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Abstract 

A concept for the emergence of a time-equivalent property from a static network of 
interconnected states is shown. This property is referred to as virtual time. For each state, a set 
of coefficients is defined, which locally represents the information embedded in the network’s 
connectivity. Network structures denoted as repellers feature successive splits into a steadily 
increasing number of quantum states. They convey an equivalent calculation of their static 
connectivity coefficients and virtual particles dynamically propagating within them. Strong 
indications are provided, that static networks are virtual Turing complete machines for 
algorithms with finite runtime. This opens up a wide range of possible encodings for said 
coefficients and motivates further research.  
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1 Introduction 

Both the Standard Model and General Relativity consider spacetime [1] to be a fundamental 
entity. The idea of an emergent spacetime [2] became known primarily by Loop Quantum 
Gravity theories. The suggested mechanisms are sophisticated but complex, also because the 
complete 4-dimensional manifold together with spacetime metric is expected to emerge as a 
unit [3]. The emergence of an isolated virtual time in an initial step conceptually seems 
unattractive at first glance, as it additionally requires a mechanism for the generation of the time 
and space components of spacetime with the observable Minkowski metric in a successive step. 
However, this work shows a simple concept for this initial step, i.e. how an isolated time-
equivalent property can be defined in a static network and how networks are able to execute 
algorithms with respect to this virtual time.  
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2 Motivation 

Irrespective of potential further physical implications, the formalisms and methods presented 
in this work are interesting from a pure epistemological point of view alone. The following 
chapters will define “virtual time” as well as “network connectivity coefficients” and analyze 
the resulting logical conclusions. Although the concepts presented in this article do not directly 
lead to a fully-fledged theory for the emergence of spacetime, they open up new possibilities 
for hypothetical interactions between said algorithms, the different components of spacetime, 
gravity and the Standard Model.  

Chapter 3.3 demonstrates, that the algorithms being virtually executed in static networks are 
conceptually able to represent physical processes of arbitrary complexity. In this context, it is 
beneficial to draw on existing formalisms from the field of computer science. Readers not 
interested in the proof of functional completeness might want to skip this chapter. 

The exemplary model presented in the following chapter 2.1 is purely motivational and not 
necessary for understanding the actual methods and formalism. It should be considered as only 
one example that generally shows the versatile possibilities and motivates further research in 
this area. Due to the speculative character of the underlying idea, readers attaching particular 
importance to scientific rigor are advised to skip chapter 2.1 and continue reading directly with 
“Concepts and Methods” (chapter 3).  

 

2.1 Speculative Extension of the Standard Model 

The beforementioned hypothetical interactions could for instance arise, if it is possible to extend 
the Standard Model to an effective quantum field theory [4] containing spacetime generating 
“particles”, which are coupling to conventional particles. As the following chapters 
demonstrate, in terms of virtual time static networks are able to execute algorithms. These 
algorithms can be designed to be equivalent to classical quantum mechanical particle 
generators. The algorithm presented in chapter 3.2.4.3 can be used to define the network 
connectivity coefficients of a state in the network in a way which corresponds to virtual particles 
arriving periodically in virtual time.  

Speculatively, the observable time component of spacetime is the result of these particles, 
denoted as “time generating particles” (TGPs). It should be noted at this point, that TGPs refer 
to the observable time component of spacetime and therefore must not be confused with “virtual 
time” (see chapter 3.1.4), which is the basic property of the network enabling the execution of 
algorithms.  

The energy contained in the TGPs could then be split to generate other particles in subsequent 
steps. These secondary particles could be responsible for the emergence of the spatial 
components of spacetime. Particles performing Lorentz boosts (LBPs) could prove to be 
particularly promising candidates for these “space generating particles”. Even though this 
concept is highly speculative, the extension of the Standard Model with TGPs and LBPs would 
feature some interesting characteristics: 
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1. Vacuum expansion could be identified as a process, when periodically arriving TGPs 
split their energy into LBPs. In the case of vacuum expansion, the LBPs do not interact 
with classical particles. 

2. Since TGPs and LBPs contain energy, spacetime itself has to store this energy. This 
necessary requirement of the model is consistent with the observation of spontaneous 
particle antiparticle generation in pure vacuum. 

3. Currently, “dark energy” is required to describe several cosmological observations, such 
as the rotation speed within galaxies. The energy contained in “spacetime generating 
particles” might be a potential new candidate for this dark energy. 

4. As in case of all classical processes described by the Standard Model, also the total 
energy during interactions between TGPs, LBPs and classical particles has to be 
conserved. If the energy for generating classical particles or Lorentz boosting classical 
particles either exclusively or partially originates from TGPs or LBPs, the expansion of 
spacetime is expected to be reduced in comparison to the vacuum in the local proximity 
of interaction in spacetime. In its current stage, the model is too simple to predict the 
quantitative amount of reduction. However, the observed relativistic increase of 
spacetime curvature near massive objects qualitatively is consistent with the model.  
 

 

3 Concepts and methods 
3.1 Networks of interconnected States 

First, a concept is required, how a time-equivalent property can be emergent from a timeless, 
static network of interconnected quantum states. Conventionally, network interconnections 
represent quantum transitions. In this classical view, quantum states are changed at a specific 
time and in a specific sequence by a set of quantum operators complying to some quantum 
rules. However, in a static network a “chronological sequence” is intrinsically impossible. 

 

3.1.1 Requirements 
1. V is a static network consisting of a finite number 𝑛 ∈ ℕ	 of quantum states. 
2. A quantum parameter defines, whether quantum states are adjacent to each other or 

not.  

For the purpose of clear presentation, the 𝑛 quantum states of the network are depicted as points. 
Lines represent adjacent quantum states. The result is a completely static representation of 
interconnected quantum states, independent from time. It is necessary to avoid thinking about 
trajectories, movements, or any temporal change of quantum states.  

 

3.1.2 n-Neighborhood 𝑵𝒏 
For a set of states Q in V, the neighborhood 𝑁! (𝑛 ∈ 	ℕ") of Q is defined as: 

𝑛 = 0:	𝑁"(𝑄) = 𝑄 
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𝑛 = 1:𝑁#(𝑄) = {|𝑏⟩	|		|𝑏⟩ is adjacent to any element in 𝑄} 

𝑛 > 1:𝑁!(𝑄) = 𝑁#(𝑁!$#(𝑄))  

The case 𝑛 ≥ 1 represents the set of endpoints of all paths of interconnected quantum states 
with a length 𝑛 relative to any member of Q.  

 

3.1.3 Metric 𝑴 
Let 𝑀(|𝑎⟩, |𝑏⟩) be a metric between |𝑎⟩ and |𝑏⟩ defined by: 

𝑀:𝑉 × 𝑉 → ℕ"	, 𝑀(|𝑎⟩, |𝑏⟩) 	↦ 𝑘	  

|𝑎⟩ = |𝑏⟩:			𝑘 = 0	 

|𝑎⟩ ≠ |𝑏⟩:			𝑘 meets condition |𝑏⟩ ∈ 𝑁%(|𝑎⟩) ∧ (	|𝑏⟩ ∈ 𝑁&(|𝑎⟩));;;;;;;;;;;;;;;;;;;;			∀	𝑙 ∈ 	ℕ" < 𝑘	 ∈ 	ℕ" 

Thus, 𝑀 depicts the “shortest quantum distance” between |𝑎⟩	and |𝑏⟩ in terms of adjacency. 

 

3.1.4 Virtual Time  
 

3.1.4.1 Model 1 with time 
The following first model represents the classical dynamic view. In this model, a chronological 
sequence of quantum transitions is investigated on a Planck scale (𝑡" → 𝑡" + 𝑡' → 𝑡" + 2𝑡'…). 
In this context, 𝑇E(|𝑞⟩)	is defined as the set of all destination states of allowed quantum 
transitions from a source state |𝑞⟩. In this dynamic model, a valid quantum path p with 𝑛 − 1 
transitions from |𝑞#⟩ to |𝑞!⟩ is defined as: 

Eq 1: 𝑝 = (|𝑞#⟩, |𝑞(⟩, … , |𝑞!⟩	)				|				|𝑞)*#⟩ ∈ 𝑇E(|𝑞)⟩)	∀	1 ≤ 𝑖 ≤ 𝑛 − 1  

Each valid quantum path 𝑝 is defined to be consistent with the laws of nature. For sufficiently 
complex multi-particle states (e.g. if |𝑞)⟩ represent states of the observable universe) and a 
sufficiently long pathlength, the laws of nature are embedded in the set {𝑝} of all valid paths. 

 

3.1.4.2 Model 2 without time 
In the second, static model, 𝑛-tuples of elements (𝑛𝜖ℕ) are defined, such that the elements of 
the tuple at adjacent indices contain adjacent (see requirement 2) states in V: 

𝑝 = (|𝑞#⟩)	                for 𝑛 = 1  

𝑝 = (|𝑞#⟩, |𝑞(⟩)																						|				|𝑞#⟩ ∈ 𝑁#(|𝑞(⟩) 	∧ |𝑞(⟩ ∈ 𝑁#(|𝑞#⟩)   for 𝑛 = 2  

𝑝 = (|𝑞#⟩, |𝑞(⟩, . . . , |𝑞!⟩	)				|				|𝑞)±#M ∈ 𝑁#(|𝑞)⟩)	∀	2 ≤ 𝑖 ≤ 𝑛 − 1   for 𝑛 ≥ 3 

Since |𝑎⟩ ∈ 𝑁#(|𝑏⟩) ⇔ |𝑏⟩ ∈ 𝑁#(|𝑎⟩) this can be simplified as: 

Eq 2: 𝑝 = (|𝑞#⟩, |𝑞(⟩, … , |𝑞!⟩	)				|				|𝑞)*#⟩ ∈ 𝑁#(|𝑞)⟩)	∀	1 ≤ 𝑖 ≤ 𝑛 − 1  
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This model only requires a mathematical order relation defined on the index number, but no 
progression of time. 

The definitions in the dynamic view (Eq 1) and the static view (Eq 2) are equivalent.  

Due to this equivalence, the static model is an alternative representation of the exact same 
physical processes taking place in the dynamic model. The effect of classical time is substituted 
by a property of the static network referred to as “virtual time”. This property is exclusively 
defined by the network’s connectivity. It is noteworthy, that virtual time is a local property of 
the network, as it depends on a reference state |𝑞⟩. 

 

3.1.5 Network Connectivity Coefficients 

3.1.5.1 Motivation 
If a quantum state is part of its own 𝑚-neighborhood (∃	𝑚 ∈ ℕ"|	|𝑞⟩ ∈ 𝑁,(|𝑞⟩)) , its 
“functional role” in the network is defined by this specific 𝑚-neighborhood to a certain extent. 
Each quantum state within the network can be described by its connectivity with other states.  

The equivalent phenomenon can also be seen in the dynamic view. Network loops represent a 
sequence of quantum transitions, where an initial quantum state is mapped onto itself. This 
suggests to analyze the ratio of feedback loops originating from each network state |𝑞⟩ for all 
possible quantum paths up to a specific length 𝑛 to investigate virtual temporal processes up to 
epoch τ = n. Let 𝑝) ∈ 𝑁)(|𝑞⟩), 𝑖 ∈ ℕ" ≤ 𝑛	 the set of different quantum paths starting at |𝑞⟩ 
with 𝑖 quantum transitions and let 𝑞) the subset of 𝑝) of all feedback paths also ending in |𝑞⟩.  

 

3.1.5.2 Definition 
This leads to 𝑛 coefficients for each |𝑞⟩𝜖V: 

Eq 3: |𝑞⟩ = ∑ |𝑞)⟩!
)-" = ∑ 𝑠)!

)-" |𝑞⟩    

�̃�) = W
1		for	𝑖 = 0
|/"|
|'"|
		for	𝑖 > 0     and normalized 𝑠) =

0̃"
∑ 0̃"#
"$%

   

Figuratively speaking, the idea behind Eq 3 resembles the quantum mechanical concept of 
defining the identity operator via the spectral decomposition of a state. 

 

3.1.5.3 Interpretation 
In the static view, each network state |𝑞⟩ is defined as a linear composition of itself using 𝑛 
coefficients. These coefficients represent the influence of |𝑞⟩ on itself in terms of network loops 
up to length 𝑛.  

However, in the dynamic view, a high value in 𝑠%(|𝑞⟩) means, that a significant part of energy 
of a virtual particle returns in |𝑞⟩ at epoch 𝑘, whereby the particle started its propagation through 
V in |𝑞⟩ at epoch 0. 



7 
 

3.1.5.4 Normalizability 
In general, 𝑛 must be finite to ensure that ∑ �̃�)!

)-"  does not diverge. Divergence otherwise occurs 
for example in the connection layer states of oscillators (see below). As a counterexample, the 
coefficients of states within an infinite homogenous repeller (see below) can be normalized. 
Though normalizability seems desirable from a mathematical point of view, even a finite set of 
𝑛 coefficients contains the complete information required to investigate virtual dynamic 
processes up to epoch 𝑛.  

As the number of states in V is finite (see “requirement 1”), the number of elements of the power 
set is finite. Then there exists a “most distant” 𝑛,34	-neighborhood: ∀𝑘 > 𝑛,34	∃𝑖 ≤
𝑛,34|𝑁) = 𝑁% with 𝑘, 𝑛,34 , 𝑖	 ∈ ℕ". Thus, the final state of every quantum path of arbitrary 
length must be an element of a finite set of neighborhoods. This realization motivates the 
conjecture, that the physical information encoded in the 𝑠) might be redundant for huge values 
of 𝑛, though the coefficients themselves not necessarily have to repeat.  

Annotation: The above definition of the coefficients 𝑠) is particularly suited for establishing a 
direct equivalence between a static and a dynamic model. Therefore, it is used as the basis for 
this article. However, other coefficients expressing similar information about local network 
connectivity are also conceivable. An example is the always finite set of normalized coefficients 
�̂�), which indicate where |𝑞⟩ is part of its own 𝑖-neighborhood: 

Eq 4: |𝑞⟩ = ∑ �̂�)
!&'(
)-" |𝑞⟩  with  �̂�) =

0̃"
∑ 0̃"
#&'(
"$%

, �̃�) =
56(|/⟩,))
|;"(|/⟩)|

, 	𝜃E(|𝑞⟩, 𝑖) = ]1		for	|𝑞⟩	𝜖	𝑁)(|𝑞⟩)
0													otherwise

  

Figuratively speaking, the coefficients �̂�) (Eq 4) count the destination state only once, whereas 
the coefficients 𝑠) (Eq 3) take each path to it into account. 

 

3.2 Repellers 

Based on metric 𝑀, a state |𝑞⟩𝜖𝑉 can be located in an area of the network, which is hereby 
defined as a “repeller of length 𝑚 with regard to |𝑞⟩“. The value of 𝑚 depicts the repeller’s area 
of influence.  

Equation 2 of the static model defines tuples 𝑝 of length 𝑛, such that the elements of the tuple 
at adjacent indices contain adjacent states in V. Let 𝑃! = {𝑝	|	|𝑝| = 𝑛} (𝑛𝜖ℕ) the set of all these 
𝑛-tuples and let 𝑀e!	be the expectation value of metric 𝑀(𝑝#, 𝑝!) for the corresponding first and 
the last element within each tuple in 𝑃!. 

3.2.1 Definition 
State |𝑞⟩ is located inside a repeller of length 𝑚, if 𝑀e% increases strict monotonically with the 
length of the tuple: 𝑀e% ≤ 𝑀e%*#∀1 ≤ 𝑘 ≤ 𝑚 

Fig 1 shows examples for states in a repeller of length 1 (A), of length 3 (B) and a 
counterexample (C). 

 



8 
 

 
 

 
 
 

     

    

Fig 1: Networks with and without repellers 

(A) The two states are located in a 
repeller of length 1 each. 
 

(B) The state in the midpoint is 
located in a repeller of length 3. 

(C) The state is not located in 
a repeller. 
 

Within repellers, the mean quantum distance between |𝑞#⟩	and |𝑞)⟩	increases with the 
pathlength. Though repellers are defined as static structures, in the dynamic picture virtual 
particles propagate though the network under their influence. Figuratively speaking, the 
shortest way back (defined by metric 𝑀) for a particle to its source state gets longer and 
longer while propagating within a repeller.  

 

3.2.2 Homogenous n-Repeller 
Homogenous repellers are especially interesting, as they maintain constant growth of the 
distance Me%*# −Me% 	with increasing 𝑘. The homogenous 𝑛-repeller is defined as a layered 
network structure, where one state of each layer is connected to 𝑛 states of the next layer. The 
network topology is independent of the position of states in the drawing (see Fig 2(A) and 
2(B)).  

 

 

 
 

 

 

    

 
   
Fig 2: The homogenous 𝒏-repeller 
 
(A) Homogenous 2-
repeller, canonical 
representation, 5 layers.  
Metric 𝑀 increases with 
each layer from left to right.  

(B) The same 
homogenous 2-repeller 
shown in (A) in distorted 
representation, 5 layers 
 

(C) Simulation of virtual particle 
propagation in a homogenous 4-repeller 
over 60 epochs.  
The group speed is constant. 
 

 

!"#$%
&'E)*

+,
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Fig 2(C) visualizes the propagation of the energy of a virtual particle exemplarily starting from 
the single “top” state in a homogenous 4-repeller. For each new epoch, the energy in each state 
of the network is distributed equally to all neighboring states. The energy of the state at epoch 
0 is designated as 𝐸". 

• Epoch 0:  𝐸"  is completely localized in layer 1 (single state) 
• Epoch 1:  𝐸"  is completely in layer 2 (distributed in the four states of layer 2) 
• Epoch 2:  )

*	𝐸" in layer 1, +*	𝐸"	 in layer 3 
• Epoch 3:  ,

-*	𝐸"  in layer 2, ).-*	𝐸" in layer 4, … 

Calculating the “repulsiveness” 𝑅%: = Me%*# −Me% 	of |𝑞⟩ only makes sense if a general repeller 
does not decay into macroscopically distinguishable separate networks in terms of the metric 
𝑀. Nevertheless, the repulsiveness is a meaningful value for homogeneous repellers and 
network structures which can be locally approximated by them. 

 

Basic properties of homogenous 𝑛-repellers 

• They require an exponential increase of quantum states to maintain their effect over 
increasing network distance (see Fig 2(A)). 

• They feature a separation into an odd and an even neighborhood (see oscillation in Fig 
2(C)): 

𝑁%∗((|𝑞⟩) 	∩ 	𝑁&∗(*#(|𝑞⟩) = ∅				∀		𝑘, 𝑙 ∈ 	ℕ" 	∧ 	𝑘 ∗ 2 ≤ 𝑛	 ∧ 	𝑙 ∗ 2 + 1 ≤ 𝑛. 

• The repulsiveness 𝑅% = 𝑅 is approximately constant for 0 ≤ 𝑘 ≤ 𝑛 − 1 (see Fig 2(C)) 

These results suggest the speculative hypothesis that the described time-equivalent property 
might be useful to find a mechanism for the emergence of spacetime and that the repulsiveness 
of repellers is required to keep physical processes running. 

 

3.2.3 Basic Notations 
 

       single network state 
 

        set of multiple network states 
 

 homogenous 𝑛-repeller of length 𝑙 
the number of input and output states adjusts to the context and must be well 
defined. For example, the splitting ratio of the rightmost repeller in Fig 3 
amounts to 𝑛 = 2>. This results directly from the connection diagram.  
 

             
 

!""""""""#$%&

!"#$ !"#% &, 1

!"#$%&
!'('&

!"#$%&
!'('&

)))*
!'('&!

$ )))*
!'('&!

'
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Fig 3: Network with interconnected repellers. The splitting ratio 𝒏 = 𝟐𝟕 is 
defined by the connection diagram. 
 
 
The arrow notation of homogenous repellers can be used to define static 
networks very efficiently. Fig 4 shows the same network defined using the 
novel notation (Fig 4(A)) and completely displayed with all states and 
connection lines between adjacent states (Fig 4(B)). Due to the rapid increase 
of states in repellers from each layer to the next layer, more complex 
networks cannot be fully represented in practice. 
 
 

 
 

 

Fig 4: Different representations of a simple static network  
 
(A) Static network defined using the 
arrow notation 

(B) The same network displayed with 
all quantum states and interconnection 
lines 

 
 

 “strong” homogenous 𝑛-repeller, where 𝑛 is sufficiently huge, so that the 
energy diffusion of the virtual particle during 𝑙 epochs is negligible 
 

 homogenous 𝑛-repeller of length 𝑙 with a transition probability 𝑝 from 
a network structure connected to its input into the repeller 
𝑝 = !

!*%
	 , 𝑘 = number of network connections the repeller couples to 

 
 “signal follower”, homogenous repeller with 𝑝 ≈ 0, so that the energy 

outflow from the network structure into the repeller is negligible.  
 

 
Fig 5: Exemplary network with a signal follower 
 
 
The typical usage of a signal follower is depicted in Fig 5: 
 
𝐸" = energy of network at epoch 0 
𝐸? ≈ 𝐸" after 𝑙# epochs 
𝐸@ ≈ 𝐸" after 𝑙# + 𝑙( epochs (𝑛A must be sufficiently small) 

!"#$ !"#$ !"#$ !"#$

%#
#"#$ $ %#
#"#$ ! %#
#"#$ &

!""""""""#$%&

!"###$$$$$%&'(

!""#"$ """
!"
"""
#$

%

& & !""#"$' '

"""( %

"""( & """( '

""") * """) +

""") ,

%

""")-
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𝐸B ≪ 𝐸" after 𝑙# + 𝑙A epochs  

Since in this example the signal follower is notated as a strong repeller, 𝑛A 
must additionally be sufficiently huge, so that energy diffusion within 𝑅A 
is negligible. 

 
 

 
“field” of homogenous repellers coupling to a repeller 𝑅 with probability 𝑝C 
(field strength) and coupling density 𝑑C (field density of interaction). The 
model distinguishes between dense and strong fields. With 𝑙 =	length of 𝑅, 
𝑘 =	number of coupling layers (𝑘 ≤ 𝑙), and 𝑑C =

%
&
 		(0 ≤ 𝑑C ≤ 1), a “field” 

notates a series of 𝑘 repellers with coupling probability 𝑝 = 𝑝C ∗ 𝑑C, as can 
be seen in Fig 6. 
 

 
 
Fig 6: virtual field consisting of k homogenous repellers 

 
 
 

 

3.2.4 Functions of Repellers 

This paragraph demonstrates, how functional network units like oscillators, attenuators, delay 
units, logical gates, volatile and non-volatile memory can be realized based upon repellers. 
However, these units feature significant signal attenuation. Connected repellers are able to 
create network feedback loops and thus can exert influence on the coefficients 𝑠) of network 
states.  

 

3.2.4.1 Delay unit, attenuation unit 
Repellers can be used to independently delay or attenuate signals. This is demonstrated by 
numerically simulating a virtual particle propagating through a network as depicted in Fig 7(A): 
The virtual particle with energy 𝐸"	is propagating originating from layer 90 in 𝑅#. In layer 100, 
the particle is split and 𝑅# couples to two repellers 𝑅( and 𝑅A with p=0.04. Afterwards, 𝑅A 
couples with 𝑅D in layer 106. There, 𝑅D acts as an attenuator and removes 50% of the energy 
from 𝑅A.  

The result can be seen in Fig 7(B): The split particles still feature equal energy in layer 102 
(𝐸#,? and 𝐸(,?) after passing 𝑅( and 𝑅A. When the particle from 𝑅( arrives at layer 120 (𝐸#,@), 
it features the regular amount of attenuation expected by its propagation within a “weak” 

!!!"#$$$%!!!&#$$$

!"#

$$$
%$
&'
''"$
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&'
''

!"$#)( $$$
%&
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repeller (𝑛 = 40). Although the particle from 𝑅A arrives at layer 120 in the same epoch, its 
signal (𝐸(,@) is attenuated by a factor of 2 in comparison to its counterpart from 𝑅(. 

 

 
 

 

 
Fig 7: Numerical simulation: delay and attenuation of repellers 
 
(A) Network schematics: A virtual particle 
propagates under the influence of repellers 𝑅0…2; 
Annotation: Since the simulation algorithm 
handles interactions sequentially (𝑅0 ⟷𝑅3 

before 𝑅0 ⟷𝑅4), psim,R3=0.0384 is slightly less 
than 0.04. 

(B) Simulation result: The split parts of the 
particle arrive simultaneously at layer 120, but 
feature different attenuations: 𝐸0,6 solid, 𝐸3,6 
dashed, 𝐸0,7 dotted, 𝐸3,7 dash-dotted 

 

3.2.4.2 Oscillators 
If two repellers are connected in an opposing way, each state of the connection layer is 
associated with only one single state in each of the adjacent layers. This determines the behavior 
of the combined system, as can be seen in Fig 8(A). 

If a virtual particle propagation contributes energy into this network structure, 𝑅# and 𝑅( 
function as a virtual oscillator in epoch τ as displayed in Fig 8(B): 

 

              
Fig 8: Two strong repellers connected in “different directions” function as an oscillator 
 
(A) The upper network connection diagram can be 
reformulated in order to demonstrate that the 
oscillation only occurs in the innermost layer. 

(B) Initial energy 𝐸8(τ8) is applied via the 
upper left repeller. This causes oscillation of 
𝐸6(τ) 

 

Let  𝐸"(τ") ≠ 0, 𝐸#(τ") = 𝐸?(τ") = 𝐸((τ") = 0  
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then 𝐸?(τ) = 𝐸" 	∧ 	𝐸#(τ) = 𝐸((τ) = 0  for τ − τ" even 
and  𝐸?(τ) = 0			 ∧ 	𝐸#(τ) = 𝐸((τ) =

E%
(
	 for τ − τ" odd and τ − τ" ≥ 3 

3.2.4.3 Generator of bit-pattern or waveform 
Network structures can be used to create every arbitrary finite energy amplitude in a state of 
the network as a function of virtual time. Therefore, a virtual particle propagation originating 
from a state 𝐴  with energy 𝐸" is equally split into 𝑛,34 separate branches. Each branch delays 
and attenuates its fraction of the original energy 𝐸" individually. The delay unit for 𝑏𝑖𝑡% (1 ≤
𝑘 ≤ 𝑛,34) within the branches are homogenous repellers 𝑅% whose individual split ratios and 
lengths are calculated so, that after 𝑘 ∗ 𝐿 epochs (𝐿	 ∈ 	ℕ) the initial fraction of 𝐸" fed into the 
repeller has diffused into the same number of states as in all other branches. Then, the states of 
the corresponding repeller’s layer are interconnected to a single “energy collecting state” for 
each branch. To avoid oscillation, the rest of the energy is forwarded into a further repeller 
within each branch. Finally, the energy collecting states are recombined into state 𝐵. The bit-
pattern generator can optionally be utilized as a waveform generator. In this case, the desired 
waveform is assembled by reducing the initial energy 𝐸" for each bit individually by a damping 
factor 𝛽(𝑊#…!&'() mediated by the repellers 𝑊#…!&'(. 

 

 

 
 
Fig 9: Network connection diagram for the generation of custom bit-
patterns and waveforms 

An example for four bits can be seen in Fig 9. 𝐸" in state 𝐴 is equally split into four branches. 
For each true bit, a corresponding delay repeller is connected to 𝐴#…D. The split ratio of this 
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repeller is calculated individually for each bit so, that the corresponding interconnection layer 
of the three repellers consists of 𝑛D!∗H states in each branch. 

If for example all bits are true, a fraction of 𝐸" arrives after 𝑘 ∗ 𝐿 epochs in the corresponding 
interconnection layer. This fraction can be controlled by the splitting number of the “weighting 
repeller” 𝑊#…D for each bit. This also enables the generation of “analog waveforms”. Some 
repellers in the following connection diagram are unnamed and followed up with three points. 
These repellers are used to avoid oscillations by forwarding the main amount of the propagating 
energy. 

Optional feedback: The waveform generator can also be used to modify the coefficients 𝑠)  in 𝐴 
by connecting state 𝐵 back to state 𝐴  (dotted line in Fig 9). 

The coefficients 𝑠) in state A for strong repellers, 𝑘𝜖{1,2,3,4}, 𝐿 = 1 and bit%𝜖{0,1} are: 

Index (epoch) 0 1..5 6 7 8 9 
Value 𝑠! 0 𝛼	𝑠!	bit"	𝛽(𝑊") 𝛼	𝑠!	bit#	𝛽(𝑊#) 𝛼	𝑠!	bit$	𝛽(𝑊$) 𝛼	𝑠!	bit%	𝛽(𝑊%) 

𝛼 is a constant factor depending on the initial value 𝑠", on the splitting number of the energy 
forwarding repellers and on the network structure they are connecting to. The damping factor 
𝛽(𝑊!) depends on the splitting number of repeller 𝑊!. 

 

3.3 Virtual Turing Completeness 
 

3.3.1 Requirements for logical operations 
It is possible to perform calculations not only with the help of conventional electronic 
processors or digital circuits, but also using lesser-known units such as very energy efficient 
spin logic devices [5][6]. Logic calculations can also be carried out in a purely mechanical way, 
as in the case of the Zuse Z1 [7], based on an optical basis [8] or completely using analog 
circuits [9].  

Among others things, logic values in static networks can be defined for example via the 
presence of oscillations with a specific frequency, significant patterns or amplitude 
modulations. The only goal of this chapter is to show that static networks feature similar 
properties as virtual Turing complete machines. The following concept of logic makes no claim 
to exclusivity. It is based on boolean logic and is not intended to be resource friendly in terms 
of required network size.   

To provide a basis for boolean logical operations, a definition of what is logically true and false 
is required. For the following considerations, the truth values are defined relative to reference 
values. That means, a state |𝑞⟩ in the network is defined to be |𝑡𝑟𝑢𝑒⟩	 in epoch τ, if its virtual 
energy is equal to a provided reference energy |𝑟𝑒𝑓⟩:   𝐸|/⟩	(τ) = 𝐸|IJK⟩(𝜏) 

Logical operations are performed by repellers, which involve delay and attenuation. Thus, the 
logical reference value in epoch 𝜏 must be retained for comparison to determine the truth value 
of the result. Since repellers can act as waveform generators, they are able to line up the logical 
result value with the reference value, where both are attenuated by the same factor. This can be 
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used to directly control two consecutive self-influence coefficients 𝑠) and 𝑠)*# of a state in the 
network. Thus, in the dynamic view the result of a logical operation is defined to be |𝑡𝑟𝑢𝑒⟩, if 
the virtual energy in a state |𝑞⟩	of the network does not change its value during two consecutive 
epochs. Otherwise, it is defined to be |𝑓𝑎𝑙𝑠𝑒⟩. 

 

3.3.2 XOR and AND 
The network structure for the XOR gate is the attenuating adder (as already seen in the bit pattern 
generator from chapter 3.2.4.3). The AND gate uses the same structure, but attenuates the output 
by a factor of 2 more than the XOR gate.  

With  
|𝐸|K3&0J9:;⟩ = 0.5	𝐸|IJK⟩ ∨ 𝐸|K3&0J9:;⟩ = 0� ∧ |𝐸|K3&0J<=>⟩ = 2	𝐸|IJK⟩ ∨ 𝐸|K3&0J<=>⟩ = 0�	 

the absolute value differences of a 	𝐸|K3&0J⟩ output from 	𝐸|IJK⟩ are  

𝑑,)! =
	E|@AB⟩
(
	 and 𝑑,34 = 	𝐸|IJK⟩ 

 

3.3.3 Cascading gates 
When sequentially stacking 𝑛 gates (AND or XOR), all outputs 𝐸|LMN"⟩ for 1 ≤ 𝑖 ≤ 𝑛	are simply 
added. The cascaded output is |𝑡𝑟𝑢𝑒⟩, if and only if  ∑ 	𝐸|LMN"⟩

!
)-# = ∑ 	𝐸|IJK"⟩

!
)-# .  

This requires, that the attenuation from each gate to the next gate fulfills the condition 
	E|DEF"G)H
	E|DEF"H

> 4  for 2 ≤ 𝑖 ≤ 𝑛, because then ∑ 𝑑,34I
!
%-) < 𝑑,)!"G). Figuratively speaking, the 

|𝑓𝑎𝑙𝑠𝑒⟩ output of a XOR(|𝑡𝑟𝑢𝑒⟩, |𝑡𝑟𝑢𝑒⟩) gate cannot be compensated by any number of 
following |𝑓𝑎𝑙𝑠𝑒⟩ outputs of AND(|𝑓𝑎𝑙𝑠𝑒⟩, |𝑓𝑎𝑙𝑠𝑒⟩) gates. 

 

3.3.4 Functional Completeness 

The logical operations XOR and AND with |𝑡𝑟𝑢𝑒⟩ are functionally complete, since all other 
basic logical operations can be derived from them as described by de Morgan’s laws. In 
particular 
NOT(|𝑎⟩)=XOR(|𝑎⟩, |𝑡𝑟𝑢𝑒⟩) and OR(|𝑎⟩, |𝑏⟩)=NOT�𝐴𝑁𝐷|𝑁𝑂𝑇(|𝑎⟩), 𝑁𝑂𝑇(|𝑏⟩)��. 

 

3.3.5 Conditional Branches and Memory 
Functional completeness alone already enables complex calculations. However, the following 
concepts of conditional branching and memory demonstrate even increased flexibility while 
executing algorithms in static networks. 
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For algorithms with finite runtime, conditional branches can be realized by using two 
independent subnetworks, each of which represents one possible branch with all previously 
performed logic operations.  

With regard to the defined logic, a virtual particle propagating within a strong homogenous 
repeller remains its logical value over many epochs. Thus, it is able to represent a non-volatile 
bit. In contrast to this, a volatile bit can be able to be cleared at certain epochs in a controlled 
manner. This can be achieved via a sparse repeller field (see chapter 3.2.3), which removes 
energy at specific layers. In that way, volatile bits have the property of being erasable and 
redefinable.  

Functional completeness in combination with the realizability of memory and conditional 
branching suggests that static networks represent virtual isolated Turing machines [10] [11] 
which are able to execute non-interactive, deterministic programs restricted to finite runtime. 
Functional completeness has a great impact on how the coefficients 𝑠) might be able to encode 
a state |𝑞⟩ [12]. 

4 Results 

A static model of network connectivity and a dynamic model of quantum transitions were 
provided. Their comparison revealed, that they feature equivalent definitions. This was used to 
define a time-equivalent property in static networks, which depends on individual states. 

For each state a set of coefficients was defined, which figuratively speaking describe the 
network’s influence of the state on itself. They are calculated directly from the connectivity 
of the network, without any necessity for time. Therefore, the relative ratio of feedback paths 
to all paths up to a specific length was calculated. Particularly significant here are network 
structures designated as “repellers”, a network topology in which quantum paths originating in 
a state lead further away with increasing quantum pathlength in terms of the metric of shortest 
quantum distance. This is achieved by a successive split into a steadily increasing number of 
quantum states. A meaningful arrow notation was defined that makes it easy to handle the rapid 
network growth. Homogenous repellers convey an equivalency between their connectivity and 
virtual particles propagating within. Thus, they act as repulsive units in a time-equivalent 
image. By interconnecting repellers, more complex functional units are defined, which 
perform specific dynamic operations such as attenuation, delay, oscillation, logical functions. 
Functional Completeness was proved and strong indications were provided, that by 
combining these units, virtual Turing complete machines for any deterministic, non-
interactive algorithm restricted to finite execution time can be represented by static networks. 

 

5 Discussion 

The novel concepts presented in this work might be interesting from a pure methodological 
point of view. However, the new approach might also provide insights for further physical 
research.  
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Previous results [13] suggest a new hypothetical concept of spacetime, where in non-relativistic 
approximation and Minkowski view [14] the complete information of spacetime can be 
reconstructed from a “here and now” state |Y!⟩ by applying permutations of operators LEFT& 
TOP&, FRONT&, P& to |Y!⟩. The new results motivate to speculate about whether the network 
connectivity coefficients 𝑠) might also be able to represent the same information and whether 
spacetime, the Standard Model and gravity could hypothetically be emergent from a static 
quantum network. 

If at all possible, the reconstruction of spacetime, the understanding the encoding of the 
coefficients 𝑠), the generalization of P&, LEFT& TOP&, FRONT& to relativistic operators and the 
definition of their operator counterparts acting on states in the network V are not trivial. If this 
approach turns out to be effective, a lot of research will be needed before eventually obtaining 
a completely symmetric unification theory.  
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