification context distinction. 

For example, “The errors of treating items in the context of discovery as if they belonged to the 
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context of justification is called the ‘genetic fallacy’. It is the fallacy of considering factors in the 

discovery or genesis of a statement relevant, ipso facto, to the truth or falsity of it” [25] [26]. 

Salmon (1973) gives the example of dismissing the theory of relativity on the grounds that it was 

proposed by a Jewish person, namely, Albert Einstein [25]. Indeed, in his discussion of the 

context distinction, Giere (1999) proposes that Reichenbach was concerned about the dismissal 

of scientific ideas simply because they were proposed by Jewish people. As Giere (1999) puts it 

(original emphasis): 

I suggest that part of the significance of the [context] distinction for Reichenbach at this 

time was its implicit denial that characteristics of a person proposing a scientific 

hypothesis have anything to do with the scientific validity of the hypothesis proposed. 

This applies, in particular, to that person’s being a Jew. Reichenbach seems to have made 

it a precondition on any scientific epistemology that it rule out the possibility of any 

distinction between, for example, Jewish and Aryan science. But I think there was more 

to it than this. Separating questions of the origins of ideas from questions of their validity 

seems to have been for Reichenbach, at that time, a matter as deeply personal as it was 

philosophical [27]. 

This is not to say that there is never any relation at all between questions concerning the origins 

of ideas (i.e., the context of discovery) and questions concerning their correctness (i.e., the 

context of justification), which is why genealogical critiques (i.e., criticizing ideas in terms of 

their psychological origins) may have some value after all [28]. However, the relation between 

an idea’s origin and its correctness is not one of logical consequence. In other words, faulty 

origins can give rise to good ideas, and questionable sources can make statements that are true. 

Therefore, if the genesis of an idea is relevant to its truth (or falsity) in some way, it should be 

assessed as part of the justification for that idea independently of its discovery. 

To illustrate, take the example of Kekulé again. If the fact that his idea came to him in a dream 

has any bearing on the hypothesis of the ring structure of benzene, then it should be considered 

in the context of justification as one of the methods of justification for Kekulé’s hypothesis. 

Given that dreams are not a reliable mode of justification and are not one of the established 

methods of justification commonly used and accepted in scientific research, they should not be 

considered as such.2 

Applying this point to AI4Science, it could be argued that the fact that a scientific idea originated 

in a black box AI is irrelevant to the justification of that idea. This is because the processes that 

generated the idea are unavailable for assessment by the scientific community. But the idea 

should not be dismissed simply because it was generated in a black box AI. Regardless of its 

 
2 Interestingly, Dmitri Mendeleyev recounts that his discovery of a periodic table of the elements occurred to him 

while he was dreaming [31]. One could argue that an AI system would have been able to find the patterns that 

eluded nineteenth century chemists for too long and construct a periodic table of the elements. But again, the 

question would be this: what is the underlying theory that makes sense of the patterns captured in a periodic table of 

the elements? In Mendeleyev’s original periodic table, the elements are arranged by order of increasing atomic 

weight, which exhibits a pattern known as the periodic law, according to which elements in the same group have 

similar properties. The advent of quantum mechanics provided a better understanding of electron configuration, 

particularly the number and arrangement of electrons in the outermost shell (i.e., valence electrons), which 

determines an element’s chemical properties and its position on later versions of periodic tables by atomic number. 
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origin, the idea should be tested, verified, confirmed, and justified by means of established 

scientific methods that are transparent to the scientific community. 

In other words, “the computer said so” should not play a justificatory role in science; otherwise, 

we risk what Floridi (2023) calls “agency laundering,” i.e., avoiding responsibility and blaming 

an AI system when things go wrong [22]. As the motto of the Royal Society of London for 

Improving Natural Knowledge, which was adopted in its First Charter in 1662, states “Nullius in 

verba,” i.e., “take nobody’s word for it” [29]. As AI becomes more widely used in science, we 

should not take its word for it, either. Just as the Fellows of the Royal Society were determined 

“to withstand the domination of authority and to verify all statements by an appeal to facts 

determined by experiment” [29], we should withstand the domination of the authority of AI or 

“automation bias” [22]. Instead, we should restrict the use of black box AI to the context of 

discovery until such time that its outputs can be verified “by an appeal to facts determined by 

experiment,” observation, and the like. 

As explainable AI becomes the rule, not the exception, in science, scientists may be able to 

consider the internal processes of such white box AI as part of the context of justification for the 

ideas that such systems generate [30]. Until then, black box AI should be restricted to the context 

of discovery, where the origin of an idea, be it a human brain (awake or asleep) or a DNN, is 

distinct and kept separate from the available methods by which the idea is tested, confirmed, 

verified, and justified.3 

4. Conclusion 

I proposed that the distinction between the context of discovery and the context of justification, 

which comes from philosophy of science, may provide a rather useful guideline for acceptable 

uses of black box AI in science. Whether an idea originates in a biological or an artificial 

network of neurons constitutes no evidence for or against the veracity of that idea. For that is the 

context of discovery. The idea should then be tested, confirmed, verified, and justified by means 

of established scientific methods. For that is the context of justification. Accordingly, given that 

AI systems used in science today are black boxes whose internal processes of idea generation 

and decision making are opaque to human scientists, for the most part, it would be prudent to 

restrict the use of such systems in science to the context of discovery. As long as the AI in 

AI4Science refers to black box AI, AI4Science should not apply to the context of justification. 

The discovery/justification context distinction thus provides a rather straightforward guideline 

for acceptable uses of AI in scientific research, which can be further developed into more 

detailed, best practices for AI4Science. As such, the discovery/justification context distinction is 

supposed to serve as a preliminary guideline for developing an ethical framework for 

AI4Science, not as a comprehensive framework in itself. Maintaining the discovery/justification 

 
3 An anonymous reviewer raises an interesting and important question. That is, could there be cases in which failing 

to use black box AI systems in scientific research would be considered immoral? Briefly, I think that the answer to 

this question would depend on the ethical perspective taken to answer it. For example, from a utilitarian point of 

view, if the failure to use black box AI in scientific research would result in less utility (where utility could be 

construed in terms of benefits, happiness, wellbeing, etc.) for everyone concerned, then it could be argued that black 

box AI should be used because it would maximize utility for all concerned. Alternatively, if scientists’ refusal to use 

black box AI in their scientific research embodies virtues, such as honesty, integrity, courage, justice, and the like, 

then it could be argued that black box AI should not be used because refusing to use black box AI would further the 

aforementioned virtues. These are only two ways to approach the reviewer’s question. There are many more. So, 

hopefully, readers can see that doing justice to this question would require more space than this paper affords. 
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context distinction as far as AI4Science is concerned could also help to ensure that human 

scientists remain in the loop while the use of AI in science becomes more widespread. 
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