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What Kind of Explanations Do We Get from 
Agent-Based Models of Scientific Inquiry? 
 

DUNJA ŠEŠELJA1 

 
Abstract. Agent-based modelling has become a well-established method in social 

epistemology and philosophy of science but the question of what kind of explanations 

these models provide remains largely open. This paper is dedicated to this issue. It starts 

by distinguishing between real-world phenomena, real-world possibilities, and logical 

possibilities as different kinds of targets which agent-based models (ABMs) can 

represent. I argue that models representing the former two kinds provide how-actually 

explanations or causal how-possibly explanations. In contrast, models that represent 

logical possibilities provide epistemically opaque how-possibly explanations. While 

highly idealised ABMs in the form in which they are initially proposed typically fall into 

the last category, the epistemic opaqueness of explanations they provide can be reduced 

by validation procedures. To this purpose, an examination of results of simulations in 

terms of classes of models can be particularly helpful. I illustrate this point by discussing 

a class of ABMs of scientific interaction and the claim that a high degree of interaction 

can impede scientific inquiry. 

 

Keywords: agent-based models, highly idealised models, epistemically opaque how-

possibly explanation, robustness analysis, scientific interaction. 

 

1 Introduction 
 

Computer simulations in the form of agent-based models (ABMs) have become a well-

established formal method in social epistemology and philosophy of science. Following 

a long tradition in biomedical and social sciences, this computational method had quickly 

proven itself useful in the study of social aspects of scientific inquiry in subjects ranging 

from the impact of different social networks on the efficiency of knowledge acquisition 

and the division of cognitive labour all the way to research of the efficiency of scientific 

collaboration and studies of the norms that guide scientists facing disagreements. The 

primary advantage of using ABMs to examine such issues is that they allow us to study, 

in a controlled environment, how the various properties of individual agents representing 

scientists—such as their reasoning, decision-making, actions, and relations—bring about 

                                                           
1 Ruhr University Bochum/Eindhoven University of Technology, dunja.seselja@rub.de. 
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various phenomena on the level of the scientific community, such as the success or 

a failure of the community to acquire knowledge. 

 

Despite their popularity, studies based on computer simulations often meet with sceptical 

reactions of researchers who use other approaches to the philosophy of science, such as 

for instance historical case studies. Their primary concern is that the proposed models are 

highly idealised, which raises the question of validity of any findings such models may 

deliver. In particular, the simplicity with which the ABMs tend to represent scientific 

inquiry commonly leads to doubts regarding their explanatory value, such as: ‘Do these 

models explain anything, and if so, what exactly?’ ‘Surely, they cannot be taken as 

explanatory of complex scientific episodes, which include a myriad of epistemic and non-

epistemic causal factors?’ 

 

In this paper, I want to address these concerns and explain the nature of explanations 

which ABMs provide. I start (in Section 2) by distinguishing three focal points in the 

research on ABMs of science: the development of highly idealised models, studies of 

their robustness, and discussions of the epistemology of agent-based modelling. This will 

allow me to situate the current contribution within the third of the above-mentioned 

points. To examine the explanatory properties of highly idealised ABMs, I distinguish the 

different possible targets which ABMs can adequately represent, and then proceed to 

relate this classification to the types of explanation that can be inferred from each class 

(Section 3). I argue that highly idealised models that have not been validated provide 

epistemically opaque how-possibly explanations, that is, claims that express possible 

causal relationships although the conditions under which such relationships should hold 

are unclear. Further, I suggest that by the means of different validation procedures, ABMs 

can move from providing epistemically opaque explanations to causal how-possibly 

explanations (Section 4). I illustrate this point with a class of ABMs of scientific 

interaction and with a claim inferred on their basis, namely that a high degree of 

information flow can be detrimental to the efficiency of a scientific inquiry (Section 5). 

Section 6 then concludes the paper. 

 

2 Research on ABMs of science 
 

We can roughly distinguish three main directions in the research on ABMs of scientific 

inquiry developed within the philosophy of science. To explain the main questions raised 

within each of these focal points, let us first look at how the philosophical study of ABMs 

developed from other scientific domains. 
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Simulations of scientific inquiry are rooted in several parallel lines of research.2 On the 

one hand, formal modelling was introduced into the philosophical study of social 

processes underlying scientific inquiry with the aim of gaining more precise insight into 

the tensions pervading scientific research, such as the tension between individual and 

group rationality or between epistemic and non-epistemic values.3 That resulted in 

a number of analytical models, such as the model proposed by Goldman & Shaked 

(1991), which examined the relationship between the goal of one’s professional success 

and promotion of truth acquisition, or Kitcher’s models (1990, 1993), which tackled the 

division of cognitive labour against the background of individual rationality. These were 

later followed by several other proposals (e.g., Strevens, 2003; Zamora Bonilla, 1999; 

Zamora Bonilla, 2002). 

 

Around the same time, computational methods entered the philosophical study of rational 

deliberation and cooperation in the context of game theory (Skyrms, 1990, 1996; Grim et 

al., 1998) and the study of opinion dynamics in social epistemology (Hegselmann 

& Krause, 2002, 2005). Computational models introduced in this literature already 

included ABMs: for instance, a cellular automata model of the Prisoner’s Dilemma, or 

models examining how opinions change within a group of agents. 

 

In a parallel development, agent-based modelling entered also the social sciences. In 

sociology of science, ABMs offered a novel way of analysing and explaining causal 

mechanisms underlying scientific inquiry, an approach that complemented the more 

entrenched method of quantitative empirical studies. The pioneering work of Gilbert 

(1997), aimed at simulating the structure of academic science, was closely related to 

a quantitative analysis of citation networks. Using a small number of simple assumptions, 

Gilbert’s ABM was designed to reproduce certain quantitative relationships previously 

identified in empirical research (such as Lotka’s Law concerning the distribution of 

citations among authors). 

 

In contrast to ABMs developed in the sociology of science, which tended towards an 

integration of simulations and empirical studies used for their validation (cf. Gilbert 

                                                           
2 For a recent overview of formal models of scientific inquiry and their role in philosophical 
literature, see Šešelja et al. (2020); for an overview of ABMs of scientific interaction see Šešelja 
(2022); for an overview of computational methods employed in philosophy, see Grim & Singer 
(2020) and Mayo-Wilson & Zollman (2021). For an earlier overview of ABMs of science, including 
both work done in sociology and in philosophy of science, see Payette (2012); for an overview of 
agent-based modelling and its role in social sciences and philosophy, see Klein et al. (2018); for 
a discussion of the use of computer models in science in general, see Imbert (2017). 
3 For an overview of economic approaches to social epistemology of science, which inspired 
discussions on the tension between the individual and group rationality, see Mäki (2005). 
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& Troitzsch, 2005), a parallel trend of abstract and highly idealised ABMs emerged in 

other social sciences, such as economics and archaeology. Most prominently, Schelling–

Sakoda models of social segregation (Sakoda, 1971; Schelling, 1971, 1978; see also 

Hegselmann, 2017) and Axelrod’s models of cooperation (e.g., Axelrod, 1984, 1997; 

Axelrod & Hamilton, 1981) paved the ground for agent-based modelling in the study of 

various social phenomena. These two trends gave rise to two distinct methodological 

approaches to ABMs that came to be known as KIDS (Keep it Descriptive, Stupid) and 

KISS (Keep it Simple, Stupid) strategies. The KIDS approach aims at developing models 

which are descriptively adequate with respect to central features of the target phenomenon 

and at integrating ABMs and empirical studies. The KISS approach, on the other hand, 

aims at the development of simple, highly idealised models which are based on a minimal 

set of assumptions about agents and their environment but sufficient to capture certain 

regularities on the community level.4 

 

The development of ABMs in the philosophy of science has largely followed the KISS 

approach. The influential works of Hegselmann & Krause (2006), Zollman (2007, 2010), 

Muldoon & Weisberg (2011), Weisberg & Muldoon (2009), Grim (2009), Grim et al. 

(2013), and Douven (2010), among others, kickstarted research into abstract ABMs of 

scientific inquiry. This marks the first focal point in the research on ABMs in the 

philosophy of science. The development of ABMs aimed at demonstrating the 

contribution of agent-based modelling to the study of questions posed by philosophers of 

science and social epistemologists, such as the impact of social networks or division of 

cognitive labour on the efficiency of inquiry. The emphasis was on exploratory insights 

rather than validity of the models or a detailed analysis of their explanatory features. For 

modellers endorsing the KISS approach, this aim continued to be central. 

 

Others, however, recognised the limitations of this approach. On the one hand, it is 

generally acknowledged that highly idealised models are sufficient to provide a ‘proof of 

the concept’, for instance, to show that a certain causal relationship is in principle possible 

(Šešelja, 2021). Similarly, highly idealised models are capable of producing conjectures 

about causal mechanisms underlying real-world phenomena. On the other hand, abstract 

models typically lack validation procedures, such as robustness analysis or studies of their 

representational adequacy (Aydinonat et al., 2020). This makes it difficult to assess 

whether and to what extent findings from these models can be considered informative of 

real-world scientific inquiries. 

 

                                                           
4 For the KISS strategy see, e.g., Epstein & Axtell (1996), Axelrod (1997), Hegselmann & Krause 
(2002), Epstein (2006); for the KIDS one, see Edmonds & Moss (2004). 
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Such concerns gave rise to the second focal point in the research on ABMs in the 

philosophy of science: the study of robustness of previously developed models. To this 

end, previous models were adjusted and enhanced, resulting in what Aydinonat et al. 

(2020) called ‘second generation models’.5 The robustness analysis includes an 

examination of results delivered by a model with respect to changes in parameter values 

(sensitivity analysis) and changes to the idealising assumptions of the model (derivational 

robustness analysis). For example, with respect to Zollman’s models (2007, 2010), 

Rosenstock et al. (2017) showed that the previously obtained results hold only for a small 

part of the relevant parameter space, while Frey & Šešelja (2020) and Borg et al. (2019) 

showed that Zollman’s results do not obtain when some of the idealising assumptions are 

changed. Similar studies were conducted for Weisberg & Muldoon’s (2009) model: 

others identified an error in the code of the model and critically assessed the robustness 

of results under different modelling assumptions (Alexander et al., 2015; Thoma, 2015; 

Pöyhönen, 2017; Pinto & Pinto, 2018). 

 

Besides studies of robustness, enhancements of previously proposed ABMs have also led 

to their application to new research questions. For instance, a number of ABMs studying 

scientific polarisation, biases, or the spread of deceptive information were built on 

Zollman’s work (see works by Holman & Bruner, 2015, 2017; O’Connor & Weatherall, 

2018, 2019; Weatherall et al., 2018). Similarly, Weisberg & Muldoon’s epistemic 

landscape model served as a starting point for various further studies: for instance, Balietti 

et al. (2015) studied the relationship between disciplinary fragmentation and scientific 

progress, Currie & Avin (2018) examined different types of scientific methods, while 

Harnagel (2018) and Avin (2019) focused on the mechanisms of allocation of research 

funding. 

 

Finally, the third focal point in research on ABMs of science concerns the epistemology 

of agent-based modelling. What can we learn from ABMs? What kind of epistemic 

functions do they have? What are their limitations and prospects for future improvement? 

These interrelated questions have been examined in a number of studies. On the one hand, 

some have argued that unless ABMs are empirically embedded and validated, we will 

have a hard time ensuring their empirical adequacy (e.g., Martini & Pinto, 2016; Thicke, 

2020; Bedessem, 2019; Frey & Šešelja, 2018, Šešelja, 2021; Politi, 2021). For instance, 

by using empirical data as the input for ABMs we can calibrate parameters in the model 

                                                           
5 Research on ABMs in empirical sciences has followed a similar course. For instance, Thiele et al. 
(2014) identify two phases in their development: The first focused on gaining generic insights via 
ABMs rather than on their in-depth analysis. In the second phase, previously developed models are 
subjected to various types of robustness analyses with the goal of ‘better mechanistic understanding 
of the model and on relating the model to real-world phenomena and mechanisms’. 
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(for example, Harnagel, 2018, used bibliometric data to this purpose). On the other hand, 

Mayo-Wilson & Zollman (2021) have argued that for some modelling purposes, such as 

illustrating that certain events or situations are possible, validation need not be necessary. 

Models can instead be justified by ‘plausibility arguments’ and by recourse to stylised 

historical case studies. 

 

Central to the above discussion is the question of the epistemic purpose of a model. 

Aydinonat et al. (2020) have argued that this may be difficult to assess when examining 

a model in isolation. According to them, we instead ought to take a ‘family-of-models 

perspective’ and determine the contribution of an ABM using subsequent models that 

enable a better understanding of results delivered by the previous ones.6 More precisely, 

Aydinonat and colleagues argue that we should view the ABMs as argumentative devices 

whose purpose is determined by the argumentative context in which they are used. An 

argument supported by a particular model can be further strengthened by analyses based 

on subsequent models. 

 

This paper belongs to the third focal point in research on ABMs of science. While 

previous discussions examined the conditions under which ABMs can be explanatory of 

real-world phenomena, the question what kind of explanations highly idealised ABMs of 

science provide remained open. Using the perspective of Aydinonat et al. (2020), we can 

say that this boils down to the following questions: Can we use highly idealised ABMs 

of science to construct explanatory arguments, and if so, of what kind? An attempt to 

answer this question is the subject of the following section.  

 

3 ABMs and their explanatory power 
 

What can we learn from highly idealised ABMs of science and what exactly do they 

represent? The answer is far from trivial and it is closely related to the ongoing 

philosophical debate about the epistemic function of highly idealised or ‘toy’ models in 

empirical sciences (e.g., Alexandrova, 2008; Fumagalli, 2016; Grüne-Yanoff, 2009; 

Hoyningen-Huene, 2020; Nguyen, 2019; Reiss, 2012; Reutlinger et al., 2018, cf. also 

references in Footnote 9). While my aim is to address this question by focusing on ABMs 

in the philosophy of science, the bulk of this section is sufficiently general to apply to toy 

models in other disciplines as well. I start by distinguishing between different possible 

targets which models can adequately represent and I relate them to the different types of 

explanations a particular representation licenses. Then I turn to validation strategies, 

                                                           
6 Similar methodological approaches have been endorsed in the context of ABMs in the social 
sciences, see, e.g., Page (2018), Kuhlmann (2021). 
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which help us move a model from one explanatory category to another. Finally, I go back 

to the ABMs of science and examine how they are to be classified both before and after 

passing a certain validation procedure. 

 

3.1 What do ABMs represent? 
 

According to Bolinska (2013), ‘A vehicle is an epistemic representation of a given target 

system if and only if it is a tool for gaining information about this system’. Here, 

information denotes those considerations which are not readily accessible by directly 

observing the target but can be understood via a particular vehicle, in this case by the 

means of a particular model. In the remainder of this article, whenever I speak of a model 

representing a target, I refer to an epistemic representation of the target. After 

distinguishing different types of targets, I will specify the types of explanations that their 

representation warrants. 

 

One way of categorising the representational properties of ABMs is according to whether 

they represent actual or possible phenomena. On the one end of the spectrum, there are 

ABMs that represent real-world phenomena (Figure 1).7 These models were developed 

most prominently in urban planning and epidemiology, where they have been used for 

policy guidance. For instance, the UrbanSim (Waddell, 2002) set of models of urban 

planning was developed to guide urban policy and transportation investments. While 

UrbanSim was built based on empirical data, it was designed as a virtual experimental 

lab where various counterfactual scenarios can be represented and analysed (Bruch 

& Atwell, 2015). In other words, these models were built not merely to represent actual 

empirical processes, but also—and crucially—to model ‘real-world possibilities’, that is, 

scenarios that could take place once some factors are altered. This is the second kind of 

targets ABMs can represent. The capacity of models to represent possibilities is essential 

for drawing normative and descriptive conclusions from them, because it allows us to 

draw inferences about counterfactual dependencies concerning the purported target. For 

instance, models of herd immunity and disease spread, which are used to examine 

different policies of epidemics management, enable the acquisition of precisely this sort 

of knowledge (Epstein, 2009). 

  

                                                           
7 This classification should not be taken as exhaustive since some issues are either lacking or require 
further disambiguation. For example, non-existent targets, which can be part of hypothetical 
modelling, may be physically impossible and yet informative of real-world phenomena and their 
possibilities (Weisberg, 2013, pp. 121–122). 
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Figure 1. A simplified picture of different target phenomena represented by ABMs 

 

Models mentioned in the previous paragraph increase our explanatory understanding of 

the phenomena they represent in the sense of expanding our ability to make reliable 

‘what-if’ inferences about them (Ylikoski, 2014). In contrast to such models, other 

simulations represent only logical possibilities. These are scenarios that may but need not 

correspond to any interesting real-world possibilities. Importantly, determination of 

whether they correspond to real-world possibilities—and if so, which ones—is an open 

question. Hence, these are models from which we cannot draw reliable ‘what-if’ 

inferences. As I argue below, highly idealised models upon their initial development 

typically belong to this category. 

 

To make this classification more precise, let us look into the kind of explanations that 

each class warrants.8 

 

3.2 How-possibly and how-actually explanations 
 

In view of the above classification of the modelled targets, it is helpful to make a related 

distinction between how-actually explanations (HAEs), and how-possibly explanations 

(HPEs). While the former notion concerns explanations simpliciter, that is, accounts of 

how phenomena actually occur, the latter was introduced to cover accounts of possible 

                                                           
8 Explanation of phenomena is certainly not the only epistemic function of ABMs. For other 
epistemic functions of ABMs see, e.g., Edmonds et al. (2018), Epstein (2006), Frey & Šešelja 
(2018). 

Logical possibilities 

Real-world possibilities 

Real-world 
phenomena 
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ways in which phenomena can occur.9 Following Verreault-Julien (2019), we can 

characterise HAEs as expressing propositions of the form ‘𝑝 because 𝑞 (and initial 

conditions 𝑐)’. In contrast, HPEs express propositions of the form ‘it is possible that: 𝑝 

because 𝑞 (and initial conditions 𝑐)’. HPEs can express various types of modalities, such 

as mathematical or causal ones. 

Based on the above, we can characterise the explanatory properties of ABMs as follows: 

 

ABMs representing real-world phenomena and real-world possibilities provide one of 

the two following types of explanations: 

 

- HAEs which express propositions of the form: ‘𝑝 because 𝑞 and initial conditions 𝑐’, 

where we know which conditions these are and we know that they hold for a particular 

empirical target. 

 

- causal HPEs,10 which express propositions of the form: ‘It is causally possible that: 𝑝 

because 𝑞 and initial conditions 𝑐.’, where we know which conditions these are although 

we may not know whether they hold for a particular empirical target, or we know that 

they do not hold for that particular target.11 

 

ABMs representing logical possibilities provide: 

 

- epistemically opaque HPEs (ep-op HPEs), which express propositions of the form:  

 

‘It is logically possible that: 𝑝 because 𝑞’, which is equivalent to ‘It is 

causally possible that: 𝑝 because 𝑞 and initial conditions 𝑐’, where we 

may not know which conditions these are, nor whether they hold for the 

given empirical target. 

 

This classification is similar to Gräbner’s (2018) proposal, where his ‘full explanations’ 

correspond to what I call HAEs, his ‘partial explanations’ to causal HPEs, and his 

                                                           
9 The notion of HPE was introduced by Dray (1957) in the context of explanations in history. 
Subsequently, it became the subject of extensive debates in the literature on scientific modelling, 
especially in biology and social sciences (see, e.g., Bokulich, 2014, 2017; Forber, 2010, 2012; 
Hempel, 1965; Reydon, 2012; Ylikoski & Aydinonat, 2014). One can find different versions of this 
notion across literature. My approach here is in line with Verreault-Julien (2019) in terms of 
assigning a broad meaning to HPEs. 
10 I consider causal explanations because they are typically discussed in the context of the modelling 
in social sciences, see, e.g., Alexandrova (2008), Northcott & Alexandrova (2015), Reiss (2012). 
11 The latter case captures counterfactual scenarios, while the former one captures potential 
scenarios, which may be actual or counterfactual. 
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‘potential explanations’ include causal HPEs and ep-op HPEs.12 The notion of ep-op 

HPEs is closely related to what Ylikoski & Aydinonat (2014) call ‘causal mechanism 

schemes’, which ‘do not directly explain any particular empirical fact’ but ‘address only 

simplified theoretical explananda’ (Ylikoski & Aydinonat, 2014, p. 27). By calling such 

HPEs epistemically opaque, we highlight the indeterminate nature of the represented 

target phenomenon. 

 

The ‘initial conditions’ mentioned in the classification above stand for various contextual 

factors that must be satisfied for a particular regularity to hold. In case of ABMs of 

science, this may include for instance the size of the community, the nature of interaction 

among scientists, the nature of decision-making of scientists concerning theories they 

want to pursue, etc. Such factors are implicitly or explicitly assumed in the given model. 

 

Note also that in the above, ‘knowledge’ is used in a colloquial rather than the strictly 

epistemological sense, and it could be replaced with ‘having a justified belief’. The idea 

is that the conditions constraining a particular explanatory relationship are established via 

a suitable scientific method, in which case we have a good reason to believe which 

conditions these are or whether they hold for a given empirical target. 

 

Most models fall somewhere in-between the above categories. Depending on the 

epistemic status of the initial conditions 𝑐 (whether we are able to specify which ones 

they are and whether they hold for the empirical target in question), an ABM will be 

closer to one rather than another type. This is determined by the process of model 

validation, to which we shall turn now. 

 

4 Verification and validation of ABMs 
 
The main reason for running simulations of a scientific inquiry is to examine the impact 

of certain factors on the collective goals of research, such as efficiency, which would be 

difficult to estimate by analytical methods or by the means of qualitative analysis. This 

means that the results of an adequate ABM should not be merely obvious consequences 

of the underlying assumptions (Lazer & Friedman, 2007; Pöyhönen & Kuorikoski, 2016), 

because that would make the entire process of modelling superfluous. This, however, 

means that the link between the model and its purported target need not be obvious. In 

particular, when a highly idealised model is first proposed, the results it delivers may 

come with a degree of epistemic opacity in the sense that we do not understand the 

                                                           
12 For a more general discussions on different types of explanations obtained by means of models 
see Bokulich (2017), Lawler & Sullivan (2020). 
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conditions under which the established causal dependency holds. To remove this veil of 

opacity, we need to turn to the validation procedures.13 

 

Justification of models and their representational properties is conducted via two closely 

related processes: verification and validation. While verification is a method of evaluating 

the accuracy of the program of a given ABM based on its conceptual design, validation 

is the process of evaluation of links between the model and its purported target (e.g., 

Cooley & Solano, 2011; Gräbner, 2018). Irrespective of the purpose for which the model 

was built, it always requires some degree of verification to ensure that its simulation code 

does not suffer from bugs and other unintended issues. In short, that it corresponds to the 

modeller’s conceptual idea. The type of required validation, however, directly depends 

on the purpose of the model and its intended target. In particular, examination of whether 

the model represents a logical possibility, a real-world possibility, or a real-world 

phenomenon requires different validation procedures. 

 

Clearly, showing that a model represents a logical possibility will be the least demanding 

of the procedures alluded to above. All that needs to be shown is that there is a plausible 

interpretation of the model such that the inference ‘it is logically possible that: 𝑝 because 

𝑞’ is warranted. For instance, if an ABM is supposed to represent the impact of a certain 

division of cognitive labour among scientists on the success of their inquiry, we only need 

to show that we can plausibly interpret the model as representing scientific research and 

the division of cognitive labour among scientists. At the same time, we need not know 

under what particular conditions of inquiry (e.g., for how large a community, under what 

communication structure, under what research behaviour of scientists, etc.) the observed 

regularity (here between a specific division of labour and a particular measure of success) 

holds. 

 

This need not, however, be the only goal we are interested in. Even in the case of abstract, 

highly idealised models, we are often after more than a mere logical possibility. For 

instance, we may be interested in showing that a typical case of scientific inquiry within 

a certain domain of study is at least ‘susceptible’ towards a particular regularity.14 In other 

words, we may be interested in causal scenarios which are possible under a set of 

conditions typical of inquiries within a given scientific domain. To achieve this, we need 

                                                           
13 This corresponds to what Bokulich (2011) calls a ‘justificatory step’ in establishing explanations 
obtained by a model, i.e., the domain of its applicability. 
14 For example, Nguyen (2019) takes the Schelling model as licensing the claim: ‘A city whose 
residents have weak preferences regarding the skin colour of their neighbours has a susceptibility 
towards global segregation.’ He does not tell us, however, in virtue of what exactly such 
susceptibility can be considered warranted. 
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a model that provides a causal HPE. To go back to the example above, it would mean 

showing the impact of a specific division of labour on the success of inquiry under a set 

of conditions typical for research in a particular scientific domain. 

 

Since the difference between causal HPE and ep-op HPE rests in the epistemic status of 

the initial conditions under which the observed regularity holds, the better we can specify 

such conditions, the more we are able to move away from an ep-op HPE and towards 

a causal HPE. This is where various validation procedures enter the stage. On the one 

hand, their purpose is to help us determine the conditions in the model world under which 

the results of simulations remain stable. On the other hand, validation helps us to relate 

these conditions to empirical phenomena. The former is the task of robustness analysis 

and the latter of an empirical embedding of the model. 

 

4.1 Robustness analysis 
 
As the name suggests, robustness analysis is a method of examining the robustness, or 

stability, of results of a particular model under changes in its assumptions. Depending on 

the kind of assumptions we focus on, we can distinguish between two types of analyses: 

 

a) Sensitivity analysis is a method of examining how sensitive the output of the 

model is to changes in parameters (Thiele et al., 2014).15 This analysis is used to 

determine the scope of parameters within which the results of a simulation 

remain stable. 

 

b) Derivational robustness analysis is a method of examining the robustness of 

results under changes in the (idealising) assumptions of the model.16 This is 

especially important in the case of highly idealised models, where it is usually 

difficult to assess whether idealisations impact the results or not. One way of 

conducting a derivational robustness analysis is by using a family of ABMs to 

                                                           
15 Gräbner (2018) considers sensitivity analysis a part of verification rather than validation, because 
its purpose is to explore the results, rather than link them to a specific target. This view, however, 
disregards the fact that sensitivity analysis can be informative in this sense as well. For example, if 
it turns out a particular result occurs only under a small portion of the parameter space, this would 
pose an additional requirement on examining whether these parameters correspond to any empirical 
circumstances. 
16 Derivational robustness construed this way includes both ‘structural robustness’ and 
‘representational robustness’ as defined by Weisberg & Reisman (2008), where the former stands 
for stability of the results under changes in the causal structure of the modelled system, and the 
latter for stability of the results under changes in the representational framework of the model. For 
discussions on derivational and representational robustness, see Woodward (2006), Ylikoski 
& Aydinonat (2014), Lehtinen (2018), Railsback & Grimm (2011, pp. 302–306), Kuhlmann (2021). 
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gradually vary the assumptions of the initial model and examine how such 

changes impact the results (Aydinonat et al., 2020). Another option is to use 

structurally different models aimed at representing the same target phenomenon: 

this approach can help reveal the impact of implicit assumptions and 

idealisations. 

 

While robustness analysis can help us to better understand the ABM in question, it is 

typically insufficient as a method of specifying the empirical conditions under which 

particular results hold (see, e.g., Houkes & Vaesen, 2012). For instance, if the analysis 

shows that the results are relatively stable, we may still have insufficient evidence to claim 

that they are representative of a given empirical target. Perhaps a specific assumption in 

the model whose impact has not yet been examined could be making all the difference. 

Or it could be the case that the empirical target is best represented in terms of very specific 

parameter values, which have not been carefully examined by robustness tests. To amend 

this problem, robustness analysis needs to be supplemented with, and guided by, an 

empirical embedding of the model. 

 

4.2 Empirical embedding and model validation 
 

As mentioned above, the robustness analysis can be guided towards an examination of 

those assumptions that correspond to the intended empirical target. This allows us to 

check whether the causal dependency inferred from the model holds under assumptions 

which are empirically relevant. But how does one make sure the relevant assumptions are 

well embedded and indeed correspond to the relevant empirical phenomena? This is done 

via different strategies jointly known as empirical validation of ABMs.17 Following 

Gräbner (2018), I list some of the most relevant procedures. 

 

a) Process validation concerns the question of how well mechanisms represented 

in the model reflect our empirical knowledge about them (Gräbner, 2018). To 

this end, the strategy of enhancing the theoretical realism of the model by 

information based on our knowledge from sociology and the philosophy of 

science can be helpful (Casini & Manzo, 2016; Šešelja, 2021). For instance, 

exchange of information among scientists has been typically represented as 

a simple sharing of results of scientific studies (e.g., Grim et al., 2013; Weisberg 

& Muldoon, 2009; Zollman, 2010), but qualitative philosophical accounts of 

                                                           
17 Literature on this topic is plentiful, see, e.g., Arnold (2019), Beisbart & Saam (2018), Boero 
& Squazzoni (2005), Casini & Manzo (2016), Gräbner (2018), Guerini & Moneta (2017), Richiardi 
et al. (2006), Tesfatsion (2017), Thicke (2020). 
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scientific communication often emphasise critical interaction (e.g., Longino, 

2002, Longino, 2022, Chang, 2012). For this reason, inclusion of this aspect in 

ABMs of science when examining the robustness of previously obtained results 

may be one way of conducting their process validation (e.g., Borg et al., 2018; 

Frey & Šešelja, 2020). 

 

b) Input validation concerns the question of whether the exogenous inputs for the 

model are empirically meaningful and appropriate for the purpose at hand 

(Tesfatsion, 2017). This may include behavioural assumptions ascribed to the 

agents, the initial conditions, parameter values, etc. (Fagiolo et al., 2019). If 

parameters in the model are adjusted so as to reflect or include concrete 

numerical information, we say a model is ‘empirically calibrated’ (Boero 

& Squazzoni, 2005). In the case of ABMs of science, this would mean for 

example adjusting the number of agents in a model according to the size of 

a particular scientific community or representation of social networks in the 

model based on bibliometric data (Martini & Pinto, 2016; Perović et al., 2016; 

Thicke, 2019). 

 
c) Descriptive and predictive output validation concern the question to what extent 

the output of the model replicates existing knowledge about the target and 

whether it can predict its future states (Gräbner, 2018; Tesfatsion, 2017; Thicke, 

2019). For instance, if a model aims at representing a certain episode from the 

history of science, then under specific initial conditions the macrobehaviour of 

simulated agents should correspond to our historical knowledge of the case study 

in question. 

 

All in all, validation of ABMs is essential for determining the details of targets they 

represent. In particular, validation supplements and guides the robustness analysis in 

determining the conditions under which the causal dependency identified via the model 

holds. By following the above validation strategies, we can move the explanation based 

on a particular model from ‘epistemic opaqueness’ to a causal HPE (or to a HAE). In the 

following section, I illustrate this point with a class of ABMs of scientific interaction. 

 

5 ABMs of scientific interaction: zooming in on the target 
 

In this section, I look into a class of ABMs which were developed to represent the effects 

of scientific interaction on the efficiency of inquiry. The main question these models aim 

to address is how different degrees of connectedness across a given scientific community 

impact the efficiency of knowledge acquisition. While at first sight, a high degree of 
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interaction would seem purely beneficial, simulations have shown that this need not 

always be the case. For instance, if misleading information spreads quickly through the 

scientific community, scientists may collectively end up choosing a wrong theory. 

 

To understand the root of this problem, it is useful to clarify the trade-off between 

‘exploration’ and ‘exploitation’, to which it is closely related. The relationship between 

exploration (search for new possibilities) and exploitation (the use of existing options) 

has long been studied in theories of formal learning, organisational sciences, etc. (March, 

1991). It is easy to see that a similar trade-off may take place in the context of scientific 

inquiry: given a particular scientific problem, one can either explore novel ideas and hope 

to find solutions which are better than the existing ones, or stick with the currently 

available hypotheses and use those instead. Depending on the difficulty of the problem, 

different strategies of balancing between exploration and exploitation are more suitable: 

for instance, if a solution to a problem is hard to find, scientists may need to invest their 

resources in exploration before focusing on exploiting existing ideas. 

 

Simulations of scientific interaction were inspired by the idea that different 

communication networks among scientists, characterised by varying degrees of 

connectedness (see Figure 2), may have a different impact on the balance between 

exploration and exploitation. In particular, if an initially misleading idea is shared too 

quickly through the community, scientists may lock in on it and prematurely abandon 

their search for better solutions. Alternatively, if the information flow is slow and sparse, 

important insights gained by some scientists, which could lead to an optimal solution, 

may remain undetected by the rest of the community for a long time. 

 

 
 

Figure 2. Three types of communication networks, representing an increasing 

degree of connectedness: a cycle, a wheel, and a complete graph. The nodes in 

each graph stand for scientists, while edges between the nodes stand for 

transmission of information between two scientists. 

 

In what follows, I will look at a class of ABMs of scientific interaction starting with the 

pioneering work by Kevin Zollman. After suggesting an epistemically opaque how-

possibly explanation (ep-op HPE) that can be drawn from his models, I proceed to 
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examine how subsequent research allowed for specification of further conditions under 

which the observed regularity holds. 

 

5.1 Scientific interaction and bandit problems 
 

A set of ABMs developed by Zollman (2007, 2010, 2013) is based on the idea that 

scientific interaction can be studied in terms of ‘bandit problems’. Bandit problems, well-

known in economics and statistics, are a prime example of the exploration–exploitation 

trade-off. They concern a situation in which a gambler, or a group of gamblers, is 

confronted with multiple slot machines (‘bandits’), which have different probabilities of 

success. While gamblers aim to maximise their overall reward, it is not immediately clear 

how long they should test each available machine and at which point they should stick 

with one that seems to give the highest payoff. If we further suppose that gamblers can 

share information among themselves and that each gambler sticks to the machine that 

seems to give the highest reward, we can ask: Which communication network will 

increase their chance to identify the machine with the highest payoff? 

 

Zollman starts with the idea that this type of uncertainty is similar to one which scientists 

find themselves in when confronted with multiple rival hypotheses. Using a framework 

developed by Bala & Goyal (1998), he investigates which types of communication 

networks increase the chance that a scientific community, confronted with two rival 

hypotheses, successfully identifies the better of the two. 

 

At the beginning of the simulation,18 scientists—represented as Bayesian reasoners—are 

assigned random prior probabilities for two rival hypotheses, each of which has 

a designated objective probability of success. Agents always choose to pursue a theory 

which they believe to be better. During the simulation, they update their beliefs based on 

their own findings and the information they receive from their neighbours within 

a particular social network. Zollman examines three kinds of social networks from Figure 

2. Scientists are successful if they manage to converge on the objectively better 

hypothesis (i.e., one that has a higher objective probability of success). 

 

His results suggest that a high degree of interaction can be harmful. Because the initial 

findings about the hypotheses may be misleading, when scientists are linked via 

a complete graph the misleading information will spread quickly throughout the 

community. Consequently, the entire community may prematurely abandon the 

objectively better hypothesis. 

                                                           
18 I am describing Zollman’s (2010) model, which is a generalised version of his 2007 proposal. 



Invited papers  33 

 

Zollman also observes that if scientists start with extreme prior values, representing 

agents who stick to their hypotheses, the misleading information will not affect them early 

on. In fact, the complete graph is in such scenario more successful than the cycle.19 

 

Altogether, the simulation results in the following ep-op HPE: 

 

(High-inf) It is logically possible that a scientific community prematurely 

abandons the better of two rival hypotheses because of a high degree of 

information flow among the scientists. 

 

To turn a High-inf into a causal HPE from which we could make inferences about real-

world possibilities, we need to specify the conditions under which this regularity holds. 

While Zollman provides one such condition, namely the absence of extreme priors, 

subsequent research has examined some additional factors. 

 

5.2 The context of difficult inquiry 
 

A number of related studies had shown that the main domain of application of Zollman’s 

results is the context of a difficult inquiry. I take a brief look at these results and classify 

them according to the type of validation procedure they support. 

 

Sensitivity analysis. Rosenstock et al. (2017) conducted a sensitivity analysis of 

Zollman’s findings and showed that the ‘Zollman effect’—the superior performance of 

the cycle versus the complete graph—holds only for a small part of the relevant parameter 

space. In particular, they show that the result obtains when the two relevant hypotheses 

are similar in terms of their objective probability of success, the population size is small, 

and the amount of data collected by scientists on each round is likewise small. The authors 

conclude that these factors are characteristic of difficult learning, because scientists either 

have a hard time distinguishing between the rival hypotheses or their data is sparse. Such 

conditions make it easier for misleading information to propagate through the community 

and sway it to the wrong hypothesis. 

 

All in all, the results of sensitivity analysis restrict the application domain of High-inf to 

the context of difficult inquiry. 

 

                                                           
19 This result is obtained by stopping the simulation after a certain number of rounds. Given 
sufficient time, agents in all networks end up on the correct hypothesis. 
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Derivational robustness. Restriction of the application domain to the context of difficult 

inquiry finds further support in results obtained by some structurally different ABMs. 

First, the ABM by Lazer & Friedman (2007), which was developed in organisational 

sciences, arrived at a similar conclusion. Their model is designed to study the problem-

solving performance of agents linked via different social networks using 

a multidimensional epistemic landscape. The authors observe that in complex tasks that 

require a problem-solving capacity to extend over a longer period of time, highly 

connected networks perform worse than the less connected ones. Similar to what happens 

in Zollman’s model, highly connected groups quickly converge on a single approach, thus 

failing to preserve the diversity of ideas needed to solve complex tasks. 

 

Results supporting High-inf have also been obtained with subsequent ABMs based on 

epistemic landscapes (e.g., Grim, 2009; Grim et al., 2013; Derex et al., 2018), which 

suggests their derivational robustness (although see below). 

 

Empirical output validation. Finally, the output of these models was reproduced by 

some empirical studies. For example, Mason et al. (2008) as well as Derex & Boyd (2016) 

conducted computer-based experiments in which participants linked via different 

communication networks were confronted with certain problem-solving situations. Both 

studies concluded that less interconnected groups outperform the more connected ones 

because they are able to preserve diversity and explore the space of possible solutions to 

a higher degree. 

 

While all of these findings support High-inf under the conditions of difficult learning, we 

ought to be cautious with their extrapolation to actual scientific inquiries. One thing to 

note is that all of the above-mentioned studies are based on the assumption—integral to 

both the simulations and the experimental setup of empirical studies—that there is a trade-

off between exploitation and exploration. But it should be noted that neither is actual 

scientific inquiry necessarily based on this trade-off, nor do results obtain once the trade-

off assumption is relaxed. 

 

5.3 Relaxing the exploration/exploitation trade-off 
 

When scientists pursue a theory, it is not uncommon that along the way they acquire 

information relevant to the assessment of a rival theory. For example, scientists may 

detect some explanatory anomalies in their current theory (e.g., evidence that cannot be 

accounted for by that theory) that could be explained by the rival theory. As a result, 

research into the former (exploitation) could inspire and lead to research on the latter 

(exploration). 



Invited papers  35 

 

These considerations inspired ABMs and empirical studies that relaxed the 

exploration/exploitation trade-off. Here, I review some examples. 

 

Derivational robustness in view of exploratory agents. Kummerfeld & Zollman (2016) 

developed an ABM of scientific interaction based on an analogy with bandit problems, 

but this time allowing agents who pursue one hypothesis to also occasionally acquire 

information about a rival hypothesis. Their results show that higher levels of exploration 

by agents go hand in hand with benefits of increased connectivity among them. 

 

The positive impact of high levels of interaction has been observed also in a structurally 

different model: argumentation-based ABM (ArgABM) (Borg et al., 2019, 2017, 2018). 

ArgABM aims at capturing the argumentative dynamics underlying a scientific inquiry. 

The model employs an ‘argumentative landscape’ representing rival research 

programmes or theories in a given domain which scientists gradually explore. Each theory 

consists of ‘arguments’, which stand for studies supporting a particular theory. These 

arguments can be challenged (‘attacked’) by studies belonging to rival research 

programmes or defended by further arguments developed within the same programme. In 

this way, the argumentative landscape allows for the representation of both false positives 

(acceptance of a false hypothesis) and false negatives (rejection of a true hypothesis). The 

success of inquiry is measured in terms scientists converging on the theory that is 

predefined as fully defensible within the landscape (initially unknown to the agents). 

 

The results of ArgABM indicate that a high degree of interaction among scientists is 

beneficial. The more connected agents are, the better their chances of converging on the 

best theory, and this holds under a variety of conditions of inquiry. 

 

The main reason ArgABM delivers this result lies in the following two modelling 

assumptions. First, when agents explore a theory, they also gain information about rival 

theories in the form of argumentative attacks or defences of own theory. For instance, by 

finding an argument in my theory that attacks the rival theory, I identify a potential 

problem in the latter. Alternatively, if I encounter an attack on my own theory, I will learn 

the argument from the rival theory (this could represent a scenario in which proponents 

of the rival theory publish a study showing they are able to explain certain phenomena 

which our theory cannot explain that well). As a result, exploitation includes a degree of 

exploration. 

 

Second, to accurately evaluate a theory (e.g., in terms of the number of ‘anomalies’ 

represented as attacked and undefended arguments in a theory, see Borg et al., 2019), 
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agents need a sufficiently detailed knowledge of the argumentative landscape. If 

a scientist knows only a part of the landscape, she may assess a particular theory as 

unproblematic, while in fact she has not learned about its problematic parts. This 

corresponds to a scenario in which scientists, having read a few studies in favour of 

a particular research programme, conclude that the programme is feasible, but they failed 

to read other studies, which show that results presented in the former ones could not be 

replicated or are based on a methodological error. As a result, less connected groups will 

suffer from greater information losses, making it more likely that their assessment of 

a particular theory is inaccurate. 

 

Empirical output validation. In contrast to the previously mentioned empirical studies, 

an experiment run by Mason & Watts (2012) resulted in the conclusion that a higher 

degree of connectivity is actually rewarding. Unlike the former experiments, this study is 

based on a relaxed assumption about the exploration/exploitation trade-off. Exploitation 

of existing ideas does not necessarily restrict participants to the local maxima. Instead, 

they have the option of going on to individually search for better solutions. 

 

In sum, several studies that relaxed the assumption about the trade-off between 

exploration and exploitation failed to replicate High-inf, thus pointing to limitations of its 

application. Additionally, the ArgABM highlighted the negative aspect of information 

loss that can take place in loosely connected communities. 

 

5.4 Alternative mechanisms of diversity 
 
Derivational robustness under the assumption of cautious agents. Frey & Šešelja 

(2020) have conducted an additional derivational robustness analysis of Zollman’s (2010) 

model by enhancing it with a number of assumptions characteristic of a difficult inquiry.20 

That study is therefore also a contribution to the process validation mentioned in Section 

4, while more specifically, it focuses on the robustness of results once the process of 

difficult inquiry is captured in terms of empirically relevant assumptions. 

 

The most important finding of those simulations is that even in the context of difficult 

inquiry, a high degree of information flow is not necessarily harmful. On the contrary, 

more connected networks may outperform the less connected ones. In particular, if 

diversity is generated in some other way than by the means of network structure, a high 

                                                           
20 The code of their model, available at https://github.com/daimpi/SocNetABM/tree/RobIdeal, also 
includes Zollman’s ABM as a nested variant and thus provides an easily accessible tool for its 
verification. 
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information flow will not have a negative impact on the efficiency of the group. For 

instance, if scientists are equipped with a dose of caution, or ‘rational inertia’, when 

deciding whether they should abandon their current theory and start pursuing a rival one, 

the cycle is no longer superior to the complete graph. 

 

Moreover, addition of the assumption that agents interact critically does not on its own 

help the complete graph to catch up with the cycle: for that to happen, scientists must be 

cautious in their decision-making (for instance by displaying a degree of resistance 

against changing the theory they had endorsed).  

 

All in all, these results further specify conditions under which the High-inf holds. 

 

5.5 From ep-op HPE to causal HPE 
 

To sum up, the studies reviewed above suggest that the explanation obtained from 

Zollman’s original model can be expressed as follows: 

 

(High-inf-causal) It is causally possible that a scientific community prematurely 

abandons the better of two rival hypotheses due to a high degree of information flow 

among scientists under the following conditions: 

 

 that the inquiry is difficult 

 theoretical diversity is not generated in some other way (e.g., by scientists having 

extreme priors or a tendency to stick to their hypotheses) 

 that pursuit of one hypothesis does not allow for insights into its rivals (i.e., there 

is a strict exploration/exploitation trade-off) 

 potentially some additional assumptions. 

 

While in the original model, we could only draw an ep-op HPE without a clear application 

domain, subsequent studies allowed us to zoom in on the target that the model actually 

represents and for which the observed causal mechanism appears to hold. Of course, 

further studies may reveal that additional specifications are needed or that some of the 

existing ones ought to be revised. 

 

The preceding discussion also illustrates that the difficulty of extrapolating findings from 

a model to an empirical application domain holds not only for ABMs but also for 

empirical experimental studies. 
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6 Conclusion 
 

In this paper, I explored the epistemic benefits of running computer simulations in the 

philosophy of science and the kinds of inferences one can draw from them. I have argued 

that models can represent (i) logical possibilities, (ii) real-world possibilities, or (iii) real-

world phenomena, where each category comes with specific explanatory features. By 

using strategies of verification and validation, we can identify the class to which 

a particular ABM belongs. While abstract, highly idealised models prima facie allow only 

for the inference of a causal possibility under unknown circumstances, the process of 

validation by the means of other ABMs as well as empirical studies can help reveal these 

conditions. 

 

In conclusion, let me make a few general points. First, highly idealised ABMs of science 

should be appreciated even under conditions of a minimal degree of verification and 

validation required for obtaining ep-op HPE. In this form, they can assume a variety of 

epistemic functions, ranging from providing conjectures about scientific inquiry and 

starting a new family of models all the way to contributing to the validation of other 

ABMs. Second, the development of new ABMs and their subsequent validation is best 

considered in terms of broader inquiries consisting of classes of ABMs, but also empirical 

studies targeting the same phenomenon. Third, there is no reason to see the highly 

idealised nature of ABMs of science as their drawback. As long as the model is subjected 

to an adequate process of verification and validation with respect to its purported aim and 

target, it can be an important step forward in our understanding of scientific inquiry. 
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