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Abstract: Despite significant advancements in XAI, scholars note a persistent lack of solid 

conceptual foundations and integration with broader scientific discourse on explanation. In response, 

emerging XAI research draws on explanatory strategies from various sciences and philosophy of 

science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the 

functional organization of deep learning systems, situating recent advancements in AI explainability 

within a broader philosophical context. According to the mechanistic approach, the explanation of 

opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural 

networks, this means discerning functionally relevant components—such as neurons, layers, 

circuits, or activation patterns—and understanding their roles through decomposition, localization, 

and recomposition. Proof-of-principle case studies from image recognition and language modeling 

align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. 

This research suggests that a systematic approach to studying model organization can reveal 

elements that simpler (or “more modest”) explainability techniques might miss, fostering more 

thoroughly explainable AI. The paper concludes with a discussion on the epistemic relevance of the 

mechanistic approach positioned in the context of selected philosophical debates on XAI. 

 

1 Introduction 

In recent years, deep learning has emerged as the dominant approach in artificial intelligence 

(AI). Its algorithms are characterized by "black box" functions that are too complex to fully 

understand, making it difficult to determine how specific computations based on certain inputs 

lead to particular predictions. To restore trust in automated decision-making, researchers focus 

on the explainable AI (XAI) research program, which aims to achieve transparency, 

interpretability, and explainability to validate the decision-making processes of opaque AI 

systems, making model behavior understandable to stakeholders with various epistemic needs.1 

————————— 

1 Interpretability is often defined as “the degree to which an observer can understand the cause of a decision” (Miller, 2019, p. 8). Explanation, 

therefore, is one mode through which an observer may obtain such understanding. In the machine learning literature, the terms “interpretability” 
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Despite significant technical advancements in XAI (e.g., Montavon et al., 2018; 

Linardatos et al., 2021), scholars highlight various shortcomings in its conceptual foundations 

and a lack of integration with the broader scientific discourse on explanation. While many 

current XAI methods excel in producing localized explanations, they often fall short of 

providing a comprehensive understanding of the complex mechanisms governing AI systems, 

which is crucial in high-stakes decision-making contexts (Mittelstadt et al., 2019). Furthermore, 

the dominant technology-centered approach in AI explanations has largely ignored substantial 

theoretical and empirical contributions from fields like philosophy, psychology, and cognitive 

sciences, leaving a significant research area underexplored (Miller, 2019). In response, an 

emerging strand of fundamental XAI research is drawing on coordinated explanatory strategies 

from various scientific disciplines and the philosophy of science literature to address these 

conceptual gaps (e.g., Miller et al., 2017; Lipton, 2018; Mittelstadt et al., 2019; Páez, 2019; 

Zednik, 2019; Zerilli et al., 2019; Erasmus et al., 2021; Watson & Floridi, 2020; Beisbart & 

Räz, 2022). 

This paper outlines a mechanistic strategy for explaining the functional organization of 

deep learning systems, situating recent advancements in XAI methods—especially the 

mechanistic interpretability movement—within a broader philosophical context. To this end, I 

draw upon the tradition of the new mechanism in the philosophy of science while leveraging 

examples derived from XAI engineering practices. 

The structure of the paper is as follows. Section 2 introduces the concept of a mechanism 

based on a minimal neomechanistic theory of explanation and argues for its applicability to 

XAI. Subsequently, Section 3 presents a mechanistic interpretation of deep learning, explaining 

the operations of deep neural networks by identifying decision-making mechanisms through 

discovery heuristics of decomposition, localization, and recomposition. This section also uses 

proof-of-principle case studies from image recognition and language modeling to align these 

theoretical approaches with the latest research from leading AI labs such as OpenAI and 

Anthropic. Section 4 considers a potential objection to the philosophical characterization of 

deep neural networks as sui generis mechanisms. Finally, Section 5 concludes with a brief 

discussion of the epistemic relevance of the mechanistic approach in the context of XAI. 

2 Neomechanistic Theory of Explanation 

————————— 

and “explainability” are often used interchangeably (e.g., Molnar, 2022, §3)—a convention I will follow for now until I introduce a specific 

understanding of interpretable and comprehensible systems from Doran et al. (2017) later in the paper. However, it should be noted that in 

some contexts, researchers differentiate these two notions (e.g., Dorsch & Moll, Forthcoming). 
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In scientific discourse, one prominent approach is characterized by the neomechanistic theory 

of explanation, which emphasizes the logic of “explaining why by explaining how” (Bechtel & 

Abrahamsen, 2005, p. 422). According to the new mechanists, explaining why something 

happens often involves identifying the underlying mechanisms that give rise to observed 

behavior. Mechanisms are identified by the phenomena they produce (Illari & Williamson, 

2012), their functional roles (Machamer, Darden, & Craver, 2000; hereinafter MDC), and by 

their operating “parts” and “interactions.” (Bechtel & Abrahamsen, 2005). For example, 

Glennan (1996, p. 52) defines a mechanism as “a complex system which produces that behavior 

by the interaction of a number of parts according to direct causal laws.” According to MDC 

(2000, p. 3), mechanisms are identified and individuated by the “activities” and “entities” that 

constitute them, as well as their functional roles, and setup and termination conditions.  

Entities are components or parts defined by their properties—such as location, structure, 

and orientation— that engage in activities based on specific characteristics. Activities are 

temporal producers of change, characterized by aspects such as spatiotemporal location, rate, 

duration, types of entities involved, and other operational properties. The roles that entities play 

through their activities are considered their functions within the mechanism. The specific 

organization of these elements determines how collectively they produce the observed 

phenomenon (MDC, 2000). 

Mechanistic explanation begins by characterizing the phenomenon under study and then 

identifying the mechanisms responsible for it. According to Bechtel and Abrahamsen (2005), 

to explain a mechanism, scientists must pinpoint its components, understand the functions these 

parts perform, and determine their organization to produce the phenomenon. This process relies 

on scientific discovery methods, incorporating heuristic strategies such as decomposition and 

localization (Bechtel & Richardson, 2010). 

Decomposition involves breaking the mechanism into its structural or functional 

components. Structural decomposition focuses on the physical aspects of parts like size or 

shape, while functional decomposition looks at the parts' roles, causal powers, and overall 

contributions to the mechanism (Piccinini & Craver, 2011). Functional decomposition assumes 

that the system’s behavior results from its sub-functions. Structural decomposition further 

breaks down these functions into their physical components. This process starts with 

hypothetical component parts, refining the breakdown as more is learned about the system’s 

operations, with both types of decomposition eventually integrating to form a complete 

explanation. 
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Localization complements the decomposition process by mapping component operations 

onto their respective parts. While decomposition involves breaking down the mechanism into 

parts and operations, localization identifies activities from the task decomposition and links 

them to component behaviors or capabilities (Wright & Bechtel, 2007). Sometimes, physical 

components can be directly identified, but often their existence is inferred using functional tools 

without direct observation. Bechtel and Abrahamsen (2005) note that even inferred components 

are treated as essential parts of the mechanism. Localization involves a genuine commitment to 

the functions identified in the task decomposition and the use of appropriate methods to 

demonstrate that something within the system is performing each of these functions. 

Mechanistic explanations describe the relevant entities, their properties, and the activities 

that connect them, by demonstrating how actions at one stage influence those at successive 

stages. Glennan (2017) notes that mechanistic models can be depicted through diagrams 

accompanied by linguistic explanations. These diagrams typically illustrate spatial relations and 

structural features of the mechanism, with related activities depicted as labeled arrows (see 

Figure 2.1). Although the basic arrangement of a mechanism might be linear, it can also include 

more complex structures like forks, joins, cycles, and non-linear interactions. 

 

Fig. 2.1 A diagrammatic representation of a mechanism (reproduced from Craver, 2007). At the top is the 

phenomenon: some system S engaged in behavior ψ. Beneath it are the parts (the Xs) and their activities (the φs) 

organized together.  

As Figure 2.1 might suggest, mechanisms form nested, multilevel hierarchies, in which 

lower-level entities and activities serve as components for higher-level phenomena, effectively 

becoming mechanisms themselves. These hierarchies have a finite structure and do not 

decompose indefinitely; the lowest level of description is determined by practical 

considerations and stakeholder interests. Although all mechanisms are ultimately based on 

fundamental, non-causal physical laws, seeking explanations at this level is typically neither 
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practical nor beneficial. Instead, explanations tend to bottom out at components that are 

fundamental or unproblematic within a specific scientific discipline or explanatory practice 

(MDC, 2000). 

In the optional stage of mechanism discovery, as described by Bechtel and Abrahamsen 

(2013), scientists may recompose what they have learned about the functional parts into an 

explanatory model, such as a mathematical or computational model. The goal is to create a 

model from a catalog of entities likely to be causally relevant to a phenomenon based on their 

identified internal division of labor.  

The mechanistic explanatory strategy that emerges from this description resembles 

something like a causal narrative, in the sense that it outlines sequences of events involving 

entities interacting with each other, illustrating how their spatial and temporal arrangement 

produces or sustains the explanandum (Glennan, 2017). An important question at hand is: How 

might this framework be adapted to analyze and explain opaque AI systems? 

3 Mechanistic Interpretation of Deep Learning 

3.1 Mechanistic Structure of Deep Neural Networks 

The mechanistic explanatory strategy has been adopted across various scientific fields, being 

especially prevalent in neuroscience (Kostić & Halffman, 2023). Given the biological 

inspiration of deep neural networks (DNNs), along with their computational parallels and 

predictive capabilities akin to the brain's categorization processes (Schyns et al., 2022), it may 

be promising to apply mechanistic principles to AI systems using opaque deep learning 

algorithms. Indeed, Kästner and Crook (2024) argue that as AI systems grow in complexity, 

they should be analyzed similarly to biological organisms, emphasizing their functional 

organization. To this end, applying the mechanistic approach to DNNs could help us discover 

how these models work internally, illuminating not only how specific computations—given 

specific inputs—produce unique predictive patterns, but perhaps also explaining the models 

themselves in a holistic way. 

In the neomechanistic framework, explaining AI systems entails identifying the 

mechanisms behind their decision-making processes using discovery heuristics of 

decomposition, localization, and recomposition. The goal is to understand the properties driving 

behavior and how these are orchestrated through component interactions (see Figure 3.1). By 
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dissecting neural networks into comprehensible components, researchers can better grasp each 

part's function and structure, gaining insights into the network's overall behavior. 

 

Fig. 3.1 Schematic representation: internal structure of the mechanism of the deep learning model analyzed in the 

neomechanistic framework. 

The first step in this endeavor involves identifying the correct components for analysis—

the candidates for the AI system’s epistemically relevant elements (EREs) (Humphreys, 2009; 

Kästner & Crook, 2024). Neurons, while fundamental computational units of neural networks, 

often fall short as effective units for human interpretation. Despite performing straightforward 

arithmetic, individual neuron-like units viewed in isolation fail to clearly demonstrate how their 

functions contribute to the network's overall behavior. Consequently, researchers seek other 

network components as potential EREs that could offer more comprehensible units of 

analysis—robust patterns that sustain system behavior and are pertinent to explanatory 

functions (Kästner & Crook, 2024).  

In principle, this approach should be compatible with deep learning, as DNNs are built 

from causally or functionally relevant components. These include entities (medium-

independent vehicles) and activities (the manipulations these vehicles undergo) which are 

central to the computational mechanisms of deep learning. While various types of networks 

exist, they share common entities such as neurons, connections, filters, circuits, or features.2 

DNNs develop their functional organization through automated training processes. Although 

models are processed as multidimensional arrays of numbers with mathematical operations 

defined over vectors in programming languages such as Python, computer scientists interested 

————————— 

2 It might not be clear in what way network structures qualify as mechanistic entities. While this issue deserves a more detailed discussion, 
for the purpose of this paper, I will assume that neurons are entities in the sense that they are mathematical abstractions of certain components 

ultimately belonging to the underlying physical hardware. Similar reasoning applies to activities, which eventually bottom out at the level of 

physical phenomena. 
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in mechanistic interpretability—a particular approach to XAI focused on deciphering the 

internal workings of machine learning models—recognize that “neural network parameters are 

in some sense a binary computer program which runs on one of the exotic virtual machines we 

call a neural network architecture” (Olah, 2022). DNN components can be identified within 

such environments. During training, these entities engage in activities such as activation, back-

propagation, and error minimization, triggered by properties like incoming signals exceeding 

certain thresholds. This interaction fosters the development of specialized roles within the 

system, often unforeseen by programmers, contributing to the emergence of observed behavior 

and supporting the assumptions of mechanistic interpretability. 

An example of this “mechanistic compatibility” can be seen in deep convolutional neural 

networks (CNNs), primarily used in image recognition and computer vision, which somewhat 

mimic the organization of the animal visual cortex. During training, a CNN processes a two-

dimensional labeled image to generate weights that encode extracted data patterns. CNNs 

employ organized entities—such as neurons, larger neuronal circuits, convolutional kernels 

(filters), or various kinds of layers—along with activities like convolutions, ReLU and softmax 

activations, and pooling, orchestrating complex mechanisms of feature extraction and image 

classification (see Figure 3.2). 

 

Fig. 3.2 Architecture of a deep convolutional neural network (reproduced from Shahriar, 2023). 

The inference phase of image recognition begins with setup conditions that include 

initializing model parameters. An input image is then introduced and subjected to a series of 

transformations across multiple layers to extract and refine features. Intermediate activities of 

this process involve convolution, activation, and pooling. Convolutional kernels slide across 

the input signal, detecting features similar to biological neural networks' receptive fields and 

generating feature maps for subsequent layers. ReLU activations eliminate negative values, 
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activating only nodes that exceed a certain threshold. Pooling layers reduce data dimensionality 

by merging outputs from neuron clusters into single neurons, using hierarchical patterns to 

evolve simpler features into more complex ones. As processing continues, layers represent 

diverse image features such as edges, lines, and curves, with higher layers capturing more 

complex, “meaningful” and abstract shapes. The process culminates in fully connected layers 

in which the softmax function transforms raw outputs into class probability scores, marking the 

termination condition of the inference phase. This sequence, maintained under stable and 

consistent conditions, demonstrates the deterministic regularity characteristic of genuine 

mechanisms. 

In this setup, CNN mechanisms form multilevel hierarchies, in which lower-level entities 

and activities act as enabling components for higher-level phenomena, thus illustrating the 

mechanistic nature of their internal organization. For example, input convolution is crucial for 

feature mapping, which, when applied iteratively, integrates into the overarching mechanism 

of image classification in fully connected layers. 

3.2 Implementation of Mechanism Discovery Heuristics 

Having explored the mechanistic structure of DNNs, it's important to consider how we can 

systematically apply discovery heuristics of decomposition and localization to dissect and 

understand the roles of EREs within these networks. In XAI practice, these strategies can be 

implemented through established analytical techniques tailored to specific applications. In 

computer vision, for example, input heatmapping and feature visualization techniques can be 

used to generate saliency maps that highlight specific pixels or regions in an input image that 

are highly predictive of the output. Such visualizations can also clarify the operations performed 

by DNN components across layers, thus aiding the functional decomposition of the network. 

Concrete examples include activation maximization, regularized optimization, network 

inversion, deconvolutional neural networks, network dissection-based visualization, or layer-

wise relevance propagation (Yosinski et al., 2015; Qin et al., 2018; Montavon et al., 2018). 

These techniques allow researchers to observe how each network level transforms input into 

increasingly abstract and meaningful representations, which is crucial for dissecting complex 

mechanisms like face recognition into simpler components that recognize individual features 

such as ears, eyes, or noses. An example of hierarchical feature representations processed within 

a CNN is shown in Figure 3.3.  
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Fig. 3.3 Visualization of features on various layers of a CNN for input images of faces (reproduced from 

Karmakharm, 2018). 

While saliency methods may not provide complete mechanistic explanations by 

themselves, they are instrumental in the mechanistic decomposition of DNNs by identifying 

distributed structures beyond individual neurons as potential EREs of AI decision-making 

mechanisms. Recent advancements by leading AI organizations such as OpenAI, Anthropic, 

Google, Redwood Research, ARC, and Conjecture demonstrate a similar interest in such 

“mechanistic” understanding, particularly within the AI safety community (e.g., Olah et al., 

2017; Cammarata et al., 2021; Elhage et al., 2021; Chan et al., 2022; Christiano, 2022; Olsson 

et al., 2022; Bricken et al., 2023a; Cunningham et al., 2023; Conmy et al., 2023; Schwettmann 

et al., 2023). This trend is evident in the mechanistic interpretability movement, which aims to 

go beyond simple input-output analysis and examine the internal workings of AI models to 

enhance epistemic trust, aid in debugging, remove biases, and prevent models from “going 

rogue.” 

This approach is exemplified by the work of Cammarata et al. (2021) at OpenAI, who 

aim to reverse-engineer image classification neuron families known as curve detectors into 

understandable explanations and then implement the inferred algorithms into a new DNN from 

scratch. Their research particularly focuses on analyzing a curve detector circuit within the fifth 

convolutional layer of the InceptionV1 neural network. These circuits, which are sub-graphs 

within the network, are not predefined as distinct parts of the DNN's architecture but are 

integrated into the model’s learned structure, emerging as functional units that neurons self-

organize into during training. 

To understand the functional organization of these circuits (termed the “mechanics of 

curve detectors” by the authors), the team employs decomposition and localization strategies 

using decomposed feature visualization to create a grid that illustrates amplified weights from 

an upstream layer to a downstream neuron of interest. By iteratively applying this technique to 

each neuron, labeling them, and grouping them, they categorize the neurons in the first five 

convolutional layers of InceptionV1 into layer-wise “families” that form the curve detection 
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mechanisms. Upon identifying curve detectors, the researchers traced their connections to 

discern how upstream neurons affected their activities by visualizing connection weights. 

Extending this visualization back to the input layer provided a detailed view of the interactions 

within the circuit, enabling them to classify the circuit as a mechanistic ERE distinct from the 

surrounding network (cf. Kästner & Crook, 2024, p. 10). The team then developed a high-level 

“circuit schematic” that details the primary components of curve detection and their functional 

organization, forming a clear narrative: “Gabor filters evolve into proto-lines, which assemble 

into lines and early curves, ultimately forming curves” (Cammarata et al., 2021). 

Leveraging insights from the discovery process, the researchers recomposed a curve 

detection mechanism of InceptionV1 by manually configuring the weights of a blank DNN to 

replicate the identified neuron families and circuit interactions. They compared the behavior of 

the manually designed network with InceptionV1 using identical synthetic stimuli and analyzed 

responses with feature visualization and other XAI techniques. The experiments showed that 

the artificially recomposed curve detectors closely resembled those trained naturally. This 

evidence suggests that the functional decomposition of InceptionV1 was indeed successful and 

accurately reflects the mechanistic organization of curve detection circuits. 

Anthropic, known for developing Claude—a large language model that rivals OpenAI's 

ChatGPT—has employed decomposition and localization strategies to break down language 

models into interpretable, structurally distinct functional components. Bricken et al. (2023a; 

2023b), recognizing that individual neurons are not the most effective units for analysis, partly 

due to their polysemanticity, employ a sparse autoencoder—a type of weak dictionary learning 

algorithm—to identify better candidates for EREs in small transformer models. These units, 

termed “features,” represent distinct patterns within the model and are essentially linear 

combinations of neuron activations. 

In their study of a transformer language model, the researchers decomposed a layer with 

512 neurons into over 4,000 features by training sparse autoencoders on multilayer perceptron 

activations from 8 billion data points. Each feature captured a unique concept, such as DNA 

sequences, legal language, HTTP requests, Hebrew text, and nutrition statements. To evaluate 

the interpretability of these features—that is, the degree to which humans can understand 

them—they conducted an assessment with a blinded human evaluator (Figure 3.4), validating 

the practical utility and clarity of the decomposed features. 
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Fig. 3.4 Interpretability scores of the identified features (red) compared to the neurons (teal) (reproduced from 

Bricken et al., 2023b).  

The results showed that the features were significantly more interpretable than individual 

neurons, revealing functional properties that were not apparent when examining neurons alone. 

Moreover, the authors conducted “autointerpretability” tests, in which a language model 

generated concise descriptions of the small model's features. The evaluation of these 

descriptions was based on another model's ability to predict a feature's activations from its 

description. The features consistently received higher scores than the neurons, confirming their 

coherent and stable interpretation and their impact on model behavior. 

Decomposing the language model into features offers a targeted method for guiding 

models, in which the activation of specific features leads to predictable changes in behavior. 

Researchers also developed a “knob” to adjust the resolution at which the model is viewed and 

experimented with the number of features learned. They found that decomposing the model into 

a small set of features offers a coarse but clear view, while a larger set reveals more refined and 

subtle properties of the model. Additionally, these learned features have proven to be universal 

across a range of models, demonstrating the enhanced generalizability of this explanatory 

approach. 

Overall, evidence from case studies supports the idea that a coordinated, systematic 

research agenda focused on uncovering the mechanistic organization of DNNs can provide 

explanations of the way that systems operate at various levels of their structure. The pursuit of 

mechanistic explanations through functional decomposition can reveal previously unknown 

EREs in opaque AI systems, which might remain obscured with non-coordinated individual 

explainability methods, ultimately leading to more thoroughly explainable AI.  
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4 Are Deep Neural Networks Genuine Mechanisms? 

There may be several objections from orthodox mechanists regarding the characterization of 

DNNs as mechanisms, primarily questioning whether DNNs meet the criteria for genuine 

mechanisms as defined in neomechanistic literature. Despite possible skepticism, I argue that 

the discovery strategies proposed by neomechanistic philosophy—decomposition, localization, 

and recomposition—can help researchers at least partially open the deep learning black box. 

A key standard in the general account of mechanistic explanation is the demand for 

completeness as causal models, necessitating that all causally relevant parts and operations be 

explicitly detailed without gaps or placeholders (Craver, 2007). A fully adequate mechanistic 

explanation must provide structural details at all levels of the mechanism, including 

components and activities that contribute to concrete computations. This requirement conflicts 

with the abstractness and medium-independence typical for computational explanations 

(Haimovici, 2013; Coelho Mollo, 2018). Under such scrutiny, AI models like DNNs might not 

qualify as genuine mechanisms because they typically represent abstract, formal specifications 

of computation that lack detailed structural information. DNNs are usually simulated through 

matrix operations rather than being implemented on physical nodes (except in rare cases 

involving one-to-one mapping, such as on neuromorphic hardware, cf. e.g., Schuman et al., 

2022). To be fully mechanistically adequate, they would require additional specifications 

concerning physically instantiated computers: instantiation blueprints (Miłkowski, 2014). 

On the other hand, there are some compelling reasons to treat DNNs as if they were 

mechanisms. While this paper cannot fully explore the debate over the ontic status of AI models 

due to space constraints, I will briefly outline two primary arguments defending the idea that 

DNNs can be meaningfully interpreted through a mechanistic approach. 

First, DNNs maintain their mechanistic status through weak structural constraints, 

typical of functional explanations that require structural properties to realize a functional 

characterization (Piccinini, 2015). Piccinini and Craver (2011, p. 302) state, “The functional 

properties of black boxes are specified in terms of their inputs and outputs (plus the algorithm, 

perhaps), independently of their physical implementation.” DNNs exemplify this, as their 

inputs, outputs, and mapping algorithms can be defined without specific physical ties. However, 

the functional properties of DNNs impose certain constraints on the structural components 

regarding the degrees of freedom necessary for implementing an algorithm. This limits the 

functional analysis of an AI system to explaining how the algorithm, data, and network 

architecture determine the required degrees of freedom. If the system's functional components 
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are organized and can reliably differentiate between computational vehicles, the same 

computations can be implemented across various physical media—mechanical, 

electromechanical, electronic, or magnetic systems—without necessarily being affected by the 

specific properties of the physical medium. 

Therefore, deep learning models can be viewed as mathematically defined systems that 

describe concrete, physically instantiated systems to some degree of approximation (cf. 

Piccinini, 2015). These models' functional properties specify the necessary degrees of freedom 

that a concrete system requires to perform computations. As the models are not causally 

complete enough to be considered typical mechanisms, their functional analyses can be 

described as “mechanism sketches,” in which some structural aspects of a mechanistic 

explanation are intentionally omitted (Piccinini & Craver, 2011). This level of characterization 

remains relevant for XAI research, where low-level physical details are not always needed to 

determine the success or failure of algorithmic decision-making. An exception is when, for 

instance, the speed of information processing provided by the physical medium is crucial for 

avoiding miscomputation—for example when running a large language model on a smartphone 

or using an inadequate processing unit for image recognition in autonomous vehicles. However, 

case studies from OpenAI and Anthropic show that mechanistic decomposition of an AI system 

can focus on functional analysis without covering every aspect of computational phenomena in 

concrete processing systems. 

Secondly, deep learning models can be seen as teleofunctional mechanisms, or simply 

functional mechanisms, which are defined by having teleological functions: specific “purposes” 

or “ends.” Computing systems are generally designed with the teleological function of 

computing, which involves manipulating variables or specific values of variables according to 

rules sensitive to their properties (Piccinini, 2015; Coelho Mollo, 2018). In this context, deep 

learning systems perform digital computations by manipulating digits and strings of digits, 

which, although eventually translating to physical quantities—intervals of voltage values—are 

numerical vector representations of input data and internal states manipulated through matrix 

operations. 

DNNs operate with medium-independent vehicles, which are the functional components 

of a mechanism (its entities), and the manipulations that these vehicles undergo (activities), 

according to mappings from inputs to outputs determined by a transition function set by the 

learning algorithm. These systems consist of organized components, each with specific 

functions, embodying the teleofunctional nature of DNN computation. When properly 
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organized and functioning, the coordinated activities of these components define the 

capabilities of DNN-style computation, provided that physical instantiation details offer the 

necessary degrees of freedom and do not lead to miscomputations. Assessing deep learning 

mechanisms to ascertain whether they fulfill their intended teleological functions involves 

decomposing the model into its components to understand their contributions. This extends to 

computing systems defined purely mathematically, which stand to concrete ones in roughly the 

same relation that the triangles of geometry stand to concrete triangular objects: 

A similar notion of functional mechanism applies to computing systems that are defined purely 

mathematically, such as (unimplemented) Turing machines. Turing machines consist of a tape 

divided into squares and a processing device. The tape and processing device are explicitly defined 

as spatiotemporal components. They have functions (storing letters; moving along the tape; reading, 

erasing, and writing letters on the tape) and an organization (the processing device moves along the 

tape one square at a time, etc.). Finally, the organized activities of their components explain the 

computations they perform (Piccinini, 2015, pp. 119–120). 

Thus, decomposing functional mechanisms, even if the target system is defined mathematically, 

results in an elliptical mechanistic explanation of the system’s capacities.  

To summarize, the core concept of the mechanistic approach to deep learning is that 

despite possible skepticism regarding the ontic status of DNNs, we can still effectively utilize 

neomechanistic discovery strategies—decomposition, localization, and recomposition—to gain 

valuable insights into the internal workings of these systems. By pursuing mechanistic analysis 

augmented by case-specific analytical explainability techniques, researchers can identify 

functionally relevant components within the system and determine their precise roles, thereby 

obtaining EREs. 

5 Epistemic Relevance of the Mechanistic Approach 

While the relevance of the mechanistic approach in the XAI landscape has been addressed in 

existing technical literature and philosophical works, such as those by Kästner and Crook 

(2024), this paper advances the discourse by specifically focusing on the epistemic advantages 

and limitations of the mechanistic explanatory strategy and situating them within selected 

philosophical debates on XAI. 

5.1 Epistemic Advantages 

First, mechanistic decompositions of AI systems align with the interpretability criteria 

articulated by Doran et al. (2017). According to their framework, an interpretable system allows 

users not only to see, but also to study and understand how inputs are mathematically mapped 

to outputs. This is said to “help probe the mechanisms of ML systems.” The authors cite 

regression, support vector machines, decision trees, ANOVAs, and data clustering models as 
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examples of interpretable systems. While acknowledging the interpretability challenges posed 

by DNNs, which autonomously learn and transform input features through nonlinear 

operations, mechanistic decomposition emerges as a promising method for examining their 

internal dynamics. By identifying human-understandable functional components, this approach 

aids technically proficient stakeholders in analyzing algorithmic mechanisms. 

Second, mechanistic decomposition offers valuable insights into the internal mappings of 

AI systems, enhancing their structural transparency. Creel (2020) defines structural 

transparency as understanding how an algorithm is realized in code, involving knowledge of 

sub-components and their relationships, typically gained through analyzing system interactions. 

This understanding allows for modeling the system's structure and behavior using tools like 

code maps, flowcharts, and diagrams, closely aligning with mechanistic principles. Creel, 

however, is skeptical about the effectiveness of such decomposition in reducing the structural 

opacity of DNNs, noting that “when the functional units of the program are tiny, simple, and 

numerous, as are the neurons of a deep neural network, a subcomponent map would prove 

insufficient” (Creel, 2020, pp. 19–20). Nevertheless, recent advancements in XAI suggest that 

deeper insights into model functionality can be achieved through alternative units of analysis 

beyond individual neurons. Examples include neuron circuits (from OpenAI case study; 

Cammarata et al., 2021), and patterns of neuron activations (from Anthropic case study; Bricken 

et al., 2023a; 2023b), identified using mechanistic discovery strategies and techniques like 

feature visualization or dictionary learning. While the decomposition of complex neural 

networks into functionally relevant parts might obscure some neuron-specific operations, the 

mechanistic approach can significantly reduce structural opacity. 

Third, the mechanistic explanatory strategy can yield highly generalizable and 

counterfactual explanations for AI decision-making. Drawing on Woodward's (2003) 

interventionist account of causality, Buijsman (2022) argues that effective AI explanations 

should demonstrate outcomes in counterfactual scenarios. Counterfactual descriptions compare 

a model's actual outcome with hypothetical alternatives to reveal input–output correlations. 

Buijsman suggests these contrasts are explanatory if they show generalizable correlations 

inferred from counterfactual reasoning, covering a range of “what-if-things-had-been-different” 

scenarios. Although he doesn't specifically analyze the mechanistic approach to XAI, 

mechanistic AI explanations can pinpoint some general rules governing model behavior across 

various models. This meets Buijsman's “reasonable generalizations” criterion, at least to the 

extent of addressing “what-if” questions. 
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Although mechanistic approaches typically focus on actual causal processes and may 

overlook potential counterfactual scenarios, Buijsman's perspective is based on Woodward’s 

(2003) definition of causation, which involves “interventions”: altering one variable without 

changing others that could affect the outcome. This defines counterfactual dependence as “x 

causes y if an intervention on x changes the value of y” (Buijsman, 2022, p. 566). The adoption 

of this view integrates causal-mechanistic interventions within “what-if” scenarios, suggesting 

that mechanistic considerations could fulfill Buijsman’s criteria for counterfactual reasoning. 

Researchers can leverage typically mechanistic knowledge to explore such scenarios, for 

example, by perturbing input images to assess network resilience or by evaluating the impact 

of removing specific entities from the model. 

Finally, Tomsett et al. (2018) argue that explainability of a machine learning system 

should be assessed relative to specific stakeholders or tasks. The black box problem arises 

because developers struggle to explain system behaviors through their learnable parameters; 

however, other stakeholders may seek different explanations to meet their needs (Zednik, 

2019). Stakeholders range from developers responsible for engineering and maintaining the 

system to end users concerned with fairness, each requiring tailored explanations (Tomsett et 

al., 2018; Hind, 2019; Kasirzadeh, 2021).3 In many cases, understanding an opaque system does 

not involve detailing parameter values, rather it involves comprehending the environmental 

patterns and abstract representational structures that the system models (Buckner, 2019; Zednik, 

2019). This highlights the importance of recognizing diverse epistemic needs among 

stakeholders, especially regarding complexity and domain-specific language, to effectively 

fulfill their roles within an AI ecosystem. 

The adoption of a mechanistic strategy for XAI, which emphasizes multilevel hierarchies 

of mechanisms, can address stakeholders' needs by offering understandable explanations at 

multiple levels. Mechanistic reasoning enables AI developers to use nested hierarchical 

structures to identify key causal variables, like learnable parameters and representational 

structures, that transform inputs into outputs. Consequently, detailed lower-level explanations 

can help developers identify errors or enhance performance, addressing their epistemic needs 

for model control, manipulation, and prediction. Conversely, based on empirical studies, 

Ribeiro et al. (2016) argue that while machine learning experts can navigate such complex 

landscapes, laypersons prefer explanations that reduce models to a small number of weighted 

————————— 

3 Specific understanding of stakeholders is brought forward by the EU AI Act, which focuses on deployers: natural or legal persons, 

including a public authority, agency or other body, using an AI system under its authority, except where the AI system is used in the course of 

a personal non-professional activity (European Union, 2024). 

Why#Ribeiro, M., Singh, S., & Guestrin, C. (2016). 
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features. Therefore, high-level, simplified descriptions of mechanisms and abstract schemata 

may better accommodate end users' epistemic and practical needs related to trust by distilling 

complex information into comprehensible knowledge.  

This also aligns with Buijsman’s (2022) call for abstract variables in explanations to 

increase generality and reduce cognitive load. A mechanistic multilevel approach may thus 

allow researchers to tailor explanations to diverse audiences, assisting also in meeting legal 

compliance requirements, such as those posed by the EU AI Act (European Union, 2024), by 

varying abstraction levels. Recall Anthropic's research on language model decomposition, 

which involved creating a “knob” to adjust the model's visibility resolution and experimenting 

with the number of features learned (Bricken et al., 2023a). This way, while the mechanistic 

explanatory strategy aims to provide a detailed understanding of the internal workings of AI 

models, it also offers a means for crafting human-grounded explanations that align with the 

epistemic requirements of various stakeholders. 

Overall, to properly assess the impact of such multilevel approaches, more empirical 

studies involving multiple AI stakeholders are essential in gaining insights into the way 

explanations are perceived and understood by various audiences (cf., e.g., review of empirical 

studies on human-grounded explanations in Dorsch & Moll, Forthcoming). 

5.2 Epistemic Limitations 

While a theoretically grounded mechanistic exploratory strategy appears promising for the XAI 

program in terms of its epistemic advantages, its overall utility is also heavily constrained by 

certain epistemic limitations. 

First, adopting Doran et al.’s (2017) XAI typology, mechanistic explanations enhance 

interpretability by revealing AI systems' inner workings, but they do not necessarily improve 

the comprehensibility of such system. Comprehensibility involves users making sense of 

outputs through interpretable symbols like words or visualizations, regardless of the system's 

internal opacity. “Auto-interpretability” techniques, such as those by Bricken et al. (2023b) and 

Schwettmann et al. (2023), generate natural language descriptions of model components to aid 

comprehension. Yet, understanding these symbols typically depends on the user's implicit 

knowledge. While visualization techniques might display recognizable features in image 

recognition systems, XAI methods often identify subtle, complex features that may elude 

human understanding (Buckner, 2019; Zednik, 2019). Thus, although explanations should 
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ideally present mechanisms in human-understandable terms, the statistical nature of deep 

learning frequently diverges from intuitive concepts.  

Moreover, comprehending these explanations requires a certain level of technical 

proficiency in AI methods, which varies across types of explanations. Higher-level explanations 

that abstract away from intricate details generally require less expertise compared to detailed, 

lower-level explanations. This need for varying levels of expertise was evident in Ribeiro et 

al.'s (2016) evaluation of the LIME method, which specifically involved trained computer 

science graduates. This presents a significant challenge, as stakeholders beyond system 

developers will continue to demand explanations for system behavior, even when they lack the 

necessary technical background. 

Second, Creel's (2020) distinction between types of transparency indicates that while 

mechanistic treatment may support structural transparency, it may fall short in achieving 

algorithmic and run transparency. Algorithmic transparency refers to knowledge of the 

algorithmic functioning of the whole, revealing high-level logical rules governing system 

transformations, which is not secured by mechanistic function-by-function decomposition. Run 

transparency, on the other hand, requires knowledge of specific program operations, including 

hardware specifics and input data. It involves observing how programs execute on particular 

hardware with real data. Since the mechanistic explanatory strategy presented here focuses on 

abstract models defined by mathematical constructs and specified degrees of freedom, it may 

not capture the artifacts of real-time interactions between software and hardware, unexpected 

data inputs, or the effects of software being converted into machine code. 

Finally, there is the issue of complexity. While classical computer systems are relatively 

transparent, deep learning systems are considered black boxes due to the complex 

interdependencies among millions of parameters composing their internal states. This 

complexity enables neural networks to excel in problem solving but complicates the dissection 

of their causal–mechanical structure. Kostić (2023) points out that the opacity resulting from a 

model's functional complexity makes achieving a mechanistic explanation—requiring detailed 

knowledge of its components, activities, and organization—practically unattainable from the 

start. Even if not epistemically impossible, realistically addressing this challenge is practically 

daunting, given the limitations of current engineering methods, resources, and the increasing 

demand for explanations in rapidly evolving AI technologies. Perhaps the best we can hope for 

with the mechanistic approach is the examination of small, localized mechanisms, akin to that 

which occurs in neuroscience. 

Why#Ribeiro, M., Singh, S., & Guestrin, C. (2016). 
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Complex DNNs often resemble non-decomposable systems, in which each component's 

behavior is heavily influenced by its interactions with many others (cf. Rathkopf, 2018). While 

decomposition helps in managing the complexity of representing every element, thereby 

mitigating combinatorial explosion, it often results in representations that are limited in scope 

and applicable mainly to specific subsystems or simplified toy models. Creel (2020) notes that 

while some input–output paths of a model might be straightforward, fully understanding all 

sub-components can be excessively complex. To address this challenge, there is growing 

interest in scaling microscopic insights from mechanistic interpretability research to broader 

understanding of larger models. 4 However, skepticism about such scalability persists due to 

computational challenges, high costs, and unresolved methodological questions (e.g., Nanda, 

2023; Casper, 2023; Greenblatt et al., 2023). Evidence from small-scale models does not 

guarantee that real-world DNNs can be effectively decomposed for a thorough mechanistic 

understanding. When part–whole decomposition isn't feasible, alternative approaches that are 

fueled by a system’s complexity, such as network science and topological explanations (e.g., 

Rathkopf, 2018; Kostić, 2022), should be considered. 

6 Conclusions 

The mechanistic explanatory strategy for XAI focuses on identifying the mechanisms that drive 

automated decision-making. In the case of deep neural networks, this requires discerning 

functionally relevant components—such as neurons, layers, circuits, or activation patterns—

and understanding their exact roles through heuristic discovery strategies of decomposition, 

localization, and recomposition. Research suggests that such a coordinated, systematic 

approach to studying the functional organization of models can expose previously unrecognized 

elements that simple explainability techniques might miss, ultimately fostering more 

explainable AI. In this spirit, supported by real-world examples from image recognition and 

language modeling, this philosophical analysis underscores the value of mechanistic reasoning 

in XAI. 

The mechanistic approach offers significant epistemic benefits, enhancing AI 

interpretability, structural transparency, and enabling crafting counterfactual and highly 

————————— 

4 For instance, in OpenAI's research on curve detectors, researchers demonstrated how the first four layers of the InceptionV1 network 

gradually build towards curve detectors in the fifth layer, reverse engineering the operation of a family of 10 curve-detecting neurons 

(Cammarata et al., 2021). However, the complete InceptionV1 model consists of 22 layers (27 layers if counting pooling) with between 5 and 
6 million parameters. Similarly, in an anthropic study on a transformer language model, researchers chose to examine a small,  one-layer 

transformer with a 512-neuron layer (Bricken et al., 2023a). In comparison, GPT-3, the immediate predecessor of GPT-3.5 used in ChatGPT, 

features 175 billion parameters and operates within 96 layers. 
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generalizable explanations. This approach aids in prediction and system manipulation, as 

understanding internal dynamics allows for effective interventions and forecasting future states 

in new contexts. Additionally, it leverages multilevel hierarchical explanations, making 

complex AI systems more accessible and manageable for diverse stakeholders. Deepening our 

understanding of AI mechanisms and their causal relationships can improve performance 

evaluation and identify areas for improvement. Consequently, the advancement of a 

mechanistic framework in XAI may be crucial for overcoming trust and transparency 

challenges in high-stakes algorithmic decision-making. 

However, despite its theoretical promise, the mechanistic strategy's utility faces 

significant epistemic limitations. These challenges include ambiguous effects on algorithmic 

and run transparency, the limited comprehensibility of explanations due to the lack of suitable 

concepts, the necessity for recipients to have technical proficiency in AI, and difficulties in 

decomposing complex, real-world systems, which are not evident in simpler toy model 

examples. 

Several areas of future research stem from these considerations. Primarily, it is important 

to assess the applicability and scalability of the mechanistic approach beyond deep learning toy 

models to more complex AI systems. Further, investigating the way that individual stakeholders 

comprehend mechanistic AI explanations through user studies complimented by suitable 

epistemological theory of understanding would be a reasonable next step. Given the identified 

limitations of the mechanistic approach, it is also vital to explore other philosophically informed 

explanatory strategies. These should be ones that thrive on—rather than are hindered by—

system complexity, and that also address other contexts of opacity. 
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