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Abstract

We rigorously describe the relation in which a credence function should stand to
a set of chance functions in order for these to be compatible in the way mandated
by the Principal Principle. This resolves an apparent contradiction in the literature,
by means of providing a formal way of combining credences with modest chance
functions so that the latter indeed serve as guides for the former.

Along the way we note some problematic consequences of taking admissibility
to imply requirements involving probabilistic independence. We also argue, contra
[12], that the Principal Principle does not imply the Principal of Indifference.

Keywords: Principal Principle, chance, credence, admissibility, consistency,
Principle of Indifference.

1 introduction

The Principal Principle (“the PP”) has been proposed as a condition of rationality on
agents with credences about chances. It requires, roughly, and with caveats we will
investigate below, that, for any proposition A, given that the chance of A is x, the
agent’s credence in A be x. While David Lewis proposed it in the context of his general
philosophical framework of Humean Supervenience, and in fact intended it to explicate
the core of the concept of chance, the main idea had been around for a long time.
The idea in question – of a direct inference principle which identifies values of some
probabilistic credences with values of objective chances or frequencies – goes by various
names and has been articulated in many different ways. Peirce dubbed it “probable
deduction” [24]. Some logicians refer to it as a “statistical syllogism”.1 But out of the
many alternatives the PP is quite likely its most widely known example and is currently
one of the few generally accepted norms of Bayesian rationality [26].

The authors writing about the PP seem to share the assumption that both the
credences of rational agents and the objective chances are classical probabilities; we
will also require that. A rational agent’s credence (degree of belief) function is, then, a
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1See, among others: [33, 28, 29, 14, 15, 16, 27, 32].



classical probability function.2 Postulating the PP means that we require more: not just
any probability functions are permitted as rational, but only those in which credences
are coordinated in a particular way; where, specifically, conditional credences achieve
the values uniquely determined by the two propositions involved (e.g., by A and the
chance of A is .3 ).

For decades now, the philosophical community has discussed the credences satisfying
the PP, without making sure that such probability functions exist (in other words:
whether the PP is consistent3). As far as we know, Lewis himself never produced an
example of such a function in writing. Perhaps most of the authors involved thought
the issue was trivial, and that one could always suitably extend the agent’s probability
space as needed. However, the lack of attention given to PP’s consistency may seem
surprising when we note that the principle is, indeed, still stronger a condition than
just the coordination requirement outlined above. Not only should a rational agent’s
conditional credence (at some fixed time) in A given that the chance of A is .3 be .3; this
credence should supposedly be unperturbed if we choose one of a host of propositions
“admissible” at that moment, and append it to the given chance proposition. If, in other
words, E is an admissible proposition, then the PP requires that one’s credence in A

given E and that the chance of A is .3 be .3. Assuming that Lewis and his followers can
suitably fix the domain of admissible propositions, the PP seems to be an even more
substantive condition on probabilistic credence functions and the question arises again
as to whether functions satisfying it even exist in the first place.

One could entertain the thought that, as guides to credences, some chance functions
are more forthcoming than others. That is, that there might indeed be some chance
functions which, if the propositions about their values are in the domain of the given
agent’s credence function, allow for the coordination required by the PP. This would
be enough to show the consistency of the PP in probably the weakest useful sense.
Perhaps, though, in the case of some other chance functions such a coordination was
impossible. A newcomer to the field might be quite surprised to see that, after four
decades of discussion, the literature on the problem of PP’s consistency seems to be
contradictory. A group of authors, Lewis among them, believes that the situation just
described in fact occurs: only so-called “immodest” chance functions can play the role of
guiding our credences as the PP mandates.4 A different group (see e.g. [1] and [9]), after
approaching the issue with formal rigor, concluded that any credence can be coordinated
with any chance function in the way required by the PP. One goal of the current paper
is to address this seeming contradiction. Along the way we will contribute to the formal
investigations regarding the consistency problem. However, perhaps the more surprising
contribution stems from our discoveries concerning the notion of admissibility: we argue
that, if we put the probability spaces satisfying the PP under careful scrutiny, we should
arrive at the conclusion that the notion of admissibility should either be abandoned or
given a different formal treatment than the one usually adopted.

The paper is structured as follows. Section 2 introduces the PP in roughly the
same semi-formal way as the one used by Lewis. In Section 3 we point out surprising
restrictions on agent’s credence functions stemming from the use of the notion of
admissibility as intended by Lewis and, it seems, a large portion of writers on the
topic. In Section 4 we tackle the contradiction just outlined, offering our take on the
consistency problem. The style of the body of the paper is intended to be semi-rigorous.

2A probability space is a tuple (W,F , P ), where W , the sample space, is a non-empty set, F is a
sigma algebra over W , and P , the probability function, is a sigma additive mapping from F into [0, 1],
such that P (W ) = 1.

3Among the few exceptions are the papers [1, 9]; see below.
4For a concise formal paper exploring this topic, see [25] (but do read Section 4 below); the issue

stems from a philosophical problem outlined in [18].
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All formal details, including the definitions of the employed notions and proofs of
theorems, are in the Appendix. The readers interested only in the PP’s consistency
may safely skip Section 3.

Let us spoil the takeaway. Discussing the PP’s consistency requires determining:

1. whether the probability spaces in question exist; and

2. if they do, whether they are fit for their intended philosophical role.

As for point 1, the answer is “yes”; we hope that after reading this paper the reader will
agree that we now understand more about what such probability spaces look like. As
for point 2, the answer is “no, if we do not fundamentally revise our understanding of
admissibility, or remove any mention of admissibility from the formulation of the PP”.

2 the initial setup

In a typical formulation, the PP requires from an agent with a credence function5 P ,
that regarding a proposition A, assuming that X says that the chance of A is x,

P (A | XE) = x, (1)

provided E is “admissible”. We will focus on admissibility in Section 3; for now, the
following gloss from Lewis himself should suffice: “Admissible propositions are the sort
of information whose impact on credence about outcomes comes entirely by way of
credence about the chances of those outcomes” [17, p. 92].

This formulation is still present in the literature, having been recently used e.g. by
[12] in an influential article on the relationship between the PP and the Principle of
Indifference. We shall adopt it as one of the two main formulations for the current
paper, with implicit universal quantification over A, E, and x, and with the caveat that
the proofs will eventually require us to be more rigorous. We do have to note, though,
the existence of at least two additional ways in which the Principle has been expressed.

One of these is due to Lewis himself and requires us to refer to:

• “the complete theory of chance for world w”, Tw;
• “the complete history of world w up to time t”, Htw;
• “a reasonable initial credence function”, P ;
• “the chance distribution that obtains at t and w”, chtw;

and, given all that, to say that the PP requires that for any time t, world w, and
proposition A,

chtw(A) = P (A | HtwTw).
6

We will not use this formulation in the current paper since our goal here is to engage
the philosophical discussion of the PP with rigorous formal results, to which this way
of putting things does not lend itself easily.7 We do not have information about the
language in which the history of the world and its theory of chance will be specified: it
is probably supposed to be that of the Best System (see Section 2 of [3]). The theory
Tw is supposed to consist of all conditionals “from history to chance” that hold at w8.

5This P is usually taken to be the agent’s initial credence (see e.g. the persuasive arguments in
[22]). This matter is orthogonal to our discussion and so will not be covered here.

6All quotations come from [17, p. 97]; we have introduced small notational changes.
7Note, however, the opposing opinion of [30], who presents a “proof” of the PP in this formulation.
8[17, p. 97].
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The matter of the logic of conditionals is difficult in itself, and doubly so if we do not
know the language in which they are expressed. In any case, some more extended
discussion is needed before we assume that Htw’s and Tw’s “behave” formally in a way
that would allow them to be in the domain of a probability function.9 If we adopted this
formalism and wanted to propose a rigorous mathematical argument, we would need to
add substantial formal assumptions that would perhaps not be justified according to
Lewis and others who had used it. Therefore it will be safer to avoid the “history and
theory of chance” way of phrasing the PP from now on.

The first way of formulating the PP that we’ve introduced crucially requires the use
of some proposition which specifies the chance of some other proposition. We will call
propositions of this sort local chance propositions; in the literature on the PP they are
usually referred to by the capital letter X. They should be contrasted with propositions
which specify the whole chance function, which we will call global chance propositions.10

A part of the PP literature uses global chance propositions in its formulation of the
principle. Informally, the principle then relates, for each proposition A and chance
function ch, the credence in A and the credence that the actual chance function is
ch, so that the credence in the former given the latter is ch(A). The reference to a
global chance proposition Cch (“that the chance is given by the function ch”) appears
e.g. in [25]; there (with small notational changes), the Principle is given as relating a
time-indexed credence P t with evidence the agent has gathered up to t as

P t(A | Cch) = ch(A | Et), (2)

with the original Principle recovered as the special case for tautologous evidence and
initial credence P :

P (A | Cch) = ch(A). (3)

The similarity of (1) and (3) should be evident. One difference is that the former
concerns the chance proposition as specifying only the chance of A. Another is that the
latter omits any reference to admissibility. Why this might be a good choice will be
one of the topics of Section 3 below. Lewis himself used a similar formulation of the
PP in his 1994 paper. This will be the second formulation of the PP we will use here;
eventually, we will touch the issue of the relationship between the two.11

When discussing the consistency problem, we will, in a nutshell, be considering
whether a credence function P on some body of propositions F can be combined with
a set CH of chance functions in the right way. By this we mean that the resulting
credence function P ′, defined both on F and on the chance propositions relating to
the chance functions from CH, agrees with P on the members of F and meets the
requirements given by the PP: then we will say that P is CH-PP-compatible. The
definition is somewhat intricate (especially since we will consider two variants of the

9Note that this is true even if we straightforwardly identify propositions with sets of possible worlds.
10Of course, it might very well happen that a local chance proposition is a global chance proposition

(if propositions are sets of possible worlds), or at least it is true at the same set of worlds. (Suppose
there are three worlds, and only one of them, w1, is governed by a chance function, ch1, which says
that the chance of A is .2 (according to the two other chance functions this chance is different). Then
if we consider the global chance proposition Cch1 and the local chance proposition X defined as that
the chance of A is .2, we will see that they are both true at exactly w1. If propositions are sets, then
both of these propositions will literally be the singleton {w1}.) Also, depending on one’s preferred
metaphysical account of chance, it might very well be the case that every proposition is in some sense
a chance proposition: if a proposition is true at the set of worlds S, then the actual chance function
belongs to the set of the chance functions governing the worlds from S. However, in this paper we aim
to stay away from metaphysics, and so will not discuss such issues further.

11Let us note one doubt one might have about expressing the Principle as (2): the PP was intended
to be a synchronic rule for coordinating one’s credences with one’s credences about chances, while (2)
makes it look as a belief update rule, a constraint on agents learning from evidence [37, p. 508].
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compatibility relation corresponding to the two formulations of the PP mentioned
above) and we decided to leave the details out from this introductory Section (please
consult Definitions B.1.7 and B.1.8 in the Appendix, and in particular section B.1 which
collects the main notions employed in those Definitions). However, the gist just given
should be enough to see that there are various questions that could be asked regarding
the consistency problem, which employ different quantification. For example, is every
credence function CH-PP-compatible with every CH? If not, is every credence function
CH-PP-compatible with some CH? What, then, are the necessary and sufficient
conditions on P and CH so that P would be CH-PP-compatible? These are the issues
we discuss in Section 4.

Before we talk about admissibility, let us get one more mundane thing out of the
way. Typically, we speak about a probability measure P understood as an element of
the probability space (W,F , P ). Usually, if W is finite, the F is its power set.

3 being serious about admissibility

The Principal Principle says that a credence in a proposition A given some proposition
E and a chance proposition which states that the objective chance of A is x should be x,
providing that the conditional probability is well-defined and E is “admissible” at t. As
even such a rough formulation makes clear, some account of admissibility is crucial for
the viability of the Principle: its scope and power depend on it. If any piece of evidence
is admissible, then the Principal Principle applies in any setting but is inconsistent [17,
p. 92]. If nothing is admissible, then the Principle is vacuous. For perhaps the easiest
source of examples of inadmissibility, consider the cases where E entails A: then we
cannot demand that P (A | XE) = x (for x other than 1) on pain of contradiction with
the fact that P is a classical probability function, and so P (A | XE) = 1 (if defined
at all)12. One of the roles of admissibility is to help us restrict the scope of the PP so
that it does not apply to these cases. Anyway, the authors employing admissibility in
their discussions of the PP have to believe, of course, that admissibility can indeed
happen; we believe it a fair, if vague, assessment that according to them admissibility
is not very rare. Still, we have not found in the literature a controversy around the
PP holding only very rarely.

In spite of the importance of the notion, however, spelling out what admissibility
consists of has turned out to be a controversial undertaking. Apart from the criterion
that deems inadmissible a proposition E whenever it entails A as per the previous
example, even Lewis’s sufficient (or almost sufficient) conditions for admissibility have
not been exempt from doubt.13 In this essay we will not attempt to spell out a
substantive account of the notion that would tell us exactly which propositions are
inadmissible [34].

For our purposes it is enough to assume the informal characterization of the notion
that comes from Thau’s work [31] and on which many scholars [19, 13] have converged
together with a formal rendering of it that is just as popular [11, 34, 21, 12, 35].
According to the rough characterization in question, a proposition is admissible at t “if
it does not provide direct information about the outcome of a chancy event that occurs
subsequently to t” [31, p. 500]. A formal counterpart of this rough characterization of

12More on this in Section 3.1 below.
13[23] has recently argued that not all historical propositions are admissible, and from a Humean

perspective even hypotheses about objective chances might not be such (see, for example, Chapter 3 of
[36]).
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admissibility is the idea that a necessary14 condition for a proposition to be admissible
at t is probabilistic independence: when X says that the chance of A is x, then if
some E is to be admissible, then P (A | XE) = x ([35]). Since by the PP (assuming,
noncontroversially, that tautologies are admissible) P (A | X) = x, this means that
P (A | XE) = P (A | X); that is, in the induced probability space15 with the measure
PX , A and E are probabilistically independent: PX(A | E) = PX(A). Catchphrase:
admissibility implies independence. (Cf. [35], p. 959: “failure of probabilistic
independence is a sure-fire way for admissibility to fail”.) This way of thinking assumes
that admissibility is parametrized only by time; we should note here that it will soon
become clear that this idea is problematic, and if admissibility is to be fruitfully retained
in the formulation of the PP, it should be relativised to more parameters.

We will introduce the problems with the idea that admissibility implies independence
by means of a few examples involving conditional probability in small structures. Imagine,
first, that you are throwing a fair, standard six-sided die and you are interested in
whether or not the result of the next throw is in the set {4, 5}. The die is six-sided;
therefore the chance of A (the proposition that the result of the next throw is either a
4 or a 5), ch6(A), is 1/3, since there are six atomic events, each with the chance 1/6 of
occurring, two of which make A true. It is quite easy to find an event probabilistically
independent from A: for example, if B is “the result of the next throw is an odd number”,
then ch6(A | B) = ch6(A), since B is irrelevant for the chance of A: the chance of A
given B is exactly the same as the chance of A.

However, things change drastically as soon as we tweak our example and consider a
scenario in which you are still interested in obtaining a 4 or a 5, but your fair die is now
five-sided (e.g., you use a six-sided one and reroll sixes until you get something else)
and the chance of A, ch5(A), is now 2/5 (again, due to there being five atomic events,
each with the chance 1/5 of occurring). Try as you might, you will not find a nontrivial
event B such that ch5(A | B) = ch5(A). In fact, if ch5 is the uniform measure assigning
1/5 to all atomic events, then there are no pairs of nontrivial events independent by the
light of ch5. This is an instance of a general phenomenon:

3.0.1 Fact. Assume (W,F , P ) is a finite probability space with P uniform. If the
number of atoms of F is a prime, then there are no events A,B ∈ F such that:

• both A and B are nonempty;
• both A and B are nonuniversal;
• P (A | B) = P (A).

For a proof, see [6]. (Still more is true: even if |W | is a composite number (as is typical
in certain applications, where the probability space is a product of spaces), if |B| is
relatively prime to |W |, then no non-trivial A independent of B exists. For a proof see
[6, Theorem 2].)

Notice that this has important consequences for anyone willing to consider the PP as
possibly holding in finite probability spaces and attempting to follow Lewis in employing
the notion of admissibility. If the agent’s probability space is such that a local chance
proposition X is true at a prime number of worlds, while the agent is indifferent as to
which of those is the actual one, in fact we have to conclude that there is no admissible
E: it is impossible to find non-trivial16 A and E so that P (A | X) = P (A | XE).

14Some scholars in the literature [11, 34] take it to be sufficient as well, but there is disagreement on
this [21, 35].

15For a probability space (W,F , P ) and an event X ∈ F , the probability space induced by the event
X is defined to be the probability space (X,F ↾ X,PX), where F ↾ X is the algebra F restricted to
X (also called the relativization of F to X, see [2, Def. 1.5, p. 132]), and PX(·) = P (· | X). When
writing PX , we assume that P (X) > 0.

16That is, different from the full and the empty set, but also different from X.
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For an example of this, consider the above two-dice example. Suppose you’re told
that four things can happen, each with probability17 1/4:

• a throw of a fair, standard six-sided die;

• a throw of a fair six-sided die with two sides labelled “4” and none labeled “5”;

• a throw of a fair six-sided die with two sides labelled “5” and none labeled “4”;

• a sequence of throws of a fair six-sided die terminating when a result different
from “6” is obtained.

Notice that in the first three options the chance of A is 1/3, and in the last one it is
2/5. Suppose that each option corresponds to a possible world in the set on which the
credence P is defined. The crucial thing is that if X is the local chance proposition
“the chance of A is 1/3”, then X is true at a prime number of worlds, so if P indeed
assigns 1/4 to each of the four above options, there will be no non-trivial E such that
P (A | XE) = P (A | X) = 1/3. If admissibility implies independence of this sort, then
the inescapable conclusion is that no non-trivial E is admissible. This might be a reason
to relativise admissibility not only to times (with which credence functions might be,
implicitly or explicitly, indexed), but also to chance propositions. In an example in
which the first three above options stay as they are, but the local chance proposition
Y = “the chance of A is 2/5” is true at four worlds, there could be a proposition E such
that P (A | Y E) = P (A | Y ) = 2/5, even though there would still be no E such that
P (A | XE) = P (A | X) = 1/3. There would then exist an E for which it would seem
natural to say that it is, at that moment, admissible relative to Y , but inadmissible
relative to X.

In any case, in finite spaces, we should be wary about considering any proposition
as admissible tout court : the existence of even a single nontrivial proposition of this
sort implies that for any real number x and for any proposition A, the number
of worlds at which the proposition “that the chance of A is x” is true is not
prime. We do not think this surprising restriction has been noted in the literature.
The more general issue, however, is to which set of parameters admissibility should be
relativised so that one could retain some hopes for the notion’s fruitfulness.

3.1 admissibility: parametrized?

Lewis assumed that admissibility is admissibility “at t”, that the credence function
is implicitly indexed by a moment, and whether a proposition is admissible or not
depends on the choice of that moment (which determines, for instance, whether that
proposition is about the past or not). He seems to have changed his mind in [18] due to
philosophical arguments concerning chance by [31]. However, let us note that a simple
formal reasoning should persuade one that the original approach was untenable. That
is, admissibility is not just admissibility “at t”, but something more akin to “at t, with
respect to A”.18

We will proceed by reductio. Assume the credence function P is implicitly indexed
by the time t, and suppose admissibility is admissibility “at t”. Suppose E is admissible.
Take an x different from 1 and consider the proposition X saying that the chance of E
is x. Assume P (XE) > 0. Then:

17Take these probabilities to be well-considered credences of a rational Bayesian agent, to be
contrasted with the chances involved in actual die-throwing. We would like to thank one of the
anonymous reviewers for pressing us on this point.

18This is not an original insight; see e.g. [31] and [10]. Note also that if you believe the PP only
concerns initial credences, when reading this subsection you of course need to fix the value of t as the
initial moment of the epistemic life of the agent you are considering.
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• P (E | XE) = x, by the PP;

• P (E | XE) = 1, by the fact that P is a classical probability function.

Therefore x = 1. Contradiction.
There are, it seems, three ways out of this which would not have us abandon anything

crucially important such as P being probabilistic or satisfying the PP. We can, first,
conclude that P (XE) = 0. But this assumption is made at the point where we have
chosen an x different from 1, ending with the proposition X. If this move was to work,
then, it would have to be the case that for any x, if X is the proposition that the
chance of E is x, then P (XE) = 0. However, it is very natural to assume that these
Xs form a partition (since every possible world gives rise to some chance of E), and so
we cannot escape the conclusion that P (E) = 0. Our agent would then be forced to
hold 0 credence in any admissible proposition.

The second move could be to say that admissibility “admits of degree”, and then
say that if E is, say, almost perfectly admissible, then P (E | XE) could diverge a little
from x. One could cite the somewhat ad hoc remarks from Section 8 of [18] in support
of this position. Note, however, that we cannot put much hope into this as a tool for
removing the above contradiction in general; it will not work if x is significantly lower
than 1. The idea that the PP might in general be expected to hold only loosely will be
considered as “Option 3” on p. 10 below.

The only solution, then, seems to be the third option of outright denying that E

is admissible. Then admissibility, as parametrized only by time, is empty. (Or, more
carefully, the only admissible propositions are those for which chance is undefined in at
least one possible world.) This would make the notion useless. To avoid this, we should
then consider propositions to be admissible, at t, with respect to other propositions : and
notice tangentially that no proposition is admissible with respect to itself.

At this point one might think that, assuming we fix some time t as the one at which
the credence P is considered, relativisation of admissibility to propositions is enough.
Instead of asking “is E admissible?” we should consider questions of the sort “is E

admissible with respect to A?”. A positive answer might presumably require, then, that
for any proposition X stating the chance of A, P (A | XE) = P (A | X). However, note
that admissibility so understood would be a very strong condition: the existence of
even a single chance proposition X true in a prime number of possible worlds of which
none are deemed privileged by the agent (whose credence is thus uniformly distributed
among them) makes E inadmissible with respect to A.

We have already seen an instance of this phenomenon. Our dice example illustrates
a case where one chance proposition has prime cardinality, hence admits no probabilistic
independence: there are no nontrivial events A and E which would be independent
in the induced space PCch5 . However, the other chance proposition in that scenario,
Cch6 , allows the existence of such propositions: indeed, E, “the result is even”, is
probabilistically independent from A, “the result is in {4, 5}”, in the space PCch6 . There,
getting to know E does not influence your credence in A, and in particular does not do it
while bypassing your credences about chances. It seems, then, that there is no obstacle
to regarding the E as admissible with respect to A and Cch6 , and as inadmissible with
respect to A and Cch5 . If we are using local chance propositions, we may say that
admissibility is always relativised to (time and) a chance proposition X about the
chance of A. If we wish to use global chance propositions, we need three parameters:
time, a proposition A, and a chance proposition Cch.
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3.2 the general rarity of admissibility

We believe the prime-number-related issue with admissibility is something to be con-
cerned about. The issue does not arise only in small spaces, of course. Fix some A

and a local chance proposition X about A such that you’re indifferent as to which of
the possible worlds in X is the actual one. If your X has 4482 atoms, there will be
propositions admissible with respect to it and A; if it has 4481 or 4483 atoms, there
won’t be any. We find this puzzling to the extent that we would indeed be fine with
abandoning the admissibility talk whatsoever—or taking this as an argument to use
infinite spaces. However, let us notice that the above phenomenon, that is, the total
lack of pairs of nontrivial independent events, which arises in the very specific spaces to
which we’ve pointed, has a perhaps more important general companion: the larger the
space, the ‘rarer’ the independent pairs.

To be precise: as the size of a finite uniform probability space increases, the
probability that two (uniformly randomly picked) events are independent converges to
zero. In large finite uniform spaces, then, most pairs of events are not independent. For
details, including the proof of this result, see Appendix A.1. Admissibility, in other
words, can be described as ‘rare’ in such spaces.

3.3 admissibility, defeaters and the principle of indif-
ference

We can apply the above discussion to partially assess the argument from [12] to the effect
that the PP implies the Principle of Indifference (PoI). (Partially, at this point, since later
we will show that the argument collapses in general—by presenting a counterexample,
that is, a probability space satisfying the PP in which the PoI fails;19 see Section 4 and,
for some detailed exegesis, Appendix C.).

Instead of talking about admissibility, the authors speak of “defeaters”: “We shall
take the claim that E is not a defeater to hold just when P (A | XE) = x = P (A | X)”
[12, p. 124]. We have shown that in some cases such non-defeaters simply do not exist.
The argument needs at least one to exist to get off the ground. The preliminary verdict
is, then, that the argument needs an additional assumption (to the effect that if X is true
at a prime number of worlds, then P is not uniform, since otherwise no non-defeaters
would exist). That said, we will provide a counterexample to the argument anyway
below.

3.4 admissibility: the takeaway

Given the above, what should we do with admissibility and the role it may play in the
formulation of the PP? It seems we have three options.

Option 1: abandon. Let us formulate the PP without any mention of admissibility.
The PP will then require from an agent with a credence function P , regarding a
proposition A, assuming that the local chance proposition X says that the chance of A
is x, that P (A | X) = x; a version using global chance propositions will also be easily
obtainable. While the original formulation may seem to be logically stronger (since this
one is a special case, implicitly using a tautologous proposition after the conditioning
bar as an example of an admissible one), we believe this is indeed only a seeming, not
reality, due to the murkiness of the notion of admissibility. This is the option we prefer.

Option 2: go infinite. If prime numbers seem to be a problem, and admissible
propositions are harder and harder to come by as the cardinality of the space rises,
perhaps it would be fruitful to demand that every probability space satisfying the PP

19Note that the example will come with a caveat.
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be infinite. This invites a host of issues which taken together would surely deserve a
separate paper. Spelling out the PP in infinite contexts is decidedly nontrivial and there
are many variants to be considered.20 It would be natural, for example, to consider local
chance propositions according to which chances belong to segments of real numbers21,
instead of being equal to a real number. If Xx is “the chance of A is x”, then an agent
might have a credence such that for any x their credence in Xx is 0, and so P (A | XxE)

is undefined (regardless of what the E is); however, at the same time their credence in Y ,
that is, say, “the chance of A belongs to [.1, .2]” might be positive. Such an agent might
satisfy the condition P (A | Y ) ∈ [.1, .2], which, suitably generalized, would perhaps lead
us to some principle intuitively in the spirit of the original PP.

Option 3: go imprecise. Perhaps the PP shouldn’t be expected to work perfectly :
we should accept slight deviations from strict identities. In Section 8 of [18] Lewis
explicitly considers “degrees of admissibility”. It is not obvious how one should think of
them. For example, [21] takes the position that if E almost satisfies the philosophical
desideratum of not revealing anything about our future history, then (assuming Y says
“the chance of A is y”) the value of P (A | Y E) may be constrained to y “even though
E is not perfectly admissible” [21, p. 53]. For Masterton, then, the imperfectness of
admissibility of a proposition has no influence on the strict identities between relevant
probabilities. However, Lewis himself writes that in such cases these identities should
hold “if not exactly, [then] at least to a very good approximation” [18, p. 486]; the PP
“applied loosely will very often come very close” (ibid.). Such a claim is problematic for a
number of reasons. The lack of any argument for it is one; it might be intuitive for some,
but it would certainly need to be backed up by a theorem. Moreover, if admissibility is
to be a nonempty notion, then agents whose credence is uniformly distributed among a
prime number of worlds sharing the same chance function just cannot satisfy the PP
perfectly; the credences of such agents, then, cannot be guided by chances as well as
the credences of those agents for whom the relevant cardinalities are not prime. This
demands explanation; its weirdness strengthens our preference for the conceptually
clean Option 1.

We believe, then, that the best way to proceed for someone trying to investigate the
details of the PP is—at least, before the intricacies of the infinite contexts are figured
out—to abandon the admissibility talk whatsoever.

4 showing the pp’s consistency

Let us now tackle the issue of the PP’s consistency. What do we mean by this? Recall
that in first-order logic, a theory is consistent iff it has a model; informally, iff there
exists something it describes. We have a similar intention here: the PP, a requirement
on credence functions, will be taken to be consistent if there is a credence function that
satisfies it. This is, however, the weakest imaginable (to us) notion of consistency to be
of note. If the PP was not consistent in this sense, there would literally be nothing for
us to talk about regarding it. Still, first things first—and so we will present an example
of a probability function P such that for any A on which it is defined there is a partition
of events which play the role of chance propositions about A: for any x ∈ [0, 1] there
is an event X in that partition such that P (A | X) = x (if P (X) > 0; see Definition
B.1.1).

A norm of rational credence should be satisfiable. But it should also be satisfiable in
principle, which in the case of the PP we take to suggest that any credence P in some

20Some may use integrals—on that front, see footnotes 2 and 3 in [1] for a start.
21Such an idea might, of course, also be considered in finite contexts.
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body of propositions F should be compatible with any set of chance functions CH on
F so that the requirements of PP in its local and / or global variants (see equations
(1) and (3) above) would be met. Otherwise, we could conceive of a metaphysical
coincidence whereupon the possible worlds are governed by chance functions in a way
which prohibits some agents from satisfying the PP; effectively, chance could only
perform its guiding role for a select privileged group of ideal agents. The PP would
then be highly suspect as a candidate for a norm of rationality. Fortunately, this is not
the case. It might happen that already the probability space containing the credence
P itself and the relevant chance propositions displays the fortuitous coherence—we
will then say that the P satisfies the PP locally / globally with respect to the set
CH (Defs. B.1.7 and B.1.8 below). We should expect, however, that such coherence is
only achievable in a larger probability space, in which case we will say that the P is
locally/globally-PP-compatible with the set CH. Our main result (Theorem 4.0.1) is
that indeed, if a simple formal condition is satisfied, for a body of propositions F , any
credence P on F is PP-compatible with any set CH of chance functions on F . The
status of the PP as a candidate for a norm of rationality is not in question, then.

As already mentioned, we will first make sure that there are probability spaces
satisfying the principle, and then we will investigate the limits of combining various
credences and chances, that is, CH -PP-compatibility as sketched in Section 2. Along the
way we will refute the argument by [12] that the PP implies the PoI. It is an immediate
conclusion from that argument that if a probability space satisfies the PP, it has to
contain at least one event with probability .5. This seems surprising: if satisfying the
PP is a condition of rationality, then it follows that every rational agent has to hold
credence .5 in at least one proposition. This seems to be a mistaken requirement, and
we will shortly present a counterexample, that is, a probability space satisfying the PP
in which no event has probability .5.

As for the first task: given a finite probability space on a field of propositions F ,
we can construct the local chance propositions “the chance of A is x”, for all x ∈ [0, 1],
and for all A ∈ F , so that the PP is satisfied. The procedure requires only a careful
analysis of conditional probabilities. This shows the PP’s consistency, in a very weak
sense. We will show an example.

Consider a probability space (W = {a, b, c},F = 2W , P ), with P ({a}) = 1/7,
P ({b}) = 2/7, and P ({c}) = 4/7. We will assume that the agent has in mind two chance
functions; worlds a and b are governed by an indeterministic ch1, while c is governed by
a deterministic ch2, as shown in Table 1.

{a} {b} {c} {a, b} {a, c} {b, c} ⊤ ⊥
ch1(·) 1/3 2/3 0 1 1/3 2/3 1 0

ch2(·) 0 0 1 0 1 1 1 0

Table 1: Two chance functions considered by the agent with the credence function P .

Now define the local chance propositions as in Table 2. The Table was created simply
by inspecting all conditional probabilities, using the assumption about which worlds are
governed by which of the two chance functions. Notice that for any choice of A and
x, if X is the proposition that the chance of A is x as defined in Table 2, P (A | X) = x

(if defined). Therefore in this probability space the PP is satisfied (“locally”, in the sense
of Definition B.1.1 below22). Note that no proposition has probability 0.5; therefore,

22In Section B.1 of the formal Appendix we use the notation “CA
x ” instead of “X” to refer to the

local chance proposition saying that the chance of A is x; this is simply more convenient. The function
P under discussion here also “satisfies the PP locally and globally with respect to the set {ch1, ch2}”;
see Definitions B.1.2 and B.1.3 below.
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if the Principle of Indifference demands the existence of such propositions, which we
believe to be an implication of [12],23 then we have shown by means of this structure
that the PP does *not* imply the PoI.24

x

A {a} {b} {c} {a, b} {a, c} {b, c} ⊤ ⊥

1 ∅ ∅ {c} {a, b} {c} {c} W ∅
0 {c} {c} {a, b} {c} ∅ ∅ ∅ W
1/3 {a, b} ∅ ∅ ∅ {a, b} ∅ ∅ ∅
2/3 ∅ {a, b} ∅ ∅ ∅ {a, b} ∅ ∅

other ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 2: The local chance propositions “the chance of A is x”, for all possible values of
A and x.

Recall that we have assumed that the set {a, b} is the global chance proposition
Cch1

, while {c} is the global chance proposition Cch2
. Note that for any A ∈ F , for

any i ∈ {1, 2}, P (A | Cchi
) = chi(A) (if defined). Therefore P satisfies the PP “globally

with respect to the set CH = {ch1, ch2}”, in the sense of Definition B.1.3 below.

The procedure will work for any probability space with a finite W (with obvious
modifications if some singleton sets have probability 0). First, we decide how to
partition W ; the number of elements of the partition corresponds to the number of
chance functions the agent considers. For any singleton element of the partition the
corresponding chance function will be deterministic; for non-singleton elements the
situation will usually be different. We collect all the conditional probabilities on the
elements of our chosen partition (that is, on the global chance propositions) as in Table
1. This is then used to generate all local chance propositions “the chance of A is x”, for
arbitrary A and x, as in Table 2. That the probability of A given that the chance of A
is x is indeed x (when defined) is then guaranteed. Similarly, the probability of A is
ch(A) given that the global chance proposition Cch holds.

This, as already mentioned, shows that the PP is consistent in a weak sense: every
finite probability space, understood as containing some agent’s credences in a body of
propositions, can be understood as containing also credences in propositions about the
chance of those propositions, so that the two are coordinated exactly as the PP requires.
At this point we know that examples of the structures Lewis wrote about indeed exist,
and so the whole literature on the PP is not a vacuous exercise. However, the deeper
consistency problem is roughly as follows: can any credence function be combined with
any set of chance functions in the way required by the PP? Less roughly, is it true that
for any probability space (W,F , P ), and for any set of chance functions on F , there
exists a credence function P ′ which agrees with P on F , but which is also defined on
the propositions about the chance functions, so that the credences as given by P ′ are

23This implication can be resisted—however, such resistance comes with a significant cost. For an
attempt at an exegesis of [12], see Appendix C below.

24Some may think admissibility should be addressed before we claim that Hawthorne et al. should
agree with us that the PP is satisfied here. The shortest way would be to say that no proposition is
admissible with respect to any proposition and chance proposition. However, we could also calculate,
for each A and X, the set of E’s such that P (A | X) = P (A | XE), and say that the elements of that
set are admissible w.r.t. A and X.

Another caveat: despite the title, [12] actually argues that the PP implies the PoI under two
additional conditions, the first of which supposedly is provable. One could then take the route of saying
that our run-of-the-mill probability space under discussion here is a counterexample to [12]’s Condition
2. Be that as it may, this only reinforces the point that [12] do not show the PoI to be implied by the
PP. See Appendix C below for a detailed analysis.
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coordinated as the PP requires? The answer is yes, with some formal caveats. We will
first show an intuitive construction fit for countable probability spaces and countable
sets of chance functions. It will use global chance propositions; in the Appendix we
prove the needed theorems also using local ones.

For illustration let us start with the probability space just discussed: (W =

{a, b, c},F = 2W , P ), with P ({a}) = 1/7, P ({b}) = 2/7, and P ({c}) = 4/7. Sup-
pose the agent would like to consider two chance functions defined on F as in Table
3, in such a way that the PP is satisfied. We extend the initial probability space to
a (W ′,F ′, P ′) which is atomless. This means that whenever P ′(A) = x, then for any
y < x there exists in F ′ a B such that B ⊂ A and P ′(B) = y. This makes for some
convenient freedom in defining the propositions relevant to our goals. We shall choose
W ′ to be the the [0, 1] real segment, F ′ to be set of its Borel subsets, and the P ′ to be
the Lebesgue measure. We can extend our (W,F , P ) to the atomless space (W ′,F ′, P ′)

by means of a boolean homomorphism h which “keeps all the old probabilities”, that
is, such that for any A ∈ F , P ′(h(A)) = P (A).25 The details of the extension feature
in Figure 1—for example, h({b}) = [1/7, 3/7).26 Then, in the extended space, we define
the two global chance propositions, again e.g. as displayed in Figure 1. We end up
with combining the credences as given by P with the two specified chance functions
by means of the credence P ′ which is such that for any proposition A on which P

is defined, P ′(h(A) | Cch3
) = ch3(A) and P ′(h(A) | Cch4

) = ch4(A). That is, P is
{ch3, ch4}-PP-compatible: the credence function can be combined with the two chance
functions as the PP mandates.

Cch3 Cch4

0 1/7 3/7 1

1/21 4/21 10/21

2/21 2/7 11/21

h({a}) h({b}) h({c})

Figure 1: The two global chance propositions in the extended probability space which
shows that P is {ch3, ch4}-PP-compatible.

{a} {b} {c}
ch3(·) 1/3 1/3 1/3

ch4(·) 1/4 1/2 1/4

Table 3: Two chance functions we are “fitting together” with a credence function defined
on F = P({a, b, c}).

This generalizes almost fully, as we show in the following Theorem (where a⋖ b is
true iff both a and b are zero or a is strictly smaller than b):

25For details on why this is generally possible, see e.g. Theorem 2 from [20] and the discussion leading
up to it.

26No, you cannot see in the figure which ends of the relevant intervals are open and which are closed.
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4.0.1 Theorem. Let (W,F , P ) be an atomic probability space, and let CH = {ch1,

ch2, . . .} be a countable set of probability functions over F . The following statements
are equivalent.

(1) P is CH-PP-compatible in the sense of Definition B.1.8.
(2) For each ch ∈ CH there is a constant c > 0 such that

c · ch(A)⋖ P (A) for all A ∈ F . (4)

For the proof, see Appendix, Section B.2. (The condition (4) might be seen to be
reminiscent of the one used in Theorem 2.1 of [4].)

We have established that in exactly those cases where each chance function in CH

can be ‘lifted above’ the credence P by means of multiplication by a constant, P is
CH-PP-compatible; that is, there is a credence function P ′ which relates credences as
given by P with chances from CH as mandated by the PP. Note that, crucially, we
should expect this P ′ to be defined also on propositions outside of the domains of the
chance functions from CH.

We started this section with an example of a probability space satisfying the PP,
illustrating the general strategy of creating such spaces by “reading off” the chance
functions from the conditional probabilities. Take a look at Table 1 again. Notice that
{a, b} is the global chance proposition Cch1

, and ch1(Cch1
) = 1; likewise, {c} is the

global chance proposition Cch2 , and ch2(Cch2) = 1. Both chance functions assign chance
1 to themselves being the actual chance function; in other words; they are immodest.
This is not a coincidence: as shown by [25], a credence function P can satisfy the PP
with respect to a set of chance functions CH27 only if all chance functions from CH are
immodest. However, as we show in the Appendix (Theorems B.2.1 and B.3.7), a P will
be CH-PP-compatible as long as the ‘lift-up’ condition is satisfied, even if some, or all,
members of CH are modest. The key technical feature here is that the compatibility of
P and CH is witnessed by an extension of the original space, in which the P is indeed
combined with the members of CH in the PP-appropriate way, but which contains
also events on which the members of CH are not defined. The apparent contradiction
mentioned in the Introduction is then resolved by the following subtlety: P can satisfy
the PP only if CH contains exclusively immodest chance functions, but, supposing the
“lift-up” condition is satisfied, P is CH-PP-compatible also if some chances in CH are
modest.

5 conclusions

We have proposed here a rigorous solution to a problem which we believe to be
foundational for that corner of formal epistemology which is interested in chance-
credence norms: that is, after charting several ways in which the Principal Principle can
be formally stated (and discussing some pitfalls concerning the notion of admissibility
in Section 3), we showed that it can be satisfied by an arguably large class of agents. In
particular, we have specified the relationship between the agent’s credences in a body of
propositions and chance functions defined on the same domain which is necessary and
sufficient for these to be combined in the way the PP mandates, so that the chances
can be seen to guide the agent’s credences (Theorems B.2.1 and B.3.7). We have also
shown that the formulation of the PP which uses local chance propositions is, in atomic
probability spaces, equivalent to the one which employs global chance propositions
(Corollary B.3.8).

27[25]’s definition of this is closest to our “satisfying the PP globally w.r.t. CH”, that is, Def. B.1.3
below.
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We admit we are puzzled that the issue of the PP’s consistency has not garnered
the attention of researchers: after all, if the Principle is to be a norm of rationality,
shouldn’t we make sure that satisfying it is possible in general (even for ideal agents)?
[5], noticing the problem, suggests that we could employ higher-order probability spaces
introduced by [7] to extend arbitrary probability spaces so that they include propositions
about chances in the way suggested by the PP (Gaifman himself suggests the connection
between his approach and Lewis’ notion). However, Gaifman’s framework is remarkably
intricate, and so doing this in detail is a matter for a separate paper.
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A appendix

A.1 proof that the larger the uniform spaces the rarer
the independent pairs

We consider here finite, uniform probability spaces and calculate the probability that
two uniformly randomly picked events are independent. We will see that as the size of
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the space increases the probability that two random events are independent tends to
zero. Thus, in large finite uniform spaces most pairs of events are not independent.

Consider the probability space with a sample space of size n having the uniform
probability measure. Two events A,B are independent if and only if

|A|
n

· |B|
n

=
|A ∩B|

n
. (5)

Call a triple of numbers (a, b, c) good if 0 ≤ a, b, c ≤ n and a/n · b/n = c/n. Then A and
B are independent iff (|A|, |B|, |A ∩B|) is good. For a good triplet (a, b, c) let us write

Da,b,c = |{(A,B) independent : |A| = a, |B| = b, |A ∩B| = c}| . (6)

The number of all pairs (A,B) is 22n, therefore the probability that a randomly picked
pair is independent is

INDn =
1

22n

∑
(a,b,c) good

Da,b,c . (7)

Combinatorics shows that

Da,b,c =

(
n

a

)(
a

c

)(
n− a

b− c

)
. (8)

We pick first the a-element set A; then we pick c elements from A that will be in A∩B;
then pick the rest of the elements of B from the complement of A. We have the following
estimates for INDn:

1

22n

∑
(a,b,c)
is good

Da,b,c

(1)

≤ 1

22n

n∑
a=0

a∑
c=0

Da, cna ,c ≤
1

22n

n∑
a=0

a∑
c=0

(
n

a

)(
a

c

)(
n− a
cn
a − c

)
(9)

(2)

≤ 1

22n

n∑
a=0

(
n

a

) a∑
c=0

(
a

c

)(
n− a
n−a
2

)
=

1

22n

n∑
a=0

(
n

a

)(
n− a
n−a
2

) a∑
c=0

(
a

c

)
(10)

(3)
=

1

22n

n∑
a=0

(
n

a

)(
n− a
n−a
2

)
2a

(4)

≤ 1

22n

n∑
a=0

(
n

a

)
2a

2n−a√
π
2 (n− a)

(11)

=
1

2n

n∑
a=0

(
n

a

)
1√

π
2 (n− a)

(5)
=

1

2n

n∑
a=0

(
n

n− a

)
1√

π
2 (n− a)

(12)

=
1

2n
√

π/2

n∑
k=0

(
n

k

)
1√
k
, (13)

where we have used the facts that:

(1) not all triplets are good;

(2)
(

x
x/2

)
is always maximal among the

(
x
k

)
’s;

(3)
∑a

c=0

(
a
c

)
= 2a;

(4)
(

k
k/2

)
≤ 2k√

π
2 k

(under the convention that 1√
0
= 1);

(5)
(
n
a

)
=

(
n

n−a

)
.

A.1.1 Theorem. The probability INDn that a randomly picked pair of events from
an n-element uniform space is independent converges to zero as n tends to infinity:

lim
n→∞

INDn = 0 . (14)
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Proof. By the previous estimates it is enough to prove that

1

2n

n∑
k=1

(
n

k

)
1√
k

−→ 0 as n → ∞. (15)

Hölder’s inequality with p = 2 and q = 2 yields

1

2n

n∑
k=1

(
n

k

)
1√
k

(1)

≤ 1

2n

√√√√ n∑
k=1

(
n

k

)2
√√√√ n∑

k=1

1

k

(2)

≤ 1

2n

√(
2n

n

)√
log(n) (16)

(3)

≤ 1

2n

√
22n√
πn

√
log(n) =

√
log(n)√

πn
−→ 0 as n → ∞ (17)

where we used

(1) Hölder’s inequality with p = 2 and q = 2,

(2)
∑n

k=0

(
n
k

)2
=

(
2n
n

)
, and

∑n
k=1

1
k ≤

∫ n

1
1
xdx = log(n),

(3)
(
2n
n

)
≤ 22n√

πn
, and finally that limn→∞

log(n)√
n

= 0.

■

B pp’s consistency: the formal details

B.1 the main notions employed

B.1.1 Definition (satisfying the PP locally). Let (W,F , P ) be a probability space.
We will say that P satisfies the PP locally iff for any A ∈ F there exists a family of
propositions {CA

x }x∈[0,1] from F such that:

• the nonempty elements of {CA
x }x∈[0,1] form a partition of W ;

• for any x ∈ [0, 1], P (A | CA
x ) = x (if defined). □

The justification for the first condition from B.1.1 is that every world assigns some
single chance to A; therefore, every world belongs to some local chance proposition
about A, and no world belongs to two different local chance propositions about A. For
some x there might be no worlds at which the chance of A is x—hence the qualification.

The final “(if defined)” is needed so that we allow an agent to satify the PP locally
even if for some A and x their credence in that the chance of A is x equals 0. However,
variants of the notion without this relaxing clause might be fruitfully investigated (see
B.4 below); note, though, that requiring (with the A fixed) P (CA

x ) to be nonzero for
all x ∈ [0, 1] would imply that CA

x ∩ CA
y ̸= ∅ for some x ̸= y. This is because there

cannot exist more than countably many pairwise disjoint, non-zero-measure sets in a
probabilty space. If the events CA

x ought to represent the proposition that the “chance
of A is x”, and events are sets of possible worlds, then requiring P (CA

x ) to be nonzero
for all x ∈ [0, 1] would yield the counterintuitive situation that the chance of A is x and
y for x ≠ y in some world. To avoid such cases, in the above definition we are speaking
of a “family of propositions” only.28

Below we omit the justifications of similar conditions.
28In a still different variant, if we kept just the second bullet point, but deleted the first—perhaps

because we would want to be as minimal as possible with additional assumptions about chance
propositions—it would be possible for an agent to vacuously satisfy the PP locally by setting all
credences in local chance propositions to 0.
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To tackle the consistency problem in general, we need definitions capturing the
idea of coordinating a credence function P with a set of chance functions CH in the
spirit of PP. There will be four definitions in total. Choosing whether to use local or
global chance propositions makes for the initial division into two types of the relevant
formal concepts. Finally, B.1.2 and B.1.3 describe the fortunate situation in which the
original probability space with the measure P already contains the chance propositions
in question; while B.1.7 and B.1.8 deal with the general situation where extending the
original space might be needed.

B.1.2 Definition (satisfying the PP locally w.r.t. CH). Let (W,F , P ) be a
probability space. Let CH be a set of probability functions with the same domain as P .
We will say that P satisfies the PP locally with respect to CH if and only if for every
A ∈ F there are propositions CA

ch for ch ∈ CH such that

• (assuming the A is fixed) the nonempty elements of {CA
ch}ch∈CH form a partition

of W ;

• for any ch ∈ CH, P (A | CA
ch) = ch(A) (if defined). □

B.1.3 Definition (satisfying the PP globally w.r.t. CH). Let (W,F , P ) be a
probability space. Let CH be a set of probability functions with the same domain as P .
We will say that P satisfies the PP globally with respect to CH if and only if for every
ch ∈ CH there exists a proposition Cch ∈ F such that:

• the family of all nonempty Cch’s forms a partition of W ;

• for any A ∈ F , P (A | Cch) = ch(A) (if defined). □

B.1.4 Fact. For every P with a finite domain there exists a nonempty set CH such
that P satisfies the PP globally with respect to CH.

To prove Fact B.1.4, inspect the strategy used in creating the example displayed in
Tables 1 and 2 above.

B.1.5 Fact. For any P and CH, if P satisfies the PP globally with respect to CH,
then P satisfies the PP locally with respect to CH.

Proof. Suppose P satisfies the PP globally w.r.t. CH. For every A ∈ F and ch ∈ CH

take CA
ch := Cch. Then P satisfies the PP locally with respect to CH, as witnessed by

the events CA
ch. ■

B.1.6 Conjecture. For any P and CH, P satisfies the PP globally with respect to
CH iff P satisfies the PP locally with respect to CH.

B.1.7 Definition (local PP compatibility). Let (W,F , P ) be a probability space,
and let CH be a set of probability functions over F . We say that P is CH-PP-
locally-compatible if there exists an extension (W ′,F ′, P ′) of (W,F , P ) and a σ-algebra
embedding h : F → F ′ such that

• P and P ′ agree on events of F , that is, for all A ∈ F we have

P ′(h(A)) = P (A) ; (18)

• For every A ∈ F and ch ∈ CH there is an event CA
ch in F ′ such that

– (keeping A fixed) the nonempty elements of {CA
ch}ch∈CH are pairwise disjoint;

– P ′(h(A) | CA
ch) = ch(A). □
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B.1.8 Definition (global PP compatibility). Let (W,F , P ) be a probability space,
and let CH be a set of probability functions over F . We say that P is CH-PP-
globally-compatible if there exists an extension (W ′,F ′, P ′) of (W,F , P ) and a σ-algebra
embedding h : F → F ′ such that

• P and P ′ agree on events from F , that is, for all A ∈ F we have

P ′(h(A)) = P (A) ; (19)

• For every ch ∈ CH there is an event Cch in F ′ such that

– P ′(h(A) | Cch) = ch(A) for all A ∈ F ;

– if ch, ch′ ∈ CH, ch ̸= ch′, then Cch ∩ Cch′ = ∅.

□

A comment on definitions B.1.2/7 and B.1.3/8. Despite the “global” and
“local” labels, both variants of these definitions use chance functions defined on the
whole F . The difference is in how these chance functions are used when considering
conditional credences in some A. In the local variants we are dealing, for any value x,
with credences in A given that the chance of A is x, that is, with credences in A given
local chance propositions (see Section 2 above). In contrasts, the global variants concern
credences in A conditional on that the chance function is given by some particular ch,
that is, credences in A given global chance propositions.

B.2 consistency: global compatibility

For convenience we make use of the following notation. For non-negative numbers a

and b we write

a⋖ b ⇔

{
a < b if 0 < b

a = 0 if b = 0.
(20)

Thus, a ⋖ b expresses that a is strictly smaller than b, except when b equals zero, in
which case a is zero too.

B.2.1 Theorem. (4.0.1 in the main text.) Let (W,F , P ) be an atomic probability
space, and let CH = {ch1, ch2, . . .} be a countable set of probability functions over F .
The following statements are equivalent.

(1) P is CH-PP-globally-compatible.
(2) For each ch ∈ CH there is a constant c > 0 such that

c · ch(A)⋖ P (A) for all A ∈ F . (21)

Proof. (1)⇒(2). Suppose P is CH-PP-globally-compatible as witnessed by the
extension (W ′,F ′, P ′) and the embedding h : F → F ′. Pick a ch ∈ CH. Applying
(B.1.8) we get, for each A ∈ F ,

ch(A) = P ′(h(A) | Cch) =
P ′(h(A) ∩ Cch)

P ′(Cch)
, (22)

and thus

P ′(Cch) · ch(A) ≤ P ′(h(A) ∩ Cch) ≤ P ′(h(A)) = P (A) . (23)
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Note that it follows that if P (A) = 0, then ch(A) should equal zero. Thus, taking
c = P ′(Cch)/2 will do.

(2)⇒(1). Let (W,F , P ) be an atomic probability space, and let CH = {ch1, ch2, . . .}
be a countable29 set of probability functions over F . Except for the measure zero atoms,
without loss of generality, we can assume that W = {an : n ∈ |W |}, where 0 < P ({an})
for all n ∈ |W |. Here |W | is either N, or some finite natural number N ∈ N depending
on whether W is countably infinite or finite.30 For each chn ∈ CH let cn be the constant
in (21). Let λ be the Lebesgue measure over the unit interval [0, 1]. We will embed
everything into this space.

For simplicity we write P (an) in place of P ({an}), etc.

Step 1. Take any measurable partition An (n ∈ |W |) of [0, 1] such that P (an) = λ(An)

holds for all n ∈ |W |. For example, each An can be an interval of length P (an). The
mapping h(an) = An extends to an algebra embedding such that P (A) = λ(h(A)) for
all A ∈ F .

Step 2. For each n ∈ |W | pick an arbitrary partition Cn,i (i ∈ |CH|) of An
31 such

that λ(Cn,i) =
1
2iλ(An) for each i and n. By non-atomicity of the Lebesgue measure,

this is possible. As ci · chi(an) < P (an), and P (an) = λ(An), we get that

1

2i
· ci · chi(an) <

1

2i
λ(An) = λ(Cn,i) (24)

for i ∈ |CH|, n ∈ |W |.

Step 3. For each i ∈ |CH| and n ∈ |W | pick Xn,i ⊆ Cn,i such that

λ(Xn,i) =
ci
2i

· chi(an) (25)

Let Xi =
⋃

n Xn,i.

Calculations. First, let us calculate λ(Xi):

λ(Xi) =
∑
n

λ(Xn,i) =
∑
n

ci
2i

· chi(an) =
ci
2i

·
∑
n

chi(an) =
ci
2i

. (26)

Then,

λ(An | Xi) =
λ(An ∩Xi)

λ(Xi)
=

λ(Xn,i)

λ(Xi)
=

ci
2i · chi(an)

ci
2i

= chi(an) . (27)

Writing Cchi
for the event Xi we get

λ(h(an) | Cchi) = chi(an) for all n ∈ |W | . (28)

As the atoms an generate every element of F by taking disjoint unions, we also get

λ(h(A) | Cchi) = chi(A) for all A ∈ F , (29)

completing the proof.
We finally note that Cchi

∩ Cchj
= ∅ for i ̸= j. ■

29That is, countably infinite or finite.
30To avoid cumbersome notation we rely on the convention that 0 = ∅ and n = {0, . . . , n− 1}. Thus,

for example, if |W | = 3, then n ∈ |W | means n = 0 or n = 1 or n = 2.
31To be sure: Cn,i is a partition of An whose elements are indexed by i.
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B.3 consistency: local compatibility

The results in this Section gradually lead to the main theorem (B.3.7).
We first show that (30) in the following remark is a necessary condition for local

compatibility.

B.3.1 Remark. Let (W,F , P ) be a probability space and p an other probability
function over F . Suppose that P is {ch}-PP-locally-compatible. Then there is a
constant a ∈ (0, 1) such that

a · ch(A)⋖ P (A) for all A ∈ F . (30)

Proof. Let {ch}-PP-local-compatibility of P be witnessed by the extension (W ′,F ′, P ′)

and the embedding h : F → F ′. Write X for CA
ch. Then

ch(A) = P ′(h(A) | X) =
P ′(h(A) ∩X)

P ′(X)
, (31)

and thus

P ′(X) · ch(A) ≤ P ′(h(A) ∩X) ≤ P ′(h(A)) = P (A) . (32)

Taking a = 1/2 · P ′(X) will do. ■

The next theorem and the remark following it and their proofs are essentially
Theorem 4.1 of Bana [1], slightly generalized and adopted to our context.

B.3.2 Theorem. Let (W,F , P ) be a probability space, and let CH = {ch1, ch2, . . .}
be a countable set of probability functions over F . Suppose there is a non-negative
sequence an such that ∑

n

anchn(A) = P (A) for all A ∈ F , (33)

that is, P is a mixture of the probabilities in CH. Then P is CH-PP-locally-compatible.

Proof of Theorem B.3.2. Define

W ch def
= {p : F → [0, 1] : p is a probability}, (34)

DA
r

def
= {p ∈ W ch : p(A) = r}, for A ∈ F , r ∈ [0, 1] , (35)

and let Fch be the smallest σ-algebra over W ch that contains the sets DA
r . Define

µ : Fch → [0, 1] as

µ
def
=

∑
n

anδchn
, (36)

where δp is the Dirac-measure: for X ⊆ W ch

δp(X)
def
=

{
1 if p ∈ X

0 otherwise.
(37)

By (33), µ is a probability measure on Fch.

B.3.3 Claim. P (A) =
∑

r r · µ(DA
r ) for A ∈ F . (In particular, the sum exists).
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Proof of Claim B.3.3. By definition∑
r

r · µ(DA
r ) =

∑
r

r ·
(∑

n

anδpn
(DA

r )

)
. (38)

Here δchi
(DA

r ) is 1 if chi(A) = r, and 0 otherwise. Therefore, δchi
adds to the sum only

when r = chi(A), hence∑
r

r ·
(∑

n

anδchn
(DA

r )

)
=

∑
n

anchn(A) . (39)

The latter sum is P (A) by (33). ■

Consider now the product space

(W ′,F ′)
def
= (W ×W ch,F ⊗ Fch) (40)

and define P ′ as the probability measure that extends

P ′(A× E)
def
=

∑
r

r · µ(DA
r ∩ E) for A ∈ F , E ∈ Fch (41)

B.3.4 Claim. The mapping h(A) = A×W ch is a σ-algebra embedding and P ′(h(A)) =

P (A) for every A ∈ F .

Proof of Claim B.3.4. That h is an embedding that preserves the Boolean-algebra
operations is straightforward. To check P ′(h(A)) = P (A), by definition we have

P ′(A×W ch) =
∑
r

r · µ(DA
r ∩W ch) (42)

=
∑
r

r · µ(DA
r )

Claim B.3.3
= P (A) (43)

■

Proof of Theorem B.3.2 continued. Suppose now that µ(DA
x ) ̸= 0 for some x ∈ [0, 1].

Then

P ′(A×DA
x )

def
=

∑
r

r · µ(DA
r ∩DA

x ) = x · µ(DA
x ), (44)

P ′(W ×DA
x )

def
=

∑
r

r · µ(DW
r ∩DA

x ) = 1 · µ(DA
x ), (45)

because in (44), DA
r ∩DA

x is non-empty only when r = x, and in (45), DW
r is non-empty

only when r = 1. It follows that

P ′(A×W ch | W ×DA
x ) =

P ′(A×DA
x )

P ′(W ×DA
x )

=
x · µ(DA

x )

1 · µ(DA
x )

= x . (46)

Observe that

µ(DA
x )

def
=

∑
n

anδchn
(DA

x ) > 0 (47)

if and only if there is i such that chi(A) = x. This is exactly the case when x is chosen
to be one of the chi(A). Therefore, for every A ∈ F we obtained

P ′(A×W ch | W ×DA
chi(A)) = chi(A) (48)

23



Letting

CA
chi

def
= W ×DA

chi(A), (49)

we conclude the proof with noting that as Definition B.1.7 requires, first, for a fixed A

the nonempty elements of {CA
ch}ch∈CH are pairwise disjoint,32 and also, second, that

P ′(h(A) | CA
chi

) = chi(A) . (50)

■

B.3.5 Remark. Theorem B.3.2 remains true in the stronger form:

P ′(h(A) | CA
ch ∩

⋂
i<n

CAi

ch ) = ch(A) , (51)

for any finitely many A,Ai ∈ F (i < n) and ch ∈ CH.

Proof. The proof of Theorem B.3.2 can be slightly modified to get the result. The
proposition CAi

ch was encoded by the event W ×DAi

ch(Ai)
. Then in place of (44) and (45)

can have

P ′(A× (DA
x ∩ ∩i<nD

Ai
xi
))

def
=

∑
r

r · µ(DA
r ∩DA

x ∩ ∩i<nD
Ai
xi
) (52)

= x · µ(DA
x ∩ ∩i<nD

Ai
xi
), (53)

P ′(W × (DA
x ∩ ∩i<nD

Ai
xi
))

def
=

∑
r

r · µ(DW
r ∩DA

x ∩ ∩i<nD
Ai
xi
) (54)

= 1 · µ(DA
x ∩ ∩i<nD

Ai
xi
), (55)

because in (53), DA
r ∩ DA

x ∩ ∩i<nD
Ai
xi

is non-empty only when r = x, and for some
probability mapping p we have p(A) = x and p(Ai) = xi for i < n; and in (55), DW

r is
non-empty only when r = 1. It follows that

P ′(h(A) | CA
ch ∩

⋂
i<n

CAi

ch ) =
P ′(A× (DA

ch(A) ∩ ∩i<nD
Ai

ch(Ai)
))

P ′(W × (DA
ch(A) ∩ ∩i<nD

Ai

ch(Ai)
))

(56)

=
ch(A) · µ(DA

ch(A) ∩ ∩i<nD
Ai

ch(Ai)
)

1 · µ(DA
ch(A) ∩ ∩i<nD

Ai

ch(Ai)
)

(57)

= ch(A) . (58)

■

B.3.6 Theorem. Let (W,F , P ) be a probability space, and let CH = {ch1, ch2, . . .}
be a countable set of probability functions over F . Suppose there is a non-negative
sequence an such that ∑

n

anchn(A)⋖ P (A) for all A ∈ F . (59)

Then P is CH-PP-locally-compatible.

Proof. Let ai be as in the statement of the theorem. Applying (59) to the event
A = W we get

a
def
=

∑
n

an < 1, (60)

32Indeed, more is achieved: these elements form a partition of W ′.
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q(A)
def
=

∑
n

anchn(A)⋖ P (A) for all A ∈ F . (61)

Define a “dummy” ch0 by

ch0(A)
def
=

1

1− a
(P (A)− q(A)) for all A ∈ F . (62)

By (61), ch0 is non-negative for all A ∈ F , and

ch0(W ) =
1

1− a

(
P (W )− q(W )

)
=

1

1− a
(1− a) = 1, (63)

thus p0 is a probability over F . By reordering (62) we get

P (A) = (1− a) · ch0(A) + q(A), (64)

that is,

P (A) = (1−
∑
n

an) · ch0(A) +
∑
n

anchn(A), (65)

for every A ∈ F . Thus, the conditions of Theorem B.3.2 are fulfilled with the set
CH ′ = {ch0} ∪ CH. ■

B.3.7 Theorem. Let (W,F , P ) be a probability space, and let CH = {ch1, ch2, . . .}
be a countable set of probability functions over F . Suppose there is a non-negative
sequence an such that for all n ≥ 1 the following condition is satisfied:

an · chn(A)⋖ P (A) for all A ∈ F . (66)

Then P is CH-PP-locally-compatible. By Remark B.3.1 the condition (66) is necessary.

Proof. It is enough to prove that (66) implies (59) (with a sequence a′n). Indeed, take
a′n = an/2n. Then∑

n

a′nchn(A) =
∑
n

an
2n

chn(A)⋖ P (A) for all A ∈ F . (67)

■

B.3.8 Corollary. Let (W,F , P ) be an atomic probability space, and let CH =

{ch1, ch2, . . .} be a countable set of probability functions over F . P is CH-PP-locally-
compatible iff it is CH-PP-globally-compatible.

B.4 satisfying the pp “strongly”

Definitions B.1.1, B.1.2 and B.1.3 feature “if defined” clauses to get around the cases in
which the agent has 0 credence in some chance propositions. Here we gather definitions
and results interesting if we wish to consider the case in which all the PP-relevant
conditional probabilities are defined (which will by necessity for each A make some two
different local chance propositions about A not disjoint).

B.4.1 Definition (satisfying the PP locally in the strong sense). Let P be a
probability function defined on F . We will say that P satisfies the PP locally in the
strong sense if and only if for every A ∈ F with 0 < P (A) < 1 and every x ∈ [0, 1] there
is an event CA

x such that P (A | CA
x ) = x.
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B.4.2 Fact. For any P and CH, if P satisfies the PP locally in the strong sense, and
P (A) = 0 implies ch(A) = 0 for every ch ∈ CH and A ∈ F , then P satisfies the PP
locally with respect to CH.

B.4.3 Fact. Every non-atomic P satisfies the PP locally in the strong sense.

Proof. Suppose P is non-atomic, and 0 < P (A) < 1. Let x ∈ [0, 1] be arbitrary. Take
events B0 ⊆ A and B1 ⊆ Ā. By non-atomicity of P , any values 0 ≤ P (B0) ≤ P (A)

and 0 ≤ P (B1) ≤ 1 − P (A) can be realized by appropriate choices of B0 and B1. If
CA

x = B0 ∪B1, then

P (A | CA
x ) =

P (A ∩ CA
x )

P (CA
x )

=
P (B0)

P (B0) + P (B1)
. (68)

Appealing to continuity, this latter fraction can take any value from [0, 1] by suitable
choices of B0 and B1. ■

B.4.4 Definition (strong local PP compatibility). Let (W,F , P ) be a probability
space. We say that P is strongly PP-locally-compatible if there exists an extension
(W ′,F ′, P ′) of (W,F , P ) and a σ-algebra embedding h : F → F ′ such that

• P and P ′ agree on events of F , that is, for all A ∈ F we have

P ′(h(A)) = P (A) ; (69)

• For every A ∈ F with 0 < P (A) < 1 and any x ∈ [0, 1] there is an event CA
x in F ′

such that

P ′(h(A) | CA
x ) = x . (70)

B.4.5 Theorem. Every probability space (W,F , P ) is strongly PP-locally-compatible.

Proof. The space (W,F , P ) can be embedded into the product of (W,F , P ) with
the Lebesgue probability space over [0, 1] via cylinder sets; and this product space is
non-atomic, thus by Fact B.4.3 it satisfies the PP locally in the strong sense. ■

C the pp and the principle of indifference: a
detailed analysis of the argument from [12]

Our goal in this section is to clarify why we believe that producing an example of
a probability space which satisfies the PP and exhibits no events of probability 0.5

shows that Hawthorne et al. have not proven that the PP implies the Principle of
Indifference (PoI). We will argue that satisfying their version of the PoI implies either
that the probability space in questions contains 0.5-probability events or that it satisfies
a counter-intuitive condition (**) below. Arguing this point requires the reconstruction
of the whole argument from [12]; perhaps because that paper was intended to be just
a short note, the argument is quite sketchy, especially with regard to quantification,
and below we have present as charitable a version of it as we could. (We refrain from
commenting on admissibility here.)

Reconstruction of [12]’s argument
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Assumption:
“Principal principle: P (A|XE) = x, where X says that the chance at time t of

proposition A is x and E is any proposition that is compatible with X and admissible
at time t.” (p. 123)

The contingency and logical atomicity assumption:
”[H]enceforth, F is any proposition that is contingent (neither necessarily true nor

necessarily false) and atomic (not logically complex)” (p. 124)

Comment: We have no problems with this meaning of ’contingency’. However, the
assumption of F being logically atomic (i.e. not logically complex) is – in that paper – deeply
mysterious. One thing that’s clear is that this atomicity is not intended to be the atomicity in
the domain of P . However, what Hawthorne et al. mean by ’logically atomic’ is not explained
and, more importantly, the notion plays no part in the supposed derivation of the Principle of
Indifference from the Principal Principle, apart from the suggestion in Footnote 1 that for a
logically complex F , Conditions 1 and 2 (see below) may fail. This is inconsistent with the fact
that Hawthorne et al. establish Condition 1 as a theorem (in their Proposition 1) by reasoning
which makes no use of the internal structure (or lack thereof) of F .

Since Hawthorne et al.’s claims about the logical atomicity of F and its role in the reasoning
are inconsistent, it would be natural to search for some positive information as to what they
mean by the notion. However, the only thing we were able to find is the example from Footnote
1 of a logically complex proposition, “ticket number ninety-seven won a fair thousand-ticket
lottery with one winner”. We would not hazard a guess as to what the Hawthorne et al.’s
definition of logical atomicity is based on that. If we were talking about some specified language,
and assumed, say, that we had two propositional letters p and q, with the usual host of logical
connectives, we could start by saying that there are two logically atomic sentences, p and q,
while all other sentences are logically complex. But in [12] there are no assumptions about the
language, and the authors talk about ’propositions’. Well, if propositions, as is often the case
in formal epistemology, are (or at least correspond to) sets of possible worlds, then we’re at a
loss as to which of those sets are supposed to be logically atomic.33 If pressed, we’d probably
go in the direction of saying that the singletons, or, more generally, the atoms of the Boolean
Algebra of propositions in the domain of P , are logically atomic, since all other nontrivial
propositions are expressible using them, while they themselves are not divisible into other
nonempty propositions. However, it is clear that Hawthorne et al. do not go in that direction.
The most charitable reading of the argument with regard to the logical complexity issue seems,
then, to be to:

• agree with Hawthorne et al.’s that their Proposition 1 is correct, and thus Condition 1
below is a theorem;

• disregard their statement that for a logically complex F Condition 1 might fail, as it is
inconsistent with the above;

• to assume that, in the domain of the P we’re talking about, there are some logically
atomic propositions, whatever they ultimately are...

• ...and that the scope of the argument is supposed to be limited to them, since otherwise,
the Authors claim, Condition 2 might fail.

Two additional assumptions:
“We shall take the claim that E is not a defeater to hold just when P (A|XE) = x =

P (A|X). Moreover, we shall take the supposition that XE contains no information
that renders F relevant to A to imply that P (A|FXE) = P (A|XE).” (p. 124)

Comment: These assumptions only make sense if A and X are held fixed: some propositions
are defeaters for some propositions, but not for others. We thus continue under the assumption
that we are indeed in the context of some particular A and X.

33And if propositions are supposed to be, say, Russelian abstract n-tuples, well, Hawthorne
et al. should tell us this!
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Note that the second of these two assumptions is equivalent to saying that if XE contains
no information that renders F relevant to A, then XE screens off F from A. There seems to
be no justification in the paper for such a strong claim!

Two conditions:
“Condition 1: If E is not a defeater and XE contains no information that renders F

relevant to A, then EF is not a defeater.
Condition 2: If E is not a defeater and XE contains no information relevant to F ,

then E(A ↔ F ) is not a defeater.” (p. 124)

Comment: Condition 1 follows from Proposition 1, which seems to be correct given the
definitions. There is no proof of Condition 2 offered; it is supposed to “encapsulate core
intuitions about defeat” (p. 126) and footnote 1 suggests that it might fail if F is logically
complex. The implicature here is that if F is not logically complex, then Condition 2 should
hold. While we agree with [8] that Condition 2 ultimately fails, we do not rely on this in our
arguments.

Proposition 2 (p. 125): Suppose that E, EF and E(A ↔ F ) are non-defeaters
and that 0 < x < 1. Then the Principal Principle implies that P (F |XE) = 0.5.

Comment: We agree that the proof of this Proposition 2 is correct, given the above
definitions of the Principal Principle and of “being a non-defeater”.

“Now suppose that E is a non-defeater and XE contains no information relevant to
F or that renders F relevant to A. By Conditions 1 and 2, neither EF nor E(A ↔ F )

are defeaters. Hence, by Proposition 2, P (F |XE) = 0.5.” (p. 125)

Comment: Correct.

“[S]ince XE contains no information relevant to F , P (F |XE) = P (F ), so P (F ) = 0.5

too.” (p. 125)

Comment: Note that this last step does not appeal to any previously stated assumptions,
definitions, Conditions or Propositions; it seems to rely rather on our supposed intuition that
for a rational initial credence P , for any two propositions B and C, if B contains no information
relevant to C, then P (C|B) = P (C).

End of the reconstruction of [12]’s argument

To sum up, the reasoning is as follows. Take an initial credence function P . Fix a
proposition A and a proposition X which specifies the chance of A. Take a contingent,
logically atomic proposition F . Assume the Principal Principle, the two Conditions and
the definition of being a non-defeater. Now, if:

(*) there exists a non-defeater E such that XE contains no information relevant to
F or that renders F relevant to A,

then – by using the two Conditions and Proposition 2 – P (F ) = 0.5. Generalizing this,
P should assign the value 0.5 to all the contingent logically atomic propositions for
which the (*) condition holds, and since P is an initial credence, we arrive at a form of
the Principle of Indifference.

Let us now home in on the goal of this Section, namely, on showing that upholding
Hawthorne et al.’s claim while admitting the existence of PP-satisfying probability spaces
with no propositions of probability 0.5 requires the satisfaction of a very unintuitive
condition.

Assume, then, that you have on your hands a probability space satisfying the
Principal Principle which includes no 0.5-probability propositions. For this not to be
a counterexample to the reasoning under discussion, it has to be the case that for all
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contingent logically atomic propositions the existential condition (*) fails. That is,
for any contingent logically atomic proposition F , there does not exist a non-defeater
E which satisfies two additional requirements relating to X and A; recall that the
definition of a non-defeater is also made in the context of that same fixed X and A. But
to get to the desired conclusion of P (F ) = 0.5 Hawthorne et al. may choose some other
B ̸= A and a proposition Y specifying the chance of B; therefore, to avoid that, we need
to stipulate that for any contingent logically atomic proposition F the condition (*)
fails also when ’B’ is substituted for ’A’, ’Y ’ is substituted for ’X’, and ’non defeater’
is understood in the context of B and Y . And so on...

To generalize Hawthorne et al.’s non-defeater definition, say that E is a non-defeater
for some arbitrary proposition A and chance proposition X which specifies the chance
of A to be x just when P (A|XE) = x = P (A|X). Then, in general, to uphold their
reasoning in the face of probability spaces satisfying the Principal Principle in which
there are no 0.5-probability propositions, the authors would have to claim that the
following condition holds in such spaces:

(**) For any contingent, logically atomic proposition F , for any proposition
A and a proposition X which specifies the chance of A, there does not exist
a proposition E such that:

• E is a non-defeater for A and X;

• XE contains no information relevant to F ;

• XE does not render F relevant to A.

It is only when this condition is satisfied that Hawthorne et al.’s reasoning is made
vacuous, and then the fact of the existence of a probability space satisfying the Principal
Principle without exhibiting any 0.5-probability propositions is indeed compatible with
the claim that the Principal Principle entails the (Hawthorne et al.’s version of the)
Principle of Indifference.

But we do not know why Hawthorne et al. would want to claim anything like this,
that is, why should all probability spaces satisfying the Principal Principle which do not
include 0.5-probability propositions satisfy the condition (**). We see no justification for
it (even given that in some cases, which we discuss in Section 3, it is trivially satisfied,
because the probability spaces in question feature no non-trivial non-defeaters at all).
It seems arbitrary to us. But, to conclude, if that condition is not assumed, then a
probability space satisfying the PP and not exhibiting any proposition with probability
0.5 does not satisfy the Principle of Indifference as modelled by Hawthorne et al., and
thus their argument does not go through.
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