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 Abstract  

The field of machine learning intricately links ethical and epistemological considerations in many 

contexts which raises the question as to their precise relation. This paper tries to provide a partial 

answer by focusing on one particular context, namely, the trade-off between accuracy and 

interpretability, which can be considered a prime example for the entanglement of ethics and 

epistemology in machine learning. At its core, the trade-off states that any choice of a machine 

learning model needs to balance the conflicting desiderata of achieving accurate predictions and an 

interpretable functionality. On a widely shared view inspired by the argument from inductive risk, 

this balancing of conflicting desiderata can only be resolved by appeal to non-epistemic values. By 

contrast, we argue that, in certain settings, the accuracy-interpretability trade-off can be resolved on 

purely epistemic grounds. To that end, we closely analyze the general nature of trade-offs as well as 

the notions of accuracy and interpretability. This allows us to derive strategies for resolving the 

accuracy-interpretability trade-off that center around choosing the right epistemic frame for a given 

machine learning application and, thus, do not require non-epistemic considerations. We conclude 

by sketching the implications of this result for the general relation of ethical and epistemological 

considerations in ML. 
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1. Introduction 

Ethical and epistemological issues are often enmeshed in machine learning. It is not uncommon 

for ethicists to wrestle with epistemic concepts like accuracy, reliability, opacity, or uncertainty 

alongside genuinely morally normative concepts like autonomy or fairness. Nevertheless, with few 

exceptions, the exact relationship between ethics and epistemology is rarely ever spelled out (Russo 

et al., 2024; Grote, 2024; Sterkenburg, 2024). This comes at the expense of an unclear 

understanding concerning the scope and methodology of ethics in machine learning. This paper is 

an attempt to make progress in this regard. Specifically, we study the relationship between ethics 

and epistemology on the basis of trade-offs in machine learning. 

According to a widely held view, inspired by the literature on inductive and epistemic risk 

(see, e.g., Ward, 2021), machine learning models are value laden in that different trade-offs arise in 

the design and development process (Biddle, 2022; Nyrup, 2022; Johnson, 2023). These trade-offs 

amount to a choice between two desiderata that cannot be mutually satisfied. It is furthermore 

assumed that many of these trade-offs are inescapable: they occur necessarily and can only be 

resolved by means of value judgements, which then reflect in the model. If we accept these 

assumptions, then this results in a division of labor between ethicists and epistemologists in the 

design and development of machine learning models. On the one hand, the task of the 

epistemologist is to install appropriate safeguards so that the machine learning model meets a 

particular epistemic desideratum. On the other, the ethicist’s task is to balance different value 

choices underlying certain trade-offs.  
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Even still, it is becoming apparent that the picture is more complicated than just suggested. 

Many trade-offs turn out to be false dogmas upon closer examination. For example, Beigang (2023) 

has argued that a trade-off between two statistical fairness notions, ‘equalized odds’ and ‘predictive 

parity’, can be modified by way of causal inference techniques so that they are universally 

compatible, whilst also retaining their intuitive appeal. Hence, the trade-off between the two 

fairness notions, of which the received view was that they are impossible for a machine learning 

model to satisfy simultaneously (Kleinberg et al., 2016), can be reconciled if machine learning 

developers use the right set of statistical techniques. This renders an ethical problem, which lies at 

the heart of the algorithmic fairness debate, into an epistemic. 

Our main argument in this paper is that a similar story can be told about another trade-off, 

which is equally fundamental to the ethical debate, namely ‘accuracy versus interpretability’. In its 

barest essentials, the trade-off states that when selecting a class of machine learning models, we are 

bound to choose between those that achieve high predictive accuracy but whose inner logic is 

opaque, or those whose inner logic is interpretable but whose predictive accuracy is inferior (when 

compared to the state of the art). Since sacrificing either accuracy or interpretability entails different 

epistemic risks, this is a consequential choice – particularly in high-stakes settings like healthcare 

(London, 2019). Contrary to this, we argue that if the deployment domain and the deployment 

purposes are well specified, the accuracy versus interpretability trade-off can be resolved: It is either 

possible to find a model that satisfies both desiderata or there is an epistemically clear preferable 

solution. The upshot is that the accuracy versus interpretability trade-off is first and foremost an 

epistemic as opposed to a morally normative issue as its resolution hinges on choosing the right 

epistemic frame for a given machine learning application. 

While we are by no means the first to suggest that the accuracy- interpretability trade-off 

can be epistemically resolved (Rudin, 2019; Rudin et al. 2024), our approach represents progress in 

a twofold way: First, we make the current debate more nuanced by providing a detailed analysis of 

the structure of the trade-off that allows to identify multiple strategies for resolving it. Second, we 

generalize the current debate that primarily centers on the use of machine learning for social 

prediction (e.g., predicting the risk of recidivism or creditworthiness) by covering a broader range 

of applications, including vision-based tasks in healthcare or the use of machine learning for 

scientific discovery. 

Accordingly, the paper proceeds as follows: Section 2 establishes conceptual common 

ground by developing an account of values in machine learning models. Section 3 tries to provide 

a precise definition of the accuracy versus interpretability trade-off by discussing the relevant 

philosophical and technical literature. We also look at historical precursors of the accuracy-

interpretability trade-off like ‘simplicity versus complexity’ (Forster and Sober, 1994). In Section 4, 

we discuss different strategies to resolve the accuracy-interpretability trade-off. Finally, in Section 

5 we draw general conclusions about the relationship between ethics and epistemology in machine 

learning based on our study of the accuracy versus interpretability trade-off. 

2. Values in science and machine learning 

Saying that science is not insulated from society and that scientific inquiry is encroached by non-

epistemic values will not stir up much controversy these days. The starting point against the ‘value-

free ideal’ in science has been the ‘argument from inductive risk’. Initially, the argument states that 

in statistical testing, decisions about whether to accept or reject hypotheses should be informed by 

non-epistemic value judgments about the societal costs of accepting the hypothesis when it is false 

or rejecting it when it is true (Rudner, 1953; Douglas 2009; Steel, 2010). Over the last decades, 

however, the argument from inductive risk has undergone multiple conceptual expansions that 
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facilitate capturing a wider array of inductive/epistemic risks1 that result from any choice regarding 

epistemic standards and methods that affect the acceptance or rejection of a hypothesis 

downstream (Biddle and Kukla, 2017). 

In the same vein, the argument from inductive risk has been applied to various special 

sciences. Machine learning is the latest manifestation of this trend; and there are good reasons why 

it is particularly forceful in the case of machine learning: Just like statistical testing, machine learning 

is an inductive process, in which a model finds a function f to predict a variable of interest Y based 

on input data X within a given probability distribution D.2 This entails that we cannot provide any 

a priori guarantees for the correctness of the output. Rather, the relevant guarantees are contingent 

on further conditions, such as D being sufficiently large and representative of the deployment 

setting (Johnson, 2023; Grote et al., 2024).  

Biddle (2022) is arguably the most representative example of an epistemic risk approach to 

machine learning. Discussing the case of recidivism risk assessment, he challenges the supposed 

neutrality of machine learning models in arguing that, just like human decision-making, they are 

value laden: their design and development requires human decisions that, again, involve trade-offs 

reflecting human values. ‘Values’ can be best conceptualized as reasons that motivate or justify 

certain design choices in machine learning models (Ward, 2021). Moreover, although Biddle (2022) 

does not make this explicit, his usage of ‘values’ is tantamount to non-epistemic values, for instance, 

whose interests certain design choices serve and how to steer these design choices so that they lead 

to positive change (p. 322). We take up the distinction between epistemic and non-epistemic values 

later in this section. 

He highlights these value choices by discussing how different trade-offs arise across the 

developmental cycle of machine learning models. Accordingly, model authorities need to navigate 

trade-offs, when (i) trying to operationalize the problem that the machine learning model is 

supposed to solve; (ii) selecting the training and evaluation data so that it is representative of the 

task at hand; (iii) balancing the model’s accuracy versus interpretability; (iv) choosing fairness 

notions; (v) presenting outputs; and (vi) considering a wider range of transparency issues when the 

model is implemented into a given socio-technical environment. Importantly, even though Biddle 

is ultimately non-committal for which this is actually the case, the claim is that some of these trade-

offs apply “in principle” and not just “in practice”. That is, they are inescapable even in light of 

future research breakthroughs or resources (p. 324). 

Many other philosophers follow the same playbook as Biddle. For example, Karaca (2021) 

uses the example of a binary classification model to detect cancer to highlight inescapable trade-

offs in model construction and evaluation, such as choosing an appropriate performance metric 

that has to balance the epistemic risks of true positive and true negative instances. Here the model 

authorities must make social value judgments that take the epistemic risk profiles of the intended 

users into consideration. Nyrup (2022), in turn, discusses how different value decisions encroach 

the model design process and to what extent it is possible to make the relevant values transparent.  

Against this backdrop, it is thus warranted to say that it has become the received view in 

the philosophy of machine learning that model authorities face various trade-offs throughout the 

developmental cycle, whereby they have to resort to non-epistemic value judgments in order to 

balance them. While we by no means are arguing for the strong claim that machine learning models 

are value-neutral (see also Phillips-Brown, 2023; Johnson, 2023; Sterkenburg, 2024), we understand 

 
1 Inspired by Biddle and Kukla (2017), we will just speak of ‘epistemic risks’ in the following, since the term is better 
able to account for a broader range of risks of error that potentially occur in the development cycle of machine learning 
models.  
2 Note, however, that according to Buchholz and Raidl (2022), the inductive component of machine learning is 
complemented by a pronounced falsificationist component. 
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our paper as a plea for more nuance: at least some of the purported trade-offs can be resolved 

solely on the grounds of epistemic values.  

First of all, however, some conceptual clarifications are needed. Steel (2010) makes a useful 
proposal about how to demarcate epistemic from non-epistemic values. Central to his proposal is 
the assumption that epistemic values promote the acquisition of true beliefs. Note that epistemic 
values can be intrinsic or extrinsic. While intrinsic values are good in their own right, extrinsic 
values are a means for promoting intrinsic values. ‘Accuracy’ is the prime example of an intrinsic 
epistemic value, “because an empirically accurate theory is a theory whose consequences for 
observable phenomena are mostly true (p. 15).” In comparison, extrinsic epistemic values are 
characterized by the fact that they provide indirect support for the acquisition of true beliefs, as in 
the case of the testability of hypotheses, which enhances the efficiency of scientific inquiry. Non-
epistemic values, by contrast, can be deemed to promote the attainment of moral or social goods.  

Consider another term that is typically not defined in the literature, namely, ‘trade-offs’. In 

essence, one can distinguish two conditions that are necessary for a trade-off to arise. According 

to the first, 

(T1) There must be a choice between two conflicting desiderata that cannot be satisfied 

simultaneously. 

Take the example of a government organization that wants to evaluate policy interventions and 

decides to conduct a randomized controlled trial. Here the government organization has to balance 

a trade-off between the epistemic advantages of randomization (which is regarded as the best way 

to obtain unbiased estimates of the intervention’s causal effects), and the resulting distributive 

justice problems (since one arm of the research participants are assigned to a seemingly inferior 

status quo policy) (MacKay, 2020). 

In addition, according to the second necessary condition, 

(T2) Balancing the two desiderata must be a hard choice (Chang, 2017): Either alternative is 

better in some relevant aspects, and yet, neither seems to be as good as the other in 

all relevant aspects. 

For example, if there were a study design available that offered the same epistemic advantages of 

randomized controlled trials without running into distributive justice problems, there would be no 

genuine trade-off. With that in mind, for present purposes, we are agnostic about the exact 

structural features of these hard choices – for instance, whether what makes trade-offs hard can be 

explained in virtue of ignorance of the normative and non-normative factors relevant to making 

the choice, whether the alternatives must be incommensurable, incomparable, or because the 

alternatives are on par (Chang, 2017).  

The aim of this section was to discuss a widely shared view about the relationship between 

epistemic and non-epistemic values in machine learning. According to this view, non-epistemic 

values come into play when model authorities need to manage trade-offs occurring across the 

developmental cycle of machine learning models. Moreover, we introduced some key concepts 

from the values in science debate. On this basis, we now turn to a detailed analysis of the accuracy-

interpretability trade-off. 

3. The accuracy-interpretability trade-off 

The trade-off between accuracy and interpretability claims center stage in the discourse on machine 

learning, since it relates two of the field’s most basic concepts to one another. On an intuitive level, 

according to the trade-off, the choice of a class of machine learning models is inextricably linked 

to making a choice between models that achieve high predictive accuracy at the cost of an opaque 

functionality, or models whose functionality is interpretable at the cost of lower predictive accuracy. 
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In other words, “the most powerful machine learning techniques purchase […] predictive accuracy 

at the expense of our ability to access ‘the knowledge within the machine’” (London, 2019, p. 15). 

Before discussing the different epistemic risks arising from this situation, let us take a closer look 

at the constituents of the trade-off and carve out what the concepts of accuracy and interpretability 

are (taken to be) about in this context. 

Accuracy is arguably the less controversial concept involved in the trade-off, for it is a lot 

more intuitive to explicate and operationalize than interpretability. As a starting point, it is 

important to mention that in the context at hand, accuracy is commonly interpreted as predictive 

rather than in-sample accuracy, that is, as the accuracy that a machine learning model achieves on 

data that it did not have access to during the training process.3 A standard way of evaluating this 

type of accuracy is by keeping a certain amount of data separate from the training data and let the 

trained machine learning model compute predictions for it that can subsequently be compared to 

the true values. Along these lines, (predictive) accuracy is usually defined as the loss that a machine 

learning model incurs on average over some set of data for which it issues predictions, where the 

loss measures the distance between the model’s individual predictions and the corresponding true 

values (von Luxburg and Schölkopf, 2011). 

Not only when compared to accuracy, interpretability is a considerably more elusive 

concept: it is hard to explicate, even harder to operationalize, and overall, it has been pointed out 

repeatedly that “it is not clear what it amounts to” (Räz, 2024, p. 159; London, 2019, p. 19). 

Nevertheless, attempts have been made to spell out what interpretability might amount to, 

acknowledging that the concept is domain-specific and very likely does not allow for an all-purpose 

definition (Räz, 2024; Rudin, 2019). For instance, Lipton (2018) distinguishes two broad meanings 

of the concept: a transparency notion of interpretability on the one hand and post-hoc 

interpretability on the other. According to the first meaning, interpretability concerns the extent to 

which the opaque functionality of machine learning models can be made transparent. Thus 

understood, interpretability provides insight into the mechanisms underlying machine learning 

models and sheds light on how they work. According to the second meaning, interpretability 

concerns the rationalization of model predictions ‘after the fact’, that is, after the model issued 

them. Thus understood, interpretability does not necessarily illuminate the precise functionality of 

machine learning models yet might nevertheless convey reasons for why a certain prediction was 

reached.4 

While the post-hoc meaning of interpretability constitutes the rationale guiding research in 

the field of explainable AI, it is not the predominant view when it comes to defining the concept 

as such. Instead, there seems to be an emerging consensus that interpretability is related to the 

properties of machine learning models themselves.5 Beginning with Rudin (2019) who argues that 

“an interpretable machine learning model is constrained in model form so that it is either useful to 

someone, or obeys structural knowledge of the domain” (p. 1), authors carved out a variety of 

properties that are deemed necessary for a model to be interpretable. For instance, Räz (2024) 

distinguishes two paradigms of interpretability with one concerning linear, and one concerning 

tree-based models. While this reasoning confirms once more that interpretability is not a 

monolithic concept, he carefully lists those properties that are needed in each of the paradigms 

such that a model is interpretable. In the case of linear models, this boils down to the particular 

form of the predictor function, which is simple and, thus, easy to grasp and work with for humans. 

 
3 The concept of predictive accuracy is thus closely related to what is discussed as the test risk in the technical literature, 
whereas in-sample accuracy corresponds to the empirical risk (von Luxburg and Schölkopf, 2011). 
4 A very different explication of the concept is due to Erasmus et al. (2021). On their account, interpretability is closely 
related to understandability and concerns a relation between explanations: through a process of interpretation, 
individuals can turn complicated explanations into ones that are more understandable. 
5 For instance, see Babic et al. (2021). 
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In the case of tree-based models, by contrast, interpretability does not hinge on the form of the 

predictor function, but rather on the partition of the input space in a geometrically simple way. 

The last formulations already indicate how cashing out interpretability by appeal to specific 

properties of a machine learning model also connects the concept to considerations of simplicity. 

Briefly put, simpler models seem to be more interpretable. This is an interesting connection since 

just as interpretability, simplicity is known to be an epistemic desideratum that is in conflict with 

accuracy when selecting machine learning or, generally speaking, statistical models. Indeed, within 

the literature on statistical model selection, there is a decade-long debate concerning the trade-off 

between simplicity and accuracy (Glymour, 1980; Forster and Sober, 1994; Romeijn, 2017; Bonk, 

2023). Independently of how simplicity is explicated, this trade-off centers around the impossibility 

of choosing a highly simplistic class of models and achieving high accuracy at the same time – 

either one has to sacrifice a certain degree of simplicity and fix a more complex class of models to 

achieve higher accuracy, or one has to sacrifice a certain degree of accuracy to end up with a simpler 

model. From a philosophical perspective, the debate about this trade-off is thorny since both 

simplicity and accuracy are typically considered to be methodological norms, that is, normative 

concepts that ought to be followed in the process of model selection and that are therefore in need 

of justification. However, while it is straightforward to justify accuracy as a methodological norm 

when the overarching goal consists in making accurate predictions, things become more difficult 

when it comes to justifying why one ought to choose simple models (Forster, 2002; Sterkenburg, 

2025). 

Exploring the details of this debate is beyond the scope of this article, yet the intimate 

connection between simplicity and interpretability and their shared incompatibility with accuracy 

highlight an interesting aspect about the two trade-offs: Whereas the justification of simplicity 

proves famously difficult, the justification of interpretability is in many cases even taken for granted 

without further mentioning, because it is deemed to be so obvious. Having access to more 

information about a machine learning model’s inner workings, being able to manipulate it and 

analyze the consequences, or scrutinize the model’s components seems prima facie beneficial after 

all (Lipton, 2018, p. 12). The intricate part about the trade-off between accuracy and interpretability, 

then, is not the justification of why the two concepts should be considered desirable in the first 

place. Instead, it is the fact that despite concerning two epistemic concepts, every way of settling 

the trade-off will lead to ethical ramifications. On the one hand, choosing a more interpretable 

class of models will lead to less accurate predictions (pace Rudin, 2019; Rudin et al., 2024). In a 

high-stakes setting like healthcare, this is a consequential choice, for it might lead to wrong or 

delayed diagnoses and, ultimately, treatment. On the other hand, choosing a less interpretable class 

of models to maximize accuracy might prevent human oversight and potentially violate existing 

legislation. 

Consequently, it seems reasonable to assume that, in line with the argument from inductive 

risk, settling the trade-off requires value judgments, most importantly about how much accuracy 

or interpretability one is willing to sacrifice given the ethical implications of this choice. However, 

as we will point out in the next section, there are other ways of approaching the trade-off that 

sidestep such considerations and stay entirely in the epistemic realm. 

Yet before moving on, note that while the accuracy versus interpretability trade-off is often 

taken for granted by philosophers and computer scientists (Huysmans et al., 2006; Dziugaite et al., 

2020; London, 2019; Biddle, 2020), we are not aware of any actual proof that the very trade-off 

indeed exists. This is in contrast to related trade-offs like the one between certain statistical 

measures of algorithmic fairness. For instance, the trade-off concerning the incompatibility of 

equalized odds and predictive parity to determine the fairness of machine learning models has been 

formally proven on the grounds of an impossibility theorem (Kleinberg et al., 2016). Likewise, 
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Beigang’s (2023) strategy to challenge the supposed incompatibility of said fairness notions 

borrows from Carnapian explication in that the respective fairness notions are re-engineered so 

that they are claimed to retain their intuitive appeal, whereby their compatibility is again proven 

mathematically. 

By contrast, there are conceptual stumbling blocks to coming up with a proof for an 

accuracy versus interpretability trade-off. First, we are dealing with the combination of a narrowly 

defined (accuracy) and vague or at least context-dependent (interpretability) concept. Second, while 

accuracy can be considered to be an intrinsic epistemic value in that accurate predictions provide 

direct support for the acquisition of true beliefs, interpretability is an extrinsic, instrumental 

epistemic value: it enables model control, which, in turn, is conducive to the achievement of 

different epistemic ends, like justifying the model output, detecting biases, or reconciling the model 

output with human reasoning (Krishnan, 2020). We turn to this in detail in the next section and 

will, despite the lack of formal proof, stipulate for the time being that there exists a trade-off 

between accuracy and interpretability. 

4. Resolving the accuracy-interpretability trade-off 

The previous sections chartered the conceptual terrain: We laid down basic assumptions in the 

values in science literature, provided a definition of trade-offs in machine learning, and investigated 

the structure of the accuracy-interpretability trade-off. We can now use these conceptual tools to 

resolve the trade-off. Our strategy will be to stake out the logical space by analyzing a range of 

machine learning-based applications for the purposes of social prediction, medical diagnosis, or 

scientific discovery. It is important here that we also consider different model architectures. Based 

on this analysis, we will float the claim that if the domain and the task at hand are well-specified, 

there are two (mutually exclusive) ways out of the trade-off. Each of them targets one of the 

conditions establishing a trade-off introduced above: On the one hand, there are cases in which it 

is possible to make modeling choices so that the epistemic ends of accuracy and interpretability 

can be satisfied simultaneously, thereby circumventing condition (T1). On the other hand, there 

are cases in which one epistemic end clearly trumps the other, thereby circumventing condition 

(T2). In both scenarios, the context governing the trade-off between accuracy and interpretability 

are altered such that it is transformed into a methodological choice that either does no longer need 

to take into account the incompatibility of the epistemic ends in question or is no longer a hard 

choice in the sense of Chang (2017). 

4.1 No way out: Eliminative strategies 

Before outlining the two possible ways out of the accuracy-interpretability trade-off in greater 

detail, note that they differ considerably from what is commonly described as eliminative strategies 

in this context. These strategies explain away the components of the trade-off, such that there is 

nothing to resolve in the first place, simply because the trade-off does not exist – or so they argue. 

Call the first such strategy pragmatic eliminativism. It is driven by empirical studies, most 

pertinent in human-computer interaction, that cast doubt on whether the purported epistemic 

benefits of interpretability translate into real-world settings (Poursabzi-Sangdeh et al., 2021; Bell et 

al., 2022; Kaur et al., 2024). In broad strokes, the methodology of these studies revolves around 

assigning research participants a cognitive task in which they are assisted by a statistical model. One 

group receives a simple model that is, say, linear and uses few variables, whereas the other group 

receives a complex black box model. It is then compared to what extent research participants are 

able to understand the model predictions, act upon the model predictions, or detect glaring errors 

in the model.  
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The results are brittle: For example, Poursabzi-Sangdeh et al. (2021) found that while 

research participants were able to better follow the model’s predictions, this did not culminate in 

better decision-making when compared to the control group. Likewise, they were unable to correct 

for mistakes in the model. Kaur et al. (2024) found that research participants using interpretable 

models even became overconfident in the model’s predictions, despite the output obviously being 

incorrect. If the findings of these studies are taken at face value, there is little point in trading off 

accuracy for interpretability – since the latter offers little epistemic value and, thus, ceases to be an 

epistemic end one should rationally strive for. 

However, we plea for caution, as it is unclear in what way the design of the studies permit 

conclusions to be drawn for real world scenarios: The research participants are typically no experts 

and instead recruited via Mechanical Turk or from a student pool, the studies are either conducted 

online or in laboratory settings, and there are no proper incentives for research participants (Bell 

et al., 2022). More fundamentally, it is commonly hypothesized that the lack of instrumental 

epistemic value of interpretable models is owed to research participants facing information 

overflow. Yet, novelty effects are a possible confounder here, since the participants had no prior 

experience in using the model. As novelty effects wear off over time, it must be controlled in 

longitudinal studies if the problem of information overflow persists. That said, should we ever 

reach a point where several meta-analyses of externally valid studies show that interpretability has 

no instrumental epistemic value, then this would undermine any talk about an accuracy versus 

interpretability trade-off. 

Consider a second strategy, which we call conceptual eliminativism. Its core idea is to critically 

analyze the concept of interpretability, leading to the conclusion that it is a vague and context-

dependent notion. Based on this conclusion, it is often argued that one cannot meaningfully speak 

of an accuracy-interpretability trade-off before the concepts involved are clearly explicated or 

replaced with a set of desiderata and model properties that lend themselves more easily to 

operationalization (Krishnan, 2020; Lipton, 2018). In that sense, the trade-off is eliminated already 

on a conceptual level.  

Leaving aside eliminative strategies that deny the existence of the accuracy-interpretability 

trade-off by explaining away its components, we will continue to stipulate that the trade-off indeed 

exists. However, as we briefly sketched above and will now argue in greater detail, there are at least 

two ways to proceed from this deliberately conservative starting point, even without any recourse 

to moral values. 

4.2 A first way out: Achieving both desiderata simultaneously 

The first way to proceed from acknowledging the existence of an accuracy-interpretability trade-

off is based on the view championed by Rudin (2019) that one should always opt for what she calls 

inherently interpretable models. These are machine learning models relying on mathematical 

functions that have an intuitive, for instance, linear shape, incorporate domain-knowledge relevant 

to the particular application, include only a small number of meaningful features and are, thus, 

adequate means for achieving the epistemic end of interpretability. While this relation between 

certain model properties and interpretability may come as rather unsurprising, the second 

component of Rudin’s approach is less obvious: Employing inherently interpretable models instead 

of complex black box models does not necessarily lead to a loss in accuracy as assumed by the 

accuracy-interpretability trade-off. Instead, “there is often no significant difference in performance 

between more complex classifiers […] and much simpler classifiers” (Rudin, 2019, p. 207). More 

recently, this point has been emphasized and formally investigated by Semenova et al. (2022) and 

Rudin et al. (2024). The bottom line of their analyses is that, indeed, there is a possibility of finding 
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simple-yet-accurate models in the sense that “for many problems, simple models can perform as 

well as much more complex models” (Rudin et al., 2024, p. 3).6 

This immediately raises the question why one should care about the accuracy-

interpretability trade-off if it is possible to achieve both epistemic ends at the same time: Doesn’t 

the approach just outlined simply amount to another, third eliminative strategy that denies the 

existence of the trade-off altogether? Not quite. Upon closer inspection it becomes evident that 

the approach of achieving state-of-the-art predictive accuracy with inherently interpretable models 

is confined to specific settings. Indeed, note how in the quote above, Rudin et al. (2024) add the 

qualification ‘for many problems’ to their claim that interpretable and highly complex models can 

be on par with respect to their predictive performance. They even specify that these should be 

problems involving “tabular data” (p. 1) or, put differently, problems in which “the data are 

structured, with a good representation in terms of naturally meaningful features” (Rudin, 2019, p. 

207). 

As an illustration, Rudin (2019) uses a case study concerned with social prediction, namely, 

the widely discussed example of COMPAS (Correctional Offender Management Profiling for 

Alternative Sanctions). This is a complex proprietary machine learning model that is employed in 

the US justice system for predicting the risk of recidivism, that is, the probability that a defendant 

gets re-arrested after being released.7 Pursuing the strategy of replacing complex black-box models 

with inherently interpretable ones, Rudin (2019, p. 209) proposes a simplistic model that is based 

on three decision rules and only involves ‘age’ as well as ‘number of past crimes’ as input features. 

Subsequently, she points out that this model “is equally accurate for recidivism prediction” (p. 209) 

as the original COMPAS model and, thus, achieves state-of-the-art accuracy as well as 

interpretability at the same time. Taking the methodological reasoning outlined above at face value, 

the reasons for this outcome should be obvious: The task of recidivism prediction gives rise to a 

setting in which, indeed, data are structured and have a good representation in terms of the two 

naturally meaningful features ‘age’ and ‘number of past crimes’. Consequently, although accuracy 

and interpretability generally trade off against each other, the overall setup of this particular 

application, its epistemic frame, is such that both desiderata can be achieved at the same time. 

Overall, then, the approach of using inherently interpretable models does not outright deny 

the existence of the accuracy-interpretability trade-off like the eliminative strategies outlined above. 

Instead, it generally acknowledges the existence of the trade-off and, for precisely this reason, 

emphasizes the necessity of running machine learning tasks in conditions that allow for accuracy 

and interpretability to be achieved simultaneously. This implies that the epistemic frame in which 

machine learning algorithms operate can be designed so as to circumvent condition (T1), thereby 

establishing one way of resolving the accuracy-interpretability trade-off. 

At the same time, however, the exact conditions needed for this to work are a clear 

shortcoming of the approach. After all, it is well known that the benefits of using machine learning 

are largest in applications where the data is likely to be unstructured and features are not 

immediately meaningful. Thus, to resolve the accuracy-interpretability trade-off at scale, there has 

to be another way out of it that also works for the latter applications. Fortunately, there is one, as 

we shall argue next. 

4.3 A second way out: Clearly preferring one desideratum to the other 

 
6 Note how the quotes in this paragraph illustrate the similarity between interpretability and simplicity discussed in 
Section 3. 
7 For details on COMPAS and its methodological and ethical ramifications, see Angwin et al. (2016), Larson et al. 
(2016) or Brennan et al. (2009). 
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So far, we have considered applications in which interpretable models can play to their strengths 

such that the accuracy-interpretability trade-off can be successfully mitigated by achieving both 

desiderata simultaneously. Yet there are more challenging edge cases. 

One such case is the use of machine learning models for scientific discovery. AlphaFold 

and its iterations, showing remarkable success in the prediction of protein structures, represent the 

pinnacle here (Jumper et al., 2021; Abramson et al., 2024). And indeed, it seems obvious to point 

out that there are good reasons why, especially in later versions of the system, researchers relied on 

sophisticated transformer model architectures, as opposed to, say, an inherently interpretable 

decision-tree. Scientific discovery is also an area where the costs of the accuracy-interpretability 

trade-off become glaring, for it impedes the achievement of two fundamental goals, that is, 

prediction and understanding – the latter of which relates to the ability to explain the mechanisms 

that underlie phenomena such as protein folding.8  

Even still, different strategies are available for resolving the trade-off in question. For 

instance, note that one natural interpretation of AlphaFold is that it is a throughout instrumentalist 

project: The goal is to predict increasingly complex protein structures as accurately as possible. 

These predictions can be deemed to be hypotheses about existing protein structures which then 

need to be further validated by means of experimental structure determination (Terwilliger et al., 

2024).9 Since we are not even close to understanding the mechanisms underlying protein folding, 

the goal of prediction trumps the goal of understanding for the time being. There is thus an 

epistemically clearly preferable solution in that one should select the model that promises the best 

predictive performance. This violates condition (T2) because, in this setting, deciding between 

accuracy and interpretability does no longer constitute a hard choice – which implies that there is 

no longer a genuine trade-off between both desiderata. Consequently, similar to the strategy above, 

the epistemic frame in which the machine learning model operates is set up such that there is a way 

out of the accuracy-interpretability trade-off, although here, condition (T2) rather than (T1) is 

targeted. 

4.4 Diachronic strategies 

In addition to the above, diachronic strategies, focusing either on condition (T1) or (T2), might as 

well help resolve the accuracy-interpretability trade-off in the context of scientific discovery. Note 

that, initially, it is typically complex and opaque models that pave the way for novel scientific 

breakthroughs, yet that we learn to understand over time which parts contribute to the outcome 

of interest in a meaningful way. This allows to develop simpler models that are more interpretable 

but roughly maintain the same level of predictive accuracy and, therefore, undermine condition 

(T1). Methodologically, various ‘knowledge distillation’ techniques (Hinton, 2015) form the basis 

here. We are aware that this approach has not yet been tested in practice on AlphaFold models, 

and that, in all likelihood, the translational process will prove to be intricate. Yet, at least in 

principle, this approach provides tools for resolving the accuracy-interpretability trade-off in 

scientific discovery.  

Such a diachronic strategy for resolving the accuracy-interpretability trade-off naturally 

leads to another edge case, which is image-based diagnostics. Obviously, there are good reasons 

why both high predictive accuracy and interpretability are desirable in this case: On the one hand, 

incorrect diagnoses by the model can result in negative downstream effects for patients, which is 

why we should not sacrifice accuracy. On the other hand, it is crucial that physicians know when 

to trust and when to abstain from the model predictions (again, to avoid incorrect diagnoses). 

Interpretability therefore can contribute to aligning the reasoning of machine learning models and 

 
8 Our notion of scientific understanding is loosely based on Khalifa (2013). 
9 But see Zakharova (2024) for an opposing view. 
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physicians (Krishnan, 2020; Grote, 2023). Even still, just like for scientific discovery, it is typically 

unconstrained and ultimately opaque models that show the best predictive performance – at least 

under training conditions. Nevertheless, here too, we have to distinguish between the process of 

discovery and implementation. The models that perform best in benchmark competitions are not 

necessarily best suited for deployment in real-world clinical environments.  

 

 

4.5 Hybrid strategies 

 

Returning to the accuracy-interpretability trade-off, another strategy targeting (T1) is to adopt a 

hybrid approach in which interpretability is enabled by incorporating domain knowledge into a 

regular deep neural network. Chen et al. (2019) introduce the idea of a prototypical part network, 

where the model learns which prototypical parts are meaningful latent representations of an image. 

In addition, the model provides an activation map that visualizes the areas that the model uses to 

compute predictions and a confidence score that provides information on how (dis)similar the 

input image is to the learnt prototype. This approach has been applied by Barnett et al. (2021) for 

the classification of mass lesions in mammographic images. While the model’s accuracy comes 

close to the state of the art10, the benefits with respect to interpretability are two-fold: it constrains 

the reasoning style of the model in a way that aligns with those of physicians, while also making 

the reasoning process intelligible to them.11 

Importantly, while hybrid strategies12 allow for resolving the accuracy-interpretability trade-

off on purely epistemic grounds, it has to be pointed out that they rely on a subtle semantic shift 

concerning the notion of interpretability. As the models of choice are deep neural networks, we 

give up on the idea that interpretability is intimately linked to simplicity or linearity (Räz, 2024), but 

the built-in domain knowledge becomes the distinctive factor instead. 

In sum, then, one can distinguish between two broad strategies that acknowledge the 

existence of the accuracy-interpretability trade-off and propose a way out of it. Both are based on 

the idea of purposefully designing the epistemic frame in which a machine learning model operates 

to undermine the conditions establishing the trade-off. The first strategy is targeting condition (T1). 

It consists in providing structured data and meaningful features or specific domain-knowledge that 

allow interpretable models to achieve state-of-the-art predictive performance. The second strategy 

is targeting condition (T2). It consists in deploying machine learning models in settings where 

accuracy clearly trumps interpretability or vice versa. In the following section, we will discuss 

implications of this state of affairs with a view on the relationship between ethics and epistemology 

in machine learning. 

5. Revisiting the relationship between ethics and epistemology in machine learning 

 
10 Note, however, that any statements considering state-of-the-art performance in machine learning are inevitably 
contingent on the time of testing and the respective benchmark task.  
11 Improving the alignment between machine and human judgment also opens the possibility of a socio-technical 
approach to overcoming the accuracy-interpretability trade-off. The basic idea here is that even if an interpretable 
machine learning model were to perform below state-of-the-art, interpretability results in further epistemic advantages, 
so that as a tandem, the accuracy of a human expert plus the interpretable machine learning model surpasses the 
accuracy of a more powerful but opaque model. See Fazelpour (2024) for a general discussion about how a socio-
technical approach can be used to resolve various trade-offs that play a prominent role in the ethics of machine learning 
discourse. In contrast to this, however, our paper focusses on model-centric strategies for how to cope with trade-
offs. Moreover, for reasons discussed in Section 4.1, we have some cautious skepticism about whether the feasibility 
of this approach is sufficiently supported by empirical studies.  
12 See also Ilanchezian et al. (2021) for a similar-minded approach, revolving around BagNet models. 
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Progress in philosophy is arguably achieved through an increased understanding of the network of 

dependence relations between phenomena (Dellsén et al., 2024). Our goal in this paper has been 

to elucidate the dependence relations between moral and epistemic values in machine learning. 

Looking at the debate through a historical lens – and although, admittedly, the debate is barely 

more than five years old – it was initially the importance of non-epistemic values that has been 

stressed in the relevant literature (Biddle, 2022; Johnson, 2023). Lagging behind, by comparison, 

has been the understanding of what issues exactly fall within the scope of epistemology. But slowly, 

the tides are starting to turn. 

For example, Russo et al. (2023) paint a nuanced picture concerning the way of how moral 

values are entangled with epistemic values in machine learning. Ultimately, they argue for a holistic 

process of model development and validation, in which a mere quantitative assessment is 

supplemented by a reflective praxis concerning the moral values that must be embedded in a given 

model to ensure its trustworthiness. Moreover, Ratti and Russo (2024) emphasize the 

bidirectionality of epistemic and moral values concerning the development and deployment of 

machine learning models: While reflections on epistemic risks can guide the design and assessment 

of machine learning models, their deployment can also disrupt the moral norms in a domain of 

interest, such as healthcare or criminal justice. Both papers take a macro-perspective on the 

entanglement between moral and epistemic values in machine learning and can be deemed to be 

conceptual expansions of existing work from the ‘values in science’ literature and Science and 

Technology Studies.  

While we agree with these accounts for the most part, we see our paper as part of an 

emerging literature that, at a micro-level, argues for methodological prioritanism of epistemology over 

ethics. As we pointed out at length above, it turns out that some issues like the accuracy-

interpretability trade-off where epistemic and moral values seem to be intertwined can be best 

tackled by making appropriate epistemic modeling choices. Aside from the aforementioned paper 

by Beigang (2023) that seeks to resolve the trade-off between different fairness notions through a 

combination of conceptual re-engineering and causal inference techniques, Sterkenburg (2024) 

argues that it does not follow from the argument from inductive risk that learning algorithms (but 

not the trained model), referring to the inferential process mapping the input data to the output, 

must be necessarily laden with moral values. This lays the ground for a more fine-grained charting 

of the interactions between moral and epistemic values. Grote (2024), again, develops a revisionary 

account that reframes many of the key issues in the ethical debate about machine learning in 

healthcare as epistemic problems. To illustrate, rather than worrying about how the involvement 

of machine learning models may diffuse the attribution of responsibility in the case of diagnostic 

errors, the claim is that the best mitigation strategy involves installing appropriate epistemic 

guardrails so that the epistemic authority of clinicians is being preserved. Among others, this 

requires establishing epistemic norms for how to aggregate machine and human judgment, or how 

to resolve disagreements in light of information asymmetries. Finally, Zezulka and Genin (2024) 

argue that when algorithmic fairness questions are reconceptualized as policy problems that seek 

to anticipate the impact of the model output on the allocation of social goods, formal fairness 

notions all have undesirable consequences. Drawing on the causal inference toolkit, they highlight 

that a clearly preferable alternative instead is to model the counterfactual treatment outcomes of a 

given policy.  

Although the account provided in this paper falls squarely into the abovementioned line of 

research, we think that our contribution goes beyond adding just another piece of mosaic to the 

overall picture. Most notably, we provide a general methodology for dealing with trade-offs in 

machine learning, which, in its barebones, consists of the following steps: (i) Explicate the 

desiderata involved in the trade-off and specify its underlying structure; (ii) specify the epistemic 
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and moral values related to the conflicting desiderata; (iii) map out a wide range of deployment 

scenarios; and (iv) consider what modelling choices allow for resolving/relaxing the trade-off for 

different deployment scenarios. Even if it turns out that in some cases, there may be no epistemic 

solution available, this approach leads to a better understanding of when exactly we have to resort 

to moral values to cope with trade-offs. 

With that in mind, our account also has limitations. One is that our analysis of the accuracy-

interpretability trade-off has been confined to instances of supervised learning. Hence, we did not 

consider how this trade-off arises and can be resolved for the latest generation of machine learning 

models, called ‘foundation models’. These are trained on broad data at a massive scale via self-

supervised learning, resulting in models that are able to perform various downstream tasks – most 

pertinently natural language processing. The main reason for not addressing the accuracy-

interpretability trade-off concerning foundation models is that even accuracy, the desideratum 

which we have basically taken for granted in this paper is in shambles: Since foundation models 

are commonly trained on the entire internet, whilst lacking a clear data source, it is unclear how to 

discern generalization from memorization capacities, or how to determine the boundary conditions 

for a model’s predictive accuracy (Grote et al., 2024). More research on the theoretical 

underpinnings of foundation models is thus necessary before the accuracy-interpretability trade-

off arising in this context can be tackled in a meaningful way. 

6. Conclusion 

This paper made an attempt to clarify the relation between ethics and epistemology in 

machine learning by closely analyzing one of the field’s central trade-offs, the one between accuracy 

and interpretability. In contrast to the widely shared view inspired by the argument from inductive 

risk that trade-offs in machine learning can only be resolved by appeal to non-epistemic values, our 

analysis reveals that this need not always be the case. More precisely, we carved out two general 

strategies for resolving the accuracy-interpretability trade-off through carefully designing the 

epistemic frame of a given machine learning application and, thus, by purely epistemic means. The 

first strategy consists in providing structured data and meaningful features or specific domain-

knowledge that allow interpretable models to achieve state-of-the-art accuracy, thus making both 

desiderata achievable simultaneously. The second strategy, in turn, consists in deploying machine 

learning models in settings where accuracy clearly trumps interpretability or vice versa, thus making 

one desideratum clearly preferable to the other. 

In sum, the present paper suggests that, at least under specific conditions, epistemic 

considerations are all that is needed to settle trade-offs in machine learning. This result ties in well 

with recent literature that points into a similar direction by (explicitly or implicitly) arguing for a 

methodological priority of epistemology over ethics in machine learning (Beigang, 2023; Grote, 

2024). Nevertheless, while contributing to this strand of research, the present paper also highlights 

several gaps, such as the questions of whether and to what extent our results could be generalized 

to foundation models, other trade-offs, or even other issues in machine learning altogether that 

also include ethical and epistemological considerations. Answering these will be the subject of 

future work. 
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